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Abstract

Several financial exchanges (e.g., IEX and NYSE American) recently introduced messaging delays to
protect ordinary investors from high-frequency traders who exploit stale orders. To capture the impact
of such delays, we propose a simple parametric model of the continuous double auction market format.
The model examines the dynamics of midpoint pegged order queues and finds their steady states. It
shows hows how messaging delays can protect pegged orders and improve investor welfare, but typically
increase queuing costs. Recently available field data shows that the empirical distribution of queued
pegged orders is highly leptokurtotic and resembles the discrete Laplace distribution predicted by the
model.
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1 Introduction

Financial firms have invested billions of dollars to speed up order placement and execution. For

such high-frequency trading (HFT) firms, communication lags in major financial markets have

shrunk from seconds to milliseconds in recent decades, and to tens of microseconds in recent years.

With HFT algorithms now involved in a majority of transactions in major exchanges worldwide

(SEC, 2014), those exchanges face competing incentives: they profit by accommodating HFT firms,

yet still must retain traditional slower clients (O’Hara, 2015), many of whom feel that HFT puts

them at a disadvantage. Some reform proposals intended to protect ordinary traders (e.g., Budish

et al., 2015; Du and Zhu, 2017; Kyle and Lee, 2017) would fundamentally change the market format

by batching orders or by making allocations continuous functions of time. As a practical matter,

several exchanges have already responded with incremental changes to allocation rules: Investors

Exchange (IEX), NYSE American, Thomson Reuters, Electronic Broking Services (EBS), and TSX

Alpha all have imposed delays on inbound and outbound messages processed by the exchange. Such

rule changes have provoked heated policy debates regarding acceptable exchange design, and even

regarding the definition of time itself.1

Does HFT indeed harm ordinary investors under the traditional continuous market format?

Does a messaging delay help ordinary investors, and does it have unintended consequences? The

present paper contributes to the growing theoretical literature that addresses such questions. Our

model spotlights the consequences of imposing a uniform delay on all new orders when a particular

type of resting “pegged” order is repriced without delay. The model thus captures the essential

elements of HFT-inspired reforms at IEX and NYSE American, which are closely related to reforms

at TSX Alpha and other exchanges.

Our model of exchange trading has three types of participants. Investors arrive at random

times and each decides whether to place a market order that transacts immediately, or to place

a pegged order at the midpoint price between the best bid and best offer. A pegged buy order

transacts immediately with a queued pegged sell order if any, and otherwise is is queued behind

1For example, the September 2015 application by IEX to the SEC to become a national securities exchange

provoked polarized comments regarding the appropriateness of a public exchange deliberately delaying orders. Prior

to approving IEX’s application in June 2016, the SEC changed a rule to define “immediacy” as 1 millisecond. This

change has enormous impact on Regulation National Market System (Reg NMS) Rule 611, known as the “Order

Protection Rule”, which requires exchanges to immediately pass orders to markets in the national system with better

prices. We should add that in the present paper, “protection” henceforth refers to attempts to prevent HFT traders

from taking advantage of slower traders in a given exchange, and not to passing orders across exchanges.
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older pegged buy orders; pegged sell orders are analogous. The midpoint pegged queue is “hidden,”

i.e., not visible to participants. Market makers are always present. They place lit (visible to all)

orders at the best bid (BB) and best offer (BO), and earn half a minimal price increment from an

investor when hit by a market order. Snipers pay a cost to access HFT technology (“speed”), and

earn profits at the expense of market makers and (potentially) investors by picking off stale orders

whenever the fundamental value (BBO midpoint) jumps. The exchange can impose a messaging

delay to protect investors’ pegged orders from snipers.

We focus on steady state equilibrium of this dynamic stochastic model, characterized by (a)

the distribution of the hidden order queue which makes investors indifferent between market orders

and pegged orders, and (b) the mass of market makers and the mass of snipers that drive the profit

of both types of participants to zero. It turns out that the distribution in (a) has the discrete

Laplace functional form, and so has “fat tails.” That distribution leads to closed form expressions

in (b). Those expressions in turn offer predictions on how messaging delays and other structural

parameters impact investor welfare and the sustainable masses of market makers and snipers.

The model thus yields a wealth of predictions that can be tested against laboratory or field

data. For example, a messaging delay that fully protects pegged orders will, under a wide range

of exogenous parameter values, result in (a) a substantially higher proportion of pegged orders,

(b) a lower sniper/maker ratio, (c) transactions prices that deviate less from fundamental value,

(d) higher investor welfare overall, but partially offset by (e) higher queuing cost. The model also

identifies parametric conditions under which some of these effects are diminished or even reversed.

Popular accounts of financial market reforms involving a messaging delay (e.g., Lewis, 2015;

Pisani, 2016) have focused on IEX’s 350 microsecond “speed bump” caused by routing communica-

tions through a 38-mile cable coiled in a “shoe box”. On its own, a speed bump of this form offers

no protection to slow traders, as it does not change the order in which fast and slow messages are

received at an exchange; see Khapko and Zoican (2020) for a laboratory confirmation. However,

that delay allows the exchange to have a timely view of the National Best Bid and Offer (NBBO) —

an aggregation of price quotes across all public exchanges — and to automatically reprice pegged

orders before predatory orders arrive at the matching engine. Thus slow traders’ queued pegged

orders are protected from fast traders who attempt to “snipe” stale orders following a NBBO jump.

Pegged orders are available on all national securities exchanges in the United States. They are

typically “hidden,” i.e., not shown in the publicly available limit order book. Exchanges charge a

fee for placing and/or executing such orders and encourage the submission of visible (“lit”) orders

by giving priority to lit orders at any given price, even to those that arrive after hidden orders.
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Pegged orders thus face the implicit cost of always being queued behind visible orders. This cost

is non-trivial due to the fixed price grid (mandated by the Securities and Exchange Commission)

used at all equities exchanges — it is not possible to “just barely” beat another trader on price,

so position in the queue at a given price typically matters. Indeed, we shall see that microsecond

speed advantages are valuable only because ties on price are so common on a discrete price grid.

Previous Literature. Despite their essential role in protecting investors at exchanges featuring

a uniform messaging delay, pegged orders have not been analyzed in previous literature of which

we are aware. Our model fills this gap by focusing on how pegged orders trade off and interact with

traditional order types: market orders and limit orders. In emphasizing interactions among order

types, our paper follows in the tradition of Foucault (1999) and Hoffmann (2014), who study the

trade-off between market and limit orders in the presence of fast and slow traders. Our model also

complements the work of Zhu (2014), Buti et al. (2015) and Buti et al. (2017) in examining dark

trading, but we examine the consequences within an exchange that also maintains a lit order book.

We build on earlier theoretical models. Easley et al. (2012) note that snipers — traders who

use tiny advantages in messaging speed to pick off stale limit orders posted by market makers —

force market makers to widen their bid-ask spread in equilibrium (Glosten and Milgrom, 1985;

Copeland and Galai, 1983), and in that sense are toxic. Budish et al. (2015) compare the ability

of alternative market formats to deal with such toxicity. To sharpen comparisons, their model

drastically simplifies the environment by representing ordinary investors as exogenous order flows

that balance in expectation around an exogenous fundamental value V . Active participants –

market makers and snipers – observe V , which jumps at random times, and can purchase speed.

Each market maker sets a bid and ask price centered at V , choosing from a continuous range. Our

model retains many of these simplifications but requires a discrete price grid in order to model

pegged orders properly and to analyze timing and position in a queue of orders tied at a given

price. We also need to distinguish between lit (publicly displayed) and hidden orders.

Some previous articles have considered hidden orders, albeit in a different context. Advancing

on predecessors such as Hendershott and Mendelson (2000) and Degryse et al. (2009), Zhu (2014)

develops a tractable two-period model in which informed traders and liquidity traders choose in

period 1 between placing market orders in a lit exchange or in a dark pool where all orders are

hidden. In the exchange, a zero profit market maker chooses a continuous spread centered at the

posterior expected price, while the dark pool crosses orders at that midprice. Typically buy and

sell orders in the dark pool do not balance at that price; excess heavy side traders each incur a fixed

delay cost and transact in period 2. In equilibrium, opening the dark pool improves price discovery
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but widens the spread at the exchange and increases delay costs. In a similar vein, Buti et al.

(2017) find that opening a dark trading venue, with trading at the midpoint between best bid and

offer, increases fill rates at a pre-existing lit market, but reduces liquidity, increases spreads and

reduces overall welfare. Werner et al. (2015) investigate the impact of the price grid increment size

in a single, lit venue. Menkveld and Zoican (2017) analyze the impact of an exogenous increase in

execution speed in a single venue, and show that it has offsetting effects on the equilibrium spread.

Like the present paper, Brolley and Cimon (2020) investigate the impact of exchange-imposed

messaging delays, but from a very different perspective. Their 3-period model in the spirit of Zhu

(2014) focuses on how protecting market makers in one venue influences informed investors’ choices

between competing venues. By contrast, we look at a single venue where investors may be able to

protect their own orders. Baldauf and Mollner (2020) also develop a multi-venue model and show

that exempting order cancellations from a random delay leads to smaller spreads and more informed

trading. Chen et al. (2017) likewise study a randomized order processing delay introduced at the

TSX Alpha exchange in 2015, and find that asymmetrically favoring liquidity-providing orders (i.e.

not subjecting them to the delay) results in a deterioration of market quality.

Our paper is also informed by the empirical literature on HFT. Such papers often distinguish

between aggressive (liquidity removing) and passive (liquidity adding) HFT strategies. Passive HFT

is generally associated with improved market performance; see e.g. Jovanovic and Menkveld (2015),

Hagströmer et al. (2014), Menkveld and Zoican (2017), Malinova et al. (2014), and Brogaard et al.

(2019). Although aggressive HFT is generally associated with informed price impact, especially

over short horizons, it can increase adverse selection costs for other traders, increase short-term

volatility, and raise trading costs for institutional and retail traders, as shown by Brogaard et al.

(2014), Zhang and Riordan (2011), and Menkveld and Zoican (2017). The net benefits of aggressive

and passive HFT are often estimated to be positive overall, but usually with the acknowledgment

of non-negligible costs, e.g., Brogaard and Garriott (2019), Hasbrouck and Saar (2013), Bershova

and Rakhlin (2013), and Breckenfelder (2013). The findings in Hirschey (2020) suggest that HFT

behavior provides a net improvement to liquidity, but increases costs to non-HFT traders.

Hu (2019) investigates empirically the impact of order protection on market quality and price

discovery. Exploiting heterogeneity in the transition of IEX ticker symbols to exchange trading

(where they receive quote protection), Hu (2019) finds that trading costs and adverse selection

decrease, while measures of price discovery are mixed. He concludes that although such ‘slow’

exchanges may contribute little to price discovery, they are feasible alternatives to regulatory in-

tervention aimed at improving overall market quality.
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Roadmap. Section 2 presents the ingredients of our dynamic market model, e.g., two types

of random events and three types of participants, as well as our equilibrium concepts. Section 3

reports closed-form expressions for the equilibrium outcomes, and shows how they are obtained in

instructive special cases. It also shows how the equilibrium responds to changes in the degree of

pegged order protection, and to changes in other structural parameters. Section 4 develops the

practical implications of our model. Using recently obtained data on hidden orders, it shows that

the empirical distribution appears to be remarkably close to a discrete Laplace distribution, as

predicted by our model. Section 4 then collects predictions of the impact of order protection and

other structural features of markets. Section 5 offers a concluding discussion, noting some promising

avenues for future empirical and theoretical work. Longer formal proofs are collected in Appendix

A. An Online Supplement reports a calibration exercise and numerical comparative statics (sections

B and C); dynamic extensions of the model and empirics (section D); more mathematical details

(E); and connections to current financial practice (F).

2 Model

We now present a model of a continuous double auction with messaging delays that may protect

midpoint pegs against sniping. The model ignores some important complications in order to focus

sharply on others.

2.1 Market and Prices

The first assumption ignores trading odd lots or multiple lots at fragmented exchanges, enabling a

tighter focus on messaging delays and pegged orders.

A1: The market is a single financial exchange allowing trade of indivisible single units of a single

asset.

Virtually all financial markets have a minimal price increment, typically a penny per share.

Theoretical models nevertheless often assume a continuous price interval, but that would be prob-

lematic for us because (i) it is not clear how to define pegs when (possibly tiny) orders can be

priced arbitrarily close together, and (ii) messaging speed is far less important when ties on price

are rare, as with a continuous price space. Hence our model assumes:

A2: Prices lie on a discrete, uniform grid P = 1, 2, . . . , P̂ . The grid step size represents half of

the minimum price increment (e.g., half a penny per share).
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Our market does not operate in a vacuum; we idealize the NBBO midpoint (established mainly

in other exchanges) as the “fundamental value” V of the asset, which moves exogenously. For our

purposes it is natural to assume that V is publicly observable as in Budish et al. (2015), and that

it is equally likely to jump up or down by the minimum price increment as in, e.g., Foucault (1999)

or Hoffmann (2014).2 Thus our model assumes

A3: The fundamental value of the asset, V , follows a marked Poisson process on P. The

fundamental value changes to V ′ ∈ {V − 2, V + 2} with equal innovation rate ν > 0. That is, the

total innovation rate is 2ν, with one-sided rate ν of a two-step (i.e., a minimal price increment)

upward jump and one-sided rate ν of a two-step downward jump.

2.2 Order types, participants and choices

Online Supplement F discusses a large variety of order types, visible (“lit”) or otherwise (“hidden”)

that are currently available on major financial exchanges. That discussion justifies streamlining

our model to just three order types:

r: single unit regular lit limit orders that rest at best bid (V − 1) and best offer (V + 1).

p: single unit midpoint peg hidden limit orders that enter at price V .

m: single unit market orders that remove liquidity at the midpoint if it is occupied by contra-side

orders and otherwise remove contra-side r orders.

Online Supplement F also reviews how exchanges classify participants as agencies and propri-

etary traders, and how these classifications map to the three participant types in our theoretical

model: investors, market makers, and snipers. The model focuses on investors, and their choice

between pegged and market orders. Specifically, it assumes that

A4: An exogenous flow of investors with unit demands arrive independently at Poisson rate ρ > 0

on each side of the market.

a. each unit demand has gross surplus ϕ > 1 and impatience is captured by continuously com-

pounded discount rate δ > 0.

b. Each investor chooses whether to transmit her demand via a market order (m) or a midpoint

peg (p).

Assumptions A3 and A4 taken together say that the fundamental value V always equilibrates

investor supply and demand, even while experiencing exogenous shifts. Assumption A4a is a

2Of course, at extreme prices (V = 1, 2 and P̂ − 1, P̂ ), some jumps are infeasible so A3 must be modified. As a

practical matter, the SEC permits the grid to be redefined in such extreme cases. Here, to focus on matters of greater

interest, we assume that such modifications are negligible because we are operating far away from the extremes.
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standard way to capture the idiosyncratic component of investor valuation and the potential gains

from trade in a financial market; e.g., ϕ = L in the notation of Hoffmann (2014, p.158). The

restriction ϕ > 1 ensures that investors are willing to transact at BB or BO. A4b defines investors’

choice set, and is discussed further in Section 2.5 below.

Market makers add liquidity via regular limit orders (r). With highly liquid securities in mind,

the definition of r assumes that these orders rest at BBO, and our notion of equilibrium presumes

that the BBO queues are not empty. To that end, we assume

A4c. Whenever a new investor arrives, there is always at least one r ask at best offer, BO = V + 1,

and at least one r bid at best bid, BB = V − 1.

As explained in Section 2.5 below, snipers remove liquidity: immediately following a jump in

V , they send market orders to transact with stale orders resting in the order book.

2.3 Events, states, and transitions.

We model an ongoing exchange in continuous time, punctuated randomly by two types of events:

investor arrivals and jumps in V . These events trigger transitions in the state of the market. Given

the strong assumption A4c (the lit order book is always deep), there is no need to track changes in

the lit order book, but we must keep track of transitions in the hidden order book at midpoint.

To do so, recall that in any continuous double auction (CDA) market, any new order that meets

or crosses a contra-side resting order transacts immediately with the oldest such order at the best

price; e.g., a bid that equals or exceeds the best (lowest) ask in the book transacts at that ask

price. More specifically, we assume

A5a: An investor’s market order executes immediately at price V against the oldest contra-side

midpoint peg if any are queued; otherwise, it executes immediately against a market maker’s contra-

side r order resting at BBO = V ± 1.

A5b: An investor’s pegged order also executes immediately against the oldest contra-side pegged

order if any; otherwise, it rests behind existing same-side pegs at V .

Since buy and sell p orders execute against each other, midpoint orders can rest on only one

side of the market at any given time. Therefore the state of the market is described by the level

of the fundamental value, V ∈ P, together with the order imbalance k ∈ Z at the midpoint price.

By convention, an integer k < 0 indicates precisely −k > 0 midpoint peg buy orders resting in the

hidden order book and no sell orders, k > 0 indicates k resting midpoint peg sell orders and no buy

orders, and k = 0 indicates an empty queue at the midpoint price V . See Figure 1.
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Figure 1: Example market states and transitions. Uppercase (resp. lowercase) denotes lit (resp. hidden)

orders, B/b for bids and A/a for asks; those to the left have higher priority at that price. Panel I: initial

state is k = 2 and V = 10005 half-pennies (i.e., V = $50.025 per share); event (1) is a market ask which

‘crosses the spread’ to transact at BB 10004 = $50.02; event (2) is a midpoint pegged ask which rests at

V , implying a transition to k = 3. Panel II: V has jumped to 10007 = $50.035; event (3) is a market or

midpoint bid which transacts at V and triggers transition k = 3→ 2. Panel III: V remains at 10007 but an

excess of midpoint bids has driven k to -2.

New investor arrivals can trigger transitions in k. Let ω denote the fraction of investors who

transmit midpoint peg orders, with the remaining fraction, 1 − ω, transmitting market orders.

Assumption A4 tells us that a new arrival generates a midpoint peg bid or ask with probability

ω/2 each, or a market bid or ask with probability (1 − ω)/2 each. A new pegged ask (resp. bid)

always generates a transition k → k+ 1 (resp. k → k− 1). A new market ask (resp. bid) generates

a transition k → k + 1 when k < 0 (resp. k → k − 1 when k > 0) and otherwise executes at BBO

with no change in k.

2.4 Timing

The other type of event, a jump in V , can also trigger transitions in the order imbalance k. To

see how, we now detail our model’s stylized timing of events and actions; Online Supplement F

summarizes actual timing practices in today’s financial markets.

Jumps in the NBBO (represented in our model as V ) are registered at the Securities Information

Processor (SIP), which communicates with our exchange with fixed latency τSIP > 0. With that
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latency, all resting pegged orders in our exchange automatically adjust in parallel fashion. Traders’

messages to the exchange have default latency τslow, but traders can reduce their latency by renting

or purchasing state-of-art communication facilities. The model allows traders (snipers) to acquire

fast technology with latency τfast ∈ (0, τslow) at rental cost c > 0 per unit time.

The exchange imposes an additional delay η ≥ 0 so that traders experience overall latency

either τfast + η or τslow + η on new orders. To avoid trivialities, we assume that τslow + η > τSIP ;

otherwise sniping is infeasible. In the traditional CDA format η = 0, while exchanges featuring

order protection choose η > 0 so that τfast + η > τSIP . For the sake of greater generality, we

assume that η is a random variable independently realized at each V jump event, and define the

composite parameter

ξ = Prob[τfast + η ≤ τSIP ]. (2.1)

When ξ = 0, pegged orders are fully protected from sniping and are guaranteed to jump in parallel

with V before any new messages (e.g., snipes) reach the exchange. When ξ = 1, pegged orders

are not protected. Intermediate values of ξ represent the probability that all midpoint pegs are

vulnerable at any given jump in V .

2.5 Payoffs

Assumption A4b says that investors choose between midpoint peg orders and market orders. The

payoff consequences are as follows.

Market order. Let qk denote the probability of order imbalance k. With probability
∑−1

k=−∞ qk

a market sell order will execute immediately against a contra-side midpoint peg and earn ϕ. With

complementary probability
∑∞

k=0 qk, that market order will execute immediately against an r order

which (by A5a and A4c) is 1 step away from V , and so it earns ϕ− 1. Thus the payoff (expected

net surplus) for a market sell order is

πm = ϕ

−1∑
k=−∞

qk + (ϕ− 1)

∞∑
k=0

qk. (2.2)

A market buy order has the same payoff except that qk is replaced by q−k.

Peg. By A5b, a new midpoint peg sell order executes immediately with a contra-side midpoint peg

order if any are present, resulting in the same first term as in equation (2.2). Otherwise, when the

imbalance is k ≥ 0, the new order is placed at position k+ 1 and the payoff is reduced by expected

delay and sniping hazard. To compute the delay cost, first note that for state k = 0 (empty order
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queue) with ξ = 0 (no sniping hazard), the new peg sell order will execute against the next investor

buy order, which arrives at Poisson rate ρ > 0. With discount rate δ > 0, the realized discount

factor is e−δt if that order happens to arrive with delay t, so the appropriate discount factor is its

expected value, β =
∫∞

0 e−δtρeρtdt = ρ
ρ+δ < 1. A more intricate calculation in Online Supplement

E.2 verifies that the discount factor is indeed βk+1 when the hidden order book was at state k ≥ 0.

Sniping hazard has two effects. It reduces the expected delay: e.g., when k = 0 the pegged sell

will execute against either the next investor buy (rate ρ) or the next snipe buy (rate ξν). Hence

when k ≥ 0 the discount factor is β̂k+1, where β̂ =
∫∞

0 e−δt(ρ + ξν)e(ρ+ξν)tdt = ρ+ξν
ρ+ξν+δ < 1. The

other effect, of course, is that sniping produces a non-discounted loss, and by A3 that loss is 2 price

steps. Given existing state k ≥ 0, the conditional probability of not being sniped is
(

ρ
ρ+ξν

)k+1
,

the probability that k+ 1 investor buy orders arrive before the next upwards jump in V . Thus the

payoff for a midpoint peg sell order is

πp = ϕ

[ −1∑
k=−∞

qk +
∞∑
k=0

qkβ̂
k+1

]
− 2

∞∑
k=0

qk

[
1−

(
ρ

ρ+ ξν

)k+1
]

(2.3)

A peg buy order has the same payoff except that qk is replaced by q−k.

Our model also includes snipers and market makers. For analytical clarity, we regard them as

distinct types although in actuality both activities could be undertaken by the same firm. To assign

profits, we assume that (like investors) they are risk neutral and (unlike investors) they are patient

and have no intrinsic trading surplus. We adopt the natural and customary convention that they

cash out their inventory at V ′, the (possibly new) BBO midpoint at the time. The first two parts

of our final assumption state this more formally.

A6a: Market makers reverse each transaction immediately at V ′, and thereby earn a profit of 1

(resp., -1) step from each transaction with investors (resp. snipers).

A6b: Snipers have the capacity to accept all stale orders at BBO and (when not protected) at

midpoint. They reverse all transactions immediately at V ′.

A6c: Snipers purchase speed but market makers and investors do not.

A6d: Investors never place orders at own-side BBO.

A6c-d are restrictions on action sets that simplify our analysis. Although there is evidence that

market makers pay for speed services (see, e.g., Brogaard et al., 2015), there is similar evidence that

they do not pay for the highest tier of speed services offered by exchanges (see Shkilko and Sokolov,

2020). Our simplifying assumption A6c reflects this speed differential; see Oline Supplement E.4

for additional discussion. The last part of Appendix A characterizes wide regions of parameter
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space for which restriction A6d does not bind.3

Our model does not fully pin down market scale, and here integer constraints seem unhelp-

ful. Therefore we treat the numbers Ns and Nr of snipers and market makers as real numbers

(population masses) rather than as integers (population counts).

Snipers trade off the flow cost, c, of buying speed against profits from sniping stale r and unpro-

tected p orders following a jump in the fundamental value V . Thus there are Nr + ξNp potential

targets, where Np is the expected number of stale pegs, e.g., Np =
∑∞

k=0 kqk for an up jump in V .

By assumptions A3 and A6, each successful snipe of a resting r order involves buying (or selling)

a single share at V + 1 (or V − 1) and reversing the transaction at V ′ = V + 2 (or V ′ = V − 2),

yielding a profit of 1 price step, while the profit for sniping a midpoint peg is |V ′ − V | = 2 steps.

Since opportunities arrive at each side of the market at rate ν, the expected profit flow for each of

the Ns snipers is

πs = 2ν
Nr + 2ξNp

Ns
− c. (2.4)

Market makers place r orders at the BBO, trading off the one price step gain of transacting with

a market order against a possible one step loss to a sniper. With probability
∑∞

k=0 qk an investor

market order ask (or
∑0

k=−∞ qk for a bid) encounters no contra-side liquidity at the midpoint and

thus reaches a market maker. Since these orders arrive at each side of the market at rate (1− ω)ρ

and earn 1 step profit each, the expected gross profit flow to be divided among the Nr makers is

(1 − ω)ρ[
∑∞

k=0 qk +
∑0

k=−∞ qk] = (1 − ω)ρ[1 + q0]. With sniping opportunities occurring on each

side of the market at rate ν, each costing each market maker 1 price step, those makers get per

capita net payoff flow

πr =
(1− ω)ρ

Nr
[1 + q0]− 2ν. (2.5)

Parameter summary. Table 1 below summarizes notation, classifying variables as structural

parameters, observable outcomes, and other endogenous variables. The structural parameter vector

(ξ, ν, ρ, δ, c, ϕ) is called admissible if ξ ∈ [0, 1], ϕ > 1, and c, ν, ρ, δ > 0.

2.6 Equilibrium

Our model is intrinsically dynamic. Appendix A.1 writes out how the order imbalance distribution

q = {qk}k∈Z evolves over time when a given fraction ω of investor orders are transmitted as pegs.

3The “thick market” assumption A4c, that makers already have orders resting at BBO, implies that investors

placing an own-side BBO order will always face nontrivial delay. This helps explain why A6d typically does not bind.
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Variable Description

Structural parameters

ξ ∈ [0, 1] Probability that pegs are vulnerable (= 0)

ν > 0 Innovation rate in fundamental value (= 1)

ρ > 0 Investor arrival rate (= 50)

δ > 0 Investor time discount rate (= 50)

c > 0 Flow cost of speed (= 10)

ϕ > 1 Investor gross surplus (= 1.8)

Other exogenous variables

β ∈ [0, 1] discount factor; β̂ includes sniping hazard

V = 2n+ 1 Fundamental value (supported on odd numbered price steps)

Endogenous outcomes

ω ∈ [0, 1) Fraction of investor orders transmitted as pegs

qk ∈ [0, 1] Probability that peg imbalance is k ∈ Z

λ ∈ [0, 1) Discrete Laplace parameter for imbalance distribution

Nr > 0 Mass of market makers

Ns > 0 Mass of snipers

Np > 0 Expected absolute peg imbalance

TC > 0 Expected trading cost

W > 0 Welfare = investor surplus net of TC

Table 1: Symbols, range and description for variables used in the model. For structural parameters,

(= x) in description indicates the baseline value.

To find equilibrium in our model, the first step is to find a steady state distribution of the order

imbalance. In the next section we will show that there is a unique steady state, and it can be

written explicitly in terms of ω and exogenous parameters.

Given that steady state distribution, the second step is to find an equilibrium value of ω and

the other endogenous variables Nr and Ns. The formal definition is as follows.

Definition 1. Given an exogenous flow cost of speed c > 0, discount rate δ > 0, arrival rates

ρ, ν > 0 for investors and fundamental value innovations, and investor gross surplus ϕ > 1, the

vector (ω∗, N∗r , N
∗
s ) constitutes a market equilibrium if

1. at the steady state queue distribution for ω∗ ∈ (0, 1) (resp. ω∗ = 0), a midpoint peg order has

the same payoff as (resp. no more payoff than) a market order, and

2. with N∗s ≥ 0 snipers and N∗r ≥ 0 market makers, these trader types both earn zero profit.

The idea behind the first equilibrium condition is that investors will increase the fraction ω ∈

(0, 1) of pegged orders whenever the payoff difference πp − πm is positive, and decrease ω when

12



the difference is negative. Hence expected (net discounted) surplus should be equal at an interior

steady state, while at ω∗ = 0 we should have πp ≤ πm. Online Supplement E.3 shows that ω∗ = 1

is ruled out when δ > 0. The second equilibrium condition arises from the reasonable assumption

that there are no substantial barriers to entry or exit for market makers and snipers.

3 Results

We shall now see that our model has a unique equilibrium, and it can be written out explicitly in

terms of the model’s structural parameters. Simple instructive proofs are included here, while the

longer proofs are collected in Appendix A.

3.1 Steady state imbalance

Proposition 1. Let ω ∈ (0, 1) be the probability that investors transmit a midpoint peg order, let

ξ ∈ [0, 1] be the probability that those orders are vulnerable to sniping, and let ν
ρ > 0 be the event

rate ratio of jumps in V relative to investor arrivals. Given assumptions A1-A6, there is a unique

steady state distribution q = (qk)k∈Z of the order imbalance, with

qk =

(
1− λ
1 + λ

)
λ|k|, k ∈ Z, (3.1)

where

λ =
1

2

(
1 +

ξν

ρ
+ ω

)
− 1

2

√(
1 +

ξν

ρ
+ ω

)2

− 4ω ∈ (0, ω]. (3.2)

Equation (3.1) tells us that the steady state distribution is discrete Laplace, a distribution

introduced in Inusah and Kozubowski (2006): symmetric and unimodal at k = 0 and decreasing

at exponential rate as |k| increases. The distribution has a single parameter λ ∈ (0, ω], which in

our model is a function of structural parameters (ρ, ν, ξ) as well as of the endogenous fraction ω of

investor orders that are transmitted as midpoint peg orders. The discrete Laplace distribution is

very leptokurtotic — an empty queue is more likely, a short queue is less likely, and a long queue

is much more likely than under Gaussianity. For example, suppose that λ = 0.25. Then the steady

state probability of an empty queue is q0 = 0.60, and of a queue of length |k| = 5 is qk ≈ 5.9×10−4.

A Gaussian distribution with the same mean (0) and variance (0.6) has density less than 0.52 at

k = 0 and less than 4.6× 10−10 at k = ±5.

The special case with full protection, ξ = 0, is of interest in its own right.
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Corollary 1. When midpoint pegs are fully protected (ξ = 0), the steady state imbalance in Propo-

sition 1 reduces to

qk =

(
1− ω
1 + ω

)
ω|k|, k ∈ Z. (3.3)

The corollary is trivial since expression (3.2) collapses to λ = ω when ξ = 0, but Appendix A offers

an elementary direct proof to help build intuition for the more general case. That proof begins

with the state transition audit noted at the end of Section 2.3, and verifies that, in order to balance

outgoing transitions k → k ± 1 against incoming transitions k ± 1 → k, the queue probabilities

must decline in |k| at geometric rate ω. This directly implies the discrete Laplace distribution with

parameter ω.

When ξ > 0, successful sniping will augment single unit (±1) transitions with multi-unit transi-

tions k → 0. The intuition is now less clear, and the formal proof of Proposition 1 requires queuing

theory and second order difference equations. Nevertheless, the steady state distribution again

turns out to be discrete Laplace.

3.2 Market equilibrium

Proposition 2. Under assumptions A1 - A6, for every admissible structural parameter vector there

is a unique market equilibrium, with

ω∗ = λ∗ +

(
λ∗

1− λ∗

)
ξν

ρ
(3.4a)

N∗r =
ρ

ν

(
1− ω∗

1 + λ∗

)
and (3.4b)

N∗s = 2ν
N∗r + 2ξN∗p

c
=

2ρ

c

(
1− ω∗

1 + λ∗

)
+

4ξν

c

λ∗

1− (λ∗)2
(3.4c)

where

λ∗ =
1

2ρ(ρ+ ξν)

[
ξν(ρ− ξν) + ρ ((1− ϕ)δ + 2ρ)

−
(

(ξν(ξν − ρ) + ρ ((ϕ− 1)δ − 2ρ))2

− 4ρ(ρ+ ξν) (ρ(ρ+ δ(1− ϕ))− ξν(ξν + δ(1 + ϕ)))
)1/2

]
+

(3.5)

and N∗p =
λ∗

1− (λ∗)2
. (3.6)

We use notation [x]+ = max{0, x}. The empirical implications of this Proposition are developed

in Sections 3.3 and 3.4 below. Again, the special case is instructive.
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Corollary 2. With ξ = 0, the conclusions of Proposition 2 reduce to

ω∗ =

[
1− (ϕ− 1)

δ

ρ

]
+

, (3.7)

with

N∗r =
ρ

ν
q0 and N∗s =

2ρ

c
q0 where q0 =

(
1− ω∗

1 + ω∗

)
. (3.8)

Equation (3.7) shows that, not surprisingly, the equilibrium fraction of midpoint peg orders, ω∗,

is insensitive to sniping risk (as captured by the fundamental innovation rate ν) when those orders

are protected. That equation shows that a positive fraction of investors will then choose pegged

orders when ϕ < δ+ρ
δ = (1 − β)−1. The intuition is that a very large gross surplus or very heavy

(i.e., small) discount factor will lead to prohibitive queuing costs. The same intuition suggests,

and equation (3.7) confirms, that equilibrium ω is negatively related to gross surplus ϕ and to the

discount rate δ relative to the investor arrival rate ρ. Equation (3.8) shows that the equilibrium

mass of market makers is inversely proportional to the risk of sniping, ν, and is more than directly

proportional (via the impact on q0) to the arrival rate of investor orders, ρ. By the same token, the

equilibrium mass of snipers is more than proportional to ρ and is inversely proportional to c, the

cost of fast communication technology. Perhaps surprisingly, the mass of snipers also is insensitive

to the arrival rate of sniping opportunities (again, when pegs are fully protected). This is due to

the offsetting equilibrium decrease in the mass N∗r of sniping targets as ν increases.

A direct proof of Corollary 2 proceeds as follows. Apply the first market equilibrium condition

to profit expressions (2.2) and (2.3), recalling that first terms cancel.4 Also recall that here ξ = 0,

so β̂ = β = ρ
ρ+δ and steady state qk =

(
1−ω
1+ω

)
ω|k|. Thus

πp = πm ⇐⇒ ϕβ

[ ∞∑
k=0

qkβ
k

]
= (ϕ− 1)

[ ∞∑
k=0

qk

]

⇐⇒ ϕβ
1− ω
1 + ω

[
1

1− βω

]
=
ϕ− 1

1 + ω

(
1− ω
1− ω

)
⇐⇒ 1− ω

1 + ω

[
ϕ

β−1 − ω

]
=
ϕ− 1

1 + ω

⇐⇒ (1− ω)ϕ = (ϕ− 1)(β−1 − ω)

⇐⇒ ω = ϕ− β−1(ϕ− 1) = 1− (ϕ− 1)
δ

ρ
. (3.9)

If the last expression in (3.9) is negative, then it is straightforward to show that πp(0) ≤ πm(0) and

so ω∗ = 0. Note that ω < 1 in (3.9) for all admissible parameters. To obtain equation (3.8), apply

4Since market orders and pegs both transact immediately against resting contra-side pegs. It follows that (see On-

line Appendix D) that a simple market order dominates the intuitively appealing dynamic strategy of first submitting

a pegged order and then, if it doesn’t execute immediately, substituting a market order.
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the market equilibrium condition πr = 0 to Equation (2.5), and solve for Nr when ξ = 0, recalling

that at steady state q0 = 1−ω
1+ω . Then solve πs = 0 for Ns using Equation (2.4). �

The method for finding equilibrium for the general case ξ ∈ [0, 1] is the same as for the special

case, but the expressions are more complicated because πp = πm now yields an expression in λ that

is quadratic rather than linear as in (3.9). See Appendix A for details.

3.3 Comparative statics

The model’s empirical implications arise mainly from its comparative statics — how equilibrium

outcomes respond to changes in the degree of protection and other structural parameters. Therefore

we investigate the signs of the partial derivatives yθ ≡ ∂y
∂θ of equilibrium values y = ω,Nr, Ns of

potentially observable variables, with respect to parameters θ = ξ, ν, δ, ρ, ϕ, c. Because of its central

role, we begin with the comparative statics of λ∗.

Proposition 3. For all admissible parameter vectors, λ∗ in equation (3.5) is [a.] strictly decreasing

in ξ, i.e., λ∗ > 0 =⇒ λ∗ξ < 0; [b.] strictly decreasing in δ, i.e., λ∗ > 0 =⇒ λ∗δ < 0; [c.] decreasing

in ν, i.e., λ∗ν ≤ 0; [d.] strictly increasing in ρ if ξ = 0, i.e., ξ = 0 ∧ λ∗ > 0 =⇒ λ∗ρ > 0; [e.]

strictly decreasing in ϕ, i.e., λ∗ > 0 =⇒ λ∗ϕ < 0; and [f.] independent of c, i.e., λ∗c = 0.

The formal proof in the internal Appendix uses standard calculus techniques. Since λ is the

discrete Laplace parameter for the distribution of pegged orders, this Proposition predicts how

those distributions will vary with the degree of protection and other structural parameters. It is

also key to our main comparative static results:

Proposition 4. For all admissible parameters vectors,

a. the equilibrium value of ω in equation (3.4a) is [strictly] decreasing in δ and in ϕ, and when

midpoint pegs are fully protected, it is [strictly] increasing in ρ [when ω > 0]. It is independent

of c, and the net impacts of changes in ξ, ν and (for vulnerable pegs) ρ are ambiguous.

b. the equilibrium value of Nr in equation (3.4b) is strictly increasing in δ and in ϕ and is

independent of c. When midpoint pegs are fully protected, it is increasing in ν and ρ. The net

impacts of changes in ξ, ν and ρ are ambiguous when ξ > 0.

c. the equilibrium value of Ns in equation (3.4c) is strictly decreasing in c; when midpoint pegs

are fully protected, it is strictly increasing in δ and in ϕ, and independent of ν. The net

impacts of changes in ξ, ν and ρ are ambiguous when ξ > 0.
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3.4 Welfare

We take the investor’s perspective in assessing market performance. A technical reason is that

the other participants in our model earn zero profit in equilibrium. More fundamentally, one can

argue that the social value of financial markets lies in serving investors, not in extracting revenue

from them. Thus welfare and market performance is captured in our model by transactions costs,

broadly construed as shortfalls in investor payoff.5

To compute that shortfall, first consider the case where an investor transmits a market order.

With steady state probability
∑∞

k=1 qk = λ
1+λ there is a resting contra-side pegged order; the market

order then executes immediately at midpoint and the investor receives full payoff ϕ with shortfall 0.

With complementary probability 1
1+λ the market order executes at BBO and the investor receives

net payoff ϕ − 1, i.e., a payoff shortfall of 1. Writing πm = ϕ − TC, the expected shortfall, or

transaction cost, for a market order is therefore

TC =
1

1 + λ
. (3.10)

If an investor instead transmits a midpoint pegged order, it still executes immediately and gives

full payoff with probability λ
1+λ , but otherwise it goes into the midpoint queue and incurs the delay

and sniping costs captured in equation (2.3). Let queuing cost QC denote that expected shortfall

in investor payoff, so πp = ϕ−QC.

Of course, in equilibrium πm = πp, so QC = TC. This justifies defining equilibrium welfare as

W = ϕ− TC = ϕ− 1

1 + λ
. (3.11)

Its comparative statics are as follows.

Proposition 5. For all admissible parameters vectors, equilibrium welfare W in equation (3.11)

is decreasing in vulnerability to sniping ξ, investor impatience δ, and fundamental innovation rate

ν. With full protection (ξ = 0), welfare increases in investor arrival rate ρ.

The proof is straightforward. Equation (3.11) shows that W is a smooth strictly increasing function

of λ, and that the parameters mentioned affect W only via λ. Therefore the chain rule implies for

those θ’s that Wθ has the same sign as λθ given in Proposition 3. �

The formal analysis supports the following economic intuition. An increase in investor surplus

ϕ or impatience δ or sniping hazard ξν will increase the queuing cost for a peg order relative to

5We continue to ignore brokerage fees and exchange-imposed fees for adding and removing liquidity; see Online

Appendix F.5 for a discussion of current practice and how it can be incorporated into our model.
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the fixed 1 step transaction cost for a market order, and therefore will tend to lower the fraction ω

of pegs and the corresponding DL parameter λ. An increase in investor arrival rate ρ will tend to

have the opposite effect, since new investors burn faster through the preexisting queue when they

arrive more frequently. That reduces queuing costs and increases the fraction of pegs.

These effects govern equilibrium welfare W , as noted in the proof just given. For example, an

increase in sniping hazard ξν will increase the fraction of market orders, hence increase transaction

costs and reduce welfare. As can be seen in the formal analysis, when ξ > 0 so that pegged orders

may be sniped, an increase in ρ has additional effects that will partially (or perhaps fully) offset

its queuing cost impact on λ and W . Likewise, as can be seen from equations (3.4b - 3.4c), several

structural parameters have direct impact on the masses of makers and snipers; those direct effects

in some cases reinforce, and in other cases may partially or fully offset, the effects via λ. Proposition

4 summarizes the net directional impact.

Does anyone benefit from the investor shortfall TC? In equilibrium, the fraction 1−ω of TC is

transferred to market makers, who transfer it all to snipers, who fully dissipate it in buying speed.

Of the remaining fraction ω, some will transfer directly to snipers when pegs aren’t fully protected,

and the rest is deadweight queuing cost. Thus, one way or another, the shortfall is fully dissipated.

4 Empirical implications

We now check the consistency of the theoretical steady state distribution with recently available

data, and then list baseline values of structural parameters that are consistent with that and other

data. That baseline enables us to sharpen predictions that potentially can be tested in laboratory

and field data.

4.1 Calibration

As detailed in Online Supplement D.4, we recently obtained data on the hidden queue states for an

actively traded security with fully protected midpoint pegs. Observations with |k| ≤ 6 constitute

over 99.97% of the 4.9×1014 nanoseconds of available data; we ignore the noisy minuscule fractions

of observations with |k| ≥ 7. Black dots in Figure 2 plot natural logs of the observed fractions.

To estimate the equilibrium discrete Laplace parameter ω∗ = λ∗, we use the maximum likelihood

estimator of Inusah and Kozubowski (2006),

ω̂ =
K

1 +
√

1 +K2
, (4.1)
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Figure 2: Pegged order queue (log) distributions: empirical (connected black dots), estimated

discrete Laplace (red dashed lines), and estimated Gaussian (blue dashed curve). Data are from

all trading hours of security SPY (a popular exchange-traded fund) on Investors’ Exchange during

December 2016.

where K =
∑

k∈K wk |k| and where K = {−6, . . . , 0, . . . , 6}.6 We find ω̂ = 0.23 and depict the

corresponding discrete Laplace (DL) distribution in Figure 2 as a dashed red line. The figure also

shows the Gaussian distribution obtained by minimizing wk-weighted squared errors (dashed blue

curve). Consistent with our theoretical model, the DL distribution appears to be a far better

description of the data than a Gaussian distribution. (Indeed, apart from a slight excess of time

spent at k = 0, the empirical distribution seems an almost perfect symmetric DL.) We emphasize

that our model was circulated before we obtained the pegged order data. The model was not

designed to fit any known distribution; rather, the DL distribution emerged as a byproduct of our

model primitives and equilibrium concept.

The estimated value of ω helps us obtain baseline values for the model’s structural parameters,

as explained in Online Supplement B.

Counterexample. A natural conjecture is that midpoint pegs are more common when they are

6This estimator, which can also be written as

√
1+K2−1

K
, can also be derived by inverting equation (3.6) and noting

that by definition K = 2Np.
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better protected. It is true that better protection (lower ξ) increases the number of resting pegged

orders N∗p , as can be seen in the proof of Proposition 4. However, more resting pegs implies

increased queuing cost, which will partially offset the increased profitability due to reduced sniping

hazard. Conceivably the offset could be more than 100%, falsifying the conjecture.

Figure 3 in the Online Supplement investigates. The first two panels show that ωξ is negative

as conjectured when all parameters are near baseline values. However, when δ is very small (below

10, about 20% of its baseline value) or ρ is quite large (about 2.5 times baseline) then that partial

derivative turns positive and so the conjecture fails. Apparently the indirect effect (longer midpoint

queues) more than offsets the direct effect (increased profitability due to reduced sniping hazard)

when investors are sufficiently patient and numerous.7

The lower panels in Figure 3 show the impact of parameters ξ, δ and ν on the comparative

statics of ω and λ with respect to ρ, and thus, in conjunction with the proof of Proposition 2,

largely resolve the ambiguous comparative statics for Nr and Ns. For example, the direct impact

of ρ on Nr is positive, and at baseline so are the indirect impacts via λ and ω.

4.2 Testable predictions

The foregoing analysis yields the following predictions that potentially can be tested against data

gathered in the lab or observed in the field.

1. Peg vulnerability. An increase in the probability ξ that pegs can be sniped will, other things

equal,

a. reduce the DL parameter λ, e.g., shrink the mean length Np of the hidden order queue;

b. increase investors’ per-unit transaction costs TC and decrease welfare W ;

c. reduce the fraction ω of orders transmitted as midpoint pegs, except when relative impatience

δ
ρ is quite small; and

d. typically increase the masses Nr, Ns of both market makers and snipers, with exceptions

inherited from [c.]

As noted in Online Supplement C, due to a symmetry in key equations, when ξ > 0 these predictions

also apply word-for-word to an increase in the fundamental innovation rate ν.

7Does a very small innovation rate ν also undermine the conjecture? Not so. The third top panel of Figure 3

shows, and analytic expressions confirm, that ωξ remains negative and converges to zero as ν ↓ 0.
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2. Relative impatience. An increase in investor impatience δ will, other things equal,

a. reduce λ and ω;

b. increase the mass Nr of market makers and typically also the mass Ns of snipers; and

c. increase investors’ per-unit transaction costs TC and decrease welfare W .

As noted in Online Supplement C, the predicted directional impacts of a decrease in investor arrival

rate ρ are exactly the same with full order protection (ξ = 0), and also when other parameters are

in a large neighborhood of baseline. However, the impact of ρ becomes ambiguous when it is very

large relative to δ and pegs are vulnerable to sniping. The same caveat applies to the impact of δ

on Ns in item b.

3. Speed cost. An increase in the cost of speed c that does not invalidate Assumption A6c will,

other things equal,

a. have no impact on λ, ω, or Nr;

b. decrease the mass Ns of snipers; and

c. have no impact on investors’ per-unit transaction costs TC or welfare W .

5 Discussion

The ultimate source of profits for all participants in our model is the exogenous order flow from

investors. Investors have an intrinsic desire to buy or sell captured in the parameter ϕ. A market

maker earns income when investors’ market orders transact against her lit orders resting at the

best bid and best offer. Some of that income is diverted to snipers, who snap up stale BBO orders

immediately following a jump in the fundamental value. Intuitively, we have a food chain, with

investors’ market orders sustaining regular limit orders, which sustain sniping.

A recent innovation at some exchanges offers investors an alternative to market orders: a

hidden midpoint peg that is protected from snipers8 and that executes at a better price. However,

8As elaborated earlier, the fact that the order is hidden does not protect it from sniping; protection rather

comes from the peg, which automatically reprices before (delayed) snipe orders arrive. It is worth emphasizing

that the messaging delay required to fully protect pegs (about 0.00035 seconds as noted in the popular press) is

negligible compared to the delay between investor arrivals, which creates a one step increment in queuing cost.

Online Supplement D.4 notes that the median one-side arrival delay is about 2× 0.615 ≈ 1.2 seconds in our data, or

about 3000 times larger than the messaging delay.
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pegged orders incur an expected queuing cost that increases with the fraction ω of investors who

choose pegs. Since pegged orders are hidden, traders can not observe the queue in advance, but

in equilibrium they know its expected length and the resulting cost. When that queuing cost is

sufficiently disadvantageous, investors will resort to standard market orders, which execute against

market makers’ (lit) best bids and offers.

Our model predicts the direct and indirect impacts of those tradeoffs. We derive analytic

expressions for equilibrium outcome variables, and these expressions imply that a greater degree

of protection due to delayed messaging generally increases the equilibrium fraction of pegs and

reduces the masses of snipers and market makers. Contrary to the conclusions of some previous

models (see Online Appendix E.5), greater protection in our model always increases investor welfare

in equilibrium. The analytic expressions offer numerous predictions about the impact of other

structural parameters.

How well do those results stand up when key simplifying assumptions are relaxed? Our model

rules out investors competing with market makers to place orders at best bid and offer, and rules

out market makers placing midpoint pegs. The last paragraph of Appendix A shows that those

simplifications are without loss of generality for wide subsets of parameter space. The model also

rules out liquidity adders (either of lit orders at BBO or of hidden midpoint pegs) purchasing

speed technology. Online Appendix E.4 shows that such purchases are unprofitable in a large

neighborhood of baseline parameters, but at some more distant parameters adders would wish to

purchase speed. Closed-form solutions no longer seem possible in such cases, but numerical exercises

using recursion techniques (in particular, the Erlang B model), so far suggest no qualitative changes

to current results. Preliminary work similarly suggests that relaxing Assumption A3 to allow

a symmetric distribution of jumps (generalizing our distribution supported on ±2) complicates

the formulas but has little qualitative effect on the results. As noted in Online Supplement F.5,

straightforward extensions of the present model accommodate fees for placing and removing lit and

hidden orders, and thus help investigate fee structure impact, with and without order protection.

Our model focuses on steady state equilibrium, but Online Supplements D.3 and D.4 consider

dynamic strategies that seek to exploit short term information on the hidden order queue. We find

surprisingly little scope for, or evidence of, dynamic strategies that alter the choice between peg

and market orders. Of course, this does not imply that dynamic strategies are ineffective for timing

investor orders. Dynamic timing strategies surely are an important part of high frequency trading,

but (like Budish et al. (2015) and others) we have set them to one side by assuming exogenous

investor orders centered on an observable exogenous fundamental value.
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As an ambitious step to investigate strategic timing in market making, future researchers might

replace our assumptions A3 and A4 by an exogenous and time-varying process of investor arrivals

in which V is not observable and is defined only implicitly by balancing expected buy and sell

order flows. This would bring back adverse selection, which we view as of first order importance in

markets but do not see as interacting strongly with our current focus on market format differences.

Thus we conjecture that most of our qualitative results on order protection would still hold with

unobservable fundamentals and with endogenous market maker timing, but as yet we have little

evidence on this question.

Another ambitious extension would be to relax Assumption A1 and to model competing ex-

changes, and possibly multiple securities. The NBBO and the fundamental value would be endoge-

nous, given some appropriately specified overall investor demand that endogenously distributes

itself across exchanges, assets and order types.

Empirical work need not wait for these theoretical extensions. In the laboratory, one could inves-

tigate whether human subjects in the investor role track ω̂ when the experimenter varies parameters

such as (δ, ϕ), and whether human subjects in the proprietary trader role follow the comparative

static predictions of how the structural parameters (ν, ρ, c) impact outcomes (Nr, Ns,W ). Follow-

ing up on our finding that the empirical distribution of the hidden order queue conforms closely to

the predicted discrete Laplace functional form, future studies might seek additional field data to

test our model’s comparative static predictions. We hope that the present paper inspires such new

empirical and theoretical research.

A Mathematical Details

This appendix contains formal proofs not included in the main text.

The order queue has distribution function of the form p = (pk)k∈Z = (..., p−2, p−1, p0, p1, p2, ...),

where each pk ≥ 0 and
∑∞

k=−∞ pk = 1. Let P be the set of all such distribution functions. Poisson

event processes induce dynamics on P, and we seek to characterize their steady states. We begin

with a self-contained proof of Corollary 1, the special case with fully protected midpoint pegs

(ξ = 0), where the only relevant event process is investor arrivals.

23



Proof of Corollary 1. As noted in the text, an investor arrival generates a midpoint peg buy or

sell order, or a market buy or sell order, with respective probabilities ω/2, ω/2, (1−ω)/2, (1−ω)/2.

Recall also that either sort of sell (resp. buy) order generates a transition k → k + 1 (resp.

k → k − 1) when k < 0 (resp. k > 0), but a new market sell (resp. buy) leaves k unchanged

when k ≥ 0 (resp. k ≤ 0). Thus a single investor arrival transforms the distribution p ∈ P to the

distribution Tp = (Tpk)k∈Z ∈ P, where

Tpk =



ω

2
pk+1 +

1− ω
2

pk +
1

2
pk−1, if k < 0 (A.1a)

1

2
p1 + (1− ω)p0 +

1

2
p−1, if k = 0 (A.1b)

1

2
pk+1 +

1− ω
2

pk +
ω

2
pk−1, if k > 0. (A.1c)

To verify that the distribution q ∈ P defined in (3.3) is indeed a steady state, we need to show that

Tqk = qk ∀k ∈ Z. First consider the case k < 0, and write B =
(

1−ω
1+ω

)
to simplify expressions.

Substitute Equation (3.3) into (A.1a) to obtain

Tqk =
ω

2
Bω−(k−1) +

1− ω
2

Bω−k +
1

2
Bω−(k+1)

=

(
1

2
+

1

2

)
Bω−k +

(
1

2
− 1

2

)
Bω−(k+1)

= Bω−k = qk.

Similarly, use (A.1b) and (A.1c) to verify that Tqk = qk when k = 0 and when k > 0. Hence q is a

fixed point of the operator T defined on sequence spaces. To complete the proof, it remains only

to verify that q = Tq ∈ P, i.e., that it is indeed a probability distribution, i.e., that qk ≥ 0∀k ∈ Z,

and
∑

k∈Z qk = 1. Nonnegativity is clear from inspection, while

∑
k∈Z

qk = B

(
1 + 2

∞∑
k=1

ωk

)
= B

(
1 + 2

ω

1− ω

)
= B

1 + ω

1− ω
= BB−1 = 1. �

When midpoint peg orders are not protected from sniping, the queue state k is affected by

two additional events – up and down jumps in the fundamental – as well as the four types of

investor arrivals covered in the preceding proof. We shall now see that the resulting stationary

distribution has the same functional form (DL, for discrete Laplace) as in the protected case, but

the DL parameter is a more complicated function of the structural parameters.

Proof of Proposition 1. Conditional on the event being an investor order, the probabilities of

the four kinds of orders are unchanged from those given in (A.1a-c) above, so the unconditional

probabilities are attenuated by the probability R = ρ
ρ+ξν ≤ 1 that the event is an investor order

rather than an unprotected jump in the fundamental value. Each upwards jump with probability
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ξ causes a direct transition k → 0 when k ≥ 0, and otherwise has no effect on k. Similarly, each

downwards jump with probability ξ causes k → 0 when k ≤ 0. Thus the probability that k > 0 will

remain unchanged is now the probability of a market sell plus the probability of an unprotected

downward jump, Pms+Pdj = R(1−ω)
2 + 1−R

2 = 1−Rω
2 ; the same probability applies to the symmetric

case k < 0. The updating operator T is now defined for k 6= 0 by:

Tpk =


Rω

2
pk+1 +

1−Rω
2

pk +
R

2
pk−1, if k < 0; (A.2a)

R

2
pk+1 +

1−Rω
2

pk +
Rω

2
pk−1, if k > 0. (A.2b)

As for k = 0, note that Tp0 is the sum of the R-attenuated RHS of Equation (A.1b), plus the

probability mass arising from direct transitions to k = 0 following jumps in the fundamental. That

mass is 1−R
2

(∑
k≥0 pk +

∑
k≤0 pk

)
= 1−R

2 (1 + p0). Hence

Tp0 = R

(
1

2
p1 + (1− ω)p0 +

1

2
p−1

)
+

1−R
2

+
1−R

2
p0

=
1−R

2
+
R

2
p1 +

1 +R− 2Rω

2
p0 +

R

2
p−1 (A.3)

Note that Equations (A.2a) - (A.3) reduce to Equations (A.1a) - (A.1c) when ξ = 0 so R = 1. To

find a steady state for the general operator T just defined, first set Tp0 = p0 in Equation (A.3) to

obtain

0 =
1−R

2
+
R

2
p1 +

R− 1− 2Rω

2
p0 +

R

2
p−1. (A.4)

In steady state, the symmetry of the market ensures p1 = p−1, so Equation (A.4) yields

p1 = p−1 = (ω +
r

2
)p0 −

r

2
, (A.5)

where r = ξν
ρ . Next, to find the steady state equation for k > 0, set Tpk = pk in Equation (A.2b)

and simplify to obtain

pk+1 − (1 + r + ω) pk + ωpk−1 = 0, for k > 0. (A.6)

Equation (A.6) is a linear second order homogeneous difference equation, whose general solution

(see, e.g., Sargent 1979 pp. 177) takes the form

pk = a1λ
k
1 + a2λ

k
2, (A.7)

for k > 0 where

λ1 =
1

2
(1 + r + ω) +

1

2

√
(1 + r + ω)2 − 4ω (A.8)
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λ2 =
1

2
(1 + r + ω)− 1

2

√
(1 + r + ω)2 − 4ω, (A.9)

are the roots of the quadratic equation

λ2 − (1 + r + ω)λ+ ω = 0. (A.10)

The discriminant (1 + r + ω)2 − 4ω is bounded above by (1 + r + ω)2 and bounded below by

(1 + r + ω)2 − 4ω(1 + r) = (1 + r − ω)2 for all ν, ρ > 0 and ξ, ω ∈ [0, 1]. It follows that λ1 ≥ 1; to

ensure that pk → 0 as k →∞, we therefore must have a1 = 0 in Equation (A.7). The same bounds

establish that λ2 ∈ (0, ω] ⊂ (0, 1). Note that r = 0 and λ2 = ω when ξ = 0.

Set λ = λ2, consistent with Equation (3.2) of the proposition. Given the symmetry of our

model, it is natural to conjecture (and straightforward to check) that

pk = a2λ
|k| (A.11)

also satisfies the steady state equation

pk−1 − (1 + r + ω) pk + ωpk+1 = 0, for k < 0, (A.12)

obtained from Equation (A.2a). To ensure that Equation (A.11) defines a probability distribution,

we choose a2 so that

1 =

∞∑
k=−∞

pk = a2 + 2a2

∞∑
k=1

λk = a2

[
1 + 2

λ

1− λ

]
= a2

[
1 + λ

1− λ

]
, (A.13)

Hence, a2 = p0 = 1−λ
1+λ . Inserting this into Equation (A.11) and relabeling the left hand side as

qk, we obtain the desired expression, Equation (3.3). We have already verified that it satisfies the

steady state equations for k > 0 and k < 0. The last step is to verify that it satisfies the steady

state Equation (A.4) for k = 0, or equivalently Equation (A.5), i.e., that p1 − (ω + r
2)p0 + r

2 = 0

when pk = 1−λ
1+λλ

|k|. Indeed,

1− λ
1 + λ

λ−
(
ω +

r

2

) 1− λ
1 + λ

+
r

2
= (1 + λ)−1

[
λ− λ2 − w − r

2
+ λw + λ

r

2
+
r

2
+ λ

r

2

]
= (1 + λ)−1[−λ2 + (1 + r + w)λ− w]

= (1 + λ)−1[0] = 0,

where the penultimate step uses Equation (A.10), which defines λ. �

Proof of Proposition 2. Substitute into (2.3) the steady state expressions for qk, sum the

geometric series and simplify to obtain

πp =
ϕ

1 + λ

[
λ+

(1− λ)(ρ+ ξν)

(1− λ)(ρ+ ξν) + δ

]
− 2

1 + λ

[
ξν

(1− λ)ρ+ ξν

]
(A.14)
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Likewise, in steady state

πm =
ϕλ

1 + λ
+
ϕ− 1

1 + λ
. (A.15)

To find market equilibrium, set πp = πm, cancel the identical terms ϕλ
1+λ , cancel the common factor

1
1+λ and cross multiply to obtain the following quadratic equation for λ:

(1− λ)2[ρ(ρ+ ξν)]− (1− λ)[ξν(ρ+ ξν) + (ϕ− 1)ρδ]− [ξνδ(ϕ+ 1)] = 0

⇒ ρ(ρ+ ξν)λ2 + (ξν(ξν − ρ) + ρ ((ϕ− 1)δ − 2ρ))λ

+ρ(ρ+ δ(1− ϕ))− ξν(ξν + δ(1 + ϕ)) = 0. (A.16)

The relevant root is written out in Equation (3.5). Evaluating Equation (A.16) at λ = 0, we see

that that the region of parameter space where λ = 0 is bounded by the locus

ρ(ρ+ δ(1− ϕ)) = ξν(ξν + δ(1 + ϕ)). (A.17)

Equation (3.6), which gives the expected number of pegged orders potentially vulnerable to

sniping, N∗p , is obtained as follows:

N∗p =
0∑

k=−∞
0qk +

∞∑
k=1

kqk =
1− λ
1 + λ

∞∑
k=1

k λk =

(
1− λ
1 + λ

)
λ

(1− λ)2
=

λ

1− λ2
. (A.18)

Equations (3.4b) and (3.4c) follow by substituting (3.4a) and (3.6) into Equations (2.5) and

(2.4), setting them equal to zero and solving for Nr and Ns. The notation [·]+ in (3.5) means that

λ is truncated below at 0. For parameters such that the truncation binds, the same logic as in the

Corollary (protected case) shows that ω̃∗ = 0. For the other boundary case, Online Appendix E.3

explains why the market equilibrium value of ω is always < 1. �

Proof of Proposition 3. Let x(θ) be defined implicitly by the identity F (x, θ) = 0. Totally

differentiate to get Fxxθ + Fθ = 0, so xθ = −Fθ
Fx

. Apply that standard technique to F = Q, where

for parameters θ = ρ, ξ, etc.,

Q(x, θ) = [ρ(ρ+ ξν)]x2 − [ξν(ρ+ ξν) + (ϕ− 1)ρδ]x− ξνδ(ϕ+ 1) (A.19)

is the quadratic expression in x = 1− λ from equation (A.16). Thus

λθ =
Qθ
Qx

. (A.20)

The denominator Qx > 0 at the relevant (positive) root, since Q is an upward-opening parabola in

x given admissible structural parameters. Hence the sign of λθ is the sign of the numerator Qθ.
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To prove part b of the Proposition, let θ = δ and note that

Qδ ≡
∂Q

∂δ
= −x(ϕ− 1)ρ− ξν(ϕ+ 1)

= −(1− λ)(ϕ− 1)ρ− ξν(ϕ+ 1) < 0. (A.21)

Likewise, part e holds since Qϕ = −ρδx − ξνδ < 0. Part f follows from the fact that c does not

appear in Q, so Qc = 0.

Part a similarly follows from Qξ = x2ρν−xρν−2xξν2−νδ(ϕ+ 1) < 0, since the last two terms

are negative and, for x ∈ (0, 1], the first two terms together are −x(1 − x)ρν ≤ 0. Likewise, part

c follows from Qν = x2ρξ − xρξ − 2xξ2ν − ξδ(ϕ+ 1) ≤ 0, since the last two terms are nonpositive

and the first two terms are −x(1− x)ρξ ≤ 0. Indeed, in the protected case ξ = 0, we have Qν = 0

so λ = ω is unaffected by ν. In partial (or no) protection cases ξ > 0, the same expressions show

that λν < 0. Finally for part d, cancel the common factor x and rearrange slightly, and Qρ reduces

to A = 2xρ− λξν − (ϕ− 1)δ. When ξ = 0 (full protection, so λ = ω), equation (3.9) tells us that

xρ = (ϕ− 1)δ, so here A reduces to xρ > 0, i.e., in this case, λρ > 0. �

Proof of Proposition 4. For part (a), recall that, by equation (3.4a), the fraction of midpoint

pegs is

ω = λ+

(
λ

1− λ

)(
ξν

ρ

)
. (A.22)

Thus the derivative with respect to arbitrary parameter θ is

ωθ = λθ +

(
(1− λ)λθ + λλθ

(1− λ)2

)(
ξν

ρ

)
+

(
λ

1− λ

)
∂

∂θ

(
ξν

ρ

)
=

(
1 +

ξν

(1− λ)2ρ

)
λθ +

(
λ

1− λ

)
∂

∂θ

(
ξν

ρ

)
. (A.23)

For θ = δ, ϕ, c, the last partial derivative and hence the second term in (A.23) are zero. Since

the coefficient of λθ is positive in the first term, we see that in these cases ωθ has the same sign as

λθ, so the desired results follow from Proposition 3. The partial derivative and hence the second

term in (A.23) are positive for θ = ξ, ν and negative for θ = ρ, but the first term typically has the

opposite sign in these cases so here the signs of ωθ are ambiguous. However, when ξ = 0 the second

term disappears and the coefficient of λθ in the first term is 1.0, so the remaining assertion in (a)

follows from the result for θ = ρ in Proposition 3.

For part (b), note that Nr in equation (3.4b) is decreasing in both ω and λ. Since δ, c and ϕ

don’t appear elsewhere in (3.4b), the desired result for these parameters follows from the chain rule

and Proposition 3. Offsetting effects again render ambiguous the sign of (Nr)θ for the remaining
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parameters. For part (c), note that Ns in equation (3.4c) is inversely proportional to c, and when

ξ = 0 it is directly proportional to Nr. Thus the desired results for δ and ϕ follow from the previous

paragraph. �

We now investigate where the order type constraints in Section 2.5 are not binding, i.e., where

they are harmless in the context of our model.

Market makers never use pegged orders or market orders. Since intrinsic payoff ϕ is zero

for market makers, trading at midpoint can never be profitable, and it generates twice the loss of a

lit BBO order when sniped. Hence for market makers, p orders are dominated by r orders. Placing

a market order guarantees a loss of 1, and so is also dominated for all admissible parameter vectors.

Investors never place orders at own-side BBO. By Proposition 2, an investor’s expected

profit from a market order is πm = ϕ− 1
1+λ . Her profit from placing an own-side BBO limit order

is ϕ+ 1 discounted by the expected delay. By axiom A4c and strict price/time priority, that order

will be placed behind n ≥ 1 existing BBO orders, so the discount factor is β̂n+1 = [ ρ+ξν
ρ+ξν+δ ]n+1.

Hence market orders yield higher expected payoff than BBO orders iff

ϕ− 1

1 + λ
> (ϕ+ 1)β̂n+1 ⇐⇒ ϕ(1− β̂n+1) > β̂n+1 +

1

1 + λ

⇐⇒ ϕ >
β̂n+1

1− β̂n+1
+

1

(1 + λ)(1− β̂n+1)
. (A.24)

The last term in (A.24) is awkward to expand due to the complicated formula for λ. However,

since λ ∈ [0, 1), a sufficient condition is ϕ > β̂n+1

1−β̂n+1
+ 1

1−β̂n+1
or

ϕ >
1 + β̂n+1

1− β̂n+1
=

(ρ+ ξν + δ)n+1 + (ρ+ ξν)n+1

(ρ+ ξν + δ)n+1 − (ρ+ ξν)n+1
. (A.25)

Since β̂ < 1 < ϕ, the first inequality in (A.25) is more easily satisfied in thicker markets (i.e.,

with larger n) and is automatically satisfied for n sufficiently large. At the other extreme, for the

minimum value n = 1 consistent with axiom A4c, (A.25) simplifies to

ϕ− 1 >
(ρ+ ξν)2

(ρ+ ξν)δ + 0.5δ2
; (A.26)

Imposing that parameter restriction guarantees that investors will not place own-side BBO orders.9

9For our baseline parameters, even for n = 1 the RHS of (A.24) is 1
3

+ 16
15

= 1.4, comfortably below the baseline

value ϕ = 1.8. The cruder inequality (A.26) is also satisfied at baseline: 1.80− 1 > 2
3
.
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Online Supplement for
Order Protection through Delayed Messaging

This online supplement contains background information for “Order Protection through Delayed

Messaging” together with extensions of the model and miscellaneous details.

B Baseline Parameters

We first explain how the baseline parameter values in Table 1 connect with available market data.

B.1 Investor Fraction ω∗

Recall that ω is the fraction of investor orders transmitted as midpoint pegs, and that Equation (2.2)

tells us that, for ξ = 0, the steady state probability that there is a contra-side order resting at

midprice is

P =
∞∑
k=1

qk =
ω

1 + ω
, (B.1)

since qk is from the discrete Laplace distribution with parameter ω. In Section D.4 below, we apply

a maximum likelihood estimator to the data provided to us by IEX and obtain

ω̂ =
¯|k|

1 +

√
1 + ¯|k|2

= 0.23, (4.1)

which we take as value of ω∗ at baseline parameters.

B.2 Cost of Speed, Midprice Transaction Fee and Investor Surplus

At the time of this writing, one of the premier microwave transmission services, McKay Brothers

LLC, offers low latency data services for 8 select ETFs (such as SPY) for $3,100 per month. This

translates to $3100/(8× 8190) = $0.047 or approximately c = 10 half-spreads (i.e., grid steps) per

symbol, per minute.

We define ϕ as the surplus for the marginal investor with impatience β∗ (defined below). Such

an investor is just willing to transmit a market order at unit cost (0.5 spreads or pennies) in addition

to the direct fee, b, of $0.003 – $0.005 (an approximation reported to us by practitioners) per share.

The direct fee is equivalent to 0.6 – 1 half-spreads, so ϕ ≈ 1 + 0.8 = 1.8 half-spreads (grid steps).

1



B.3 Discount Factor

Suppose each investor i has private impatience parameter βi ∈ [0, 1], drawn independently from a

given distribution F (β). In practice, investors choose from a long menu of broker algorithms for

placing orders, and their choices partially reveal their values of βi.

In our model, investors only choose between midpoint pegs and market orders, implying a

threshold, β̃, such that more patient investors (those with βi > β̃) choose pegs and less patient

investors choose market orders. Thus, given β̃, a fraction ω = 1−F (β̃) of the orders are transmitted

as pegs.

Our steady state distribution of order imbalances (Proposition 1) implies a distribution of

waiting times, and thus expected investor profits πi(θ|ω, βi), for order types θ ∈ {peg,mkt}. By

maximizing over θ (choosing the preferred order type) we obtain a new threshold β̃′. The result is

a map M : [0, 1]→ [0, 1], β̃ 7→ β̃′.

Lemma 1. If the distribution F is continuous, then the mapping M , defined above, has a unique

fixed point β∗ ∈ [0, 1].

Proof sketch. M is continuous and monotone decreasing, so the conclusion follows from the

intermediate value theorem.

This result allows us to infer β∗ from our calibration of ω∗ and the other parameters: given

vector (ω∗, ϕ) we use the equal profit condition for the marginal investor, Equation (3.9), to solve

β∗ =
ϕ− 1

ϕ− ω∗
≈ 0.5. (B.2)

Substituting ρ = 50 (determined below) into the relation β∗ = ρ
ρ+δ we arrive at δ = ρ(1/β∗−1) = 50.

B.4 Arrival Intensities

Table 2 reports quantiles of the distribution interarrival times (measured in nanoseconds) of sub-

mitted orders for the S&P 500 exchange traded fund (ticker SPY) at IEX during December, 2016.

The distibution is broken down across several classifications. Investors in our model place midpoint

pegs and market orders. Unfortunately, none of the values in Table 2 correspond precisely with

investor orders in our model: the interarrival times for midpoint pegs include those of investors and

proprietary traders, whereas the interarrival times for investor orders (labelled ‘Agency’) include

all order types. We thus approximate the intensity of investor arrivals in the following manner.
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Order Type

Quantile All Buys Sells D-peg M-peg P-peg Other Agency Proprietary

0.05 25172 89444 87947 2951559 920231 24185 20647 352325 20576

0.10 115862 299044 317757 16750721 4968059 1195898 96937 1393549 100501

0.25 1191343 3978118 5160039 308253568 31011051 71938785 1063259 16961911 1151426

0.50 13556983 37724572 29199640 1410139781 404316291 599993574 13477677 248146134 13558630

0.75 99397865 263438679 208858208 4012264653 1592582790 2022289139 109005668 1022688976 103098092

0.90 393317550 799390256 745466029 5044062194 4244552991 4965817914 462395201 2664485573 439602722

0.95 712558170 1345011543 1300901230 12282108869 6835804561 8038904707 872135984 4133503605 825720463

Table 2: Quantiles of the distribution of interarrival times (measured in nanoseconds) of submitted

orders for the S&P 500 exchange traded fund (ticker SPY) at IEX during December, 2016.

Table 3 reveals that investors (agencies) account for 65.7% of all midpoint peg transactions. Using

this value to extrapolate the share of order submission in Table 2, we find that the median time

between investor arrivals is approximately 404/0.657 = 615 milliseconds, which equates to 1.62

arrivals per second or roughly 100 arrivals per minute on both sides of the market. This suggests

a baseline arrival rate for each side of the market of ρ = 100/2 = 50. A similar approximation,

using the median interarrival time of 248 milliseconds for agency orders, and the share of volume

in Table 3 for the agency order types in our model, yields a nearly identical value of ρ.

To calibrate ν we utilize SPY quotation data at Nasdaq, which, given its liquidity and overall

market share, is a good surrogate for the SPY NBBO. Our sample covers the period 16 June

– 11 September, 2014. There are 26,216,524 quotations in the 62-day period, which comprises

1,450,800,000 milliseconds during trading hours, or approximately 1 quote every 55 milliseconds.

Defining a jump as any midpoint price change of at least $0.01 which is not reversed over the

subsequent period of four quotations10, or 220 milliseconds, resulted in an average of 733 jumps per

day, 1.88 jumps per minute, or one jump every 32 seconds. As with the investor arrival intensity

parameter, ν represents the intensity of jumps on one side of the market. Thus, we set our baseline

calibration to be ν = 1 jumps per minute.

Combining the values of ρ and ν, our baseline measures suggest ν
ρ ≈

1
50 , or that the intensity

of investor arrivals is about 50 times that of jumps.

10We also considered shorter post-jump intervals, with little change in total counts. Additionally, we applied

a different methodology which counted midpoint price changes over non-overlapping intervals of fixed lengths

(100,200,300,400 milliseconds) and found the jump counts to be quite stable across methodologies and interval choice.
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C Numerical Comparative Statics

We gain insight into the comparative static properties of our model by investigating numerically

what happens when we vary structural parameters, one at a time, away from their baseline values.

Figure 3: Numerical comparative statics of equilibrium peg fraction ω. Top (resp. bottom) panels

show how impact of peg vulnerability ξ (resp. of investor arrival rate ρ) varies with impatience

δ, investor arrival rate ρ and fundamental innovation rate ν, other parameters at baseline (resp.

ξ = 1 in the last two bottom panels.)

Figure 3 sheds some light on key ambiguous comparative statics. As suggested in the Coun-

terexample in Section 4.1, the upper left and center panels show that ω indeed can increase in

vulnerability ξ (i.e., we have ωξ > 0) for very small values of δ and large values of ρ. The upper

right panel shows that, for other parameters at baseline values, ωξ remains negative for all admis-

sible values of ν. That panel suggests that ωξ = 0 when ν = 0; to confirm this analytically, note
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that if ν = 0 or ξ = 0, then equation (A.22) implies that ωξ = λξ while (A.19-A.20) imply that

λξ = 0.

Since ν and ξ appear in those equations only via their product, the partial derivative ων is

the same (up to a positive multiplicative factor) as that graphed for ωξ in those two panels. In

particular, ω decreases in the fundamental value innovation rate ν over the entire admissible range

of ν and ξ, except (as noted earlier) when δ is very small and ρ is large.

The lower panels of Figure 3 show that the impact of investor arrival rate ρ on the equilibrium

peg fraction ω closely tracks its impact on DL parameter λ. Both impacts are comfortably positive,

but fall to near zero (other structural parameters at baseline) as investors become infinitely patient

(δ = 0).

D Dynamic Strategies

We now extend the model to analyze dynamic strategies that investors could use when choosing

whether to submit a peg or a market order. To do so, in Section D.1 we obtain continuous time

expressions p(t) for how the queue distribution evolves away from steady state. In Section D.2

we introduce a more general parametric class of distributions than DL. With these preliminaries

in hand, Section D.3 analyzes the profitability of appealing dynamic strategies, and Section D.4

reports empirical results.

D.1 Stochastic State Dynamics

Away from the steady state, the dynamics are governed by the twisted-Toeplitz operator T defined

by (A.1a) - (A.1c), and by the Poisson process of investor order arrivals. Since orders (buy and sell

combined) arrive at rate 2ρ, the distribution p(t) ∈ P evolves from any given initial distribution

po ∈ P according to the equation

p(t) = e−2ρt
∞∑
n=0

(2ρt)n

n!
Tnpo. (D.1)

We are not aware of any explicit closed form expressions for the components pk(t), but it is straight-

forward to simulate them numerically using (D.1).

The data described in Section D.4 are not point observations of pk(t), but instead are time-

average observations of the form Ak(t) = t−1
∫ t

0 pk(s)ds. We obtain the predicted mean frequencies
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via Equation (D.1) in the following manner:

A(t) =
1

t

∫ t

0
p(s)ds

=
1

t

∫ t

0
e−2ρs

∞∑
n=0

(2ρs)n

n!
Tnpods

=

∞∑
n=0

Tnpo
1

2ρt

∫ t

0

(2ρ)n+1sn

Γ(n)
e−2ρsds

=
∞∑
n=0

G(t;n+ 1, 2ρ)

2ρt
Tnpo (D.2)

where G(t;n + 1, 2ρ) is the CDF of the Gamma distribution with shape and rate parameters

(n + 1, 2ρ). Again, Equation (D.2) can be used to generate theoretical predictions numerically to

any desired degree of accuracy.

D.2 Asymmetric Discrete Laplace Distribution

The asymmetric discrete Laplace distribution arises naturally from our model’s dynamics, and

was previously discovered by Kozubowski and Inusah (2006). In our notation, it has parameters

ωR, ωL ∈ (0, 1). For each integer k ∈ Z, the ADL(ωR, ωL) distribution assigns probability

pk =


(1− ωR)(1− ωL)

1− ωRωL
ω
|k|
L if k ≤ 0 (D.3a)

(1− ωR)(1− ωL)

1− ωRωL
ω
|k|
R , if k ≥ 0. (D.3b)

It is straightforward to confirm that ADL(ωR, ωL) ∈ P, i.e., that these probabilities are non-negative

and sum to unity.

The steady state order queue in our basic model has the symmetric distribution ADL(ω, ω),

where p0 = (1−ω)2

1−ω2 = 1−ω
1+ω . By contrast, the order queue distribution immediately following an

observed transaction at BB is po = ADL(ω, 0). Subsequently, the order distribution p(t) relaxes to

the steady state as per Equation (D.1). Numerical exercises in Section D.4 confirm that p(t) is very

closely approximated by ADL(ω, α(t)ω) at time t, where α(t) is a strictly increasing function with

α(0) = 0 and α(∞) = 1. By symmetry, following an observed transaction at BO, the distribution

is closely approximated by ADL(α(t)ω, ω). Below, we will refer to the side K = R or L with

ωK = α(t)ω as the light side and the other side, ωK = ω, as the heavy side.

Consequently, our model predicts that observed order queues t seconds after a transaction at

either BB or BO will have light side (k < 0) frequencies

pLk (α) =
(1− ω)(1− αω)

1− αω2
α|k|ω|k| (D.4)
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for some α = α(t) ∈ (0, 1), and heavy side (k ≥ 0) frequencies

pHk (α) =
(1− ω)(1− αω)

1− αω2
ω|k|. (D.5)

Panel (b) of Figure 4 plots these frequencies for several values of t. Note that the frequencies

lie along a triangle with apex at k = 0 and that the apex height decreases monotonically from

ln(1− ω) at t = 0 to an asymptote (as t → ∞) of ln(1− ω)− ln(1 + ω). The light side (absolute)

slope monotonically decreases from infinite to − lnω, while the heavy side (absolute) slope remains

constant at − lnω.

D.3 Contingent actions

Our equilibrium analysis assumes that investors respond optimally to the steady-state distribution

of the midpoint queue, and not to particular realizations of the queue state k. Since these queued

orders are hidden, that assumption seems reasonable at first. But might investors use active or

passive order submission strategies to glean useful information about the current realization of

k? Consider the following active strategy: an investor always initiates a bid (offer) submission

with a peg, followed by a cancellation if the order does not immediately fill at the midpoint, thus

ascertaining that k ≤ 0 (k ≥ 0) and that expected queuing costs of pegged orders are higher

than in steady state. The investor would then follow the peg cancellation with a market order.

However, closer inspection of this “ping first” strategy reveals that it is dominated by initiating

the submission with a market order. Like the ping (the initial pegged order), the direct market

bid (offer) will immediately transact at midpoint to earn ϕ− d if k > 0 (k < 0). Otherwise, it will

earn ϕ− 1, whereas the “ping first” strategy will earn βε(ϕ− 1) < ϕ− 1, where ε > 0 reflects the

messaging delays in cancelling and replacing the initial ping.

Alternative strategies arise from observing the publicly displayed transaction stream. Transac-

tions at midpoint might reflect removal of either a pegged bid or a pegged ask, and therefore are not

informative regarding the current state k. However, observing a transaction at BBO is informative.

A transaction at BB, for instance, reveals that there is no midpoint bid to remove, and thus that

k ≥ 0. Intuition suggests that in this case (a) investors who arrive on the buy side will find it

advantageous to place a pegged bid due to reduced expected queuing cost, and (b) investors who

arrive on the sell side will find it advantageous to place a market offer due to increased expected

queuing cost on the sell side.

Below we investigate both intuitive conjectures. In brief, we find that strategy (b) doesn’t

work. Placing a market order when the midpoint queue is known to be heavier than usual does not
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increase (or decrease) profit in market equilibrium. The mathematically informed intuition is that

the posterior expected queuing cost is the same in case (b) as it is when the investor’s own order

fails to execute at midpoint, and that posterior expectation is compatible with market equilibrium

as in Proposition 2.

To a limited extent we will vindicate the intuition behind strategy (a). Indeed, if the in-

vestor were able to react immediately to the empty queue, we will see that strategy (a) would

increase profit above that earned in equilibrium (as given, e.g., in equation (2.2)) by the proportion
βω(1−β)(1−ω)(1+ω)
ω(1−βω)+β(1−ω) . However, for reasonable parameters, this maximal proportional advantage is

small. Our best numerical estimate is that the expected advantage (taking into account the lag

until investors arrive, and relaxation towards the steady state distribution) is less than 1%. Also,

available data shows no evidence of such strategies; see Section D.4.

To begin the investigation, suppose that α(t) < 1. By Equations (D.4) - (D.5) we have

∞∑
k=1

pHk (α) =
ω(1− αω)

1− αω2
,

∞∑
k=0

pHk (α) =
(1− αω)

1− αω2
(D.6)

∞∑
k=1

pLk (α) =
αω(1− ω)

1− αω2
,

∞∑
k=0

pLk (α) =
(1− ω)

1− αω2
. (D.7)

Thus

πLP (α) = (ϕ− d)

[ ∞∑
k=1

pHk (α) +

∞∑
k=0

pLk (α)βk+1

]

= (ϕ− d)

[
ω(1− αω)

1− αω2
+ β

(1− ω)(1− αω)

1− αω2

∞∑
k=0

(αβω)k

]

= (ϕ− d)

[
ω(1− αω)

1− αω2
+

β(1− ω)(1− αω)

(1− αβω)(1− αω2)

]
, (D.8)

while

πLM (α) = (ϕ− d)
∞∑
k=1

pHk (α) + (ϕ− 1)
∞∑
k=0

pLk (α)

= (ϕ− d)
ω(1− αω)

1− αω2
+

(ϕ− 1)(1− ω)

1− αω2
. (D.9)

Using the fact that (ϕ − 1) = (ϕ − d)β(1−ω)
1−βω (see Equation (3.9)), it follows that strategy (a) has

payoff advantage

∆πL(α) = πLP (α)− πLM (α)

=
(ϕ− d)β(1− ω)(1− αω)

(1− αβω)(1− αω2)
− (ϕ− d)β(1− ω)(1− ω)

(1− βω)(1− αω2)

8



= (ϕ− d)
β(1− ω)

1− αω2

[
1− αω

1− αβω
− 1− ω

1− βω

]
, (D.10)

The factor in brackets is zero at α = 1, which yields ∆πL(1) = 0, as must be the case in equilibrium.

Inspection of the same factor shows that the payoff advantage is positive over the relevant parameter

range when α ∈ [0, 1). It is is maximal at α = 0, where Equation (D.10) reduces to

∆πL(0) = (ϕ− d)ω(1− β)
β(1− ω)

1− βω
. (D.11)

Recall that steady-state market-order equilibrium profit is

πL(1) =

[
ϕ− d
1 + ω

]
ω(1− βω) + β(1− ω)

1− βω
. (D.12)

Hence strategy (a) obtains proportional advantage of at most

∆πL(0)

πL(1)
=
βω(1− β)(1− ω)(1 + ω)

ω(1− βω) + β(1− ω)
. (D.13)

For reasonable parameters, this maximal proportional advantage is small; Section D.4 shows that

realistic estimates (taking into account the evolution of α(t)) are far below this upper bound.

As for strategy (b), the advantage of a peg over a market order for a heavy side investor,

conjectured to be negative, is actually

∆πH(α) = πHP (α)− πHM (α)

= (ϕ− d)
β(1− ω)(1− αω)

(1− βω)(1− αω2)
− (ϕ− 1)

(1− αω)

(1− αω2)

= (ϕ− d)

[
β(1− ω)(1− αω)

(1− βω)(1− αω2)
− β(1− ω)

(1− βω)

(1− αω)

(1− αω2)

]
= 0. (D.14)

D.4 Empirical Dynamics

Our data consist of total time (measured in nanoseconds) during December 2016 market hours

on the Investors’ Exchange (IEX) that the midpoint peg plus discretionary peg order queues for

the heavily-traded security SPY (an ETF that tracks the S&P 500 index of US equities) spent

in each possible state k. We combine the discretionary and midpoint peg state times, since 89%

of discretionary peg transactions occur at midpoint (see Table 3 and Section F.7), and confine

attention to state values |k| ≤ 6, which account for 99.97% of the total trading time (4.912751×1014

nanoseconds) during December 2016.

Here we analyze potential strategic behavior of investors immediately following publicly ob-

served transactions at best bid or offer. As noted in Section D.3, such events reveal information
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about the state of the midpoint order queue. Therefore we focus on subsets of data immediately

following transactions at BBO, measured over discrete windows of time. Those time windows are

100 microseconds, 100 milliseconds, 1 second, 10 seconds, and 60 seconds. The data are split on a

BB/BO conditioning variable, and (as expected) are symmetric across that variable. For concision

we focus our analysis on strategic behavior following BB transactions.

Panel (a) Figure 4 depicts the empirical distributions (fraction of time) of midpoint pegs for each

time window, following BB transaction events. To account for the small volume of residual midpoint

Figure 4: Dynamic response to BB transaction, empirical (Panel a) and theoretical (Panel b). The

dotted red lines indicate the steady state distribution for ω = .23.

bid orders remaining in the queue due to size restrictions11 at the moment of transaction events,

we establish the 100 microsecond midpoint bid distribution as baseline and use it to normalize the

11For December 2016, 0.866% (resp. 0.281%) of the time both bid and offer m-pegs (resp. d-pegs) coexisted, due

mainly to size restrictions preventing a fill against a contraside order at midpoint.
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empirical distributions at the other horizons. Panel (b) shows the theoretical distribution for the

same time horizons, obtained by iterating on Equation (D.2), with ρ = 50.

Aggregating the data for each time horizon, we are able to infer that there are approximately

30,000 BB events in the data. These events, however, are not independent. Using the 62 days of

SPY transaction data associated with the quotations referenced in Section B.412 (for calibration

of the jump intensity), we estimate the autocorrelation functions (ACFs) of inter-trade durations

on a daily basis. The 62 autocorrelation functions are depicted in Figure 5, along with 0.025,

0.5, and 0.975 quantiles (dotted lines) at each lag. The transaction data exhibits clear persistance

for long horizons – during the sample period, there was roughly 1 transaction every 1.5 seconds,

which means that the 100-lag horizon of Figure 5 corresponds to roughly 2.5 minutes of clock

time. Following the methodology of Thiebaux and Zwiers (1984), we use the ACF values {ρi}Mi=1,

truncated at M = 1000 lags, to estimate an effective sample size (ESS) ratio for each day,

ζt =
Nt

N e
t

= 1 + 2

Nt−1∑
i=1

ρi, (D.15)

where N e
t and Nt represent the effective and actual sample sizes (respectively) for day t. Taking

the median of ESS ratios, we find median{ζt} ≈ 115. We thus approximate the effect number of

BB transaction events as N e = 30,000
115 ≈ 260.

Denoting K = |k|, Kozubowski and Inusah (2006) show that the maximum likelihood estimators

of the asymmetric discrete Laplace parameters are

ω̂L =


2K̄−(1+K̄)

1+2K̄−K̄+
√

1+4K̄−K̄+
, if K̄ ≥ 0

ω̂R−K̄(1−ω̂R)
1−K̄(1−ω̂R)

, otherwise,

(D.16)

ω̂R =


2K̄+(1−K̄)

1−2K̄+K̄+
√

1+4K̄−K̄+
, if K̄ ≤ 0

ω̂L+K̄(1−ω̂L)
1+K̄(1−ω̂L)

, otherwise,

(D.17)

ΣMLE =
ωLωR(1− ωL)(1− ωR)

1 + ωLωR

 (1−ωR)(1−ωRω2
L)

ωL(1−ωL)2
1

1
(1−ωL)(1−ωLω2

R)

ωR(1−ωR)2

 , (D.18)

where K̄ =
∑

k∈K wk |k|, K̄− =
∑

k∈K 1(k ≤ 0)wk |k|, and K̄+ =
∑

k∈K 1(k ≥ 0)wk |k|, and where

K = {−6, . . . , 0, . . . , 6}.

We use the delta method to estimate α̂ = ω̂L/ω̂R for each of the four time windows in the

12The data provided by IEX is not transaction-level resolution. However, given the tight correlation of transactions

across U.S. equities exchanges, we believe that autocorrelation functions estimated with Nasdaq transaction are a

good surrogate for transaction autocorrelations in all markets, including IEX.
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Figure 5: Daily autocorrelation functions of inter-trade durations for SPY transactions on the

Nasdaq exchange, 16, Jun 2014 – 11 Sep, 2014. Dotted lines represent 0.025, 0.5, and 0.975

quantiles at each lag.

data provided by IEX. The point estimates are represented by blue dots in Figure 6. We also

compute 95% asymptotic error bands, scaling the asymptotic variance by the effective sample size

and expected number of investor arrivals during each time window, 2ρN e. The 95% intervals are

represented by blue diamonds and vertical blue dotted lines. Additionally, we obtain theoretical

probabilities of the order queue distribution by iterating on Equation (D.2) for a fine sequence of

t ∈ (0, 60) seconds, and likewise obtain point estimates and asymptotic errors for the theoretical

distribution. The theoretical point estimates are depicted as a solid black line in Figure 6, and the

95% interval estimtes are depicted as black dotted lines. For instances where the confidence bands

span zero (i.e. for low values of t), we truncate the lower bounds at zero. Given the remarkably
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large overlap in confidence intervals, we conclude that the ADL is a good approximation both for

our model and the data.

Figure 6: Decay function, theoretical vs empirical. Theoretical prediction from Equation (D.2) for

ρ = 50 (solid black line) with 95% asymptotic confidence bands (black dotted lines), vs estimates

from the December 2016 IEX data (blue dots) and 95% asymptotic confidence bands (blue diamonds

and dotted lines).

The foregoing analysis suggests that, indeed, publicly observed transactions at BBO provide

useful strategic information to investors. To understand the economic importance of this informa-

tion, we estimate the proportional increase in profit that a single investor could earn during the 60

seconds following all BBO transactions in December 2016. Specifically, we integrate Equation D.10

over t ∈ (0, 60) seconds, substuting our theoretical point estimates, α̂(t), in Figure 6. The pro-

portional increase in profit, relative to equilibrium profit in Equation (2.2), for 30,000 60-second

periods is 0.56% (0.0056).
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E Miscellaneous Mathematical Details

Here we collect tangential results alluded to at various points in the text.

E.1 Obtaining ω from λ

Corollary 3. Given parameters ν, ρ and ξ, the steady-state fraction of investors choosing to place

midpoint peg orders is

ω = λ+

[
λ

1− λ

]
ξν

ρ
, (E.1)

where λ is the steady state value determined in Proposition 1.

Proof. The result is obtained by solving for ω in Equation (A.10).

Remark. Clearly ω is strictly increasing in λ for admissible parameter values, so its inverse

function λ(ω|ξ, ν, ρ > 0) exists and is also strictly increasing.

E.2 Discounting

Recall that Section 2.5 showed that the discount factor for an exponentially distributed delay time

is β =
∫∞

0 e−δtρeρtdt = ρ
ρ+δ < 1, where δ > 0 is the impatience rate and ρ > 0 is the one-sided

Poisson investor arrival rate. Here we establish formally the intuitive result that if one has to wait

for k = 1, 2, 3, ... investors to arrive, the discount factor is indeed βk.

One can establish the desired result by mathematical induction, or by direct calculation. The

latter begins with the Poisson probability

F (t) = 1− e−ρt
k−1∑
n=0

(ρt)n

n!
(E.2)

that there will be at least k investor arrivals by time t > 0. The associated density is known to

be f(t) = tk−1ρk

(k−1)! e
−ρt, i.e., Gamma with with parameters α = k and β = 1/ρ, as can be verified by

differentiating E.2. The desired discount factor is the expected value of e−δt for this distribution

of t:

E
[
e−δt

]
=

∫ ∞
t=0

e−δt
tk−1ρk

(k − 1)!
e−ρtdt =

(
ρ

ρ+ δ

)k ∫ ∞
t=0

tk−1(ρ+ δ)k

(k − 1)!
e−(ρ+δ)tdt =

(
ρ

ρ+ δ

)k
= βk.

(E.3)
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E.3 Limiting Case ω → 1

Consider the fully protected case ξ = 0, and recall from equation (3.3) that qk =
(

1−ω
1+ω

)
ω|k| is the

probability of queue state k in steady state. As ω → 1, we have qk → 0, and indeed
∑K

k=−K qk → 0

for any finite positive integer K. Thus in the limit we have an improper distribution on Z, in which

the probability “leaks out to ±∞”. The expected wait time therefore gets arbitrarily large and the

present value gets arbitrarily close to zero as ω → 1. With equal probability in the limit, a pegged

order either executes immediately or languishes at the end of an arbitrarily long queue, and so has

payoff πp = ϕ
2 . By contrast, the payoff to a market order remains at πm = ϕ

2 + ϕ−1
2 > πp. Thus,

since admissible ϕ > 1, the equal profit condition fails (as does the relevant Kuhn-Tucker condition

πm ≤ πp.) We conclude that ω = 1 is never part of a market equilibrium when ξ = 0. To the extent

that lesser peg protection decreases ω (Section 4.1 notes a caveat), the same is true a fortiori when

ξ > 0.

E.4 Makers and Speed Purchases

Under assumption A5, market makers do not purchase speed. In equilibrium, when would it be

profitable for a single maker to deviate, and violate that restriction?

Purchasing speed enables a maker to escape Ns fast snipers with probability 1/(Ns+1), because

each speedy trader is as likely as any other to be have her order processed first. Since a slow maker’s

flow sniping losses are 2ν (because both lit bids and offers at BBO are vulnerable), her expected

flow gain from purchasing speed is 2ν
Ns+1 , while the flow cost is c. Focusing for simplicity on the

fully protected case ξ = 0, and using equation (3.8), we see that this deviation is not worthwhile if

2ν

Ns + 1
≤ c ⇐⇒ 2ν ≤ (Ns + 1)c (E.4)

⇐⇒ ν ≤ ρ 1− ω
1 + ω

+
c

2
.

At baseline, ν = 1 and ρ1−ω
1+ω+ c

2 ≈ 50 0.77
1.23 + 10

2 ≈ 36, so such a deviation is indeed highly unprofitable.

Clearly the same conclusion holds for a large neighborhood around the baseline parameters.

Might purchasing speed enable a market maker to transact more frequently? In our model, the

answer is essentially no. A new market order always executes against the oldest of the n > 1 contra-

side resting r orders at BBO. Even if the maker who held that resting order were able to renew it

instantaneously, it would still enter the queue at position n, as would (absent a rare intervening

event) a renewed order by a slow maker.
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A rigorous analysis of queue dynamics when some proper subset of makers placing BBO lit

limit orders (and a proper subset of traders who place midpoint pegged orders) have purchased

speed is beyond the scope of the present model. Notes on how to pose and numerically solve such

a dynamic model are available on request from the authors.

E.5 Reconciling Welfare Results

As noted in the introductory literature survey, and as suggested in the concluding discussion of our

paper, some authors model an exchange-imposed delay η as directly costly to impatient investors.

Such direct costs, if sufficiently high, might overturn our result that greater protection never impairs

investor welfare W .

Readers might note that η dropped out of our list of structural variables in Table 1; it was

subsumed into ξ, the probability that pegs are vulnerable to sniping. Footnote 7 suggests ignoring

the direct cost of η on the grounds that, in practice, it is three or four orders of magnitude smaller

than the delays associated with resting in the midpoint order queue.

Readers interested in constructing a more comprehensive model that includes both sorts of delay

cost might proceed as follows. Replace our expression of investor welfare, W = ϕ − 1
1+λ by the

more general expression W̃ = [ϕ− 1
1+λ ]e−δη. Replace the structural parameter ξ by an appropriate

smooth monotonic function f(η) where f(0) = 1 and f(η) = 0 for all η ≥ η̄ > 0. Then replace

comparative statics such as Wξ by expressions such as W̃η.

We have not yet pursued that idea for three reasons. First, it occurred to us only very recently,

inspired by the final round of comments of a helpful referee. Second, we are not sure how to

calibrate f(η) other than to say that, empirically, it seems that η̄ < 0.00035/60 = 0.0000583

minutes. Third, that empirical bound suggests that we were justified in ignoring the direct cost

of the exchange-imposed delay η, because the multiplicative factor e−δη lies in the narrow interval

[e−δη̄, e−δ0] ⊂ [0.997, 1] at baseline δ = 50.

F Institutional Information

F.1 Basics

A financial market format specifies how orders are processed into transactions. In this section we

provide a general description of continuous double auctions (CDA) and a more specific description
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of a format that protects pegged orders with a uniform messaging delay. We then present summary

data from the first exchange to implement that format, and use that data to motivate elements of

the model introduced in Section 2.

Most modern financial markets use variants of the continuous double auction (CDA) format,

also known as the continuous limit order book. A limit order is a message to the exchange comprised

of four basic elements: (a) direction: buy (sometimes called a bid) or sell (sometimes called an ask

or offer), (b) limit quantity (maximum number of units to buy or sell), (c) limit price (highest

acceptable price for a bid, lowest acceptable price for an offer), and (d) time in force (indicating

when the order should be canceled). The CDA limit order book collects and sorts bids by (1) price

and (2) time received (at each price), and likewise collects and sorts asks. The lowest ask price and

the highest bid price are called the best ask and best bid, and the difference between them is called

the spread.

The CDA processes each limit order as it arrives. If the limit price locks (equals) or crosses (is

beyond) the best contra-side price — e.g., if a new bid arrives with limit price equal to or higher

than the current best ask — then the limit order immediately transacts (“executes” or “fills”) at

that best contra-side price, and the transacted quantity is removed from the order book. Otherwise

the new order is added to the order book, behind other orders at the same price.

The SEC mandates that prices displayed in equities markets order books are discrete. Specifi-

cally, Regulation National Market System (Reg NMS) Rule 612 requires the minimum price incre-

ment for nearly all equity instruments to be a penny, and prohibits displayed quotations in fractions

of a penny. In contrast, time remains essentially continuous.

At present, there are 12 SEC-approved “national securities exchanges” in the United States that

trade U.S. equities instruments. Under Reg NMS, these exchanges are required to report trans-

actions and quotations to a centralized processor, known as the Securities Information Processor

(SIP). The SIP monitors all bids and offers at all 12 exchanges, and constantly updates the official

National Best Bid and Offer (NBBO), consisting of the National Best Bid (NBB) and National

Best Offer (NBO). However, since the speed of light is finite and the 12 exchanges have different

physical locations, there is no “true” NBBO — at best there is an NBBO from the perspective of

the SIP. For this reason, unlike the order books internal to exchanges, which never lock or cross,

it is possible for the NBB or NBO to temporarily lock or cross with the best bid or offer at a

specific exchange. These instances are fleeting, as Reg NMS requires exchanges with less aggressive

quotations to pass orders on to exchanges with better bids or offers.
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Most exchanges recognize a variety of order types beyond simple limit orders. Market orders

are the most common variation, specifying a very high bid or very low offer price and essentially

zero time in force. Most exchanges also recognize “hidden” orders which are not publicly displayed

in the order book and which are given lower priority than ordinary “lit” (displayed) orders. The

lexicographic priority system is: price, display, time. For example, all hidden bid orders are prior-

itized after the lit bids at the same price; among themselves they are prioritized on a first-come,

first-served basis, even if there are different types of hidden orders.

An important type of hidden order is a pegged limit order. An NBB peg is a limit order that

enters the book at the current NBB and is automatically re-priced by the exchange whenever the

NBB changes. Similarly, an NBO peg is automatically re-priced to track the NBO. The SEC also

permits exchanges to offer hidden (but not lit) midpoint pegs: bids or offers that track (often at

half-penny prices) the midpoint of NBB and NBO.

F.2 Delayed messaging format

A variant of the CDA market format implemented by IEX and by NYSE American delays all

inbound and outbound messages to its messaging server by 350 microseconds. This delay is long

enough to allow the system a fresh view of the NBBO and to reprice pegged orders ahead of new

messages that are coincident with changes in the NBBO. As a result, pegged orders are protected

from fast traders who would profit from transacting at stale prices when the NBBO changes.

Details regarding common pegged order types in use at IEX and NYSE American are in Sec-

tion F.7.

F.3 Some Data

Table 3 reports transaction volume statistics at IEX during the month of December 2016.13 The

data exclude periods when markets were locked or crossed with the NBBO (3.4% of volume) and

exclude transactions involving orders routable to other exchanges (12.3% of volume). The table

entries are normalized to sum to 100%, and so they are shares of the remaining 84.3% of all

transactions.

IEX classifies traders into two broad types: (1) agencies (brokers), who provide services to

13In response to our request, the IEX made these data available to us with the understanding that we will make

them available to other academics.
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Other Nonroutable Primary Peg

Hidden Lit Hidden Lit

BBO Mid BBO Mid BBO Mid BBO Mid

Agency Remover 3.49 0.688 3.95 0 0 0 0 0

Prop Remover 4.74 0.717 2.55 0 0 0 0 0

Agency Adder 0.781 0.998 6.91 0 2.64 0 0 0

Prop Adder 0.798 0.207 4.73 0 2.19 0 0 0

Midpoint Peg Discretionary Peg

Hidden Lit Hidden Lit

BBO Mid BBO Mid BBO Mid BBO Mid

Agency Remover 0 10.1 0 0 0 10.0 0 0

Prop Remover 0 7.19 0 0 0 2.33 0 0

Agency Adder 0.631 7.16 0 0 3.91 19.7 0 0

Prop Adder 0.0210 2.12 0 0 0.0951 1.36 0 0

Table 3: IEX percentage volume shares for December 2016 by order type and transaction price.

Excludes routable orders and transactions in locked or crossed market conditions.

and receive fees from external clients and who compete to offer rapid order execution at favorable

prices, and (2) proprietary firms, who trade on their own account, maintaining net positions close

to zero, and who earn revenue by buying at prices a bit lower on average than selling prices (either

by adding liquidity at a spread or removing liquidity when stale quotes persist in the order book).

Firms that do both are classified as agencies.

Table 3 shows that Agency firms represent over 70% of volume at IEX; volume at other ex-

changes is typically more evenly split between agencies and proprietary traders. Agency volume

has three main components.

1. Adding orders at BBO: 7.7% of transaction volume. Our model in the next section will

attribute this to the proprietary arm of integrated agency firms.

2. Removing orders at BBO: 7.4% of volume. Our model will attribute this to investor clients.

3. Midpoint and discretionary peg orders transacting at midpoint: 47.0% of volume. Our model

will attribute this to investor clients.
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Following is a similar breakdown for proprietary firms.

1. Adding orders at BBO: 5.5% of volume. Our model attributes this to market making by

proprietary firms.

2. Removing orders at BBO: 7.3% of volume. The model attributes this to proprietary “snipers,”

who exploit unprotected stale limit orders when the NBBO changes.

3. Midpoint and discretionary peg orders transacting at midpoint: 13.0% of volume. For sim-

plicity, and since they comprise only 25% of all midpoint and discretionary orders, our model

will pool this order flow with midpoint orders transmitted by agencies on behalf of their

clients.

F.4 Exchanges Imposing Delay

Messaging delays in a variety of forms are seeing increasing adoption at financial exchanges world-

wide. Examples include the Investors Exchange (IEX), New York Stock Exchange (NYSE) Amer-

ican, Toronto Stock Exchange (TSX) Alpha, Aequitas Neo, Electronic Broking System (EBS),

Thomson Reuters, London Metal Exchange (LME), Chicago Board Options Exchange (CBOE)

EDGA, Intercontinental Exchange (ICE), Eurex, and the Moscow Exchange. Broadly speaking

these messaging delays can be described as either deterministic or random, and as either symmet-

ric or asymmetric.

Our model allows a random delay η, realized independently whenever there is a jump in the

fundamental value, such that the probability that midpoint pegs are protected is ξ ∈ (0, 1). Of

course, the model also allows a deterministic delay corresponding to ξ = 0 or to ξ = 1. Delays in

our model are symmetric in that they apply equally to all traders and all new orders, but there is

an asymmetry in that repricing of resting pegged orders occurs with no exchange-imposed delay.

IEX and NYSE American are the first and most prominent examples of exchanges that impose

a deterministic and symmetric messaging delay of 350 microseconds on all new orders (but not

on repricing pegs). As such delays involved an apparent violation of Regulation NMS Rule 611

(the “Order Protection” rule), which obliged exchanges to “immediately” pass orders to exchanges

with more competitive prices, the SEC modified the interpretation of “immediacy” in a June 2016

decision. By explicitly allowing a buffer of one millisecond for the order protection rule, the SEC

accommodated the IEX and NYSE American messaging delays, which allowed for their subsequent

approval as national securities exchange June 2016 and May 2017, respectively.
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Unlike the foregoing systems, TSX Alpha, launched in September 2015, imposes a longer,

random delay of 1 – 3 milliseconds on all pegged orders, both displayed and nondisplayed. It is

asymmetric in that “post-only” limit orders are not subject to the delay. Post-only orders enter the

order book as traditional limit orders, but in the event that they cross a standing quotation, they

are either repriced (less aggressively) or cancelled. TSX Alpha also uses an inverted taker-maker

fee structure, issuing a rebate ($0.0010) to traders taking liquidity and charging fees ($0.0014 –

$0.0016 for post-only limits and $0.0013 – $0.0014 for non-post-only limits) to traders providing

liquidity. As a result, traders may bypass the delay by paying an explicit fee to the exchange.

The “latency floor” mechanisms of the EBS and Thomas Reuters currency exchanges are dif-

ferent from those above and involve an intricate form of randomized delay. In brief, a new order

triggers a batching period of random length (e.g. one, two, or three milliseconds) during which

all subsequent orders are collected and randomized by trader ID. The orders are then processed

in a round-robin procedure, beginning with the first order of each trader, and subsequently the

second order of each trader, and so on. The delay is largely symmetric in that all traders and most

orders are treated in the same (random) way; the asymmetric exception is that all cancellations

are processed first in each batch.

F.5 Fees

Trading fees have interesting interactions with messaging delays. Traditional fee structures are

maker-taker, in which passive (making) orders receive rebates and aggressive (taking) orders pay

fees. However, a few exchanges use an “inverted” taker-maker fee structure in which passive orders

pay fees when executed and aggressive orders received rebates. As noted above, TSX Alpha uses

an inverted fee structure to allow traders to “pay” for protection.

As fee structures at exchanges are heterogeneous and often quite complex (dependent on a

variety order types and trader statuses) we choose for our model to be agnostic of fees. However,

some readers may be interested in modeling the impact of altering the fee structure. We now outline

straightforward extensions of our model can incorporate some simple fee structures.

Consider, for example, the fee structure recently employed by IEX: all orders that add (make)

or remove (take) non-displayed liquidity are charged $0.0009 and all orders that add or remove

displayed liquidity are charged $0.0003. To accommodate such a fee structure, let d be the dif-

ference between non-displayed and displayed fees, so in this example d = 0.0006. Rewrite our
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equations (2.2) and (2.3) as follows:

πm = (ϕ− d)
−1∑

k=−∞
qk + (ϕ− 1)

∞∑
k=0

qk (F.1)

πp = (ϕ− d)

[ −1∑
k=−∞

qk +

∞∑
k=0

qkβ̂
k+1

]
− 2

∞∑
k=0

qk

[
1−

(
ρ

ρ+ ξν

)k+1
]
. (F.2)

That is, the terms representing payoffs from pegged (non-displayed) orders are now multiplied by

ϕ− d instead of ϕ, while the other terms, representing payoffs from regular (displayed) orders are

unchanged. It is then straightforward (though occasionally messy) to propagate these modifications

through derivations of market equilibrium and thus to study how this fee structure affects market

outcomes.

F.6 Order Routing

In accordance with Regulation National Market System (Reg NMS), all exchanges in the United

States route orders to quotations at other exchanges when those quotations offer price improvement.

For example, the IEX router does this both at initial receipt of an order, and at periodic intervals

for orders resting on the book. The latter feature is referred to as resweep. To be eligible for such

protection, orders must be designated as “routable”, whereas “nonroutable” orders are sent directly

to the IEX book and are not eligible for resweep.

The order book and router are distinct components of the IEX system. After passing through

the initial 350 microsecond point-of-presence delay, nonroutable orders are sent directly to the IEX

order book, whereas routable orders are sent to the router. The IEX order router then disseminates

these latter orders to all national market systems (including their own) following a proprietary

routing table. Messages that are passed between the IEX order book and router are subject to an

additional one-way 350 microsecond delay. As a result, routable orders that are sent to the IEX

order book experience a cumulative delay of 700 microseconds before queuing behind other orders

in the system. No additional delay is enforced between the IEX router and external exchanges.

As noted in Section F.3, routable orders constitute only 12% of IEX trading volume and rep-

resent traders that use the IEX router as an access point to the national market system. The

remaining, nonroutable volume, represents trading interest intended to capture incentives of the

IEX market design.
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F.7 Pegged Order Types

Pegged order types come in many flavors. In this section, we provide details for the most common

pegged order types in use at IEX.

Midpoint pegs rest at the midpoint of NBBO, whereas primary pegs are booked in the hidden

order queue one price increment (typically $0.01) below (above) NBB (NBO), and are promoted

to transact at NBB or NBO if sufficient trading interest arrives at those prices. Discretionary

pegs combine the benefits of these first two: when entering the order book, they check the NBBO

midpoint for contra-side interest, but in the absence of such interest, are pegged to NBB or NBO

and are queued behind other hidden orders at those prices. Further, in the event that contra-side

interest subsequently arrives at the NBBO midpoint, discretionary peg orders can be promoted

to transact at the midpoint. If no such interest arrives, discretionary pegs are treated as typical

hidden NBBO orders.

Table 3 shows that midpoint trading constitutes a little more than 60% of volume, discretionary

peg trading accounts for 37% of volume and 89% of discretionary pegs are transacted at the

midpoint. The implication is that midpoint volume is nearly evenly split between midpoint and

discretionary pegs. Primary pegs and discretionary pegs transacted at BBO each account for 5%

or less of reported volume. Thus, while there is a distinction between midpoint and discretionary

peg orders, in practice nearly all discretionary peg orders transact at midpoint. For this reason, we

reduce the decision space for order types in our model to a simple midpoint peg.

Table 3 also reports small volume statistics for seemingly incongruous trades: (1) midpoint

orders that transact at BBO and (2) hidden nonroutable orders (not pegs) that transact at midpoint.

The first case occurs when midpoint pegs are booked with a limit price constraint which binds after

subsequent movements in the NBBO. In such instances, an order that originally rested at midpoint

might later rest and transact at BBO. The second case occurs under nuanced conditions where

the NBBO is more than a single price increment wide or when the IEX BBO is wider than the

NBBO (which may be a single increment). In such instances, the NBBO may coincide with the

IEX midpoint or the hidden order at IEX may be subject to a special midpoint price constraint14

14When the IEX BBO is wider than the NBBO and a nonroutable hidden order enters the order book with a limit

that would otherwise be passed on to another exchange displaying NBBO, the order is booked at the NBBO midpoint

and may be promoted to transact at the NBBO at a later time. For example, suppose the NBBO is $10.00× $10.01

and the IEX order book is $10.00× $10.02 when a nonroutable hidden buy order arrives with a limit of $10.01. The

order will be booked at $10.005 and will later transact at $10.01 if a sell limit arrives at that price. Alternatively, it

may transact with midpoint pegs, discretionary pegs, or market orders at midpoint.

23



and later transact with contra-side orders at midpoint.

A recent addition to the set of IEX order types is the Discretionary Limit Order, or D-Limit,

that was approved by the SEC on August 26, 2020. The D-Limit is automatically repriced to a

less aggressive price (one price increment below the best bid or above the best offer) when the

crumbling quote indicator (described in the next section) is activated. Otherwise, the D-Limit is

identical to a regular limit order.

What would be the impact on equilibrium predictions if our model included this new order

type? It would not be attractive to our investors who, as explained in A.12, are too impatient

to use limit orders that rest at BBO. Our model’s market makers might use them, balancing the

reduction in sniping costs (when the crumbling quote indicator forecasts correctly) against the

reduction in market order executions due losing position in the BBO queue when responding to

crumbling quote false alarms. Our Assumption A4c (deep market at BBO) evidently implies that

including this new limit order type would have no impact on equilibrium λ or ω (i.e., on steady

state midpoint order queues) and their comparative statics. Including D-limit orders could shift

equilibrium Nr and Ns (masses of market makers and snipers), but we don’t anticipate any change

in the model’s qualitative predictions. On the other hand, D-Limit orders could affect extensions

of the model that drop A4c and examine BBO dynamics explicitly. To the extent that D-Limit

orders displace r-orders, the BBO spread would tend to widen when the crumbling quote indicator

is active. In an expanded model relaxing Assumption A6c, the availability of D-limit orders might

reduce market makers’ demand for speed.

F.8 Crumbling Quote

The volume statistics for midpoint pegs in Table 3 show that proprietary firms are three times more

likely to act as liquidity removers at midpoint (7.16% of volume) than as liquidity adders (2.12%

of volume). This is indicative of opportunistic stale-quote arbitrage in advance of movements in

the NBBO. Despite the fact that the IEX delay is intended to combat such exploitative activities,

the company has reported an increase in anticipatory trading: midpoint quotes being removed

at unfavorable prices immediately prior to changes in the NBBO (Bishop, 2017). This trading

is almost certainly a result of improved probabilistic modeling of NBBO liquidity shifts by fast

traders.

In an effort to further protect pegged orders from adverse selection, IEX has developed the

“crumbling quote signal”: a model that forecasts changes in the NBBO (the crumbling quote)

and temporarily prevents primary and discretionary peg orders from exercising discretion at their
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potentially more aggressive prices in order to minimize their exposure to anticipatory traders.

That is, when the crumbling quote signal is on, discretionary pegs do not transact at midpoint and

primary pegs do not transact at BBO. Midpoint pegs do not receive protection from the crumbling

quote signal.
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