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Abstract 

Price changes in financial markets are typically summarized as time series 

(TS). Directional Change (DC) is an alternative, data-driven way to sample 

data points. The main objective of this thesis is to find new ways to extract 

new, useful information from the market. This is broken down into three 

directions: (1) to summarize price changes with DC, one must first 

determine the threshold to be used. We ask: could a threshold be too big or 

too small? If so, how could we determine the range of usable thresholds? 

(2) Could DC indicators extract volatility information from the market that 

is not observable under TS? (3) In DC, the start of a new trend is only 

confirmed in hindsight – to be precise, at the DC Confirmation (DCC) 

point when the price has reversed by the threshold specified. Could we 

detect that a new trend has begun before the DCC point? This is known as 

a nowcasting problem. 

This thesis has made three contributions. Firstly, we have created a 

guideline to determine the range of useable thresholds under DC. This 

supports the research that follows. Secondly, we have demonstrated how 

DC indicators could complement TS in tracking the market for volatility 

information. Thirdly, we have introduced new DC indicators; by using 

these indicators, we have proposed an algorithm and demonstrated how it 

could help us nowcast whether a new trend has begun in DC. 
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1. Introduction  

1.1. Overview 

Price changes in a financial market are typically summarized using time 

series formats. Directional Change (DC) is an alternative, data-driven way 

to sample date points, which samples a data point whenever the market 

changes direction (Glattfelder et al 2011).  

This research is built on the framework supported using Directional 

Change. It builds on the research conducted by Tao (2018), which defined 

a number of indicators for this approach, and the regime change detection 

research by Tsang and Chen (2018; Chen and Tsang 2018, 2020). 

The underlying argument in the first part of this thesis (Chapter 3), 

supported by the research undertaken, is that to start a Directional Change 

observation, an observer must determine how big a percentage of a price 

change in the opposite direction constitutes a directional change. This 

percentage is called a threshold in DC research. Tao (2018) proposed the 

collection of statistical measures to profile a given market in each period. 

We argue that for such statistical measures to be useful, the threshold must 

be neither too big nor too small. 
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We argue that when the threshold is too small, every transaction in the 

opposite direction constitutes a DC; such profiles may potentially capture 

a lot of noise. On the other hand, when the threshold is too big, there will 

be few trends in the DC profile. As a consequence, any statistical measures 

thus collected be based on too few data points to be meaningful. In this 

research, therefore, data-driven guidelines are proposed for determining 

when the threshold is too small or too big for profiling a market period.  

The second part of this thesis (Chapter 4) builds on the following argument: 

DC is an additional way to summarize the market, offering another angle 

from which to observe the market. We argue that market movement should 

be observed using several different measures of volatility. In Time Series 

(TS) observations, volatility is commonly defined as the standard deviation 

of log return over a certain time period. In DC, however, a variety of 

indicators can be used to define different kinds of volatility. We argue that 

by using multiple indicators, it is possible to understand the market more 

thoroughly than by only using TS alone.  

Based on this, the current work presents a new research method to track 

market changes by combining both TS and DC. The value of this approach 

was then demonstrated by tracking the volatility of the EUR/USD market, 

(the most frequently used currency trading market), over several years 

(June 2009 to July 2016), using standard deviation in log returns, under 
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Time Series (TS), and various indicators under DC.   

In this chapter, we will be using the concept of profiling to summarize all 

information that we collect from the DC data. Profiling is an application of 

directional changes to turn raw data into information. In order to track 

market movement in the market, it is necessary to capture the similarities 

and differences in prices movements within and between periods, based on 

observing the stylised behaviours of financial series. For this purpose, a 

computer program that includes some indicators to help analyse market 

movements is required. These indicators can then be used to measure the 

stylized behaviours of price movements under directional changes. The 

outcomes of the program are independent profiles, with each profile 

illustrating the performance within certain periods of the data under the 

selected threshold. Comparing and analysing the similarities and 

differences between the various metrics of these profiles may thus help 

with tracking and predicting abnormal events in the market.  

In the third research chapter (Chapter 5), we investigate the concept of 

Nowcasting, an idea introduced by Giannone, Reichlin, and Small (2008), 

which is defined as the development of a very narrow prediction of the 

financial market featuring only the present, the very near future, and the 

very recent past. Castle et. al (2013) further noted that “forecasts are made 

before a period commenced, with ‘Nowcasts’ during the relevant period, 
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and with flash estimates immediately, or shortly after the period ends, when 

disaggregated information remains incomplete.  

Nowcasting thus allows recognition of the current state of the market and 

allows some awareness of trends in real-time. In DC, trends are only 

confirmed in hindsight. We ask whether it is possible to nowcast that a new 

trend has begun by tracking the transactions in real-time. The chapter thus 

develops a new algorithm with some new DC indictors for nowcasting.  

1.2. Research Objective 

This study aims to track and nowcast the market movement by using the 

Directional Change approach. To support that, we first work out what DC 

thresholds are usable for tracking and nowcasting purposes. Therefore, this 

research attempt to achieve the following objectives: 

Objective 1: Determining appropriate DC thresholds to use 

Directional Change (DC) requires the observer to determine how big a 

percentage change in the opposite direction is significant in terms of 

determining that a directional change has taken place. This percentage 

is called a threshold in DC research. This thesis aims to develop 

guidelines for determining when the threshold is too small or too big to 

profile a chosen market-period. Following the principle of DC, these 

guidelines must be data-driven. 
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Objective 2: With appropriate DC thresholds, track the volatility of 

the market 

In Time Series (TS), volatility is defined as the standard deviation of 

returns within a time period, while in DC, various indicators are used 

to define different kinds of volatility. This thesis attempts to establish 

that the volatility of the market can be better assessed using multiple 

indicators.  

Objective 3: Nowcast new trends 

Nowcasting, a relatively new concept introduced by Giannone, 

Reichlin, and Small (2008), is defined as the narrow prediction of only 

the present, the very near future, and the very recent past, for a financial 

market. Directional Change is also a relatively new concept, and this 

work combines these approaches to develop an algorithm able to 

predict whether the financial market is moving from one state to 

another in close to real-time. 

The objectives of this thesis are therefore to create guidelines for 

determining useable thresholds under DC, to produce a new method to 

tracking market movement by combining DC and TS, and to develop a 

method for predicting whether the financial market is moving from one 

state to another in close to real-time using the concept of Nowcasting 



6 

 

 6 

together with Directional Change.  

1.3. Thesis Structure 

This thesis is organised as follows: 

In Chapter Two, we begin by reviewing the main areas of research on 

Directional Change and Nowcasting. Besides, this chapter also provides a 

general overview of the concept of Time Series and its application.  

In Chapter Three, we explain how setting the threshold in DC to be too big 

or too small negatively affect the characteristics of DC profiling. This 

motivates us to establish guidelines for determining the usable range of 

thresholds. We recommend that all scientific research on DC profiling 

should follow these guidelines. 

In Chapter Four, DC is offered as an additional way to assess the volatility 

of a market. We shall demonstrate the benefits of using indicators from 

both DC and TS. Through empirical studies in the EUR/USD market (the 

most frequently used currency market), we highlight that volatility may be 

low under one indicator, while high according to another, but that all such 

indicators may be useful in the correct circumstances.  

1.3.1 Volatility of DC indicators  

Under time series, volatility can be measured by the standard deviation of 
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the returns over a period of time (e.g. the 1-days volatility measured by the 

standard deviation of the last daily returns). Tsang et al (2017) explain that 

under DC, each trend may take a different amount of time (T) to complete. 

The smaller T is, the more frequently the market has changed between 

uptrend and downtrend. We can conclude that 1/T is a measure of volatility 

in terms of trend-switching frequency. We can also use 1/ Median T to 

measure the volatility over a period, where Median T is the median T value 

of all the trends in that period. 

Frequency is only one way to measure volatility under DC. TMV measures 

the magnitude of price change in each trend. The higher the magnitude, the 

more volatile the market is. Given that theta is fixed within an observation, 

high TMV indicates high overshoot. 

Frequency and magnitude are orthogonal with each other. Figure 2.1 shows 

hypothetical frequencies and magnitudes in three markets A, B and C. 

Market A is more volatile than Market B because while they share the same 

TMV, Market A takes only half of the time that Market B takes to complete 

each trend. Market B is more volatile than Market C because although they 

take the same time to complete each trend, the trends in Market B have 

bigger TMV values than those in Market C. 

In Chapter Five, we shall formulate the nowcasting problem in DC. This 

chapter then identifies some new DC indicators that could be useful for 
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nowcasting new trends in the market. We shall propose a nowcasting 

algorithm and assess its performance in tracking high-frequency data. 

In the final chapter, a conclusion based on the findings within the research 

chapters is offered, alongside a discussion of their significance. The 

contribution of the work and possible future directions are also discussed. 
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2. Chapter Two: literature review  

2.1. Time Series (TS) 

This research requires a consideration of the concept of time series, which 

can be described as a series of data points taken over a period registered in 

a regular sequence and in time order. These are commonly plotted online 

charts and feature not only in recording and marking trends in financial 

markets but also in many other fields of study such as statistics, 

econometrics, weather forecasting, earthquake prediction, applied science, 

and engineering. The object of time series is to allow the analysis of data 

to produce useful statistics, particularly for tracking and forecasting, based 

on past patterns and events, which requires the ability to project the data 

forward to predict future events. 

Time series data can be turned into a mathematical model for the purposes 

of prediction, or monitoring, to allow past or future trends to be observed. 

However, time series observations are potentially complex, due to the links 

between the various observations made over a period, which reflect the 

stochastic relationships within the data. 

According to Pole et al (1994), there are three basic factors within any time 

series: simple time trends, systematic cyclical variation, and influential or 

causal variables. Combinations of these can therefore produce several 
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flexible dynamic models for diverse analysis and forecasting purposes 

(Pole et al, 1994), and these are widely used in financial market analysis. 

One of the most important indicators in financial markets is volatility, 

which measures the risk of a market, therefore, need to be developed to 

chart this volatility over time, as volatility affects where, and how much a 

financial or stock market price moves. Volatility can be dramatic, reaching 

large highs or lows, or maybe relatively stable, reflecting low volatility. 

Volatility movements have pluses and minuses for traders and investors, 

and in any case act as a benchmark for financial market activity. The usual 

measure of volatility is the standard deviation, a standard time series metric 

that draws on the average price deviation by which a stock differs from the 

average over a period of time. This work, however, seeks to extend such 

consideration by researching various methods of measuring volatility in 

the financial market. Roll (1984) maintained, for example, that volatility is 

affected by the microstructure of the market, which reflects how exchanges 

happen in financial markets. 

In examining time series, it is common to use the standard deviation of log 

returns to measure volatility. This requires the use of the formula: 

𝜎𝑇 = 𝜎ℎ𝑜𝑢𝑟𝑙𝑦√𝑇 

which represents the hourly volatility of a data set for time period T. 
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observers can set up the volatility as minutely, hourly, daily or monthly as 

they want, depending on the data set. 

However, one must realize that this is just one of many ways to measure 

volatility. Actual historical volatility, which refers to the volatility of a 

financial instrument over a specified period, but with the last observation 

on a date in the past, is realised volatility, calculated as the square root of 

the realised variance, which is calculated using the sum of squared returns 

divided by the number of observations. 

Actual future volatility refers to the predicted volatility of a financial 

instrument over a specified period starting at the current time and ending 

at a future date (normally the expiry date of an option). 

Implied volatility similarly has several forms: 

Historical implied volatility refers to the implied volatility observed from 

historical prices of the financial instrument (normally options). 

Current implied volatility refers to the implied volatility observed from the 

current prices of the financial instrument. 

Future implied volatility which refers to the implied volatility observed 

from predictions of future prices of the financial instrument. 

For a financial instrument whose price follows a Gaussian random walk or 
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Wiener process, the width of the distribution increases as time increases, 

based on an increasing probability that the instrument's price will be further 

away from the initial price as time goes on. However, rather than increasing 

linearly, the volatility increases with the square root of time, as some 

fluctuations are expected to cancel each other out. Thus, the most likely 

deviation after two periods will not be twice the distance from zero 

observed after one period. 

As observed price changes do not follow Gaussian distributions, other 

options for analysis such as the Lévy distribution are often used that can 

capture attributes such as "fat tails". Volatility is, at base, simply a 

statistical measure of dispersion around the average of any random variable 

such as market parameters, however. 

Financial time series data are now widely available, including very long 

records of daily closing prices for series such as the Standard & Poors 

composite equity indices and high-frequency data, consisting of the 

complete history of transaction times, fees, and quotes for financial 

securities like individual stocks. However, modelling and statistical 

analysis of economic time series are relatively recent topics of scientific 

inquiry. Historically, time series analysis dealt primarily with applications 

in engineering, physical sciences, and earth sciences. The models 

developed for these applications were often based entirely on second-order 



13 

 

 13 

properties of the data as described by the mean and covariance functions. 

Since a Gaussian process is entirely determined by its second-order 

properties, it was implicitly assumed that the process was also Gaussian. 

As a result of the World decomposition, it was then sufficient to consider 

only linear time series models, and the class of Fractionally Integrated 

Autoregressive Moving Average (ARIMA) processes provides aa highly 

flexible and dense type of models from which to model the covariance 

function. (Torben G. Andersen and etc, 2007) 

Financial time series data are now widely available, including very long 

records of daily closing prices for series such as the Standard & Poors 

composite equity indices and for high-frequency data, consisting of the 

complete history of transaction times, prices, and quotes for financial 

securities like individual stocks. However, modelling and statistical 

analysis of financial time series are rather recent topics of scientific inquiry. 

Historically, time series analysis dealt primarily with applications in the 

fields of engineering, physical sciences, and earth sciences. The models 

developed for these applications were often based entirely on second-order 

properties of the data as described by the mean and covariance functions. 

Since a Gaussian process is completely determined by its second-order 

properties, it was implicitly assumed that the process was also Gaussian. 

As a result of the World decomposition, it was then sufficient to consider 

only linear time series models and the class of Fractionally Integrated 



14 

 

 14 

Autoregressive Moving Average (FARIMA) processes provides an 

extremely flexible and dense class of models from which to model the 

covariance function. (Torben G. Andersen and etc, 2007) 

In this part, I will do a brief introduction to Time Series, and give some 

introductions to different models of volatility under time series. These will 

include ARCH model, GARCH model, Stochastic Volatility Model, Asset 

Price Models, and some other models’ development under time series. 

2.1.1 ARCH and GARCH model 

Financial economists are concerned with modelling volatility in asset 

returns. This is important as volatility is considered a measure of risk, and 

investors want a premium for investing in risky assets. Banks and other 

financial institutions apply so-called value-at-risk models to assess their 

risks. Modelling and forecasting volatility or, in other words, the 

covariance structure of asset returns, is therefore important. The fact that 

volatility in returns fluctuates over time has been known for a long time. 

Originally, the emphasis was on another aspect of return series: their 

marginal distributions were found to be leptokurtic. Returns were modelled 

as independent and identically distributed over time. In a classic work, 

Mandelbrot (1963) and Mandelbrot and Taylor (1967) applied so-called 

stable Paretian distributions to characterize the distribution of returns. 

Rachev and Mittnik (2000) contain an informative discussion of stable 
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Paretian distributions and their use in finance and econometrics. 

Observations in return series of financial assets observed at weekly and 

higher frequencies are in fact not independent. While observations in these 

series are uncorrelated or nearly uncorrelated, the series contains higher-

order dependence. 

Models of Autoregressive Conditional Heteroskedasticity (ARCH) and the 

Generalized ARCH (GARCH) will be introduced in this part. 

Timo (2009) said that the ARCH model is the first model of conditional 

heteroskedasticity. 

We let ε t be a random variable that has a mean and a variance conditionally 

on the information set F t − 1 (the σ-field generated by ε t − j, j ≥ 1). The 

ARCH model of ε t has the following properties. 

First, E {ε t |F t − 1} =0 and, second, the conditional variance h t = E { ε 2 t 

|F t − 1 } is a nontrivial positive-valued parametric function of F t − 1 . The 

sequence {ε t} may be observed directly, or it may be an error or innovation 

sequence of an econometric model. In the latter case,  

ε t = y t − μ t (y t) 

where y t is an observable random variable and μ t ( y t )= E { y t |F t − 1 }, 

the conditional mean of y t given F t − 1. The sequence { ε t } may be 

observed directly, or it may be an error or innovation sequence of an 

econometric model.  

Engle’s (1982) application was of this type. In what follows, the focus will 
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be on parametric forms of ht, and for simplicity, it is assumed that μt (yt)=0. 

Engle assumed that ε t can be decomposed as follows: ε t = z t h 1 / 2 t 

where {zt} is a sequence of independent, identically distributed random 

variables with zero mean and unit variance. This implies ε t |F t − 1 ∼ D (0, 

h t ) where D stands for the distribution (typically assumed to be a normal 

or a leptokurtic one). The following conditional variance defines an ARCH 

model of order q  

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑗𝜖𝑡−𝑗
2𝑞

𝑗=1             (X)  

where α 0 > 0 , α j ≥ 0 ,j =1 ,...,q − 1 ,and α q > 0 . The parameter restrictions 

in the formula above form a necessary and sufficient condition for 

positivity of the conditional variance. Suppose the unconditional variance 

𝐸𝜖𝑡
2 = 𝜎2 < ∞ The definition of ε t through the decomposition involving 

z t then guarantees the white noise property of the sequence { ε t }, since { z 

t } is a sequence of variables. Although the application in Engle (1982) was 

not a financial one, Engle and others soon realized the potential of the 

ARCH model in financial applications that required forecasting volatility.  

The ARCH model and its generalizations are thus applied to modelling, 

among other things, interest rates, exchange rates and stock and stock index 

returns. 

In applications, the ARCH model has been replaced by the so-called 

generalized ARCH (GARCH) model that Bollerslev (1986) and Taylor 

(1986) proposed independently of each other. In this model, the conditional 
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variance is also a linear function of its own lags and has the form  

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑗𝜖𝑡−𝑗
2 + ∑ 𝛽𝑗ℎ𝑡−𝑗

𝑝
𝑗=1

𝑞
𝑗=1    （Y） 

The conditional variance defined by the formula above has the property 

that the unconditional autocorrelation function of 𝜀 𝑡
2  , if it exists, can 

decay slowly, albeit still exponentially. For the ARCH family, the decay 

rate is too rapid compared to what is typically observed in financial time 

series, unless the maximum lag q in X is long. As Y is a more parsimonious 

model of the conditional variance than a high-order ARCH model, most 

users prefer it to the simpler ARCH alternative. 

2.1.2 Stochastic Volatility Model 

Neil and Torben (2009) point out that stochastic volatility (SV) models are 

used heavily within the fields of financial economics and mathematical 

finance to capture the impact of time-varying volatility on financial 

markets and decision making. The development of the subject has been 

highly multidisciplinary, with results drawn from financial economics, 

probability theory and econometrics blending to produce methods that aid 

our understanding of option pricing, efficient portfolio allocation and 

accurate risk assessment and management. Time-varying volatility is 

endemic in financial markets. Black and Scholes (1972, p. 416), suggested 

that “there is evidence of nonstationary in the variance. More work must 

be done to predict variances using the information available.” Neil and 
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Torben (2009) also said that ARCH processes are often described as SV. 

The feature of ARCH models is that they explicitly model the conditional 

variance of returns given past returns observed by the econometrician. This 

very powerful idea that one-step-ahead prediction approach to the volatility 

model, especially in the field of risk management. It is convenient from an 

econometric viewpoint as it immediately delivers the likelihood function 

as the product of one-step-ahead predictive densities. 

In the SV theory, the predictive distribution of returns is specified indirectly, 

via the structure of the model, rather than directly. For a certain number of 

SV models this predictive distribution can be calculated explicitly but, 

invariably, empirically study said that realistic representations must be 

computed numerically. This has some advantages is moves away from 

direct one-step-ahead predictions. In continuous time it is much convenient 

and might be more natural to model directly the volatility of asset prices as 

having its own stochastic process without thinking about the implied one-

step-ahead distribution of returns recorded over an arbitrary time interval 

convenient for the econometrician, for example a month or a year. SV 

models is not directly available when raise some difficulties as the 

likelihood function for SV models, most of them are frustration of 

econometricians in the late 1980s and early 1990s. Neil and Torben (2009). 

Neil and Torben (2009) also said that only in the 1990s were novel 

simulation strategies developed to efficiently estimate SV models. These 
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computationally intensive methods enable us, given enough coding and 

computing time, to efficiently estimate a broad range of fully parametric 

SV models. And its resulting enriched SV literature has brought us much 

closer to the empirical realities we face in financial markets. 

In the late 1990s, with the development of high-frequency data become 

wildly used in the econometric analysis of volatility forecasting Neil and 

Torben (2009) reported that the connection between SV and realized 

volatility has allowed financial econometricians to combine the enriched 

information set available through high-frequency data, by an order of 

magnitude, the accuracy of their volatility forecasts over that traditionally 

offered by ARCH models based on daily observations.  

Eric Renault (2009) suggested that there are moment-based models that are 

based on the SV model. 

Eric (2009) said that based on the Method of Moments (MM) or the 

Generalized Method of Moments (GMM) often applied since the early 

days of the Stochastic Volatility (SV) literature. There are at least two 

justifications for these approaches. First, moments of financial time series 

have always been of high interest as such moments are associated not only 

with volatility forecasting but also aspects of the return distribution like 

heavy tails and return-volatility asymmetries, examples were presented by 

Rosenberg (1972) and Black (1976). Secondly, besides modelling issues, 

MM approaches are famous for their simplicity as the exact likelihood 



20 

 

 20 

function is difficult to evaluate in the context of parametric volatility 

models within the class of hidden Markov models. 

People normally use the Regression Model to Analyze Fluctuations in 

Variance, these can be the linear regression model for conditional variance 

such as Rosenberg (1972) is to be the first to realize that fat tails observed 

in asset prices changes: 

𝑧𝑡+1 = log (
𝑃𝑡+1

𝑃𝑡
) 

Where the formula can be explained by a decomposition:  

𝑧𝑡+1 = 𝑚𝑡 + 𝜎𝑡𝜖𝑡+1 

That the εt are serially independent random variables with identical 

distribution function F ( · ) having mean equal to zero, variance is equal to 

one, and kurtosis equal to κ. The variables σt, which are the variances of 

price changes, obey a stochastic process that can be forecasted. The εt +1 

are contemporaneously independent of the σt”.  

Then, Drost and Nijman (1993) created the weak GARCH concept to 

exploit the temporal aggregation properties of linear ARMA models. 

Where ARMA model or Autoregressive Moving Average model, is used 

to describe weakly stationary stochastic time series in terms of two 

polynomials. Petris (2009) give the definition that the first of these 

polynomials is for autoregression, the second for the moving average, so 

the model is referred to as the ARMA(p,q) model that: 
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𝑥𝑡 = 𝑐 + 𝜀𝑡 + ∑ 𝜑𝑖𝑥𝑡−𝑖 + ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

𝑝

𝑖=1

 

p is the order of the autoregressive polynomial, 

q is the order of the moving average polynomial. 

Where: 

φ = the autoregressive model’s parameters, 

θ = the moving average model’s parameters. 

c = a constant, 

Σ = summation notation, 

ε = error terms  

where the SR–SARV(p) model is introduced. 

As aimed by Engle (1995) estimating volatility models by time-series 

techniques via ARMA models for squared returns is generally very 

inefficient since these models feature "innovations sequences which not 

only have time-varying variances but have bounded support which differs 

over time". This may motivate a preliminary log-transformation of the 

conditional variance, as also proposed by Rosenberg (1972), before fitting 

an ARMA model. These we called the Exponential SARV model. 

2.1.3 Asset Price Models 

In this part, two main asset price model will be introduced. One is the 

Black-sholes model (BSM), and the other is the capital asset price model 
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(CAPM). 

Peter (2009）proposed discrete-time models which include SV, ARCH, 

GARCH and their further generalizations have been developed to reflect 

the called stylized features of financial time series. These properties, which 

include tail heaviness, volatility clustering and serial dependence without 

correlation, cannot be captured with traditional linear time series models. 

Black and Scholes (1973) and Merton (1973) was celebrated of this work 

based on a geometric Brownian motion model for the asset price S(t) at 

time t. In 1965, Samuelson introcuced Brownian motion model according 

to which S (t) satisfies the Itô equation,  

dS(t)= μS(t)dt + σS(t)dW(t) with S (0) > 0   

This equation we define that {W(t) ,t ≥ 0 } is standard Brownian motion 

defined on a complete probability space ( Ω, F ,P ) with filtration {Ft} 

where F t is the sub-σ-algebra of F generated by { W ( s ) , 0 ≤ s ≤ t } and 

the null sets of F . The solution above becomes: 

S(t)= S(0) exp[(μ − σ2/2) t + σW(t)] 

so that the log asset price in this model is Brownian motion and the log 

return over the time-interval ( t, t + Δ ) become: 

𝑙𝑜𝑔
𝑆(𝑡+∆)

𝑆(𝑡)
=(𝜇−

1

2
𝜎2)∆+𝜎(𝑊(𝑡 + 𝛥) − 𝑊(𝑡)) 

Here we will give the definition and equations for the BSM, 

The thesis assumes that the capital structure of the firm is comprised of 

equity and by a zero-coupon bond with maturity T and face value of D, 
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whose values at time t can be denoted by E_t and z(t,T) respectively, for 

0≤t≤T. The asset value of the firm is the sum of the equity and debt values. 

The firm will default if its assets cannot cover the promised payment of 

debt. Therefore the credit risk can be measured as the spread between the 

value of the firm’s assets and its debt. The value of the firm’s assets, Vt, is 

assumed to follow a geometric Brownian motion under the following 

measure 

d𝑉𝑡 = 𝛾𝑉𝑡𝑑𝑡 + 𝜎𝑉𝑡𝑑𝑊𝑡 

where γ is the drift rate, σ is the asset volatility, and W is a Brownian 

motion. 

Under the settings, the payoff of the bondholders will be given by min (D, 

Vt) and the payoff of the shareholders will be given by max, applying the 

Black-Scholes pricing formula, the value of the equity at time t is given by  

𝐸𝑡(𝑉𝑡, 𝜎𝑉, 𝑇 − 𝑡) = 𝑒−𝑟(𝑇−𝑡)[𝑒𝑟(𝑇−𝑡)𝑉𝑡∅(𝑑1) − 𝐷∅(𝑑2)] 

where ∅ is the distribution function of a standard normal random variable. 

d1 and d2 can be expressed as follows: 

𝑑1 =

ln (
𝑒𝑟(𝑇−𝑡)𝑉𝑡

𝐷 ) +
𝜎𝑉

2

2 (𝑇 − 𝑡)

𝜎𝑉√𝑇 − 𝑡
 

𝑑2 = 𝑑1 − 𝜎𝑉√𝑇 − 𝑡 

This formula represents that the value of equity at time t is given by the 

value of a risk-free bond minus the value of a put written to equity. The 

probability of default at time T can be expressed as 

P[𝑉𝑇 < 𝐷] = ∅(−𝑑2) 
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Over the last several decades, a significant volume of the literature aims to 

explain the “credit spread puzzle” since the credit spreads that Merton’s 

model produced are far smaller than estimates of credit spreads derived 

from actual, traded corporate bonds (Culp, Nozawa et al. 2014).  

The advantage of the structural models is that the models provide a way of 

relating the credit risk of a firm to its capital structure: assets and liabilities. 

The key idea is that if the value of the firm’s assets goes below a given 

safety level, the firm is not able to repay its debts. Then the firm is subject 

to default. The default is induced by observable market information. But 

the models are based on several assumptions which are far from realistic. 

The most important restriction of the model is that the default time is fixed, 

the default can only happen on the maturity of the debt. Secondly, Merton’s 

model assumes the firms only issue a single zero-coupon bond and the firm 

value is tradeable. The usual capital structure of a firm is much more 

complicated than a simple zero-coupon bond. Geske (1979) and Geske and 

Johnson (1984) extended Merton’s model on compound options which 

have different maturities. They also considered sinking funds, safety 

covenants, payout restrictions and subordinated debt. Thirdly, another 

handicap of the model is that it assumes a constant and flat term structure 

of interest rates, like Black and Cox (1976), Leland (1994) and Leland and 

Toft (1996). Jones, Mason et al. (1984) proposed the stochastic interest 

rates, as well as taxes, would improve the performance of the model. In 
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addition, many works in the literature also considered interest rates as 

stochastic processes, for instance, Ronn and Verma (1986), Kim, 

Ramaswamy et al. (1988), Briys and De Varenne (1997) and Saa-Requejo 

and Santa-Clara (1997). Nielsen, Saà-Requejo et al. (2001) and Longstaff 

and Schwartz (1995) also considered that the interest rate follows a Vasicek 

process. 

The capital asset pricing model (CAPM) was introduced by The CAPM 

builds on the portfolio choice model developed by Harry Markowitz 

(1959). And William Sharpe (1964) and John Lintner (1965) give a further 

definition of CAPM. The CAPM is often used to measure the performance 

of mutual funds and other managed portfolios. Jensen (1968) estimated the 

CAPM time-series regression for a portfolio and used the intercept 

(Jensen’s alpha) to measure abnormal performance. Eugene and Kenneth 

(2004) suggest that CAPM offers robust and intuitively pleasing 

predictions about measuring risk and explaining the relation between 

expected return and risk. 

For instance, the CAPM suggests that the risk of a stock should be 

measured relative to a comprehensive “market portfolio” that in principle 

can include not just traded financial assets but also consumer durables, real 

estate, and human capital. Harry Markowitz (1959) creates the portfolio 

choice that lets the CAPM model build. In Markowitz’s model, an investor 

selects a portfolio at time t-1 and produces a stochastic return at t. The 
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model assumes investors are risk-averse and, when choosing among 

portfolios, they care only about the mean and variance of their one-period 

investment return. Markowitz's approach is often called a “mean-variance 

model.” This is because, as a result, investors choose “mean-variance- 

efficient” portfolios, in the sense that the portfolios have two parts; one is 

to minimise the variance of portfolio return, given expected return. The 

other is to maximise expected return, given conflict. The portfolio model 

provides an algebraic condition on asset weights in mean-variance efficient 

portfolios. The CAPM turns this algebraic statement into a testable 

prediction about the relation between risk and expected return by 

identifying a portfolio that must be efficient if asset prices are to clear the 

market of all assets. 

There are two assumptions added by Sharpe (1964) and Lintner (1965) into 

the Markowitz model to identify a portfolio that must be mean-variance-

efficient. 

At first, when given market-clearing asset prices at t-1, investors agree on 

the joint distribution of asset returns from t-1 to t. And this distribution is 

the true one—that is, it is the distribution from which the returns we use to 

test the model are drawn.  

Secondly, borrowing and lending at a risk-free rate is the same for all 

investors and does not depend on the amount borrowed or lent. 

In summary, CAPM assumptions show that the market portfolio market (M) 



27 

 

 27 

must be on the minimum variance frontier if the asset market is too 

transparent. 

In conclusion, if there are N risky assets, E(Ri) is the expected return on 

asset i, and the 𝛽𝑖𝑀 is the market beta of asset i. where we define that 

𝛽𝑖𝑀 =
𝐶𝑂𝑉(𝑅𝑖 , 𝑅𝑀)

𝜎2(𝑅𝑀)
 

Under this condition, we summarise that the equation of the CAMP model 

would be: 

𝐸(𝑅𝑖) = 𝐸(𝑅𝑍𝑀) + [𝐸(𝑅𝑀) − 𝐸(𝑅𝑍𝑀)]𝛽𝑖𝑀, 𝑖 = 1, … … 𝑁 

2.1.4 Historical volatility and realized volatility 

In time series, we normally define the volatility as a percentage and 

interpreted as standard deviation of returns, measures how much a security 

moves over a certain period. There are different type of volatility in time 

series such as historical volatility and realized volatility.  

Realized volatility is the assessment of variation in returns for an 

investment product by analysing its historical returns within a defined time 

period. Assessment of degree of uncertainty and/or potential financial 

loss/gain from investing in a firm may be measured using variability/ 

volatility in stock prices of the entity. In statistics, the most common 

measure to determine variability is by measuring the standard deviation, 

for example the variability of returns from the mean. It is an indicator of 
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the actual price risk. 

The realized volatility or actual volatility in the market is caused by two 

components a continuous volatility component and a jump component, 

which influence the stock prices. Continuous volatility in a stock market is 

affected by intra-day trading volumes. For example, a single high volume 

trade transaction can introduce a significant variation in the price of an 

instrument. 

Historic Volatility is the standard deviation of the "price returns" over a 

certain period, this can be hourly, daily, monthly, or other time periods. A 

"price return" is the natural logarithm of the percentage price changes or 

we can use the formula: ln [Pt / P(t-1)]. 

A volatile market, therefore, has a larger standard deviation and thus a 

higher historical volatility value. Conversely, a market with small 

fluctuations has a small standard deviation and a low historical volatility 

value.  

Historic volatility can also be used as a tool by traders who are trading only 

the underlying instrument. Quantifying the volatility in a market can affect 

a trader's perception of how far the market can move and thus provides 

some help in making price projections and placing orders. High volatility 

may indicate a trend reversal as heavy buying/selling comes into the 

market and may sharp price reversals. 
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2.2. Value at Risk (VaR) 

Value at Risk (VaR) is a measure of the risk of loss for investments. It 

estimates how much a given set of investments might lose under a certain 

probability, given normal market conditions within a set time period such 

as an hour, a day, or a month. VaR is typically used by firms and regulators 

in the financial industry to measure the quantity of assets required to cover 

possible losses. 

Philippe (2006) noted that, for a given portfolio, time horizon, and 

probability(P), the P VaR can be defined informally as the maximum 

possible loss during the time frame after excluding all worse outcomes 

whose combined probability is, at most, P. This assumes mark-to-market 

pricing and no trading within the portfolio. Setting up a portfolio of stocks 

that has a one-day 0.5% of $10 million means there is a probability of 0.005 

that the value of the portfolio will fall by more than $10 million in a day, 

for example. 

In calculating VaR, 0.5%, 1% and 5% probabilities for a fixed time interval 

(normally one day) are generally used as reference points.  

2.3. Directional Change (DC) 

The concept of directional change has been fully explored in the available 

literature. DC is a new way to summarize price changes (Guillaume et al 
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1997) based on the market movement alternating Uptrends and 

Downtrends over time. An uptrend terminates when a Downturn DC Event 

takes place; similarly, a downtrend terminates when an Upturn DC Event 

takes place. A Downturn (Upturn) DC Event is any event in which the price 

drops (rises) by a certain threshold (θ) from the highest (lowest) price (PEXT) 

seen in the previous trend period.  

As a Downturn DC Event defines the beginning of a new downtrend, at the 

end of such a Downturn DC Event, the price will have dropped by the 

specified threshold from the highest price in the last (and current) trend. 

That highest point (which would be the lowest point in the case of upturn 

directional change) is called an Extreme Point. An extreme point is only 

confirmed in hindsight, however, when DC is confirmed as the price 

changes by at least the threshold value from the previous extreme point.  

A downtrend continues until the next upturn DC event is observed; this 

defines the lowest price in the current downtrend and starts the next uptrend. 

The price change from the end of the Downturn DC Event to the lowest 

price in the current trend is referred to as an Overshoot Event; each trend 

is thus comprised of both a DC Event and an Overshoot Event. 

Tsang et al (2017) indicated that the Theoretical Directional Change 

Confirmation Point (DCC*) is the minimal or maximum directional change 
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confirmation price for any upturn or downturn directional change event; 

however, this does not exist in practice in the real market. The reason for 

using DCC* rather than DCC is because, in the real world, the EXT point 

and DCC point can be the same point, depending on the threshold. The 

price of DCC*, however, is defined in the following ways:  

In an uptrend: PDCC↑* = PEXT × (1+ θ) ≤ PDCC↑;  

In a downtrend: PDCC↓* = PEXT × (1- θ) ≥ PDCC↓, 

Where PEXT is the price of directional change extreme point (EXT); PDCC 

is the price of the directional change confirmation point (DCC); θ is the 

fixed threshold; and ↑and ↓ here represents the Upturn and Downturn 

events respectively. PDCC↑* is thus the DCC* price of an upturn directional 

change event and PDCC↓* is the DCC* price of a downturn directional 

change event. 

Definitions of these factors and an outline of the core topic of directional 

change are required for the current work, and contrast with time series must 

be made. In time series, financial market prices are sampled using fixed-

time intervals; the daily closing prices at a fixed interval are generally used 

to record the movement of prices. However, this snapshot of the market 

may not pick up all the necessary financial information. For example, 

according to Tsang et al (2016), if only the end of day financial prices had 
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been recorded, the flash crash on 6th May 2010 (also known as the crash 

of 2:45 or simply the flash crash, was a United States trillion-dollar stock 

market crash, which started at 2:32 p.m. EDT and lasted for approximately 

36 minutes) would not even have been noticed.    

In contrast, instead of sampling prices at fixed time intervals as in time 

series, DC is entirely data-driven, using market price movements 

exceeding an observer-chosen threshold to dictate when a price must be 

recorded. (Tsang, et al 2017). 

The concept of DC was introduced by Guillaume et al. (1997) as another 

way to sample data, with chosen sample points driven by data movement. 

The observer chooses the threshold for when to sample the market data 

based on their own determination of an appropriate threshold to display 

significant movement; this causes the market to be defined as a series of 

alternating uptrends and downtrends in which a change from downtrend to 

an uptrend occurs when the predefined threshold is reached in terms of 

market movement (Tsang et al, 2017). 

The concept of DC was further developed by Glattfelder et al (2011), who 

introduced twelve new empirical scaling laws related to foreign exchange 

data series across thirteen currency exchange rates based on the theory of 

directional change. Kablan and Ng (2011) then examined capturing 
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volatility using the event-driven approach of directional change within pre-

specified thresholds, while Aloud et al (2012) demonstrated that the length 

of the price-curve coastline, as defined by directional change, showed the 

long coastline of price changes.  

In contrast to time series analysis, in which researchers have developed 

indicators such as return and volatility to summarize market price changes, 

there remains a need to develop new indicators for the profiling of markets 

under DC, however, which forms part of the current work. 

DC is a developing concept, and a range of DC indicators to profile various 

market dynamics allow new ways to examine the data; however, all of 

these are data-driven. The returns that a time series examines are 

investigated over a fixed time period, while the returns that DC examines 

are returns over a directional change event. Given the same period of data 

points, the DC coastlines are often much longer than time series coastlines 

for the same period, as DC deliberately captures all of the extreme points 

(Aloud et al, 2012). 

Several studies have explored how to use the concept of DC to understand 

financial markets better. Depuis and Olsen (2011) examined how to use the 

DC concept in High-Frequency Trading models (HFT). Masry (2013) 

examined FX market activity based on the concept of DC; her approach 
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laid the foundations for understanding how FX market activity changes as 

price movement progress, exploring the idea that small differences in 

market activity can change price trend conditions significantly. Bisig, 

Dupuis, Impagliazzo, and Olsen (2012) defined the concept of the Scale of 

Market Quakes (SMQ), based on the ideas of DC. This suggests that the 

FX market can be quantified by economic and political event declarations, 

and that, by analysing the average OS event, the magnitude of a quake can 

be calculated similarly to assessing the magnitude of an earthquake. The 

authors claim that because the SMQ arises in response to compelling 

market events, an analyst will observe larger SMQs when the market is in 

an unstable period and smaller SMQs during stable periods. This idea of 

SMQ shows that the measurement of an OS event can be used to quantify 

the price behaviour, that occurs in the financial market at periods of major 

economic and political events. This work led to Tsang et al (2016) 

developing a set of DC-based indicators for profiling the financial market. 

Glattfelder et al. (2011) also discovered 12 new scaling laws in foreign 

exchange markets using the DC approach, which they used to study 

stylised facts in FX markets. 

Gillaume et al. (1997) proposed a new scaling law for DC, which they 

considered offered a new way to measure volatility and to give a 

description of the evolution of financial prices. Using DC to sample data 
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helps ameliorate the problems described by Tsang (2017) that arise from 

using time series alone to summarize prices in the financial market, where 

prices are sampled only at fixed time intervals, with the final transaction 

price recorded as the daily closing price. However. Tsang (2017) also 

argued that time series and directional change are not competing methods 

of studying price dynamics. In his view, these approaches can complement 

each other and offer different perspectives. According to Tsang (2017), 

using both ensures that volatility observed under time series can be used 

alongside the observed frequency and price movement values observed 

under directional change: ‘they all tell part of the story.”. DC offers the 

flexibility that “By sampling different data points, DC sees price 

movement from an angle different from time series. Under time series, one 

fixes time (in the x-axis) and measures changes in price (in the y-axis). 

Under DC, one fixes the threshold in price change (in the y-axis) and lets 

the data determine when to sample the next extreme point, i.e., letting the 

data determine the next value on the x-axis. This also determines the time 

at which the next data point is sampled” (Tsang, 2017). 

The continuing rise of global 24-hour financial markets necessitates the 

use of more flexible systems that can recognise market volatility, 

fluctuations, and dynamics rapidly and effectively. Directional change 

offers a different perspective on market dynamics, as it allows for 
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transaction prices to be recorded only when there is a significant change in 

the price, offering a more continuous view of market fluctuations.   

Tsang et al (2017) introduced further refinements to the definition of 

Directional Change. They defined the Directional Change Extreme Point 

(EXT) as the starting point for a DC trend, which may be either an Upturn 

Point or Downturn Point. It can be also seen as the end of a TM event where 

TM events consist of a total price movement, either a downturn event 

followed by a downward overshoot event, or an upturn event followed by 

an upward overshoot event (Glattfelder et al, 2011). The Directional 

Change Confirmation Point (DCC) is the point at which it is possible to 

confirm a DC event, while the Theoretical Directional Change 

Confirmation Point (DCC*) is the minimal or maximum directional change 

confirmation price for any upturn or downturn directional change event.  

Overshoot refers to the price change from the last directional change 

confirmation price (DCC) to the current price. Tsang et al (2017) used 

Overshoot Value (OSV) to measure the extent of an overshoot, and thus, 

instead of using the absolute value of the price change as in time series, the 

value of OSV is relative to the threshold chosen by the observer. OSV is 

thus defined as follows: 

OSV= ((Pc – PDCC) ÷ PDCC) ÷ θ 
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where Pc is the current price, PDCC is the last directional change 

confirmation price, and θ is the threshold.  

Overshoot values at extreme points (OSVEXT) act as an indicator for 

measuring the value of an overshoot based on the price distance between 

fixed points. They measure how far the overshoot exceeds the theoretical 

directional change confirmation point (DCC*) before reaching the next 

extreme point (EXT). We define OSVEXT is defined as: 

OSVEXT= ((PEXT – PDCC*) ÷ PDCC*) ÷ θ  

Where PEXT is the price at the extreme point that ends the current trend, 

PDCC* is the price of the theoretical directional change confirmation point 

of the current trend; and θ is the threshold.  

Glattfelder et al. (2011), discovered 12 new scaling laws in foreign 

exchange markets, which were established using the DC approach, which 

was used to study stylised facts in FX markets. Gillaume et al. (1997) had 

proposed a new scaling law for DC, to be considered as a new way to 

measure volatility and the description of the evolution of financial prices. 

Directional Change Indicators 

Tsang et al (2017) introduced the idea that, in DC, different indicators may 

be used to measure different kinds of volatility. To track market changes, 
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both Directional Change and Time Series have specific indicators to 

measure the volatility of the market. In time series, the log return of 

standard deviation for a fixed time interval is used as a measure of volatility 

for that market period, while in DC, several indicators may be used. These 

include Number of Directional Changes (NDC), Total Price Movement 

(TMV), Time for completion of a trend (T), Time independent Coastline 

(CDC), and Time-adjusted return of DC (RDC) under Directional Change. 

All of these indicators offer means of explaining different features of 

volatility tracking in the financial market, and defining them can build up 

a “vocabulary” for new concepts of tracking using DC 

2.3.1. Number of Directional Change (NDC) 

The Number of Directional Changes (NDC) is an indicator that represents 

how many Directional Changes occur in a given period; thus, NDC is the 

total number of DC events that happen over a profiled period. This 

measures the frequency of DC events; based on the same threshold, a time 

period with a higher NDC value is more volatile than a time period of the 

same length with a lower NDC. By recording the NDC within the profiled 

period, DC offers an additional way to measure the volatility of market 

price movements. 

For example, if two profiles cover time periods of the same length, then 
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the comparative number of directional changes within these gives a 

measure of comparative volatility. The Number of Directional Changes 

(NDC) is inversely proportional to T, and a higher NDC value suggests a 

higher frequency of directional changes in the market, indicating higher 

volatility more generally. 

Figure 2. 1 shows the DC summary of two hypothetical markets, A and B. 

The x-axis represents the data period (T), and the y-axis represent the price. 

In this figure, the price moves between the same range in the two markets. 

However, we can see that twelve trends happened in market A while six 

trends happened in market B in the same period. Therefore, market A is 

more volatile than market B. 

2.3.2. Total Price Movement (TMV) 

Total Price Movement (TMV) can also be used to measure volatility under 

DC by indicating any big changes in prices. 

Definition 2.1:  Total Price Movement (TMV) 

In a trend that starts at the price PEXT, the TMV of a price P is the 

price change rate from PEXT to P, normalized by θ, where θ is the 

threshold used to generate the DC events1. 

 
1 See Section 2.3 for introduction of DC thresholds. 
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TMVP = (P – PEXT) / PEXT / θ  (2.1) 

In the TMV definition, price change rates are normalized by the DC 

threshold θ. This allows us to compare TMV obtained under different 

thresholds. 

The extreme points are special transactions in DC. As we refer to them 

frequently, we denote the TMV at extreme points TMVEXT (Tsang et al 

2017). It is defined below for the sake of completeness. 

Definition 2.2:  Total Price Movement of an extreme point (TMVEXT) 

In a trend that starts at the price PEXT_i, and ends with price PEXT_i+1, 

the TMV of PEXT_i+1 is the price change rate from PEXT_i to PEXT_i+1, 

normalized by the DC threshold θ.  

TMVP_EXT_i+1 = (PEXT_i+1 – PEXT_i) / PEXT_i+1 / θ  (2.2) 

TMV defined above are signed. They are positive in uptrends (when 

PEXT_i+1 is greater than PEXT_i) and negative in downtrends (when PEXT_i+1 

is greater than PEXT_i). On many occasions, we are not interested in the sign 

of TMV. We are only interested in the magnitude of price changes. 

Therefore, we introduce the term aTMV to refer to unsigned TMV. 

Definition 2.3:  Absolute Total Price Movement (aTMV) 

In a trend that starts at the price PEXT, the TMV of a price P is the 
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absolute price change rate from PEXT to P, normalized by θ, where 

θ is the threshold used to generate the DC events. 

TMVP = |P – PEXT| / PEXT / θ  (2.3) 

Figure 2. 1 shows the DC summary of two hypothetical markets, B and C 

as well. The x-axis represents the data period (T), and the y-axis represent 

the price. In this figure, the time moves between the same range in the two 

markets. However, we can see that in markets B and C we spend the same 

time to finish a trend, while the TMV in B is twice than TMV in C in the 

same time period. Therefore, market B is more volatile than market C. 

NDC and TMV provide two different perspectives to the volatility of a 

market: while the NDC measures the frequency of directional change, 

TMV measures the magnitude of price changes in each trend. All else being 

equal, the higher the NDC, the more volatile the market is. All else being 

equal, the greater the magnitude of price changes per trend, the more 

volatile the market is. To summarize, TMV is one indicator that measures 

the volatility in a trend. It can also be used to measure the volatility of a 

market over a certain period.  
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Figure 2. 1: Measuring Volatility in DC (Tsang 2017) 
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2.3.3. Time for completion of a trend (T) 

 

Figure 2. 2 3% DCs in EUR-USD-ByMinutes-2013 (Tao, 2017) 

Within Figure 2. 2 when θ is equal to 3%, PEXT is the price at directional 

change extreme point (solid black squares), and T is the time that it takes 

between two consecutive directional change extreme points. 

Tsang et al (2017) pointed out that DC is defined based on events, thus 

utilising intrinsic as opposed to physical time (Glattfelder et al, 2011). 

However, this does not mean that it ignores physical time. The amount of 

physical time that a trend takes to complete is a significant piece of 
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information, and the indicator T is used to represent the physical time 

between the extreme points that begin and end a trend. 

2.3.4. Scaling laws under DC  

Glattfelder and Olsen (2011) discovered 12 independent new empirical 

scaling laws in foreign exchange data-series under DC that hold for close 

to three orders of magnitude and across 13 currency exchange rates. Their 

statistical analysis crucially depends on an event-based approach that 

measures the relationship between different types of events. 

At first, all 12 scaling laws are under the test of the price data of the foreign 

exchange (FX) market. Glattfelder and Olsen (2011) suggest that in 

financial markets, the flow of time is discontinuous: over weekends trading 

comes to a standstill or, inversely, at news announcements, there are spurts 

of market activity. In law (0a), the confinement of analysing returns as 

observed in physical time is overly restrictive. Law (0b) is a first attempt 

at establishing a new paradigm by looking beyond such constraints within 

financial data, constituting an event-driven approach, where patterns 

emerge for successions of events at different magnitudes. This alternative 

approach defines an activity-based time-scale called intrinsic time. 

Extending this event-driven paradigm further enables us to observe new, 

stable patterns of scaling and reduces the level of complexity of real-world 
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time series. In detail, the fixed event thresholds of different sizes define 

focal points, blurring out irrelevant details of the price evolution. The 

Figure below depicts how the price curve is dissected into so-called 

directional-change and overshoot sections. 

 

Figure 2. 3 Projection of a (a) two-week, (b) zoomed-in 36 hour price sample onto a 

re- duced set of so-called directional-change events defined by a threshold (a) ∆xdc = 

1.7%, (b) ∆xdc = 0.23% (Glattfelder and Olsen (2011)) 

In Figure 2. 3 These directional-change events (diamonds) act as natural 

dissection points, decomposing a total-price move between two extremal 

price levels (bullets) into so-called directional-change (solid lines) and 

overshoot (dashed lines) sections. Glattfelder and Olsen (2011) confirm 

that time scales depict physical time ticking evenly across different price-

curve activity regimes, whereas intrinsic time triggers only at directional-

change events, independent of the notion of physical time.  
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∆x (%) 

Figure 2. 4 Scaling law (1) is plotted where the x-axis shows the price move 

thresholds of the observations and the y-axis the average tick numbers.  

(Glattfelder and Olsen (2011)) 

Figure 2. 4 shows a tick is defined as a price move of 0.02%. Glattfelder 

and Olsen (2011) point out what the solid line shows the raw data for EUR-

USD. For the remaining 12 currency pairs and the Gaussian random walk 

benchmark model the raw data is displayed with dots. Insets show the 

distribution of the EUR-USD observations (drawn above their x-axis) for 

selected threshold values of 0.1% and 3.0%. 

Glattfelder and Olsen (2011) summarized that laws (4) and (5) relate the 

average numbers of seconds that elapse between consecutive price moves 

or directional changes, respectively. 

Glattfelder and Olsen (2011) also unveil a set of scaling laws emerging 

from the identification of directional-change events (see figure 2.3) that 
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make up the so-called total-move (TM) segments, which themselves 

decompose into directional-change (DC) and overshoot (OS) parts. The 

total price move, waiting time, and the number of ticks can then be written 

as: 

〈|∆𝑥𝑡𝑚|〉 = 〈|∆𝑥𝑑𝑐|〉 + 〈|∆𝑥𝑜𝑠|〉 （6) 

〈∆𝑡𝑡𝑚〉 = 〈∆𝑡𝑑𝑐〉 + 〈∆𝑡𝑜𝑠〉（7） 

〈𝑁(∆𝑥𝑡𝑐𝑘
𝑡𝑚 〉 = 〈𝑁(∆𝑥𝑡𝑐𝑘

𝑑𝑐 〉 + 〈𝑁(∆𝑥𝑡𝑐𝑘
𝑜𝑠 〉（8） 

Glattfelder and Olsen (2011) also propose the decomposition leads to nine 

additional scaling laws, where the average values are functions of the 

directional-change thresholds ∆𝑥𝑑𝑐 

〈|∆𝑥∗|〉 = (
∆𝑥𝑑𝑐

𝑐𝑥,∗
)𝐸𝑥,∗（9） 

〈∆𝑥∗〉 = (
∆𝑥𝑑𝑐

𝑐𝑡,∗
)𝐸𝑡,∗（10） 

〈𝑁(∆𝑥𝑡𝑐𝑘
∗ 〉 = (

∆𝑥𝑑𝑐

𝑐𝑁,∗
)𝐸𝑁,∗(11) 

Where * stands for {tm, dc, os} Note that |∆𝑥𝑑𝑐| = ∆𝑥𝑑𝑐  holds by 

construction. 

Glattfelder and Olsen (2011) also considering cumulative price moves 

instead of the averages in laws (9) leads to another triplet of laws: 

∆𝑥𝑐𝑢𝑚
∗ = ∑ |∆𝑥𝑖

∗|𝑛
𝑖=1 = (

∆𝑥𝑑𝑐

𝐶𝑐𝑢𝑚,∗
)𝐸𝑐𝑢𝑚,∗ (12) 

This concludes the presentation of 12 new scaling laws. 

2.4. Profiling 

Profiling is an application of directional changes to turn raw data into 
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information. In order to track market movement in the market, it is 

necessary to capture the similarities and differences in prices movements 

within and between periods, based on observing the stylised behaviours of 

financial series. By using directional change theory instead of sampling at 

fixed intervals, price changes dictate when a price is recorded. DC thus 

provides a complementary way to extract more information from data and 

to observe features that may not be recognised in time series. For this 

purpose, a computer program that includes some indicators to help analyse 

market movements is required. These indicators can then be used to 

measure the stylized behaviours of price movements under directional 

changes. The outcomes of the program are independent profiles, with each 

profile illustrating the performance within certain periods of the data under 

the selected threshold. Comparing and analysing the similarities and 

differences between the various metrics of these profiles may thus help 

with tracking and predicting abnormal events in the market.  

2.5. Nowcasting 

Nowcasting is a concept that was introduced by Giannone, Reichlin, and 

Small (2008). It is defined as any narrow prediction of only the present, the 

very near future, and the very recent past in a financial market. Castle et. 

al (2013) further noted that “forecasts are made before a period 

commenced, with ‘Nowcasts’ during the relevant period, and with flash 
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estimates immediately, or shortly after the period ends, when disaggregated 

information remains incomplete. For instance, we do not necessarily know 

what is happening now, very often we only know what is happening in 

hindsight”.  

Even where an uptrend may have ended, an observer cannot know that a 

downtrend has started, until the next Directional Change confirmation 

point, which occurs only when the price has dropped from the last peak by 

the specified threshold. 

 

Figure 2. 5 Directional Changes in foreign exchange rates between US Dollars and 

Japanese Yen (USD/JPY) with threshold = 2% (E.P.K. Tsang 2017) 
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Figure 2. 5 shows an example of Nowcasting using DC. In this figure, the 

X-axis represent the time, while the Y-axis represents the price. At the point 

“Now”, a new trend is started. However, it is only possible to confirm that 

a new trend has started at time Tdcc when the price reaches DCC*. 

“Nowcasting” refers to the idea of recognising the start of a new trend after 

Now, before Tdcc. The closer this point of recognition can be brought to 

“Now”, the more useful this nowcast will be. This nowcasting problem will 

be tackled in this thesis (see Chapter 5).  

Bakhach (2018) noted that many studies have concluded that the 

directional change (DC) framework is useful in analysing FX markets. In 

his research, he considered the problem of forecasting the change of a 

trend’s direction from a DC perspective, based on the task of forecasting 

whether the current trend, whether that is an uptrend or a downtrend, will 

continue in the same direction for a specific percentage before the 

occurrence of the next extreme point. He thus introduced an original DC-

based independent variable and proved its usefulness in the proposed 

forecasting problem, as well as addressing the problem of forecasting the 

change of a trend’s direction within the DC framework. 

Bakhach (2018) then formulated a means of predicting the change of 

direction of a market’s trend under the DC framework. He proposed 

tracking price movements using two concurrent DC thresholds, STheta and 



51 

 

 51 

BTheta. He then attempted to forecast whether a DC trend, as observed 

under threshold STheta would continue so that its total magnitude would 

be at least equal to BTheta. To do this, he introduced a new concept named 

Big-Theta, originating from the DC framework. The idea of Big-Theta is 

that a DC event of threshold BTheta will embrace at least one DC event of 

the smaller threshold STheta (with BTheta > STheta). The concept of Big-

Theta was thus used to introduce the Boolean variable BBTheta, the value 

of which expresses whether the total price change of a DC trend, as 

observed under the threshold STheta will reach BTheta.  

Bakhach (2018) also examined the performance of this forecasting 

approach using eight currency pairs sampled minute-by-minute. The 

results demonstrated an accuracy of between 62% and 80%.  

To the best of the authors’ knowledge, this was the first attempt to forecast 

the change of a trend’s direction under the DC framework.  
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3. Chapter Three: Useable range for Threshold  

3.1. Background  

Firstly, thresholds constitute a vital part of DC’s make-up. As DC is 

entirely data-driven, it records market movements as they happen, meaning 

that the observer has to choose what threshold will trigger the significant 

market movement. Therefore, in this chapter we argue for the utility of DC, 

and that this utility depends on the choice of threshold. Moreover, DC’s 

data-driven nature makes it particularly suitable for observing the data-

heavy, 24-hour global financial markets. However, the question then arises, 

what range of threshold should one choose for observing the trend in DC? 

This chapter attempts to answer that question and to provide a framework 

for making useable range thresholds choices.  

3.2. The objective of this chapter  

An observer may choose to use any threshold to observe the market. 

However, if the aim is to collect statistical measures to profile a market 

over a period, as proposed by Tsang et al. (2017), then choosing the 

thresholds requires due consideration. A threshold that is too big will not 

produce enough observable directional changes for statistical purposes. 

Equally, if a threshold is too small, any small shift in the opposite direction 

will be seen as a directional change for the observer. This introduces the 
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problem of ‘noise’ into the statistical measures, as will be elaborated below.  

The objective of this research is to develop measures to determine when 

the threshold is too big or too small. However, the objective is not 

identifying what constitutes an ‘optimal’ threshold for profiling a market 

period, as it is unlikely that a one-size-fits-all approach would be 

appropriate for this research. Instead, the objective is to determine the 

range of usable thresholds for profiling. This chapter proposes a method 

which will allow the data to show what thresholds are too big or too small 

when profiling a market period. 

3.3. Methodology  

This section proposes guidelines to determine the range of useable 

thresholds for a given data set. 

3.3.1. Overview of the methodology  

To decide what thresholds are usable for profiling a data set, this section 

summaries the data as a sequence of trends in DC, with a range of 

thresholds. The mean, maximum, and minimum aTMVs of the trends are 

all computed.  

Based on Guillaume et al. (1997), the minimum aTMV observed should be 

close to 1 (to be explained below). Therefore, this study proposes to use 
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the minimum aTMV, as an indicator of whether the threshold used is too 

small. 

As explained in Section 2.3.2, aTMV are normalized by the threshold. Thus, 

aTMV is threshold independent. Therefore, if a sharp change is observed 

in the mean aTMV when the threshold is incremented, it signals the danger 

of using too few trends for profiling. This is the sign of using a threshold 

that is too big. 

3.3.2. When is the threshold too small  

As we explained in Section 2, an uptrend is confirmed when there exists a 

price PDCC↑ such that: 

PDCC↑ ≥ Ptrough × (1 + θ).    

The minimum price for an uptrend to be confirmed is PDCC↑*, where: 

PDCC↑* = Ptrough × (1 + θ) 

Similarly, the maximum price for a downtrend confirmation is PDCC↓*: 

 PDCC↓* = Ppeak × (1 – θ) 

According to Tsang et al. (2017), the Overshoot Value (OSV) at an upward 

DC confirmation point DCC↑ is as: 

OSVDCC↑ = ((PDCC↑ – PDCC↑*) ÷ PDCC↑*) ÷ θ 
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PDCC↑ is normally close to PDCC↑* in practice. If that is the case, then 

OSVDCC↑ is close to 0. However, if we use a very small threshold, PDCC↑ 

could be significantly larger than PDCC↑*. To take an extreme example, 

suppose price normally moves by steps of 0.001% in a particular market. 

If a threshold of 0.0001% is used, then OSVDCC↑ could become extremely 

big: 

OSVDCC↑ = 0.001% ÷ 0.0001% = 10 

If the trend reverses immediately at DCC↑, the aTMV of this trend is equal 

to 10. Empirical studies (Guillaume et al., 1997) shows that this is a very 

big aTMV. However, this big aTMV is only observed because of the choice 

of an unreasonably small threshold for this market.  

Guillaume et al, (1997) showed that, regardless of the threshold used, 

aTMVs follow a power-law decade: many trends reverse immediately after 

DCC. As explained above, aTMVs of these trends are close to 1. Therefore, 

we expect the minimum aTMV is close to 1. Should the minimum aTMV 

observed in a market-period be significantly greater than 1, the reason is 

likely to be caused by the fact that we have chosen a threshold that is too 

small. This forms the basis of our first guideline for establishing a threshold. 

 

Guideline 1： A threshold should be rejected for being too small for 



56 

 

 56 

profiling if the minimum aTMV in the market-period is 

significantly greater than 1.  

3.3.3. When is the threshold too big? 

According to Olsen’s observation (Guillaume et al., 1997), markets exhibit 

a fractal phenomenon under DC. This means we observe similar profiles 

under different thresholds. The TMV definition above is normalised by the 

threshold used. Therefore, according to Olsen’s observation, we should 

observe similar TMV values under different thresholds. If the mean aTMV 

changes dramatically as we incrementally increase the threshold, then it is 

likely that the new profile offers too few (dissimilar) trends. In other words, 

the new threshold used is too big. This is the basis of our second guideline. 

Guideline 2: A threshold should be rejected for being too big for 

profiling if the mean aTMV increases dramatically when 

the threshold is increased slightly.  
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3.4. Example One: EUR/USD Period One 

3.4.1. Data selected and range of thresholds to examine  

This section uses tick data in the EUR/USD exchange market from 

21/04/2016 07:31:08 to 06/05/2016 14:31:21. 

This data set was named EUR/USD Period One. 

To decide what thresholds are useable, we summarized the data in section 

3.4.1, by using DC with a range of thresholds. We use 28 thresholds in this 

chapter. The thresholds and their indices are shown in Table 3. 1. 

Index(n)/ 

Threshold  

1 2 3 4 5 6 7 

0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 

8 9 10 11 12 13 14 

0.00008 0.00009 0.0001 0.0002 0.0003 0.0004 0.0005 

15 16 17 18 19 20 21 

0.0006 0.0007 0.0008 0.0009 0.001 0.002 0.003 

22 23 24 25 26 27 28 

0.004 0005 0.006 0.007 0.008 0.009 0.01 

Table 3. 1 Index of (n) and Threshold (Th) used for in this paper 
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3.4.2. Result for Period One 

Index Threshold Mean aTMV Min aTMV 

1 0.00001 4.6271777 1.258416 

2 0.00002 4.0133908 1.258447 

3 0.00003 3.63958239 1.258495 

4 0.00004 3.4211865 1.258384 

5 0.00005 2.7369492 1.006707 

6 0.00006 2.73067158 1.049274 

7 0.00007 2.72268926 1.078696 

8 0.00008 2.71337584 1.10412881 

9 0.00009 2.51458287 1.000023 

10 0.0001 2.43097167 1.00913265 

11 0.0002 2.22847085 1.00743 

12 0.0003 2.1003618 1.008547 

13 0.0004 2.02578999 1.000594 

14 0.0005 1.96533547 1.00009 

15 0.0006 1.9601325 1.000324 

16 0.0007 1.91670702 1.000005 

17 0.0008 1.93278493 1.000065 

18 0.0009 1.955967 1.001104 

19 0.001 1.99373879 1.002411 

20 0.002 2.03064767 1.032848 

21 0.003 1.90877544 1.021156 

22 0.004 2.0913975 1.031619 

23 0.005 1.94717667 1.111224 

24 0.006 1.96052713 1.055028 

25 0.007 1.93929633 1.021187 

26 0.008 2.44278567 1.336983 

27 0.009 2.17136467 1.188429 

28 0.01 1.95422833 1.069586 

Table 3. 2 EUR/USD Period One’s mean aTMV and minimum aTMV under different 

thresholds. 
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3.4.3. When is a threshold too small for profiling Period One  

As we mentioned in Section 3.2, from Table 3. 2, we can see that the value 

of minimum aTMV (the rightmost column) under thresholds from 0.007 to 

0.00005 are all approximately 1. At Threshold=0.00005, the minimum 

TMV is 1.006707. However, when the threshold value drops to 0.00004, 

the value of the minimum aTMV rises sharply to 1.258384. In this case, 

we see any threshold below 0.00005 is unsuitable for profiling EUR/USD 

Period One. 

3.4.4. When is a threshold too big for profiling Period One 

Table 3. 2 shows that in EUR/USE Period One, when the threshold is 

between 0.0002 and 0.005, the mean aTMV values are approximately 2.0 

(column 3). Once the threshold increased to 0.008, the value of mean 

aTMV sharply increase to 2.44278567. The mean aTMV increases to 

2.44278567 under threshold 0.008. Under the circumstances, we define 

that any threshold larger than 0.008 is defined as being unsuitable for 

profiling EUR/USD Period One.  

In conclusion, we defined that the usable range of thresholds for this data 

set is between 0.00005 and 0.008, both numbers included.  
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3.5. Example Two: EUR/USD Period Two 

3.5.1. Data selected range of thresholds to examine 

This section uses tick data in the EUR/USD exchange market from 

29/03/2016 13:29:42 to 13/04/2016 10:19:18. 

This data set was used EUR/USD Period Two. 

The same threshold was used as the one introduced in Section 3.4 

  



61 

 

 61 

3.5.2. Results for Period Two 

Index Threshold Mean aTMV Min aTMV 

1 0.00001 4.73054856 1.232119 

2 0.00002 4.0040592 1.232013 

3 0.00003 3.59096243 1.232544 

4 0.00004 3.3717238 1.232438 

5 0.00005 2.93279468 1.000000 

6 0.00006 2.68517048 1.027297 

7 0.00007 2.68297783 1.056219 

8 0.00008 2.67478211 1.07841 

9 0.00009 2.67152819 1.096014 

10 0.0001 2.53199258 1.000000 

11 0.0002 2.24322587 1.000075 

12 0.0003 2.13125317 1.000125 

13 0.0004 2.05193953 1.000138 

14 0.0005 2.00232298 1.000713 

15 0.0006 1.99328215 1.00144 

16 0.0007 1.98420177 1.002104 

17 0.0008 1.96438704 1.001462 

18 0.0009 1.98484554 1.000595 

19 0.001 1.97924251 1.000717 

20 0.002 1.84791789 1.018877 

21 0.003 2.01279488 1.01183 

22 0.004 1.88247868 1.038123 

23 0.005 1.75531236 1.036448 

24 0.006 2.1202938 1.066875 

25 0.007 2.419529 1.063466 

26 0.008 2.953677 2.953677 

27 0.009 2.625491 2.625491 

28 0.01 2.362942 2.362942 

Table 3. 3 EUR/USD Period Two’s mean aTMV and minimum aTMV under different 

thresholds. 

3.5.3. When is a threshold too small for profiling Period Two? 

As we mentioned in Section 3.2, from Table 3. 3 we can see that under 

thresholds 0.007 to 0.00005, the value of minimum aTMV is around 1. 
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Under threshold 0.00005, the minimum aTMV is 1.0. When the threshold 

is dropped to 0.00004, the minimum aTMV increases sharply to 1.232438. 

In this case, we see any threshold below 0.00005 unsuitable for profiling 

EUR/USD Period Two. 

3.5.4. When is a threshold too big for profiling Period Two? 

Table 3. 3 shows, we can see that under thresholds 0.0004 to 0.003, the 

mean aTMV are all approximately 2.0. Under threshold 0.003, the mean 

TMV value is 2.01279488. Under threshold 0.004, the mean aTMV value 

decreases sharply to 1.88247868. When the threshold is increased to 0.005, 

the mean aTMV value decreases to 1.75531236. When the threshold value 

rises to 0.006, the mean aTMV jumps back to 2.1202938. In other words, 

the mean aTMV values fluctuate above threshold 0.03. Thus, we see any 

threshold larger than 0.003 as unsuitable for profiling EUR/USE Period 

Two.  

In conclusion, we defined that the usable range of thresholds for this data 

set is between 0.00005 and 0.003, both numbers included.  

3.6. Conclusion  

It is up to the observer to choose an appropriate threshold to observe 

Directional Changes (DCs) in a given market-period. However, this study 

argues that if the aim is to use statistical information to profile a market-



63 

 

 63 

period, as in the use of DC, thresholds should not be chosen which are 

either too small or too big. However, such a choice requires careful 

consideration. This chapter proposed two guidelines to determine the range 

of usable thresholds for DC profiling.  

When the threshold is too small, every transaction in the opposite direction 

constitutes a DC, and such profiles may capture a significant amount of 

noise. We shall show with an example in Chapter 5 the problem of using 

thresholds that are too small. On the other hand, when the threshold is too 

big, there will be too few trends, not enough noise, in the profile. Statistical 

measures thus collected are based on too few data points to be significant 

and cannot be effectively analysed.  

It is important to stress that DC-based analysis is entirely data-driven. This 

means finding the range of useable thresholds is required for each 

individual data set. By proposing an effective guideline to determine what 

are the ranges of usable thresholds, in our view, this chapter lays an 

important foundation for new scientific, computer-based research, in the 

new area of DC profiling of financial markets.  
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4. Chapter Four: Tracking market movement by multiple indicators 

4.1. Background  

Financial markets change constantly, and these changes are normally 

tracked by different kinds of volatility. In Time Series (TS), volatility is 

typically defined as the standard deviation of log return over a certain time 

interval, which can be every minute, every hour, every day, or every month. 

The standard deviation of log returns can be referred to as SD, yet SD is 

not the only feasible measure of volatility. Directional Change (DC) 

introduces as an additional way to measure market volatility by different 

indicators such as NDC and aTMV, which, as explained in Section 2.3, 

measure two independent properties of volatility. By using multiple 

indicators, it is possible to understand markets more fully than when only 

using DC or TS. This chapter, therefore, presents new research on tracking 

market changes by combining SD, NDC, and aTMV, offering a new way 

to track the volatility of the market.  

In this chapter, a new method proposed has been developed by combining 

DC and TS, and this chapter demonstrates that the proposed method allows 

researchers to effectively follow market tracking, facilitating a 

summarization of market changes. 
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4.2. Motivation and objective of this chapter 

Every transaction is recorded in financial markets each second while it has 

happened, some seconds do not have transactions which we do not record. 

The key to market success is to extract information from that data. Prices 

change rapidly and knowing what indicators to look for and tracking 

change in values is necessary to make good decisions in these markets. As 

explained in Section 2.3, the DC indicators NDC and aTMV capture a great 

deal of the volatility information in the market; this chapter, therefore, 

demonstrates how this is achieved. 

The approach taken is empirically based, and data-driven, concentrating on 

what market volatility is revealing through the use of DC and TS indicators 

to analyse market data. By using multiple indicators, the aim is to track 

volatility more reliably. 

4.3. Overview of our approach 

This chapter demonstrates tracking market movements by monitoring both 

TS and DC volatility indicators under specific rolling windows. The aim is 

to establish the usefulness of NDC and aTMV, and an explanation of the 

approach used to do this is therefore required. 

This approach begins with the data, which is grouped into rolling windows. 

Within each window, the SD, NDC, and median aTMVEXT values are 
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calculated. Following we use aTMVEXT to explain how we assess the 

volatility of a rolling window. The same analysis applies to the other two 

indicators, NDC and SD.  

1. We calculated the median aTMVEXT for each rolling window. 

2. We then calculated the standard deviation of the median aTMVEXT over 

all the rolling windows observed. 

3. For example, suppose we observed a median aTMVEXT value of 2.31 

(see Section 4.6.6.2 below). The value 2.31 is 5.46 times bigger than 

the mean of median aTMVEXT of the historical period observed. 

4. We say that this median aTMVEXT value 2.31 is significant because: 

4.1. It is above 99.999% of the median aTMVEXT values observed in 

all windows.  

4.2. A value that is 5.46 times bigger than the mean has less than 

0.00001% probability of happening. 

5. Therefore, we use the word 'significant' in general terms and all the 

word 'significant' in this section means ‘historically significant’. 

Within the ensuing analysis, the following questions are asked: 

▪ Do all the indicators agree with each other all the time?  
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▪ If not, do they disagree with each other all the time? 

▪ If neither of these cases applies, does any indicator extract particular 

volatility information in the market that the other indicators miss? 

4.4. Methodology   

4.4.1. Rolling windows and rolling speed 

 
Figure 4. 1 Rolling windows used in the experiments 

Figure 4. 1 shows an example of the rolling windows applied. A data set 

was selected from the market in a chosen period, and the various rolling 

windows (rolling window 1, rolling window 2, rolling window 3, and so 

on) were then superimposed to the end. Each window thus contains a 

certain number of data points under DC and a certain time period under TS. 

The gap between each rolling window represents the rolling speed.  

In this research, rolling speed is therefore defined by a certain number of 

data points under DC and a certain time period under TS.  

4.4.2. Volatility under TS 
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The standard deviation of log returns, referred to as SD, is used to measure 

that volatility which draws on the average price deviation by which a time 

period differs from the average over a period of time. 

4.4.3. Volatility under DC 

In this chapter, NDC and median aTMVEXT are the indicators used to 

measure the volatility of DC. 

4.5. Experimentation  

4.5.1. Data used 

EUR/USD data, collected by the second (some seconds showed no trading), 

from 00:00:10 on 25/09/2009 to 07:13:14 on 18/07/2016 was used; this set 

contains 112,442,529 data points (transactions) across the period and both 

under TS and DC were applied to the same raw data, so these data points 

were the same. For clarity of reference, this period is labelled P.  

4.5.2. Experimental setup 

In TS, SD is used to measure the volatility of the market. For DC the 

indicators median aTMVEXT and NDC are used to measure the volatility of 

the market.  
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Threshold Setup: 

We use the threshold= 0.0004 for all DC calculation  

DC rolling windows setup: 

In DC, the rolling windows are defined by the number of data points2. 

Each DC rolling window was therefore comprised of 1,000,000 data 

points, with NDC and median aTMVEXT calculated for this set. The 

rolling speed was 250,000 data points, as each rolling window started 

250,000 data points after the beginning of the previous rolling window3. 

TS rolling windows setup: 

For the time series (TS) theory, 16 days was set as the rolling window 

size, and four days was set as the rolling speed. For each rolling 

window, the hourly log return was calculated as the SD.  

The reason for using 1,000,000 data points per window under DC and 16 

days under TS was to make the TS window size and DC window size 

approximately the same physical duration. However, as DC and TS sample 

data at different points, the rolling windows observed under DC and TS are 

different.  

 
2
 Each data point is a transaction, with transactions collated by the second. There may be no transactions in some 

seconds, and two adjacent transactions therefore do not have to be one second apart. 
3
 For clarity, the fifth rolling window does not overlap with the first rolling window, as it starts (250,000x4) 

1,000,000 data points after the start of the first rolling window. 
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4.6. Result  

This section presents the results and findings. An overview of the whole 

period is offered, charting the SD, NDC and median aTMVEXT values 

measured in the rolling windows. Four individual sub-periods are then 

examined to highlight the usefulness of each of the three indicators. 

4.6.1. Overview 

As shown in  Figure 4. 2 and Figure 4. 3, SD, median aTMVEXT and NDC 

report similar volatilities in some periods but not in others. Different 

indicators report variations in volatility, with high volatility sometimes 

coinciding under different indicators, while in other time periods, one 

indicator may show the high volatility while the others do not. 

4.6.2. The results of the whole period P 

Market tracking using the indicators in DC and TS series are shown in  

Figure 4. 2 and Figure 4. 3, respectively. The higher the value, the higher 

the volatility of the market according to the indicator. 
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 Figure 4. 2 NDC and median aTMVEXT for the rolling windows EUR/USD data 

from 25/09/2009 to 18/07/2016 under DC threshold 0.0004  

 
Figure 4. 3 SD (log return) for the rolling windows under TS for EUR/USD data  

from 25/09/2009 to 18/07/2016
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It is important to point out that both x-axis of  Figure 4. 2 and Figure 4. 3 

represents the number of rolling windows. For example, when the x-axis is 

equal to 1, that means it’s the value of the first window. The reason  Figure 

4. 2 and Figure 4. 3 have different number is that DC and TS use different 

rolling windows and rolling speeds which will lead the total number of 

windows different. This requires the values to be plotted on different 

figures. The rolling windows in TS are based on physical time, while the 

rolling windows in DC are data-driven, and thus the first 500 events could 

take a much longer (or shorter) physical time than the next 500 events. 

4.6.3. Overview of the period P under investigation 

Under Directional Change with a threshold equal to 0.0004, the median 

aTMVEXT from each rolling window’s value ranges from 1.175165 to 

2.315351. The largest median aTMVEXT value in any rolling window is 

equal to 2.315351, which occurred in the time period from 08:10:12 on 

22/09/2011 to 02:11:17 on 11/11/2011. The smallest median aTMVEXT in 

the rolling window was equal to 1.175165, which occurred in the period 

from 10:55:41 on 01/10/2012 to 01:51:09 on 19/10/2012. The average 

value of median aTMVEXT for all rolling windows in the whole period P is 

1.567286.  

With a threshold is equal to 0.0004, the NDC for each rolling window’s 
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value ranged from 802 to 26,433. NDC= 802 occurred during the rolling 

window time period from 14:44:33 on 03/07/2014 to 02:31:01 on 

25/07/2014, while NDC= 26,433 occurred during the rolling window time 

period from 01:51:09 on 01/10/2012 to 01:51:09 19/10/2012. The average 

value of NDC in the rolling windows in the whole period P is 7,011. 

Under Time Series, the volatility (SD) was calculated using hourly log 

returns within each of the windows. By inspecting all windows, the 

maximum value of volatility was identified as 0.002481249, while the 

minimum was 0.000383666. The average value of volatility was 

0.001187753, and the median volatility value of the time series was 

0.001154151. 

4.6.4. Sub-periods that we focus on 

The rest of this chapter focuses on four sub-periods (P1, P2, P3, and P4), 

which are further defined below. These four periods are examined under 

both DC and TS, giving PDC1 to PDC4 and PTS1 to PTS4. Observations based 

on median aTMVEXT, NDC, and SD are independently calculated, and the 

results are compared and contrasted to assess the usefulness of using 

multiple indicators to track the market. 

As TS and DC have different sampling points, they do not use exactly the 

same physical timings for their time periods. Each of PDC1 to PDC4 and PTS1 
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to PTS4 thus includes all periods that cover the observations. 

Each individual indicator, median aTMVEXT, NDC, and SD, is assessed 

with specific reference to its usefulness in tracking. For this purpose, these 

indicators’ potential roles in four periods are examined for both DC and TS. 

As DC is data-driven, the data points chosen in DC and TS are very 

different. To make the results under DC and TS comparable, the DC and 

TS windows for roughly the same time period were selected. The time 

periods used are defined in Table 4. 1, with the periods used for collecting 

DC indicators, denoted as PDC1, PDC2, PDC3 and PDC4, and the periods in 

which TS indicators were collected denoted as PTS1, PTS2, PTS3, and PTS4. 

Table 4. 1, shows the four periods under both DC and TS that have 

significant changes in one of them or both of them. 

P1: February to July 2010 

PDC1: 07:06:32 9th February 2010 to 15:53:34 29th July 2010  

(20 rolling windows) 

PTS1 17:00:16 3rd February 2010 to 17:00:06 28th July 2010  

(26 rolling windows)  

P2: September 2011 to January 2012 

PDC2: 08:10:12 22ed September 2011 to 00:59:05 11th January 2012  

(20 rolling windows) 

PTS2 17:00:06 09th November 2011 to 17:00:06 11th January 2012  

(19 rolling windows) 

P3: May to August 2013 

PDC3: 09:37:53 3rd May 2013 to 06:18:42 29th August 2013  

(25 rolling windows) 

PTS3 17:00:04 3rd May to 17:00:07 18th August 2013  

(32 rolling windows) 

P4: April to June 2016 

PDC4: 22:39:23 24th April 2016 to 12:19:43 20th June 2016  
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(8 rolling windows) 

PTS4 17:00:04 28th April 2016 to 17:02:24 7th July 2016  

(15 rolling windows) 

Table 4. 1 The four periods under both DC and TS with significant changes in one of 

them or both of them 

These four periods were picked because of the significant changes in 

volatility observed in the DC and Time series data sets. Every period has 

its own characteristics and values of each indicator under DC and TS, 

however, which are discussed in the following sections.  

The following three sections thus focus on the observations made under 

SD, median aTMVEXT and NDC. For each of these indicators, the 

observations in the four sub-periods listed in Table 4. 1 will be summarized 

and discussed. 

4.6.5. Observations by SD in the four different periods 

This subsection focuses solely on the observations made under SD in each 

of the four periods PTS1 to PTS4  

In this section, we found Observation 1: where we can found high historical 

volatility under the periods PTS1 and PTS4. In PTS2 and PTS3 we do not 

observe a significant signal for changes.  
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4.6.5.1. Observation by SD from PTS1 

 

Figure 4. 4 SD observed under TS from 03/02/2011 to 28/07/ 2010 (PTS1) 

PTS1 covers the period from 17:00:16 on 03/02/2010 to 17:00:06 on 

28/07/2010. The average SD for this period is 0.001485; for reference, the 

average SD of P is 0.0012. In PTS1, the average SD is thus more or less the 

same across P. However, a big jump can be observed from 0.00114 on 

04/04/2010 April to the peak value of 0.00234 on 09/05/2010, with the 

latter value being 3.10 times the standard deviation away from the mean 

value of P. It is also the third highest SD value across P (as noted in 

Section 4.6.3): 

Observation 1:  Volatility observed based on SD in PTS1 is one of the 

highest in the whole period (P); it is 3.1 standard deviation above 

the mean SD value of P, which is 99.903% higher than all SD values. 
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4.6.5.2. Observation by SD from PTS2 

 

Figure 4. 5 SD observed under TS: from 09/11/2011 to 11/01/2012 (PTS2) 

From Figure 4. 5, from 17:00:06 on 09/11/2011 to 17:00:06 on 11/01/2012 

the value of SD under time series lay between 0.00096053 and 

0.001746078. The average value in this period was 0.001307427, just 0.32 

standard deviations away from the population mean. Figure 4. 3 shows that 

the SD value during PTS2 was relatively low in comparison with P as a 

whole, yet nothing special was observed in PTS2. 
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4.6.5.3. Observation by SD from PTS3  

 

Figure 4. 6 SD observed under TS: from 03/15/2013 to 18/08/2013 (PTS3) 

Figure 4. 6, shows that, from 17:00:04 on 03/05/2013 to 17:00:07 on 

18/08/2013, the value of SD under time series was between 0.00068 and 

0.00167. The average value in this period was 0.001307427, just 0.32 

standard deviations away from the population mean. From Figure 4. 3 we 

can see that the SD value in PTS3 is relatively low within P. In other words, 

there are no particular leaps were observed in PTS3. 
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4.6.5.4. Observation by SD from PTS4 

 
Figure 4. 7 SD observed under TS: from 28/04/2016 to 07/07/2016 (PTS4) 

From Figure 4. 7, we can see that from 17:00:04 28th April to 17:02:24 7th 

July 2016 the value of SD under time series is between 0.000753596 and 

0.00216308. The average value in this period is 0.00122743. From Figure 

4. 7 we can see that the SD value in PTS4 started from around 0.00075 and 

ended in 0.000931. In between, there was a big increase from 0.000961 to 

0.00204 and stay for one window before dropping back to 0.001129. At its 

peak, a 3.5 times standard deviation away from the mean value of P was 

thus observed. 

Observation 2:  The volatility observed in SD in PTS4 was among the 

highest across the whole period (P), being 3.5 standard deviations 

above the mean SD value in P, making it higher than 99.976% of all 

SD values. 
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4.6.5.5. Conclusion on observation by SD 

To conclude, the major observation under SD are: 

Observation 1:  The volatility observed in SD in PTS1 is among the 

highest in the whole period (P), being 3.1 standard deviations above 

the mean SD value of P, making it higher than 99.903% of all SD 

values. 

The volatility observed in SD in PTS4 is among the highest across the 

whole period (P), being 3.5 standard deviations above the mean SD 

value of P, making it higher than 99.976% of all SD values. 

To summarize, under TS, we can observe two changes, one is under PTS1 

and the other PTS4. 

4.6.6. Observation by median aTMVEXT under DC in the four different 

periods 

This section focuses on the observations made using the DC indicator 

median aTMVEXT in each of the four periods PDC1 to PDC4.  
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4.6.6.1. Observations by median aTMVEXT from PDC1 

 

Figure 4. 8 Volatility under aTMV from 09/02/2010 to 29/07/2010 (PDC1) 

Figure 4. 8 shows the median aTMVEXT values from 07:06:32 on 

09/02/2010 to 15:53:34 on 29/07/2010. The median aTMVEXT values 

ranged between 1.580392 and 1.76 in this period, with the average value 

being 1.65241, which is 0.62 standard deviations away from the population 

mean. This indicates that this period is slightly more volatile than average, 

but not by a margin; nothing special was observed in PDC1. 
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4.6.6.2. Observations by median aTMVEXT from PDC2 

 

Figure 4. 9 Volatility under median aTMVEXT from 15/11/2011 to 19/01/2012 

(PDC2) 

Figure 4. 9 shows that volatility went up dramatically between 27/11/2011 

to 27/12/2011. On 20 November 2011, the median aTMVEXT was equal to 

1.5, and it then rose to 2.1 on 27 December 2011. The median aTMVEXT 

reached a historic high of 2.31 in the period ending 16th November 2011, 

and the median aTMVEXT appears to have picked up the historic high 

volatility of this period, which was 5.46 times SD away from the mean of 

P.After reaching this historic high, the value of the median aTMVEXT 

decreased back to 1.49, much nearer the average value 1.56 for the whole 

period. This suggests there is something significant in this period.  

Observation 3:  Volatility observed via the median aTMVEXT value 

in DC in PDC2 reached a historic high across the period (P), being 

0

0.5

1

1.5

2

2.5

Volatility under median aTMVEXT

from 15/11/2011 to 19/01/2012



 

 

 83 

5.46 standard deviations higher than the median aTMVEXT value of 

P, placing it above 99.999% of all SD values.  
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4.6.6.3. Observations by aTMV from PDC3 

 

Figure 4. 10 Volatility under median aTMVEXT 

 from 03/05/2013 to 29/08/2013 (PDC3) 

In this period (shown in Figure 4. 10), median aTMVEXT first went up from 

1.45 to 1.69 and then decreased to 1.33. Later, the median aTMVEXT again 

increased, from 1.33 to 1.506. As noted in Section 4.6.2 and Section 4.6.3, 

the average value of median aTMVEXT for P is 1.56. Volatility in this 

period is therefore relatively low within P, and while there is fluctuation 

in the median aTMVEXT value, no special patterns can be observed in this 

period under median aTMVEXT. 
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4.6.6.4. Observations by aTMV from PDC4 

 

Figure 4. 11 Volatility under median aTMVEXT 

 from 24/04/2016 to 20/06/2016 (PDC4) 

From 24/04/2016 to 20/06/2016, little change was observed in the median 

aTMVEXT value; this increased from 1.70 to 1.85, then remained above 1.8 

until the end of the period, with nothing special observed.  
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4.6.6.5. Conclusions under observations by median aTMVEXT  

To conclude, the major observation under median aTMVEXT is: 

Observation 3:  Volatility observed by median aTMVEXT value in DC in 

PDC2 reached a historic high across the period (P) at 5.46 standard 

deviation above the median aTMVEXT value of P, above 99.99% of all SD 

values. 

Based on median aTMVEXT in DC, only one significant change, under PDC2, 

was thus observed. 
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4.6.7. Observation by NDC under DC in the four different DC periods 

This section shows the results obtained under NDC, with a focus on one 

period in each of the following sub-sections. 

4.6.7.1. Observation by NDC from PDC1 

 

Figure 4. 12 Volatility under NDC 09/02/2010 to 29/07/2010 (PDC1) 

Figure 4. 12 shows the NDC increasing from 6,707 to 17,697 before 

dropping back to 5,845 throughout PDC1. At the peak, when the NDC is 

equal to 17,866, it is 2.258 standard deviations away from the population 

mean, being higher than 99.802% of all measurements. Further, when the 

NDC is equal to 5,845 and 6,707, these are -0.24 and -0.06 standard 

deviations away from the mean, respectively. These figures suggest that in 

PDC1, a significant change both up and down occurs. 

Observation 4:  Volatility observed in DC under NDC in PDC1 is one 
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of the highest in the whole period (P); it is 2.258 standard deviation 

above the mean NDC value of P, which is 98.802% above all SD 

values. 

Also, in PDC1, we observed one of the biggest jumps in NDC over the 

whole period P. 
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4.6.7.2. Observation by NDC from PDC2 

 

Figure 4. 13 Volatility under NDC 15/11/2011 to 19/01/2012 (PDC2) 

Figure 4. 13 shows that the average NDC in PDC2 is 12,877 while the 

average NDC in P is 7,011. In PDC2, the peak value of NDC is 18,891, 2.47 

standard deviations away from the mean, while the smallest value of NDC 

is 9,938, 0.66 standard deviations away from the mean. Compared with 

other periods in P, something appears to occur in PDC2, but it is not 

particularly significant.  
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4.6.7.3. Observation by NDC from PDC3 

 

Figure 4. 14 Volatility under NDC 03/05/2013 to 29/08/2013 (PDC3) 

From Figure 4. 14, it is clear that NDC in PDC3 went up dramatically 

between 16/06/2013 and 01/07/2013, from 4,920 to 17,496, more than 

triple the original value, then decreased quickly between 10/07/2013 and 

02/08/2013, falling from 17,207 to 2,844, which is just one-sixth of the 

highest value. This clearly shows something significant in this period.  

Observation 5:  The volatility observed in DC under NDC in PDC3 

was among the highest in the whole period P (top 7%); in PDC3, 

NDC also showed a bigger jump than in all other periods, increasing 

by three times and decreasing even further after the peak point. 
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4.6.7.4. Observation by NDC from PDC4 

 

Figure 4. 15 Volatility under 24/04/2016 to 20/06/ 2016 (PDC4) 

Figure 4. 15 shows that, from 24/04/2016 to 20/06/2016, the NDC value 

increased from 2,452 to 5,436. As mentioned in Section 4.6.2 and Section 

4.6.3, the average NDC was 7011; thus, when the NDC is equal to 5,436, 

this is -0.33 standard deviations away from the population average, while 

when NDC is equal to 2,452, it is -0.98 standard deviations away from the 

population average, which is not that far from the mean. Thus, nothing 

significant was observed in this period.  
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4.6.7.5. Conclusions under observation by NDC 

To conclude, the major observations under NDC are: 

Observation 4: Volatility observed in DC under NDC in PDC1 is one of 

the highest in the whole period (P); it is 2.258 standard deviation 

above the mean NDC value of P, which is 98.802% above all SD 

values. 

Observation 5: Volatility observed in DC under NDC in PDC3 is one of 

the highest in the whole period P (Top 7%); In P3, NDC have a big 

jump that all other periods do not happen, its increase three times and 

decrease even deeper from the peak point. 

To summarize, under NDC, we can observe two significant changes, one 

is under PDC1 and the other PDC3. 

4.6.8. Summary of all the results 

From the observations above, five observations on market volatility under 

both TS and DC emerged; these are rearranged below to better support the 

discussion in the next section: 

1. Both NDC and median aTMVEXT observed high volatility in PDC1. 

A big jump in SD is also observed in PDC1’s corresponding sub-

period PTS1. (Observation 1: and Observation 4: ). 
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2. A big jump in SD is observed in PTS4 (Observation 2: ). 

3. A big jump in median aTMVEXT is observed in PDC2 (Observation 

3: ). 

4. A big jump in NDC is observed in PDC3 (Observation 5: ). 

4.7. Discussion  

The EUR/USD market (the most traded currency market) was tracked over 

a long period of time (June 2009 to July 2016) using SD (standard 

deviation in log returns) under Time Series (TS) and median aTMVEXT and 

NDC under DC. Here tracking means measuring SD, aTMVEXT and NDC 

rolling window by rolling window. Doing so allows us to assess the 

volatility of each rolling window as measured by the individual volatility 

indicators. It is worth reiterating that TS and DC use different rolling 

windows (see Sections 4.3 and 4.5.2). 

The results show that volatility can be low under one indicator yet high 

under another; this indicates that all examined indicators are useful and 

cannot be entirely substituted for by the others. Table 4. 2 summarizes the 

main observations for all three indicators (SD, median aTMVEXT, and NDC) 

in the four periods (P1 to P4).  

The subsections below will establish how the three volatility indicators 

complement each other: 
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i. We shall show that the three indicators agree with each other in some 

situations (Section 4.7.1); and  

ii. We shall show that each indicator finds volatile periods that were not 

found by the other indicators (Sections 4.7.3, 4.7.4, and 4.7.2 

respectively). This means no indicator can be replaced by the other 

two. 
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Table 4. 2 Summary of the findings for both TS and DC 

Table 4. 2 Summary of the findings for both TS and DC 

  

Periods 

P1 

February 2010 

 to July 2010 

P2 

September 2011 

 to January 2012  

P3 

May 2013 

to August 2013  

P4 

April 2016 

to June 2016  

Overall 

summary 

Both SD and 

NDC observed 

high volatility 

median aTMVEXT 

observed high 

volatility not 

observed by others 

NDC observed 

high volatility not 

observed by 

others 

SD observed high 

volatility not 

observed by DC 

SD 

High volatility 

was observed in 

PST1 

(Observation 1: ) 

Nothing special was 

observed in PST2 

Nothing special 

was observed in 

PST3 

High volatility 

was observed in 

PST4 

(Observation 2) 

median 

aTMVEXT 

Nothing special 

was observed in 

PDC1 

median aTMVEXT 

has picked up 

historical high 

volatility in this 

PDC2 

(Observation 3: ) 

Nothing special 

was observed in 

PDC3. 

Nothing special 

was observed in 

PDC4 

NDC 

High volatility 

was observed in 

PDC1 

(Observation 4: ) 

Nothing special was 

observed in PDC2. 

High volatility 

was observed in 

PDC3 

(Observation 5: ) 

Nothing special 

was observed in 

PDC4. 
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4.7.1. Information tracked by both TS and DC indicators 

In some periods, both TS and DC found signals that supported each other. 

For example, referring to Section 4.6.5.1 and Section 4.6.7.1. It showed in 

P1, both TS and DC detected high volatility.  

In Section 4.6.5.1, time series picked the third highest SD value (0.00234) 

in PST1, which is 3.101 away from the standard deviation of the whole 

population, while the average SD of this period is 0.001485, which is more 

or less the same as the average value of P (0.0012). This means SD had a 

significant change in this period. We can use this significant change to track 

market change.  

Meanwhile, once we look back to Section 4.6.7.1, NDC increased from 

5,584, which is lower than the average value (7,011) in P to 17,866, which 

is three times bigger than the start. Then, NDC goes down dramatically 

from 17,697 to 5,845 in PDC1. This is where, 17,866 is 2.25, far away from 

the standard deviation of the whole population. In this case, we observed 

something significant in PDC1.  

This section has clarified how TS and DC can support each other in terms 

of discovering what is happening in financial markets. In P1, both TS and 

DC indicated significant changes, and this type of agreement can help track 

the market. Where a significant change is observed, it is possible to say 
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that there are market changes in this period, or at least that something has 

happened in this period. However, some signals are picked up by one 

method that cannot be detected by the other methods, which is discussed 

further in sections 4.7.3 and 4.7.4 below. 

4.7.2. Information tracked by SD in TS but not by DC indicators 

In this section, we will show that TS can pick up signals that cannot be 

picked up by the other two indicators used in this chapter. 

Under P4, volatility observed in SD in PTS4 is one of the highest in the 

whole period (P); it is 3.5 standard deviation above the mean SD value of 

P, which is 99.976% above all SD values.  

But, once we checked the change of aTMV and SD, we could observe 

nothing significant in PDC4 (Section 4.6.6.4 and Section 4.6.7.4). 

4.7.3. Information tracked by median aTMVEXT but not TS and NDC  

In this section, we will show that median aTMVEXT can pick up signals that 

cannot be picked up by the other two indicators used in this paper. 

Referring to Section 4.6.6.2, median aTMVEXT picked up historical high 

volatility in that period, stretching 5.46 times from the mean of the whole 

period. In PDC2, median aTMVEXT went up dramatically between 

27/11/2011 and 27/11/2011. On 20/11/2011, the median aTMVEXT was 
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equal to 1.5, and it rose to 2.1 on 27/12/2011. The median aTMVEXT 

reached a historic high of 2.31 in the period ending 16/11/2011, after which 

the value of median aTMVEXT decreased back to 1.49, nearer the average 

value (1.56) of the whole period. In this period, however, the median 

aTMVEXT went up and down significantly, shown in huge market changes 

followed by a rapid reversion to normal.  

At the same time, we do not observe any changes from TS and NDC, which 

can be checked from Section 4.6.5.2 and Section 4.6.7.2. 

4.7.4. Information tracked by NDC but not TS and median aTMVEXT 

In this section, we will show that NDC can pick up signals that cannot be 

picked up by the other two indicators used in this paper. 

Under P3, the NDC in PDC3 went up dramatically between 16/06/2013 and 

01/07/2013, from 4,920 to 17,496, with the latter being three times the 

original value; it then decreased quickly between 10/072013 and 

02/08/2013, falling from 17,207 to 2,844, which is just one sixth of the 

value at the highest point. As the average value of NDC is 7,011, In this 

period, the NDC goes up from under average value to about 2.5 times 

average, offering a significant signal of market changes.  

A further examination of the changes in SD and median aTMVEXT still 

made it possible to conclude that nothing significant occurred in P3 



 

 

 99 

(Section 4.6.5.3 and Section4.6.6.3). 

4.8. Experimental work on USD/JPY 

4.8.1 Experimental work set up  

4.8.1.1 Data used  

USD/JPY data, collected by the second (some seconds showed no trading), 

from 17:00:40 on 27/09/2009 to 14:17:11 on 22/07/2015 was used; this set 

contains 84,991,649 data points (transactions) across the period and both 

under TS and DC were applied to the same raw data, so these data points 

were the same. For clarity of reference, this period is labelled PUSD/JPY. 

4.8.1.2 Rolling window set up  

In TS, SD is used to measure the volatility of the market. For DC the 

indicators median aTMVEXT and NDC are used to measure the volatility of 

the market.  

DC rolling windows setup: 

In DC, the rolling windows are defined by the number of data points4. 

Each DC rolling window was therefore comprised of 1,000,000 data 

points, with NDC and median aTMVEXT calculated for this set. The 

 
4
 Each data point is a transaction, with transactions collated by the second. There may be no transactions in some 

seconds, and two adjacent transactions therefore do not have to be one second apart. 
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rolling speed was 250,000 data points, as each rolling window started 

250,000 data points after the beginning of the previous rolling window5. 

TS rolling windows setup: 

For the time series (TS) theory, 16 days was set as the rolling window 

size, and 4 days was set as the rolling speed. For each rolling window, 

the hourly log return was calculated as the SD.  

The reason for using 1,000,000 data points per window under DC and 16 

days under TS was to make the TS window size and DC window size 

approximately the same physical duration. However, as DC and TS sample 

data at different points, the rolling windows observed under DC and TS are 

different.  

4.8.1.3 Threshold set up  

Under DC we use a threshold value of 0.0004. 

 
5
 For clarity, the fifth rolling window does not overlap with the first rolling window, as it starts (250,000x4) 

1,000,000 data points after the start of the first rolling window. 
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4.8.2 the result of the whole period for both DC and TS  

 

Figure 4. 16 NDC of rolling windows USD/JPY data from 27/09/2009 to 22/07/2015 

under DC threshold 0.0004 

 

Figure 4. 17 SD (hourly log return) of rolling windows under TS for USD/JPY data  

from 27/09/2009 to 22/07/2015
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Under Directional Change with a threshold equal to 0.0004, the NDC for 

each rolling window’s value ranged from 1,437 to 145,784 NDC= 1437 

occurred during the rolling window time period from 00:51:50 on 

08/08/2014 to 09:17:32 on 01/09/2014, while NDC= 145,784 occurred 

during the rolling window time period from 17:20:08 on 01/10/2012 to 

11:35:24 24/10/2012. The average value of NDC in the rolling windows in 

the whole period PUSD/JPY is 8,190. 

Under Time Series, the volatility (SD) was calculated using hourly log 

returns within each of the windows. By inspecting all windows, the 

maximum value of volatility was identified as 0.00404787, while the 

minimum was 0.00102048 The average value of volatility was 0.00132634, 

and the median volatility value of the time series was 0.00127099. 

4.8.3 Observation by DC indicators  
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Figure 4. 18 Volatility under NDC 23/07/2012-23/01/2013 (PUSD/JPY1) 

Figure 4. 18 shows the NDC increasing from 2,940 to 145,784 before 

dropping back to 8,913 throughout PUSD/JPY1. At the peak, when the NDC is 

equal to 145,784, it is 25.81 standard deviations away from the population 

mean, being higher than 99.99999% of all measurements. Further, when 

the NDC is equal to 8,913 and 2,940, these are 1.57 and -0.52 standard 

deviations away from the mean, respectively. These figures suggest that in 

PISD/JPY1, a significant change both up and down occurs. 

 
Figure 4. 19 Volatility under TS 07/04/2010 to 18/06/2010 

Meanwhile, from Figure 4. 19 we can see under nearly the same time 

period, the volatility under TS is more or less the same where the average 

value is 0.00121(nearly the same as the average value of the whole period 

which is 0.0013) where the highest point is 0.00146（1.35 standard 

deviations away from the mean of the whole population）and the lowest 

point is 0.00108(1.01 standard deviations away from the mean of the whole 

population). This means at the same period, TS does not have significant 
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changes. 

4.8.4 Observation by TS 

 
Figure 4. 20 Volatility under TS 07/04/2010 to 18/06/2010. (PUSD/JPY2) 

PUSDJPY2 covers the period from 00:00:00 on 07/04/2010 to 00:00:00 on 

18/06/2010. The average SD for this period is 0.00169369; for reference, 

the average SD of PUSD/JPY is 0.00132634. In PUSDJPY2, the average SD is 

thus more or less the same as across PUSD/JPY. However, a big jump can 

be observed from 0.001458139 on 07/04/2010 to the peak value of 

0.004047875 on 23/04/2010, which is also the highest SD value across 

PUSD/JPY. 
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Figure 4. 21 NDC from 04/06/2010-06/06/2010 

Meanwhile, from Figure 4. 21 we can see under nearly the same time 

period, the value of NDC under DC is more or less the same where the 

average value is 13,742 where the highest point is 16,845 and the lowest 

point is 9,087 (1.60 standard deviations away from the mean of the whole 

population). This means at the same period; DC does not have significant 

changes. 
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4.8.5 Observation by both DC and TS 

 
Figure 4. 22 Volatility under NDC 03/05/2013-23/07/2013 (PUSD/JPY3) 

 
Figure 4. 23 Volatility under TS 05/05/2013 to 16/07/2013. (PUSD/JPY4) 

Figure 4. 22 and Figure 4. 23 show that both DC indicator and TS SD 

shows a high value of volatility in both period PUSD/JPY3 and PUSD/JPY4, 

where PUSD/JPY3 and PUSD/JPY4 overlap with each other. In these two periods, 

both TS and DC found signals that supported each other.  

In PUSD/JPY4, time series picked the sixth-highest SD value (0.002158) in 
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PUSD/JPY, which is 2.001 away from the standard deviation of the whole 

population, while the average SD of this period is 0.00152, which is more 

or less the same as the average value of PUSD/JPY (0.00132). This means SD 

had a significant change in this period.  

Meanwhile, once we look back to PUSD/JPY3, NDC increased from 11,851, 

then increase to 20,967, which is twice the start. Then, NDC goes down 

dramatically from 20,967 to 8,101 in PUSD/JPY3. This is where, 17,866 is 

3.7128, far away from the standard deviation of the whole population 

which means that its less than 0.01% probability would be happened to 

reach this value in the whole PUSD/JPY. In this case, we observed a 

significant change in PUSD/JPY3. 

4.8.6. Summary of all the USD/JPY results 

From the observations above, three observations on market volatility under 

both TS and DC emerged 

1. NDC observed high volatility in PUSD/JPY1 

2. A big jump in SD is observed in PUSD/JPY2  

3. Both DC and SD observed significant changes in PUSD/JPY3 and 

PUSD/JPY4 (where PUSD/JPY3 and PUSD/JPY4 are almost the same periods 

under DC and TS) 
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These results are consistent with our analysis in EUR/USD: As expected, 

volatility periods observed by NDC and SD overlapped with each other, as 

they both started with the same tick data. However, they each observe 

volatility periods not observed by the other indicator. This shows that 

neither NDC nor SD can be replaced by the other.  

4.9. Experimental work on GBP/USD 

4.9.1 Experimental work set up  

In this section, we will use rolling windows, rolling speed and thresholds 

different from those used in Section 4.6 and Section 4.8. We do so to assess 

the generality of our results. In particular, we want to know whether the 

results are sensitive to the size of the rolling windows, rolling speed and 

thresholds used.  

4.9.1.1 Data used  

GBP/USD data, collected by the second (some seconds showed no trading), 

from 00:00:00 on 25/09/2009 to 14:00:05 on 22/07/2015 was used; this set 

contains 99,162,825 data points (transactions) across the period and both 

under TS and DC were applied to the same raw data, so these data points 

were the same. For clarity of reference, this period is labelled PGBP/USD. 
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4.9.1.2 Rolling window set up  

In TS, SD is used to measure the volatility of the market. For DC the 

indicators median aTMVEXT and NDC are used to measure the volatility of 

the market.  

DC rolling windows setup: 

In DC, the rolling windows are defined by the number of data points6. 

Each DC rolling window was therefore comprised of 500,000 data 

points, with median aTMVEXT calculated for this set. The rolling speed 

was 125,000 data points, as each rolling window started 125,000 data 

points after the beginning of the previous rolling window7. 

TS rolling windows setup: 

For the time series (TS) theory, 8 days was set as the rolling window 

size, and 2 days was set as the rolling speed. For each rolling window, 

the hourly log return was calculated as the SD.  

The reason for using 500,000 data points per window under DC and 8 days 

under TS was to make the TS window size and DC window size 

approximately the same physical duration. However, as DC and TS sample 

 
6
 Each data point is a transaction, with transactions collated by the second. There may be no transactions in some 

seconds, and two adjacent transactions therefore do not have to be one second apart. 
7
 For clarity, the fifth rolling window does not overlap with the first rolling window, as it starts (125,000x4) 

500,000 data points after the start of the first rolling window. 
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data at different points, the rolling windows observed under DC and TS are 

different.  

4.9.1.3 Threshold set up  

Under DC we use the threshold value of 0.0016. 

4.9.2 The result of the whole period 

 
Figure 4. 24 Median_TMVEXT of rolling windows GBP/USD 25/09/2009 to 

22/07/2015 under DC threshold 0.0016 

 
Figure 4. 25 SD (hourly log return) of rolling windows under TS for GBP/USD data  

from 25/09/2009 to 22/07/2015

3.2955225

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700 800

Median_TMVEXT GBP/USD 25/09/2009 to 22/07/2015

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 200 400 600 800 1000

Standard deviation of hourly log return in each window for GBP/USD



 

 

 111 

Under Directional Change with a threshold equal to 0.0016, the 

Median_TMVEXT for each rolling window’s value ranged from 1.234461 

to 3.2955225. Median_TMVEXT=3.2955225 occurred during the rolling 

window time period from 20:34:55 on 16/12/2012 to 02:46:38 on 

27/12/2012, while Median_TMVEXT=1.234461 occurred during the rolling 

window time period from 13:58:02 on 24/02/2015 to 10:53:38 05/03/2015. 

The average value of Median_TMVEXT in the rolling windows in the whole 

period P GBP/USD is 1.638966. 

Under Time Series, volatility (SD) was calculated using hourly log returns 

within each of the windows. By inspecting all windows, the maximum 

value of volatility was identified as 0.00272915, while the minimum was 

0.00083162 The average value of volatility was 0.00118171, and the 

median volatility value of the time series was 0.00112026 
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4.9.3 Observation by DC indicators  

 
Figure 4. 26 Volatility under Median TMVEXT 20121205-20130105 (PGBP/USD1) 

Figure 4. 26 shows the Median_TMVEXT increasing from 1.6914 to 3.2955 

than dropping back to 1.2984 throughout PGBP/USD1. At the peak, when the 

Median_TMVEXT is equal to 3.2955 (the historical high point), it is 2.2 

standard deviations away from the population mean, being higher than 99% 

of all historical measurements. Further, when the Median_TMVEXT is equal 

to 1.6914 and 1.1591, these are 1.57 and -0.88 standard deviations away 

from the mean, respectively. These figures suggest that in PISD/JPY1, a 

significant change both up and down occurs. 
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Figure 4. 27 Volatility under TS 06/12/2012 to 05/01/2013 

In the meantime, under TS, in approximately the same time period, the 

average value of volatility from 06/12/2012 to 05/01/2013 is 0.001045 

where is about the same as the average value of the whole period with the 

maximum value of 0.00134 (1.4 times away from the standard deviation) 

and minimum value of 0.00091 (-0.95 times away from the standard 

deviation).     
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4.9.4 Observation by TS 

 
Figure 4. 28 Volatility under TS 09/04/2010 to 04/06/2010. (PGBP/USD2) 

Figure 4. 28 covers the period from 23:59:59 on 09/04/2010 to 23:59:59 

on 04/06/2010. The average SD for this period is 0.00167612; for reference, 

the average SD of PGBP/USD is 0.001181. In PGBP/USD2, the average SD is 

thus more or less the same as across PUSD/JPY. However, a big jump can 

be observed from 0.001307 on 27/04/2010 to the peak value of 0.002729 

on 29/04/2010, with the latter value being 2.87 times the standard deviation 

away from the mean value of SD PGBP/USD which means this value is less 

than 1% chance of being observed through the whole period. It is also the 

highest SD value across PUSD/GBP. 
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Figure 4. 29 Median TMVEXT from 06/04/2010-02/06/2010 

Meanwhile, from Figure 4. 21 we can see under nearly the same period as 

the TS time period above, the value of Median TMVEXT under DC is more 

or less the same where the average value is 1.7241 where the highest point 

is 1.7757 and the lowest point is 1.6603. These suggest that at the same 

period, significant changes are not observed under DC. 

4.9.5. Summary of all the GBP/USD results 

From the observations above, three observations on market volatility under 

both TS and DC emerged 

1. Median TMVEXT observed high volatility in PGBP/USD1 

2. A big jump in SD is observed in PGBP/USD2  

These results are consistent with our analysis in EUR/USD: as expected, 

each of TMVEXT and SD observed volatility periods not observed by the 

other indicator. This shows that neither TMVEXT nor SD can be replaced 
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by the other.  

4.10. Conclusion 

The DC indicators NDC and median aTMVEXT (Section 0) and the TS 

indicator SD (Section 4.4.2) measure different aspects of market volatility. 

In this chapter, all three indicators were used to inspect market volatility 

and to examine in detail the observations possible for historic data (Section 

4.5.1). By comparing and contrasting these observations, this chapter 

demonstrates that each indicator could observe useful information that 

could not be observed by the other two indicators, and by using multiple 

indicators, a deeper understanding of a market’s volatility can be developed.  

Summarising the observations under SD (Section 4.6.5), median aTMVEXT 

(Section 4.6.6) and NDC (Section 4.6.7) over four periods (Table 4. 1, 

Section 4.6.4) showed that these indicators support each other in some 

cases (Section 4.7.1). However, each may pick up signals that are not 

picked up by the other indicators (see Table 4. 2 at the beginning of Section 

4.7). For example, the significant volatility changes observed under 

DC’s median aTMVEXT could not be observed under TS (Section 4.7.3). 

The DC NDC could also pick up significant volatility changes that were 

not observable under TS (Section 4.7.4), while TS could also pick up 

volatility changes that were not picked up by DC (Section 4.7.2). 

In Section 4.8 and Section 4.9 we repeat our experimental work using the 
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approach described in Section 4.4. Results from the observations in Section 

4.8 and Section 4.9 are consistent with those in EUR/USD (Sections 4.6 

and 4.7). 

Based on these results, it is clear that TS and DC are useful for tracking 

changes in the market, and that they complement each other and can thus 

support each other (Section 4.7.1, Section 4.8.6 and Section 4.9.5), as each 

can find information that the other cannot (Sections 4.7.3, 4.7.4, 4.7.2, 

4.8.3, 4.8.4, 4.9.3 and 4.9.4). Different indicators appear to pick up 

different volatility signals from the market. The findings in this chapter 

further demonstrate that it is beneficial to use multiple indicators to 

study market volatility. We believe that all three indicators should be used 

together. 
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5. Chapter five: Nowcasting new trends under DC 

A Directional Change event can only be confirmed in hindsight. In this 

chapter, we propose a novel algorithm to nowcast whether a new DC trend 

has already begun before a formal confirmation point happened. 

5.1. Background 

Nowcasting refers to recognizing what the current state is. In our context, 

we know that in DC, trends can only be recognized in hindsight. As shown 

in Figure 5. 1, we only know that the downtrend from EXT1 to EXT2 has 

ended at the DC confirmation (DCC) point of the new trend, DCC2. The 

price at DCC2 is θ above the lowest point, EXT2, of the previous 

downtrend (which is also the beginning of the current uptrend). The 

question is: could one recognize at any point after EXT2 and before DCC2 

that the new trend has started? That is the task of nowcasting.  

The goal in this chapter is to develop a method to help us recognize that a 

new trend has already begun before the new conformation point. What 

indicators could we look at? What counts as a success in nowcasting? How 

to measure the performance of a nowcast?  

The goal in this chapter is to recognize the end of a trend as soon as possible. 

In the example in Figure 5. 1, we want to recognize the end of the 
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downtrend after t1 before t2. 

 
Figure 5. 1 The goal of this chapter in Figure 

5.2. New indicators, aTMV, Max TMV and Below Max 

In this section, we will introduce three new indicators that are used to 

nowcast under DC. 

First of all, we will introduce some basic ideas, according to Chapters 2 

and 3, we have already introduced what is TMVEXT and DCC. 

Tsang et al. (2017) defined that total price movements value at extreme 

points (TMVEXT) measures the price distance between the extreme points 

that begin and end a trend, normalized by θ, where θ is the threshold used 

for generating the directional change summary. TMVEXT is defined by: 
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𝑻𝑴𝑽𝑬𝑿𝑻𝒊
= 

𝑷𝑬𝑿𝑻𝒊+𝟏 – 𝑷𝑬𝑿𝑻_𝒊

𝐏𝑬𝑿𝑻_𝒊∗ 𝛉
 (5.1)

  

Here PEXT_i represents the price at the i-th directional change extreme point, 

PEXT_i+1 represents the price at the (i+1)-th directional change extreme point, 

θ is the threshold used  

Directional Change Confirmation (DCC) Point is the point at which to 

confirm one DC event. We named PDCC and TDCC as the price and time at 

the DCC point. 

5.2.1. Indicators for DC nowcasting 

In this section, we introduce some indicators for nowcasting under DC. 

First, we call the maximum price in an uptrend and the minimal price in a 

downtrend the Max Price (PMax). 

Definition 5. 1:PMax 

PMax is the maximal transaction price in an uptrend and the minimal 

transaction price in a downtrend. 

Definition 5. 2: Absolute TMV (aTMV) 

The aTMV of a price P is the absolute TMV from the extreme point 

(PEXT_i) to P. 
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aTMV(P) = |
𝑷−𝑷𝑬𝑿𝑻_𝒊

𝑷𝑬𝑿𝑻_𝒊∗𝛉
| (5.2) 

Here, θ is the threshold used, and the current price (p) represents the price 

at this point. PEXT_i represents the price at the i-th directional change 

extreme point. 

 
Figure 5. 2 Max 

We calculate aTMV using 0In Figure 5. 2 every point after the Directional 

Change confirmation in a trend, we will be started calculating aTMV. At 

any point n, the aTMV is monitored. At any time during a trend, the point 

with the maximum aTMV is called Max. For example, n2 is a Max. From 

n2, prices bounced back to n3. Therefore, from t2 to t4, n2 will be recorded 

as the current Max. When the price went to n5, we record a new Max. 

Figure 5. 4 provides an example of how to calculate aTMV in DC. Here, 

the PEXT1 is equal to 1.08727, and the current price at time 18:04:30 on 

03/01/2016 is 1.08536. In this case, the aTMV value at the 1.08536 marks 
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is 1.097933, calculated as |
1.08727−1.08536

1.08727∗0.0016
|. 

5.2.2. Max 

Max represents the max value of aTMV that happens within a trend. With 

the price moving in a trend, Max should change follow the price change.  

Definition 5. 3: Max  

Max is the aTMV of PMax. In other words, Max is the maximum 

aTMV recorded so far in a trend. 

Max = (|PMax – PEXT| / PEXT) / θ (5.3) 

Figure 5. 2 shows what Max is. Therefore, from t2 to t4, n2 will be recorded 

as the current Max. At t5, Max is updated to n5, as it is the lowest point in 

the downtrend so far. 

In Figure 5. 4, at the point of 1.08536, while the aTMV value is 1.097933, 

this is the Max before the 1.08536. With the continuous monitor price 

movement, at 18:04:34 on 03/01/2016, the current price become 1.08523, 

while at this point, the aTMV value is 1.1726618. At this point, Max 

becomes 1.1726618 in this trend.  

5.2.3. Below Max 

Below Max (BM) is an indicator that measures how significant the price 

bounds back from the Max TMV in a trend. This is a dynamic indicator 
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with the move of PMAX change. 

 
Figure 5. 3 Below Max and Maximum Below Max 

Figure 5. 3, shows how Below Max and Maximum Below Max are defined: 

n3 bounces back from n2. We calculate the amount of bounce back 

according to formula 5.3. For example, n3 could be 0.25 below n2. We call 

it Below Max. Suppose the price bounces back to n4 before it turns the 

other direction to n5. We record the Maximum Below Max at n4. Below 

Max is show how significant the price bounds back in a trend. From t2 to 

t4, every point n will calculate a Below Max.  

Definition 5. 4: Below Max (BM)8  

 
8 BM is called undershoot by Raju Chinthalapati and Han Ao (personal communication) 
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Below Max (BM) is the absolute contrarian price change percentage 

since Max, normalized by the threshold θ. For example, if PMax 

records the minimal price in a downtrend, then BM is the normalized 

price increase above Max; if PMax records the maximal price in an 

uptrend, then BM is the normalized price drop below Max. 

𝐵𝑀 = |
𝑃𝑀𝐴𝑋−𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑝𝑟𝑖𝑐𝑒

𝑃𝑀𝐴𝑋∗θ
| (5.4) 

For example, from Figure 5. 4, as we mentioned in section 5.2, when Max 

TMV is 1.1726618, at that time, the PMAX is 1.08523. At the price point of 

1.08542, we can calculate the BM as the absolute value of 

|
1.08523−1.08542

1.08523∗0.0016
|which is equal to 0.011517.  
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Figure 5. 4 The aTMV, Max and Below max values calculated by the EUR/USD data 

from 18:04:24 3/1/2016 to 18:04:45 3/1/2016 under threshold 0.0016. 

Figure 5. 4 offers an example of how we calculate the aTMV, Max and 

Below max value. The calculation of aTMV follows 0where P is equal to 

1.80727 and PEXT_i is 1.08536. We use 0.0016 as our threshold here. The 

Max TMV, following the 0and we here use PEXT_i is equal to 1.08523 while 

P is still 1.80727. We also follow 0to calculate the BM value. Here the 

current is 1.08542, and PMAX is 1.08523 given the threshold of 0.0016. We 

calculate the BM value as 0.1094238. 

5.3. Data Used and their profiles 

To prepare for our nowcasting algorithm, we shall study the distributions 

of aTMV and introduce additional indicators. We use historical data to 
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study these distributions. In this section, we introduce the data used. 

Tick-to-tick EUR/USD rates are used throughout this chapter. Table 5. 1 

summarizes the data used in this chapter. We separate the data into the 

Training and Nowcasting periods. Statistics in the former is used to 

determine the parameters used in our nowcasting algorithm (to be 

presented), which will be used for nowcasting in the Nowcasting period. 

To examine the generality of our nowcasting algorithm, we employ two 

thresholds, namely 0.0016 and 0.0032.  
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 Data in the Training Period Data in the Nowcasting Period 

Threshold 0.0016 0.0032 0.0016 0.0032 

Period From: 00:00:10  

25th September 2009 

To: 20:08:53  

31st December 2013 

From 01:30:09  

1st January 2014  

To: 13:02:55  

31st December 2015 

Number of 

transactions 
72,629,464 33,041,496 

Number of 

DCs 
9,552 2,052 4,644 1,185 

Median aTMV 1.612047 1.686975 1.596844 1.436107 

Median T 2,392 12,801 1,263 4,817 

Table 5. 1 Tick-to-tick data used in this chapter, with their profiles compared 

We call the period from 00:00:10 on 25/09/2009 to 20:08:53 on 31/12/2013 

as the Training Period. We call the period from 01:06:38 on 01/01/2014 

to 13:02:55 on 31/12/2015 the Nowcasting Period. 

Let us compare and contrast the profiles of the two periods. From Table 5. 

1. we can see that, under threshold 0.0016, the median aTMV values in the 

Training Period is 1.612047, whereas the median aTMV in the Nowcasting 

Period under the same threshold is 1.596844. Under threshold 0.0032, the 

median aTMV values in the Training and Nowcasting periods are 1.686975 

and 1.436107. Under both thresholds, the median aTMV in the Training 

Period is slightly higher, but not significantly higher. 

But when we look at the Median T values, we can see that under threshold 

0.0016, a trend takes 2,392 seconds to finish a trend in the Training Period, 

but 1,263 seconds (nearly half of the time) to finish in the Nowcasting 

Period. Under threshold 0.0032, the median T values are 12,801 and 4,817 
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(38%) in the Training and Nowcasting Periods, respectively.  

Both aTMV and T are indicators of volatility in a market-period: the former 

measures the magnitude of price changes and the latter measures the 

frequency of changes. The above comparisons suggest the following: 

1. There is not much difference in the two periods’ volatility as 

measured by median aTMV. 

2. Measured by median T, the Nowcasting Period is much more 

volatile than that Training Period: direction changes much faster in 

the Nowcasting Period. 

3. Observations under the two thresholds are consistent. 

To summarize: the two periods are quite different in their volatility, though 

not in the magnitude of price changes in the trends (measured by aTMV), 

but in the frequency of directional changes (measured by T).  

5.4. Distribution of TMVEXT 

In this section, we study the historical distribution of TMVEXT. We shall 

show later how this could be used to support nowcasting.  

As explained in Table 5.1, we use the EUR/USD tick data from 2009/09/25 

00:00:10 to 2013/12/31 20:08:53. We named this period the Training 

Period. Also, we shall use EUR/USD tick data from 01:30:09 on 
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01/01/2014 to 13:02:55 on 31/12/2015, we named this period the 

Nowcasting period. We calculate TMVEXT under thresholds 0.0016 and 

0.0032.  

We calculate the TMVEXT under 0.0016 and 0.0032 for both Nowcasting 

and Training Periods. Then we collect it from every trend. In the Training 

period when the threshold is equal to 0.0016, we got 9,552 TMVEXT, while 

when the threshold is equal to 0.0032 we got 2052 TMVEXT. In the 

Nowcasting period, when the threshold is equal to 0.0016, we got 4,644 

TMVEXT, while when the threshold is equal to 0.0032 we got 1,185 

TMVEXT. 

Once we collect all TMVEXT for every period under both thresholds. We 

will start to summarize the TMVEXT. At first, we will sort it from the 

smallest to the biggest and calculate all TMVEXT to absolutely value. For 

instance, when the threshold is equal to 0.0016 and under the Training 

period, we know the biggest value is 10.575712 (10.575712 from Table 5. 

2), then we minus one divided by 100. Which is (10.575712-1)/100, in this 

case, each bin value becomes 0.09575712. The reason we minus one, is 

that TMVEXT only happened after the DCC point which the theoretical 

TMV is 1. And, we divided by 100, is that we want to get the result of 

distribution in the precision of 0.01. Observers can choose the desirable 

precision by themselves. Table 5. 2, Table 5. 3, Table 5. 4 and Table 5. 5 
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will show the Distribution of TMVEXT under the Training period and the 

Nowcasting period under thresholds 0.0016 and 0.0032. All details 

probability table please see in Section 7 Appendix part.  

Here we give the example to read Table 5. 2, Table 5. 3, Table 5. 4 and 

Table 5. 5. For example, when TMVEXT is equal to 1.28727136, we can 

find in Table 5. 2 that historically, the probability for this value happened 

in the Training period is 7.63%, and the probability of reaching this 

TMVEXT value is 71.45%. This means, that in the training period, there is 

a 71.45% probability (historically) that the TMVEXT value happened is 

bigger than 1.28727136. We will use only the distributions of the TMVEXT 

Training period under 0.0016 and 0.0032, the distribution of the TMVEXT 

Nowcasting period will it be as an objective of reference to confirm the 

difference between the two data set. 

 
Figure 5. 5 Distribution of TMVEXT in the Training period under threshold 0.0016 

Figure 5. 5 show the graph of the probability of TMVEXT happening in each 
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bin and the probability of reaching a certain number of TMVEXT in the 

Training period when the threshold is equal to 0.0016. Here the x-axis 

represents the TMVEXT value (the TMV value at the extreme point) and the 

y-axis represents the percentage of trends that end with a TMVEXT value. 

For example, in Table 5. 2, we can read that when TMVEXT is 2.4363568, 

we can find out that there is a 2.13% probability to reach this historical 

probability (orange line). At the same time, when we look at the yellow 

line, we can also find out that around 30.71% of the TMVEXT are bigger 

than 2.14908544. on the other hand, we can say that 30.71% of the TMVEXT 

do not reach the value of 2.14908544. 
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The of TMVEXT in the Training period under threshold 0.0016 that we pick 

Bin 
TMVEXT 

Frequency 

TMVEXT 

Probability  

Probabilities of reaching this 

TMVEXT 

1 - - 100.00% 

1.09575712 1101 11.53% 88.47% 

...... 

1.28727136 729 7.63% 71.45% 

1.38302848 689 7.21% 64.24% 

…… 

1.67029984 524 5.49% 46.56% 

1.68 - 46.22% 

1.76605696 437 4.57% 41.98% 

…… 

10.575712 1 0.01%  

Table 5. 2 The TMVEXT we pick to use under the distribution of TMVEXT in the 

Training period under threshold 0.0016 

When the threshold is equal to 0.0016, we will use the TMVEXT value 1.68 

which would historically have a probability of 46.22% happening in the 

Training period to nowcast the Training and Nowcasting period, which will 

be used in Section 5.8. This value is picked arbitrarily. No optimization is 

attempted in picking this value. 

 

Figure 5. 6 Distribution of TMVEXT in the Training period under threshold 0.0032 
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Figure 5. 6 show the graph of the probability of TMVEXT happening in 

selected bins and the probability of reaching a certain number of TMVEXT 

in the Training period when the threshold is equal to 0.0032 

Distribution of TMVEXT in the Training period under threshold 0.0032 

Bin 
TMVEXT  

Frequency  

TMVEXT  

Probabilities 

Probabilities of reaching 

this TMV 

1 - - 100.00% 

1.07790733 154 7.50% 92.50% 

…… 

1.54535131 99 4.82% 57.65% 

1.60 - 54.40% 

1.62325864 98 4.78% 52.88% 

…… 
 

  

8.790733 1 0.05%  

Table 5. 3 Distribution of TMVEXT in Training period under threshold 0.0032. 

When the threshold is equal to 0.0032, we will use the TMVEXT value 1.60 

to nowcast the Training and Nowcasting period as the parameter to do 

experimental work in Section 5.8. When the TMVEXT value riches 1.60, 

these would have a 46.22% probability happening in the Training period. 

Again, this value is picked arbitrarily. No optimization is attempted. 
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Figure 5. 7 Distribution of TMVEXT in Nowcasting period under threshold 0.0016 

Figure 5. 7 show the graph of the probability of TMVEXT happening in each 

bin and the probability of reaching a certain number of TMVEXT in the 

Nowcasting period when the threshold is equal to 0.0016. 
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Figure 5. 8 Distribution of TMVEXT in Nowcasting period under threshold 0.0032 

Figure 5. 8 show the graph of the probability of TMVEXT happening in each 

bin and the probability of reaching a certain number of TMVEXT in the 

Nowcasting period when the threshold is equal to 0.0032 

The reason that we show Figure 5. 7 and Figure 5. 8 is we want to show 

the distribution graph about the absolute value of TMVEXT in the 

Nowcasting period. This would give the observer a direct vision of how 

the profile of the Nowcasting period is compared to that of the Training 

period. 

5.5. Max Below Max (MBM) and its value distribution 

In section 5.2, we provided the definition of BM. In this section, we will 

introduce a new indicator called Max Below Max (MBM). We shall also 

look at the historical distribution of MBM values. We shall show later how 

these could be useful for nowcasting. 
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5.5.1. Max Below Max (MBM) 

Recall that BM is the normalised absolute contrarian price change 

percentage since Max, the lowest (highest) price in a downtrend (uptrend) 

(Definition 5. 3 and Definition 5. 4). 

Definition 5. 5: Max Below Max (MBM) 

The MBM is the maximum aTMV found below BM in the current 

trend.  

In Figure 5. 3, From t2 to t4, every point n will calculate a Below Max. and 

n3, is the maximum value of Below max, we called Max below Max. In 

every trend, we will at least have one MBM. MBM shows what is the 

maximum bounce back value in a trend at the current price.  

MBM is used to represent the level of price bounce back. The bigger the 

MBM is, the higher probability of DC will enter a new trend. We will show 

the distribution of MBM in the Training period and the Nowcasting period 

later. The same as the distribution of the absolute value of TMVEXT in 

Section 5.4, the reason we show the distribution of MBM in the 

Nowcasting period will be as an objective of reference to confirm the 

difference between the two data set. 
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5.5.2. Distribution of Max Below Max (MBM) 

We will use the Training period and the Nowcasting period to summarize 

the distribution of MBM under thresholds 0.0016 and 0.0032. In our 

experimental work, we only use the distribution of the Training period in 

both thresholds. the reason we have also shown the graph of the 

distribution of MBM in the Nowcasting period is that we want to give 

observers a directly view about how the graph would like to compare with 

the Training period. We got 563,499 MBM value under the Training period 

when the threshold is equal to 0.0016. When the threshold is equal to 

0.0032, we got 23,445 MBM value. In the Nowcasting period, under 

threshold 0.0016, we got 220,300 MBM while under threshold 0.0032 we 

got 91,347 MBM value. 

All MBM values are from 0 to 1, we put 0 to 1 into 100 bins which are 0.01 

for each bin, we will have 100 bins from 0 to 0.01 to 0.99 to 1. Then we 

count for each bin, how many BMB values is in this bin. And how many 

BMB values are bigger or small than this bin’s value. For instance, from 

Table 5. 4, we can see that nearly 1/4 (25.01%) MBM have happened from 

0.04 to 0.05, and 10.86% of the MBM value are from 0.09 to 0.1. If an 

MBM value is 0.06, from Table 5. 4, we can find that there is a 64.26% 

chance that the MBM value is higher than 0.06. 
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Figure 5. 9 Distribution of MBM in Training period under threshold 0.0016 

Figure 5. 9 show the graph of the probability of MBM happening in each 

bin and the probability of reaching a certain number of MBM in the 

Training period when the threshold is equal to 0.0016. 
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Distribution of Max Below Max in Training period under Threshold 0.0016 

Bin MBM 

Frequency 

MBM 

Probabilities 

Probabilities of reaching this 

MBM value 

0.01 16168 2.87% 100.00% 

…… 

0.67 339 0.06% 1.00% 

0.68 273 0.05% 0.95% 

…… 

1 72 0.01% 0.01% 

Table 5. 4 Distribution of Max Below Max in Training period under Threshold 0.0016 

When the threshold is equal to 0.0016, we will choose 0.68 as the 

parameter to nowcast the Training period and the Nowcasting period 

(Section 5.8). This is because we only got a 0.95% probability that BM is 

bigger than 0.68. We will use this probability to nowcast both training and 

nowcasting data under 0.0016.  
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Figure 5. 10 Distribution of MBM in Training period under threshold 0.0032 

Figure 5. 10 show the graph of the probability of MBM happening in each 

bin and the probability of reaching a certain number of MBM in the 

Training period when the threshold is equal to 0.0032. 
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Distribution of Max Below Max in Training period under Threshold 0.0032 

Bin MBM 

Frequency 

MBM 

Probabilities 

Probabilities of reaching this 

MBM value 

0.01 12461 5.32% 100.00% 

…… 

0.6 87 0.04% 0.75% 

0.61 84 0.04% 0.71% 

0.62 84 0.04% 0.68% 

0.63 78 0.03% 0.64% 

…… 

1 24 0.01% 0.01% 

Table 5. 5 Distribution of Max Below Max in Training period under Threshold 0.0032 

When the threshold is equal to 0.0032, we will choose 0.61 as the 

parameter to nowcast the Training period and the Nowcasting period. This 

is because, historically, we only have a 0.71% probability of BM bigger 

than 0.61. We will use these BM values to nowcast the training and 

nowcasting data under 0.0032 in section 5.8. 

 

Figure 5. 11 Distribution of MBM in Nowcasting period under threshold 0.0016 

Figure 5. 11 shows the probability of MBM occurring in each bin and the 
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probability of reaching a certain number of MBM in the Nowcasting period 

when the threshold is equal to 0.0016. 

 

Figure 5. 12 Distribution of MBM in Nowcasting period under threshold 0.0032 

Figure 5. 12 shows the probability of MBM occurring in each bin and the 

probability of reaching a certain number of MBM in the Nowcasting period 

when the threshold is equal to 0.0032. 

The reason that we graph Figure 5. 11 and Figure 5. 12 is we want to show 

the distribution graph about MBM in the Nowcasting period. This would 

give the observer a direct vision of how the profile of the Nowcasting 

period is compared to that under the Training period. 

5.6. Methodology 

With the historical distribution of aTMV and MBM studied, we are now in 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Distribution of Max Below Max in Training period under Threshold 

0.0032

MBM Probabilities

Probabilities of reaching this MBM
value



 

 

 143 

a position to introduce an algorithm for nowcasting the beginning of a new 

trend. We shall also explain how we assess the performance of this 

algorithm. 

5.6.1. Overview of Nowcasting 

To recapitulate, a trend ends at an extreme point (EXT), but the end of a 

trend is only confirmed in hindsight when we reach the DC confirmation 

point (DCC) of the new trend. Our objective is to nowcast the end of the 

preceding trend as soon as possible after EXT but before the DCC of the 

new trend. 

To nowcast, we monitor the market tick by tick. We calculate the aTMV 

(Section 5.4) and Below Max (Section 5.5) at every tick. We nowcast that 

we are in a new trend as soon as aTMV reaches PTMV and BM reaches PBM, 

where PTMV and PBM are parameters. We call this the Nowcast Constant 

Algorithm (NCA): 

Nowcast Constant Algorithm (PTMV, PBM): 

Given a current transaction ct, if and only if  

(1) aTMV(ct) ≥ PTMV and  

(2) BM(ct) ≥ PBM, 

then we nowcast that ct is in a new trend.  

Note that PBM cannot be bigger than one, as once BM is bigger than one, a 
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new trend has already begun.  

Here the parameter PTMV measures the distance of ct from the start point of 

the trend. The bigger the PTMV is the bigger chance that we have already 

entered a new trend. PBM measures how significant that ct has bounced 

back from the last PMax. The bigger this value, the higher chance that we 

are already in a new trend. When both aTMV(ct) and BM(ct) are high, 

there is a high probability that we are already in a new trend. 

Any PTMV and PBM values may be selected, subject to sensible ranges. But 

they should be within sensible ranges, as explained below: As we are trying 

to determine whether ct is in the current trend or a new trend, TMV(ct) 

must be greater than or equal to 1. This is because, by definition, the TMV 

of the theoretical DC confirmation point (DCC*) is 1. Therefore, 1≤PTMV. 

Theoretically, there is no upper limit in the value of TMV(ct). Therefore, 

the range of PTMV is: 

1 ≤ PTMV < ∞  

By definition, BM at Max is 0; therefore 0 ≤ PBM. When BM(ct) is 1, we 

have already confirmed that that latest Max was an extreme point (based 

on the definition of DC and TMV). In other words, we already know that 

ct is in a new trend. Therefore, a sensible range of PBM is: 

0 ≤ PBM < 1.  
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5.6.2. Criteria for assessing nowcasting performance 

When we nowcast a new trend, we are suggesting that Max was an extreme 

point that ended the previous trend and started the current trend. In this 

section, we define criteria for assessing when a nowcast is good or no good. 

A good nowcast is one that takes place after the end of the previous trend 

(i.e., Max was indeed a DC extreme point) and before the DC confirmation 

point. 

Definition 5. 6: Correctness of a nowcast 

A Nowcast is only correct if it happens after EXT2. 

Definition 5. 7: Usefulness of a nowcast 

A Nowcast is only useful if it is before the DCC of the new 

trend. 

Definition 5. 8: Good and nogood nowcast 

We define a nowcast to be "good" if it is correct and useful.  

A nowcast is "nogood" if it is either incorrect or not useful. 
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Figure 5. 13 Any nowcast from t2 to t3 is correct and useful (i.e., good). Any nowcast 

before t2 is incorrect. Any nowcast after t3 is not useful 

Figure 5. 13 shows that if we nowcast a new trend before t2, then our 

nowcast is incorrect (because a new trend has not started before t2). If we 

nowcast a new trend after t2, then the nowcast is correct. However, if we 

nowcast after t3, then the nowcast is not useful (because the new trend is 

already confirmed by DCC2 at t3). A nowcast is good if it is correct and 

useful (Definition 5.8). Therefore, only nowcasts made between t2 and t3 

are good. 

Good nowcast (GN) is set as an indicator that represents the percentage of 

good nowcast trends compared with the total number of trends in the time 

period. It is an indicator that can measure how many of the trends we can 

nowcast correctly before the DCC point compares with the number of 
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trends. The higher the GN value is, the better the performance for the 

nowcast in that period under the specified threshold and parameters we 

choose. This indicator is newly introduced in this section. 

GN= 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑜𝑜𝑑 𝑛𝑜𝑤𝑐𝑎𝑠𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝐶
                         （5.4） 

The total number of trends (TnT) shows the total number of trends (NDC–

1) in a time period under a certain threshold. Every trend may or may not 

have a nowcast, which depends on the parameter we choose for nowcast. 

The number of nowcasts (Nc) counts how many nowcasts we have made 

in a certain period under a certain threshold with the parameters we choose. 

Once we have the Nc, we will want to summarize the Number of correct 

nowcasts (CN). Here, CN represents the number of correct nowcasts which 

is shown in Section 5.6. Once we know the number of correct nowcasts, 

we also know the incorrect nowcasts (IN).  

Naturally, Nc = CN + IN. 

Nowcast time (TimeNC) is an indicator that represents the time of the 

nowcast point in the trend.  

TMV at Nowcast (TMVNC) when we confirm a nowcast happened we 

calculate the TMV value at that point, we call it TMVNC. 

In the subsections below, we shall introduce criteria for measuring nowcast 
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performance. 

5.6.2.1 Precision 

This section introduces a method to answer two questions. The first is what 

percentage of nowcasts are correct, where being correct means the nowcast 

was made after a new trend had started (Definition 5. 6). Of all the correct 

nowcasts, we want to know the percentage that is good (which means they 

are made before the DC confirmation point, Definition 5. 7).  

PrecisionCorrect = CN ÷ Nc 

PrecisionGood = GN ÷ CN 

False Positive in correctness: 

FPCorrect = 1 – PrecisionCorrect = IN ÷ Nc 

5.6.2.2 Timeliness 

For those good nowcasts, we measure their performance by how close they 

are to EXT2, in terms of time and price. We use TMVDCC to denote the 

TMV measured at the DC Confirmation point. By definition (Chen & 

Tsang 2020), TMVDCC is normally close to 1. Following are measures of 

timeliness, in terms of time and price: 

TimelinessTime = DCCtime – TimeNC 
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TimelinessPrice = TMVDCC – TMVNC 

In this Chapter, TimelinessTime is measured in seconds. The bigger the 

TimelinessTime value is, the sooner we nowcast correctly before DCC.  

TimelinessPrice is an indicator measuring how soon we nowcast before the 

DCC price. For example, suppose in an uptrend current price is 100, and 

we use a threshold of 10%. In this case the theoretical PDCC* is 110 

(100*(1+10%)) (Calculate follow the Section 2.3). Suppose the actual 

DCC price PDCC is also 110 and we nowcast at the price of 106. TMVNC = 

(((106-100)/100)/10%=) 0.6. That means TimelinessPrice is equal to (1–0.6=) 

0.4. This means we nowcast at 40% of the price before PDCC. 

 

Figure 5. 14 Timeliness in Nowcasting: Timelinesstime measures how much time the 

nowcast gains before the DCC took place; Timelinessprice measures how much price 

the nowcast gains before the DCC price.  
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5.6.2.3 Recall (for reference) 

What percentage of the trends are nowcast correctly (Definition 5. 6) 

Recall = CN / TnT 

The recall is used as a reference. It is not a key performance measure 

because sometimes a good nowcast is not possible. This will be the case, 

for example, when the price reaches the next extreme point shortly after 

DCC (i.e., when overshoot is short). In this case, the direction is changed 

without much warning. 

5.6.3. Recording nowcasting performance statistics 

In this section, we need to find out all the results that are good. We monitor 

the market tick-by-tick. Once our program finds a tick that meets the two 

criteria of the Nowcast Constant Algorithm (Section 5.6.1), nowcast that a 

new trend has started. We record the time and price of that transaction.  



 

 

 151 

 

Figure 5. 15 Good nowcast point 

Once we confirm a nowcast is a good nowcast, for example, TN in Figure 

5. 15. We can calculate the time difference between TN to t3 and the price 

difference between the current price and PDCC2. 

How close are they to the DCC of the next trend, in terms of time and price? 

Once we confirm a nowcast is a good nowcast, for example, TN in Figure 

5. 15. We can calculate the time difference between TN to t3 and the price 

difference between the current price and PDCC. We call the time different 

TDD and price different PDD. TDD represent that once we know the time at 

the DCC point, we can calculate the time different from DCC point to 

nowcast point. The bigger the TDD the sooner we know that we are in a new 

trend. If we record TN as a good nowcast point then we can calculate the 

price difference between the current price and PDCC2. Once we know the 
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PDD, we can know how far or how significant the price changes from the 

nowcast point to the DCC point. The bigger the PDD the better we can make 

more profit in the real treading world.  

 

Figure 5. 16 Nogood nowcast point 

For those nogood Nowcasts:  

Nogood nowcast means the nowcast point program confirm before the 

EXT2 point. For example, if nowcast is made at TNG in Figure 5. 16, then 

the nowcast is incorrect, hence a nogood nowcast. 

5.6.4. Choice of parameters PTMV and PBM 

How do we choose PTMV and PBM? We can base on the choice of these 

values on past distributions, as described in Sections 5.4 and 5.5. We can 
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choose a PTMV value that is, say, greater than 95% of historical TMV values; 

similarly, we could choose a PBM value that is greater than 90% of historical 

BM values. Our choices of PTMV and PBM depend on the risk level that we 

want to take.  

If we want to achieve higher precisions, we may use higher PTMV and PBM 

values. On the other hand, If we want more timely nowcasts, we should 

use lower PTMV and PBM values.  

5.7. Experimentation 

We have set up a set of experiments to assess the performance of the 

nowcasting algorithm proposed. In this section, we explain these 

experiments and our assessment. 

5.7.1. Experimental setup 

We use the distribution of MBM in the Training period (Section 5.5), and 

the distribution of TMVEXT in the Training period under thresholds 0.0016 

and 0.32 (Section 5.4) for nowcasting. We run the Nowcast Constant 

Algorithm (Section 5.6.1) on the Training Period for backtesting and the 

Nowcasting Period for assessment of the algorithm. We use the 

Nowcasting period (Section 5.3) in our experiments. We conduct the 

experiments on both DC thresholds: 0.0016 and 0.0032. 

Let us recapitulate the NCA nowcasting rule: It takes two parameters, PTMV 
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and PBM. We track each new transaction as it emerges. If its aTMV is 

greater than PTMV, then we check its BM value. If the BM value is greater 

than PBM, then we nowcast that we are in a new trend. 

The higher PTMV and PBM values one chooses, the more cautious one is in 

nowcasting new trends; that tends to favour precision. The lower PTMV and 

PBM values one chooses, one tends to favour recall. 

We use the same PTMV and PBM to summarize the Training period and 

nowcasting. As we said before, we run NCA in the Training Period with 

the same PTMV and PBM that we used in Nowcasting. The reason for this 

backtesting is that we want to prove firstly, the PTMV and PBM we choose 

are working in the Training data as it is from the distribution of TMV and 

MBM in the Training period. Then, we use the same PTMV and PBM in the 

Nowcasting period to see whether the NCA still working under the 

nowcasting period by using the historical data. Finally, it's important to 

analyze the performance of the result under the Nowcasting period for both 

thresholds. 

Under the Training period, we learned the PTMV and PBM values under DC 

thresholds 0.0016 and 0.0032. We use these learned PTMV and PBM values 

to nowcast in the Nowcasting period.  

All the PTMV and PBM here can be chosen by the observer arbitrarily under 
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the rule in Section 5.6.1. In this chapter, we will choose: 

Under NCA in the Training period when the Threshold is equal to 0.0016 

we choose PTMV=1.68 and PBM=0.68. There are 46.22% and 1% probability 

that the PTMV and PBM values would exceed 1.68 and 0.68 (Table 5. 2 and 

Table 5. 4) 

In this case, when aTMV is bigger than 1.68 in a trend and MBM is bigger 

than 0.68, we will be recorded as a nowcast. 

Under NCA in the Nowcasting period when the Threshold is equal to 

0.0016 we choose PTMV=1.68 and PBM=0.68 as we introduced before. 

We repeat the work as we do in the Training period, any of aTMV is bigger 

than 1.68 and MBM is bigger than 0.68 but less than 1, we recorded it as a 

nowcast. 

Under NCA in Training period when the Threshold is equal to 0.0032 we 

choose PTMV=1.60 and PBM =0.61 There are 54.44% and 0.95% probability 

that the PTMV and PBM values would exceed 1.60 and 0.61 (Table 5. 3 and 

Table 5. 5) 

Under NCA in the Nowcasting period when the Threshold is equal to 

0.0032 we also choose PTMV=1.60 and PBM =0.61 as we define at the 

beginning of this section. That means once the aTMV value is bigger than 

1.6 and the MBM value exceeds 0.61 but less than 1, we will record it as a 
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nowcast.  

5.8. Result 

This section presents the results from running the Nowcasting Constant 

Algorithm (NCA, Section 5.6) on the data (Section 5.5) under the two 

selected thresholds of 0.0016 and 0.0032. 

5.8.1. Result for the Training period 

The Training period is used for learning the parameters for the Nowcasting 

Constant Algorithm (NCA). We backtest NCA in this period to assess its 

performance. 

5.8.1.1 Result for Training period under threshold 0.0016 

In the Training Period, when the threshold is 0.0016, we will have the result, 

under NCA.  

Nowcast results in the Training period under threshold 0.0016 

Nowcast Indicator Value 
Timeliness analysis for  

Good nowcast 

TnT: Total number of trends 9,551 TimelinessPrice 
TimelinessTime 

(seconds) 

Nc: Number of nowcasts 8,447 Maximum Maximum 

GN: Number of good nowcast 5,389 1.706 211,408 

CN: Number of correct 

nowcasts 
5,420 Minimum Minimum 

IN: Number of incorrect 

nowcast 
3,027 0.00 1.00 

Nc = CN + IN 8,447 Median Median 

Recall = CN / TnT 56.7% 0.321 467 

PrecisionCorrect = CN / Nc 64.2% Average Average 
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PrecisionGood = GN / CN 99.4% 0.325 1,605 

False Positive = IN / Nc 35.8% 
Standard 

deviation 

Standard 

deviation 

 0.065 8,621 

Table 5. 6 The result of NCA in the Training period under threshold 0.0016, with 

PTMV=1.68, PBM=0.68 

Table 5. 6 shows the nowcasting results for NCA in the training period. In 

the first two columns, the values of the different performance indicators 

are recorded, showing that in the training period, when the threshold is 

0.0016, 9,551 trends in total are identified, and the NCA nowcasts 8,447 

times. Of these 8,447 nowcasts, 5,420 are correct, of which 5,389 are useful. 

64.20% of nowcasts are good (PrecisionCorrect), while 99.40% of correct 

nowcasts are good nowcasts (PrecisionGood). Using recall as a reference, of 

all existing trends, 56.70%, nearly two thirds, are the subject of good 

nowcasts. 

Within those good nowcasts, we summarize the in the rightmost two 

columns in Table 5. 6 their timeliness. Under the TimelinessPrice column, 

the maximum value of TimelinessPrice is 1.706 and the minimum value is 

0.00. Normally, TimelinessPrice are smaller than one, but some nowcasting 

point would happen directly cross the DCC point, which made 

TimelinessPrice bigger than 1, meanwhile, when the TimelinessPrice is 0.00, 

these means that we nowcast at the DCC point. In the training period when 

the threshold is 0.0016, the average timelinessPrice is 0.325 and the median 

is 0.321. Readers are reminded that the theoretical TMV at DC 
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confirmation is 1 by definition. So, 0.325 means we manage to nowcast the 

new trend one third of the way to DCC.  

TimelinessTime measures how early we manage to recognize a new trend 

before DCC. The bigger the TimelinessTime is, the earlier we nowcast the 

new trend started. In the training period, when the threshold is 0.0016 the 

maximum TimelinessTime is 211,408 seconds and the minimum is 1. The 

average value of TimelinessTime is 1,605 which means, on average NCA 

can get around 1,605 seconds ahead of the DCC point. The mean 

TimelinessPrice is 0.325. That means for good nowcasts were made when 

the price reached just over one-third of PDCC. Furthermore, when we look 

at the standard deviation of both TimelinessPrice and TimelinessTime. The 

standard deviation of TimelinessPrice is 0.065, which is a very small number 

which means most of the nowcasting prices are reasonably close to the 

average TimelinessPrice value. The standard deviation of TimelinessTime is 

8,621, which is quite a big number. This would mean the TimelinessTime 

that we nowcast ahead of DCC point falls into a wide range, this would be 

a very big number and also would be a small number, which means n the 

good nowcast, we will get some of the new trends happened really early 

before DCC point, but some are not. As we can also see the median value 

of TimelinessTime is 467 while the average value is 1,605.  

We can see that the standard deviation of TimelinessTime is high. But we 
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only record TimelinessTime when the nowcast is correct and useful (i.e. 

before DC Confirmation). Hence, all that means is sometimes we manage 

to nowcast correctly really early, sometimes very late (but still before DC 

Confirmation). Since the lower bound of TimelinessTime is 0 (because only 

correct and useful nowcasts are counted), a big value in the standard 

deviation of TimelinessTime is a positive result.  
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5.8.1.2 Result for Training period under threshold 0.0032 

Nowcast results in the Training period under threshold 0.0032 

Nowcast Indicator Value 
Timeliness analysis for Good 

nowcast 

TnT: Total number of trends 2,051 TimelinessPrice 
TimelinessTime 

(seconds) 

Nc: Number of nowcasts 2,213 Max Max 

GN: Number of good nowcast 1,285 1.264 243,797 

CN: Number of correct nowcasts 1,287 Min Min 

IN: Number of incorrect nowcast 926 0.118 1.00 

Nc = CN + IN 2,213 Median Median 

Recall = CN / TnT 62.75% 0.391 2,550 

PrecisionCorrect = CN / Nc 58.16% Average Average 

PrecisionGood = GN / CN 99.84% 0.393 9,828 

False Positive = IN / Nc 41.84% 
Standard 

deviation 

Standard 

deviation 

 0.041 29,126 

Table 5. 7 The result of NCA nowcast in the Training period under threshold 0.0032, 

with PTMV=1.60, PBM=0.61 

Table 5. 7 shows the nowcasting results for NCA in the training period 

when the threshold is 0.0032. In the first two columns, we record the values 

of different performance indicators. In these two columns, we can see that 

in the training period, when the threshold is 0.0032, we have 2,051 trends 

in total. NCA nowcasts 2,213 times. The reason the total nowcast number 

is bigger than the total number of trends is we may nowcast more than once 

in a trend. For example, in one trend, the value of aTMV and MBM would 

exceed the value of PTMV and PBM more than once. In our NCA, every time 

the value of aTMV and MBM would exceed the value of PTMV and PBM we 

record as a nowcast. In these 2,213 nowcast, 1,287 are correct; among 

which 1,285 are useful. 58.16% of nowcast from the total nowcast are good 
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(PrecisionCorrect), and 99.84% of correct nowcast are good nowcast 

(PrecisionGood). We use recall as a reference: out of all trends, 62.75%, 

nearly two third are nowcasted good. 

Within those good nowcasts, we summarize their timeliness in the 

rightmost two columns in Table 5. 7. Under the TimelinessPrice column, the 

maximum value of TimelinessPrice is 1.264 and the minimum value is 0.118. 

Normally, TimelinessPrice is below one, but some nowcasting points would 

happen directly across the DCC point, which made TimelinessPrice bigger 

than 1. In the training period when the threshold is 0.0032, the average 

timelinessPrice is 0.393 and the median is 0.391. Readers are reminded that 

the theoretical TMV at DC confirmation is 1 by definition. So 0.393 means 

we manage to nowcast the new trend nearly 40% of the way to DCC.  

TimelinessTime measures how early we manage to recognize a new trend 

before DCC. The bigger the TimelinessTime is, the earlier we know the new 

trend started. In the training period, when the threshold is 0.0032 the 

maximum TimelinessTime is 243,797 seconds and the minimum is 1. The 

average value of TimelinessTime is 9,828 which means, on average NCA 

can get around 9,828 seconds ahead of the DCC point. Furthermore, when 

we look at the standard deviation of both TimelinessPrice and TimelinessTime. 

At first, when we get the result of the standard deviation of TimelinessPrice 

is equal to 0.041, this is a very small number which means most of the 
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nowcasting prices are reasonably close to the average value of 

TimelinessPrice. The standard deviation of TimelinessTime is 29,126, which 

is quite a big number. This means in the good nowcast, we will get some 

of the new trends early before the DCC point, but some are not. As we can 

also see the median value of TimelinessTime is 2,550 while the average value 

is 9,828. 

5.8.2. Result for the Nowcasting period 

The parameters used in the Nowcasting period by the NCA were selected 

based on the Training Period. The Nowcasting period is used to assess the 

performance of the Nowcast Constant Algorithm (NCA) in an out-of-

sample period. 
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5.8.2.1 Result for Nowcasting period under threshold 0.0016 

Nowcast results in the Nowcasting period under threshold 0.0016 

Nowcast Indicator Value 
Timeliness analysis for Good 

nowcast 

TnT: Total number of trends 4,645 TimelinessPrice 
TimelinessTime 

(seconds) 

Nc: Number of nowcasts 3,452 Max Max 

GN: Number of good nowcast 2,264 2.154 221,194 

CN: Number of correct nowcasts 2,300 Min Min 

IN: Number of incorrect nowcast 1,152 0.0113 1.00 

Nc = CN + IN 3,452 Median Median 

Recall = CN / TnT 49.52% 0.322 367.5 

PrecisionCorrect = CN / Nc 66.63% Average Average 

PrecisionGood = GN / CN 98.43% 0.336 1,967 

False Positive = IN / Nc 33.37% 
Standard 

deviation 

Standard 

deviation 

 0.107 11,745 

Table 5. 8 The result of NCA nowcast in the Nowcasting period under threshold 

0.0016, with PTMV=1.68, PBM=0.68 

Table 5. 8 shows the nowcasting results for NCA in the Nowcasting period 

when the threshold is 0.0016. In the first two columns, we record the values 

of different performance indicators. In these two columns, we can see that 

in the nowcasting period, when the threshold is 0.0016, we have 4,645 

trends in total. NCA nowcasts 3,452 times. In these 3,452 nowcasts, 2,300 

are correct, among which 2,264 are useful (hence good). 66.63% of 

nowcast from the total nowcast are good (PrecisionCorrect), and 98.43% of 

correct nowcast are good nowcast (PrecisionGood). We use recall as a 

reference: out of all trends, 49.52%, i.e., roughly half, are nowcasted good. 

Within those good nowcasts, we summarize the in the rightmost two 

columns in Table 5. 8 their timeliness. Under the TimelinessPrice column, 
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the maximum value of TimelinessPrice is 2.154 and the minimum value is 

0.011. In the nowcasting period when the threshold is 0.0016, the average 

timelinessPrice is 0.336 and the median is 0.322. Readers are reminded that 

the theoretical TMV at DC confirmation is 1 by definition. So, 0.336 means 

we manage to nowcast the new trend one third of the way to DCC. The 

standard deviation of TimelinessPrice is 0.107, which is reasonably small. 

TimelinessTime measures how early the NCA manage to recognize a new 

trend before the DCC. The bigger the TimelinessTime is, the earlier we 

manage to recognize the start of the new trend. In the Nowcasting period, 

under threshold 0.0016, the median TimelinessTime is 367.5 while the 

average value is 1,967. The big difference is explained by extreme values: 

The maximum TimelinessTime is 221,194 seconds and the minimum is 1. 

The standard deviation of TimelinessTime is 11,745 seconds, which is quite 

a big number. This means amongst the good nowcast, some are early before 

the DCC point, but some are not. 



 

 

 165 

Scenario Nowcast_1 (SNC1): 

The maximum TimelinessPrice is 2.154. Figure 5. 17 provides details of the 

nowcast that produced this TimelinessPrice. 

 

Figure 5. 17 A nowcast on 22/01/2015 which produced the maximum TimelinessPrice 

of 2.154 

The DC confirmation point DCC1 (at the price of 1.15660) confirms that 

a downtrend has started from the extreme point EXT1 (at the price of 

1.15904). Without the benefit of hindsight, all the transactions after DCC1 

are considered to be part of the downtrend, until DCC2 (the highest point 

on the right, at 08:49:37, 1.16011) is encountered. At DCC2, one learns (in 

hindsight) that EXT2 (at 08:48:25, 1.15486) was, in fact, an extreme point. 
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Let us examine how NCA perform in this scenario: After EXT2 and before 

DCC2, NCA nowcasts at the point NCP (at 08:48:37, 1.15613) that it is in 

a new trend. This means NCA recognizes that EXT2 was, in fact, an 

extreme point. Nowcast is made at NCP because, at the price of 1.15486, 

EXT2 became the Max (i.e., the lowest point in the current downtrend from 

EXT1). The two conditions in NCP are met: EXT2 has an aTMV of 

(|1.5486–1.15904|/1.15904/0.0016=)2.254, which is bigger than the 

threshold PTMV=1.68. At NCP, the BM value (Equation 5.4, Section 5.2) is 

(|1.15613-1.15486|/1.15486/0.0016=) 0.6873, which is bigger than the 

threshold PBM=0.68. TimelinessTime of this nowcast is (08:49:37–08:48:37=) 

60 seconds. 

This scenario shows in a downtrend an extremely valuable nowcast 

because it recognizes a directional change way before the DC confirmation 

point, both price-wise and time-wise. Careful examination of the tick data 

reveals that this new trend was confirmed when the transaction price 

jumped from 1.1557 (which is not yet 0.16% above EXT2) to 1.15613 in 

one transaction. NCA nowcasted the new trend (2.154*0.0016=) 0.00346, 

or 0.3446%, in advance9. NCA nowcasts just 12 seconds after EXT2, 60 

seconds ahead of DCC2. So, this nowcast could have gained a trader a lot 

 
9
 Another way to calculate this percentage is to use the prices in Figure 5.17: The new 

trend is confirmed at DCC2, at the price of 1.16011.NCA nowcasted the new trend at the price 

1.15613, which is (1.16011-1.15613=) 0.00298. From the extreme point EXT2 (at the price 

1.15486), this represents an early warning of((0.00298/1.15486)x100%=) 0.3446%. 
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of price and time ahead of its competitors. 

[End of Scenario SNC1] 
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Scenario Nowcast_2 (SNC2): 

The maximum TimelinessPrice is 2.154. Figure 5. 18 provides details of the 

nowcast that produced this TimelinessPrice. For simplicity, we show the 

seconds instead of actual dates and times in Figure 5. 18. 

 

Figure 5. 18 A nowcast between 09:00:12 25 April 2015 to 20:27:19 27 April 2015 

which produced the maximum TimelinessTime of 221,194 seconds; The x-axis counts 

the seconds from the first data point. 

The DC confirmation point DCC1 (at the 2,726th second, price 1.138131) 

confirms that an uptrend has started from the extreme point EXT1 (at the 

2nd second, price 1.379). Without the benefit of hindsight, all the 

transactions after DCC1 are considered to be part of the uptrend, until 

DCC2 (the lowest point on the right, at 300,426 1.38259) is encountered. 
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At DCC2, one learns (in hindsight) that EXT2 (at 76,512, 1.38482) was an 

extreme point. 

Let us examine how NCA perform in this scenario: After EXT2 and before 

DCC2, NCA nowcasts at the point NCP (at 79,232, 1.38259) that a new 

trend has already started. This means NCA recognizes that EXT2 was, in 

fact, an extreme point. TimelinessTime of this nowcast is (300,426–79,232=) 

221,194 seconds, or 2 days, 13 hours, 26 minutes and 34 seconds. Even if 

we discount the two days in which no trades took place, the nowcast is still 

nearly 13 and a half hours ahead of DCC. This is a huge success given that 

NCP is only (79,232-76,512=) 2,720 seconds after the new trend has 

started from EXT2. 

[End of Scenario SNC2] 
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This is work in nowcasting new trends, we argue that these results are good. 

We have managed to nowcast correctly in about half of the trends 

(Recall=49.52%). Two third of the nowcasts are correct (PrecisionCorrect = 

66.63%). The vast majority of our nowcast is good (PrecisionGood = 

98.43%). For those good nowcasts, we manage to nowcast on average one-

third of the price (Average TimelinessPrice = 0.336), and 1,967 seconds 

(Average TimelinessTime) before NC confirmation. In the best case, nowcast 

recognized the new trend 2.154 times the threshold before the DCC 

transaction. We conclude that the parameters PTMV and PBM learned from 

historical distributions in the Training period are good for nowcasting in 

the Nowcasting period, despite the profile of the two periods being very 

different (Section 5.3). 
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5.8.2.2 Result for Nowcasting period under threshold 0.0032 

Nowcast results in the Nowcasting period under threshold 0.0032 

Nowcast Indicator Value 
Timeliness analysis for Good 

nowcast 

TnT: Total number of trends 1,184 TimelinessPrice 
TimelinessTime 

(seconds) 

Nc: Number of nowcasts 913 Max Max 

GN: Number of good nowcast 544 1.961 229,764 

CN: Number of correct nowcasts 546 Min Min 

IN: Number of incorrect nowcast 367 0.00 1.00 

Nc = CN + IN 913 Median Median 

Recall = CN / TnT 46.11% 0.392 1,623 

PrecisionCorrect = CN / Nc 59.80% Average Average 

PrecisionGood = GN / CN 99.63% 0.399 8,789 

False Positive = IN / Nc 40.20% 
Standard 

deviation 

Standard 

deviation 

  0.098 24,796 

Table 5. 9 The result of NCA nowcast in the Nowcasting period under threshold 

0.0032, with PTMV=1.61, PBM=0.61 

 

Nowcast results in the Nowcasting period under threshold 0.0032 

Nowcast Indicator Value 
Timeliness analysis for Good 

nowcast 

TnT: Total number of trends 1,184 
TimelinessPric

e 

TimelinessTime 

(seconds) 

Nc: Number of nowcasts 913 Max Max 

GN: Number of good nowcast 544 1.961 229,764 

CN: Number of correct nowcasts 546 Min Min 

IN: Number of incorrect nowcast 367 0.00 1.00 

Nc = CN + IN 913 Median Median 

Recall = CN / TnT 46.11% 0.392 1,623 

PrecisionCorrect = CN / Nc 59.80% Average Average 

PrecisionGood = GN / CN 99.63% 0.399 8,789 

False Positive = IN / Nc 40.20% 
Standard 

deviation 

Standard 

deviation 

  0.098 24,796 

Table 5. 9 shows the nowcasting results for NCA in the nowcasting period 
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when the threshold is 0.0032. In the first two columns, we record the values 

of different performance indicators. In these two columns, we can see that 

in the nowcasting period, when the threshold is 0.0032, we have 1,184 

trends in total. NCA nowcasts 913 times. In these 913 nowcasts, 546 are 

correct; among which 544 are useful (hence good). 59.80% of nowcast 

from the total nowcast are good (PrecisionCorrect), and 99.63% of correct 

nowcast are good nowcast (PrecisionGood), which is excellent. We use recall 

as a reference: out of all trends, 46.11%, i.e., just less than half, are 

nowcasted good. 

Within those good nowcasts, we summarize the in the rightmost two 

columns in  

Nowcast results in the Nowcasting period under threshold 0.0032 

Nowcast Indicator Value 
Timeliness analysis for Good 

nowcast 

TnT: Total number of trends 1,184 
TimelinessPric

e 

TimelinessTime 

(seconds) 

Nc: Number of nowcasts 913 Max Max 

GN: Number of good nowcast 544 1.961 229,764 

CN: Number of correct nowcasts 546 Min Min 

IN: Number of incorrect nowcast 367 0.00 1.00 

Nc = CN + IN 913 Median Median 

Recall = CN / TnT 46.11% 0.392 1,623 

PrecisionCorrect = CN / Nc 59.80% Average Average 

PrecisionGood = GN / CN 99.63% 0.399 8,789 

False Positive = IN / Nc 40.20% 
Standard 

deviation 

Standard 

deviation 

  0.098 24,796 

Table 5. 9 their timeliness. Under the TimelinessPrice column, the maximum 

value of TimelinessPrice is 1.961 and the minimum value is 0.0. Here the 
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0.00 means on one or more nowcast point, it has happened at the same 

point as DCC point. In the nowcasting period when the threshold is 0.0032, 

the average timelinessPrice is 0.399 and the median is 0.392. Readers are 

reminded that the theoretical TMV at DC confirmation is 1 by definition. 

Here 0.399 means we manage to nowcast the new trend nearly 40% of the 

threshold away from DCC (Section 5.6.2).  

As we introduce in section 5.6.2.2, TimelinessTime measures how early we 

manage to recognize a new trend before DCC. The bigger the 

TimelinessTime is, the earlier we know the new trend started. In the 

nowcasting period, when the threshold is 0.0032 the maximum 

TimelinessTime is 229,764 seconds and the minimum is 1. The average value 

of TimelinessTime is 8,789 which means, on average NCA can get around 

8,789 seconds ahead of the DCC point. Furthermore, when we look at the 

standard deviation of both TimelinessPrice and TimelinessTime. At first, when 

we get the result of the standard deviation of TimelinessPrice which is 0.098, 

this means that the volatility of TimelinessPrice is low, and most of the 

nowcasting price is reasonably close to the average value of TimelinessPrice. 

The standard deviation of TimelinessTime is 24,796 seconds, which is very 

a big number. This means that time we nowcast ahead of DCC point are in 

a very wide range. In the good nowcasts, we get some of the new trends 

very early before the DCC point, but some are not. The median value of 

TimelinessTime is 1,623 while the average value is 8,789, which is affected 
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by extreme values, as explained in the wide range. 
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Scenario Nowcast_3 (SNC3): 

The maximum TimelinessPrice is 1.961. Figure 5. 19 provides details of the 

nowcast that produced this TimelinessPrice. 

 

Figure 5. 19 A nowcast on 21/01/2015 which produced the maximum TimelinessPrice 

of 1.961 

The DC confirmation point DCC1 (at the price of 1.1649) confirms that an 

uptrend has started from the extreme point EXT1 (at the price of 1.15841). 

Without the benefit of hindsight, all the transactions after DCC1 are 

considered to be part of the uptrend, until DCC2 (the lowest point on the 

right, at 09:50:35, 1.15834) is encountered. At DCC2, one learns (in 

hindsight) that EXT2 (at 09:48:42, 1.167979) was, in fact, an extreme point. 

Let us examine how NCA perform in this scenario: After EXT2 and before 



 

 

 176 

DCC2, NCA nowcasts at the point NCP (at 09:49:25, 1.16567) that it is in 

a new trend. This means NCA recognizes that EXT2 was, in fact, an 

extreme point. Nowcast is made at NCP because, at the price of 1.16567, 

EXT2 became the Max (i.e., the highest point in the current uptrend from 

EXT1). The two conditions in NCP are met: EXT2 has an aTMV of 

(|1.16797–1.16567|/1.15834/0.0032=) 1.961, which is bigger than the 

parameter PTMV=1.61. At NCP, the BM value (Equation 5.4, Section 5.2) is 

(|1.16567-1.16797|/1.16797/0.0032=) 0.61538, which is bigger than the 

threshold PBM=0.61. Timeliness Time of this nowcast is (09:50:35–

08:49:25=) 70 seconds. 

This scenario shows in an extremely valuable nowcast an uptrend because 

it recognizes a directional change way before the DC confirmation point, 

both price-wise and time-wise. Careful examination of the tick data reveals 

that this new trend was confirmed when the transaction price jumped from 

1.16586 (which is not yet 0.32% below EXT2) to 1.16567 in one 

transaction. NCA nowcasted the new trend (1.961*0.0032=) 0.006266, or 

0.6266%, in advance. NCA nowcasts 43 seconds after EXT2, 70 seconds 

ahead of DCC2. So, this nowcast could have gained a trader a lot of price 

and time ahead of its competitors. 

[End of Scenario SNC3] 

In summary, under threshold 0.0032, we find that under a different 



 

 

 177 

threshold, NCA still managed to nowcast correctly in nearly half of the 

trends (Recall=46.11%). About 60% of the nowcasts are correct 

(PrecisionCorrect = 59.80%). The vast majority of our nowcast is good 

(PrecisionGood = 99.63%); out of 546 correct nowcasts, only two nowcasts 

are correct but not good. For those good nowcasts, we manage to nowcast 

on average 40% of the price (Average TimelinessPrice = 0.399), and 8,789 

seconds (Average TimelinessTime) before NC confirmation. We conclude 

that the parameters PTMV and PBM learned from historical distributions in 

the Training period are good for nowcasting in the Nowcasting period 

when the threshold is 0.0032 as well, despite the profile of the two periods 

being very different. 

5.9. Discussion  

In this section, we shall assess the performance of NCA based on the results 

presented so far. Key performance measures are shown in Table 5. 10 

below. We shall comment on NCA’s nowcasts’ timeliness in terms of price 

and time. We shall also comment on the robustness of NCA.  
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Summary of key performance measures 

 Training Period Nowcasting Period 

Threshold 0.0016 0.0032 0.0016 0.0032 

PrecisionCorrect 64.16% 58.16% 66.63% 59.80% 

PrecissionGood 99.42% 99.84% 98.43% 99.63% 

Recall 56.75% 62.75% 49.52% 46.11% 

Average 

TimelinessPrice 
0.325 0.393 0.336 0.399 

Standard deviation 

of TimelinessPrice 
0.065 0.041 0.107 0.098 

Maximum 

TimelinessPrice 
1.706 1.264 2.154 1.961 

Average 

TimelinessTime 
1,605 sec. 9,828 sec. 1,967 sec. 8,789 sec. 

Standard deviation 

of TimelinessTime 
8,621 sec. 29,126 sec. 11,745 sec. 24,796 sec. 

Maximum 

TimelinessTime 
221,408 sec. 243,797 sec. 221,194 sec. 229,764 sec. 

Table 5. 10 Summary of key performance measures in all the experiments 

5.9.1. NCA produces timely nowcasts in terms of Price 

In scenarios SNC1 and SNC3, we have shown two exceptionally valuable 

nowcasts as measured by TimelinessPrice. In scenario SNC1, TimelinessPrice 

was 2.514. This is translated into nowcasting 0.3446% ahead of DC 

confirmation. This is especially significant when we consider the fact that 

the DC threshold was only 0.16%. That means DC is confirmed when the 

absolute price change is 0.16% or more. 0.3446% was only achieved 

because the market jumped in one transaction to the DC confirmation 

point10. What makes this nowcast even more valuable was that it nowcasts 

 
10 Close inspection reveals that price jumped from 1.1553 (which does not yet confirm directional change from 

the last extreme point at 1.115486) to 1.16011, a jump of (1.16011-1.1553)/1.115486=) 0.417%. 
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only 12 seconds after the new trend has started (which means that the 

market was particularly volatile at the time), 60 seconds ahead of the DCC 

point. 

Likewise, in Scenario SNC3, NCA nowcasts 0.6266% ahead of NCC point 

(TimelinessPrice 1.961) when the DC threshold was only 0.32%. Such a 

nowcast could be used to gain advantages in trading. 

While not every good nowcast is as timely as SNC1 and SNC3 in terms of 

price, Table 5. 10 shows that the average TimelinessPrice in both the Training 

and Nowcast periods under both thresholds range between 0.325 and 0.399. 

That means, on average, good nowcasts were made two-thirds of the price 

from the extreme point to the DCC point (see explanation in SNC1). The 

relatively small standard deviations of TimelinessPrice across Table 5. 10 

suggest that most of the nowcasts are not far from one-third from the 

extreme price to the DCC price. 

5.9.2. NCA produces timely nowcasts in terms of Time 

Scenario SNC2 shows that nowcasts could be days ahead of DC 

confirmation. Though not as significant as SNC2, TimelinessTime of NCA 

SNC1 and SNC3 were still impressive:  

• In SNC1, NCA nowcasts only 12 seconds after EXT2, 60 seconds 
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ahead of DCC2.  

• In SNC3, NCA nowcasts 43 seconds after EXT2, 70 seconds ahead 

of DCC2. 

Table 5. 10 provides evidence that NCA provides timely nowcasts in terms 

of time: the average Timeliness in both Training and Nowcasting Periods, 

under both thresholds, ranged from 1,605 to 9,828 seconds. The standard 

deviations of TimelinessTime are big compared to the averages. This 

suggests that thousands of seconds can be gained through good nowcasting 

by NCA.  

5.9.3. NCA is robust across market profiles 

In section 5.3, we showed that the Training Period and Nowcasting Period 

have very different DC profiles. The former is a lot less volatile than the 

latter in terms of DC frequency (as reflected by the indicator Median T, see 

Table 5. 1). 

SNC1 and SNC3 took place in volatile markets where trends ended within 

one or two minutes. More importantly, big jumps were encountered in both 

scenarios. So these two trends were not only volatile in terms of T, they are 

volatile in terms of TMV11. SNC2 took place in a quiet market: the trend 

took days to finish. NCA has produced valuable nowcasts, in terms of 

 
11 Readers are reminded that a market’s volatility can be measured by TMV and Time in DC, see (Tsang et al 

2017) 
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Timeliness Price, Timeliness Time or both.  

The consistency of these results supports the claim that NCA is robust over 

different market conditions. 

NCA is robust across thresholds 

Experiments were run under thresholds, 0.0016 and 0.0032. These 

thresholds were chosen according to the criteria defined in Chapter 3. 

Results summarized in Table 5. 10 show NCA’s performance under the two 

different thresholds is consistent: PrecisionCorrect under the two thresholds 

are both around 60%. Results under 0.0016 are slightly better than results 

under 0.0032 because a smaller threshold is more sensitive to price changes 

in the market. PrecisionGood values under the two thresholds are both 

around 99%.  

Note that discrepancy in Average TimelinessTime between the two 

thresholds is not a sign of inconsistency. By nature, as the DC threshold 

increases, trends take exponentially longer to complete12 . As aTMV is 

normalized by the threshold, the Median aTMVs in Table 5.1 are consistent 

between the two thresholds: between 1.43 and 1.68. They also support the 

robustness of NCA across different DC thresholds. 

 
12 Readers may also consult Glattfelder [5] in their study of the scaling laws. Readings of Median T can be found 

in Table 5. 1 
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5.9.4. Rooms for improvement 

Without fine-tuning the parameters (PTMV and PBM), NCA achieves around 

60% in PrecisionCorrect and PrecisionGood. One could expect better results by 

fine-tuning these parameters, for example by adopting them to the market’s 

volatility or dynamically changing the value of PBM depending on PTMV. 

These will be left for future research. 

5.10. Backtesting with an extremely small threshold  

In Chapter 3, we presented a guideline for limiting the thresholds to be 

used for DC. We suggested that if we use a threshold that is too small, DC 

summaries contain a lot of noise. In this section, we shall test this guideline. 

We shall nowcast with a threshold that is smaller than the lower bound in 

the guideline introduction in Section 3.4.3. We shall use this threshold to 

nowcast in two periods of EUR/USD data to see whether nowcasting 

performance is affected. Will the number of nowcasts be affected? Will the 

nowcast performance be affected?  

5.10.1. Data we used 

5.10.1.1 Training period and nowcasting period  

In this section, we will use tick data in the EUR/USD exchange market 

from 21/04/2016 07:31:08 to 06/05/2016 14:31:21 (The same as Section 

3.4.1) as the training periodT and the EUR/USD exchange market from 
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06/05/2016 14:32:16 to 25/05/2016 06:59:21 as the nowcasting periodT. 

5.10.1.2 Threshold we used 

In this section, we will use Threshold=0.00002 for both the training period 

and nowcasting period while in Section 3.4.3 we see any threshold below 

0.00005 is unsuitable for profiling EUR/USD Period One 

5.10.2. Result  

5.10.2.1 Historical distribution of TMVEXT 

In this section, we study the historical distribution of TMVEXT.  

We use the EUR/USD tick data from 21/04/2016 07:31:08 to 06/05/2016 

14:31:21. We named this period the Training PeriodT. Also, we shall use 

EUR/USD tick data from 06/05/2016 14:32:16 to 25/05/2016 06:59:21, we 

named this period as the Nowcasting periodT. We calculate TMVEXT under 

threshold 0.00002.  

First, we calculate the TMVEXT under 0.00002 for Training PeriodT. Then 

we collect it from every trend. In the Training periodT when the threshold 

is equal to 0.00002, we got 88,333 TMVEXT. 

Once we collect all TMVEXT we will start to summarize the TMVEXT. Table 

A. 9 in Section 7 appendix show the distribution of TMVEXT under 0.00002 

for Training PeriodT 
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Figure 5. 20 Distribution of TMVEXT in the Training periodT under threshold 0.00002 

Figure 5. 20 show the graph of the probability of TMVEXT happening in 

each bin and the probability of reaching a certain number of TMVEXT in 

the Training periodT when the threshold is equal to 0.00002.  
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5.10.2.2 Historical distribution of Max below Max (MBM)  

 
Figure 5. 21 Distribution of MBM in Training periodT under threshold 0.00002 

Figure 5. 21 show the graph of the probability of MBM happening in each 

bin and the probability of reaching a certain number of MBM in the 

Training period when the threshold is equal to 0.00002. 

As the figure about shown, under threshold 0.00002, the MBM value is 

only from 0.63 to 0.65 which is strange (as we can see in Section 5.5, 

Section 5.11 and 5.12, all MBM values are subsection wildly from 0 to 1), 

normally it would happen in most of the bin from 0 to 1.  
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0.63 183 0.58% 100.00% 

…… 

0.64 18133 57.43% 99.42% 

0.6457 - 99.00% 

0.65 13256 41.99% 41.99% 

…… 

1 0 0.0%  

Table 5. 11 The MBM we pick to use under the distribution of MBM in the Training 

periodT under threshold 0.00002 

 

The of TMVEXT in the Training periodT under threshold 0.00002 that we pick 

Bin TMVEXT 

Frequency 

TMVEXT 

Probabilities 

Probabilities of reaching this 

TMVEXT value 

3.08433502 44311 50.16% 100.00% 

…… 

17.67468016 464 0.53% 1.55% 

19.57   1.00% 

19.75901518 330 0.37% 1.03% 

…… 

209.433502 1 0.00% 0.00% 

Table 5. 12 The TMVEXT we pick to use under the distribution of TMVEXT in the 

Training periodT under threshold 0.00002 

Under the Training periodT, we learned the PTMV and PBM values under DC 

thresholds 0.00002. We use these learned PTMV and PBM values to nowcast 

in the Training periodT to test the performance of nowcasting. 

All the PTMV and PBM here can be chosen by the observer arbitrarily under 

the rule in Section 5.6.1.  

In this section, we will choose: 

Under NCA in Training periodT when Threshold is equal to 0.00002 we 

choose PTMV=19.57 and PBM=0.6457. There are 1.00% and 1.00% 

probability that the PTMV and PBM values would exceed 19.57 and 0.6457 



 

 

 187 

(Table 5. 11 and Table 5. 12) 

5.10.2.4 Result of Nowcasting in Training periodT 

In the Training PeriodT, when the threshold is 0.00002, we will have the 

NCA results shown in Table 5. 13.  

Nowcast results in the Training periodT under threshold 0.00002 

Nowcast Indicator Value 
Timeliness analysis for  

Good nowcast 

TnT: Total number of trends 88,332 TimelinessPrice 
TimelinessTime 

(seconds) 

Nc: Number of nowcasts 0 Maximum Maximum 

GN: Number of good nowcasts 0 NIL NIL 

CN: Number of correct 

nowcasts 
0 Minimum Minimum 

IN: Number of incorrect 

nowcast 
0 NIL NIL 

Nc = CN + IN 0 Median Median 

Recall = CN / TnT 0 NIL NIL 

PrecisionCorrect = CN / Nc 0 Average Average 

PrecisionGood = GN / CN 0 NIL NIL 

False Positive = IN / Nc 0 
Standard 

deviation 

Standard 

deviation 

 NIL NIL 

Table 5. 13 The result of NCA in the Training period under threshold 0.00002, with 

PTMV=19.57, PBM=0.6457; as no nowcast was made, no statistical results are available 

5.10.3. Discussion  

From Table 5. 13 we can see that no nowcasts were made under the 

Training periodT; that means we can nowcast nothing under this extremely 

small threshold. This happens because, when the threshold is very small, 

many price changes against the current trend are directional changes. When 

overshoot does not exist, there is no MBM. When overshoot just takes one 



 

 

 188 

or two ticks, no MBM will be observed, thus NCA will make no nowcast. 

Thus, results in this experiment support the use of the DC threshold 

guidelines presented in Chapter 3.  

 

5.11. Experimental work for USD/JPY 

So far, NCA has been tested on EUR/USD. To check whether the results 

can be reproduced in other markets, we test NCA on USD/JPY in this 

section. 

5.11.1 Experimental work set up  

5.11.1.1 Data Used and their profiles 

To prepare for our nowcasting algorithm, as in section 5.3, we will use 

Tick-to-tick USD/JPY rates are used throughout this section. Table 5. 14 

summarizes the data used in this chapter. We separate the data into the 

Training and Nowcasting periods. Statistics in the former is used to 

determine the parameters used in our nowcasting algorithm, which will be 

used for nowcasting in the Nowcasting period. In this section, we will use 

thresholds=0.0016 which will namely 0.0016.  
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 Data in the Training 

PeriodUSD/JPY 

Data in the Nowcasting 

PeriodUSD/JPY 

Threshold 0.0016 0.0016 

Period From: 00:00:10  

27th September 2009 

To: 23:59:59  

31st December 2013 

From 00:00:09  

1st January 2014  

To: 23:50:59  

31st December 2015 

Number of 

transactions 
56,820,049 28,171,600 

Number of 

DCs 
17,588 3,892 

Median aTMV 1.688934 1.70645 

Median T 2,882 4,350 

Table 5. 14 Tick-to-tick data used in this section, with their profiles compared 

We call the period from 00:00:10 on 27/09/2009 to 23:59:59 on 31/12/2013 

as the Training PeriodUSD/JPY. We call the period from 00:00:09 on 

01/01/2014 to 23:50:59 on 31/12/2015 the Nowcasting PeriodUSD/JPY. 

Let us compare and contrast the profiles of the two periods. From Table 5. 

14. we can see that, under threshold 0.0016, the median aTMV values in 

the Training PeriodUSD/JPY is 1.688394, whereas the median aTMV in the 

Nowcasting PeriodUSD/JPY under the same threshold is 1.70645. Under these 

thresholds, the median aTMV in the Training PeriodUSD/JPY is more or less 

the same as Nowcasting PeriodUSD/JPY. 

But when we look at the Median T values, we can see that under threshold 

0.0016, a trend takes 2,882 seconds to finish a trend in the Training 

PeriodUSD/JPY, but 4,350 seconds (nearly 1.3 times of the time) to finish in 

the Nowcasting PeriodUSD/JPY.  

Both aTMV and T are indicators of volatility in a market-period: the former 
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measures the magnitude of price changes and the latter measures the 

frequency of changes. The above comparisons suggest the following: 

1. There is nearly no difference in the two periods’ volatility as 

measured by median aTMV. 

2. Measured by median T, the Nowcasting Period is much more 

volatile than that Training Period: direction changes happened 

slower in the Nowcasting Period. 

To summarize: the two periods are quite different in their volatility, though 

not in the magnitude of price changes in the trends (measured by aTMV), 

but in the frequency of directional changes (measured by T).  

5.11.1.2 Distribution of TMVEXT in Training periodUSD/JPY under 

threshold 0.0016 

In this section, we study the historical distribution of TMVEXT. We shall 

show later how this could be used to support nowcasting.  

As explained in Table 5. 14 We call the period from 00:00:10 on 

27/09/2009 to 23:59:59 on 31/12/2013 as the Training PeriodUSD/JPY. We 

call the period from 00:00:09 on 01/01/2014 to 23:50:59 on 31/12/2015 the 

Nowcasting PeriodUSD/JPY. We calculate TMVEXT under threshold 0.0016 

of Training PeriodUSD/JPY. 
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We calculate the TMVEXT under 0.0016 for Training PeriodUSD/JPY. Then 

we collect it from every trend. In the Training PeriodUSD/JPY when the 

threshold is equal to 0.0016, we got 17,588 TMVEXT. 

 
Figure 5. 22 Distribution of TMVEXT in the Training periodUSD/JPY under threshold 

0.0016 

Figure 5. 22 show the graph of the probability of TMVEXT happening in each 

bin and the probability of reaching a certain number of TMVEXT in the 

Training periodUSD/JPY when the threshold is equal to 0.0016  

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Distribution of TMVEXT in Trainig period under threshold

0.0016

TMV Probabilities

Probabilities of reaching this TMV



 

 

 192 

The of TMVEXT in the Training periodUSD/JPY under threshold 0.0016 that we pick 

Bin 
TMVEXT 

Frequency 

TMVEXT 

Probability  

Probabilities of reaching this 

TMVEXT 

1 0   

1.07904397 1268 8.78% 100.01% 

…… 

5.50550629 8 0.06% 1.06% 

5.58  1.00% 

5.66359423 13 0.09% 0.93% 

…… 

8.904397 1 0.00% 0.01% 

Table 5. 15 The TMVEXT we pick to use under the distribution of TMVEXT in the 

Training periodUSD/JPY under threshold 0.0016 

When the threshold is equal to 0.0016, we will use the TMVEXT value 5.58 

which would have a probability of 1.00% happening in the Training 

periodUSD/JPY to nowcast the Training periodUSD/JPY and Nowcasting 

periodUSD/JPY, which will be used in Section 5.11.2. In this section, we pick 

up the TMVEXT only 1.00% historical probability happened in the Training 

periodUSD/JPY  

5.11.1.3 Distribution of MBM in Training periodUSD/JPY under 

threshold 0.0016 

We use the distribution of MBM in the Training periodUSD/JPY under 

threshold 0.0016 for nowcasting. We run the Nowcast Constant 

Algorithm (Section 5.6.1) on the Training periodUSD/JPY for backtesting 

and the Nowcasting PeriodUSD/JPY for assessment of the algorithm. We use 

the Nowcasting periodUSD/JPY in our experiments. We conduct the 

experiments on DC thresholds 0.0016. We use the same methodology as in 
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Section 5.4 to summarize the distribution of MBM for USD/JPY.  

 
Figure 5. 23 Distribution of MBM in Training periodUSD/JPY under threshold 0.0016 

Figure 5. 23 show the graph of the probability of MBM happening in each 

bin and the probability of reaching a certain number of MBM in the 

Training periodUSD/JPY when the threshold is equal to 0.0016. 
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Distribution of Max Below Max in Training periodUSD/JPY under Threshold 0.0016 

Bin MBM 

Frequency 

MBM 

Probabilities 

Probabilities of reaching this 

MBM value 

0.01 3192 0.62% 100.00% 

…… 

0.64 401 0.08% 1.05% 

0.641  1.00% 

0.65 224 0.04% 0.97% 

…… 

1 56 0.01% 0.01% 

Table 5. 16 Distribution of Max Below Max in Training period under Threshold 0.0016 

When the threshold is equal to 0.0016, we will choose 0.641 as the 

parameter to nowcast the Training periodUSD/JPY and Nowcasting 

periodUSD/JPY. This is because we only got a 1.00% historical probability 

that BM is bigger than 0.641. We will use this probability to nowcast both 

training and nowcasting data under 0.0016.  

Now we follow the NCA nowcasting rule in Section 5.6. In this section, 

we use the same PTMV and PBM to summarize the Training period and 

nowcasting.  

In this section, we will choose: 

Under NCA in Training periodUSD/JPY when the Threshold is equal to 

0.0016 we choose PTMV=5.58 and PBM=0.641. There is a 1% historical 

probability that PTMV and PBM values would simultaneously exceed 5.58 

and 0.64, respectively. 

In this case, when aTMV is bigger than 5.58 in a trend and MBM is bigger 

than 0.641, we will be recorded as a nowcast. 
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Under NCA in the Nowcasting periodUSD/JPY when the Threshold is equal 

to 0.0016 we choose PTMV=5.58 and PBM=0.641 as we introduced before. 

We repeat the work as we do in the Training periodUSD/JPY, any of aTMV is 

bigger than 5.58 and MBM is bigger than 0.641 but less than 1, we 

recorded it as a nowcast. 

5.11.2 Result 

Nowcast results in the Training periodUSD/JPY under threshold 0.0016 

Nowcast Indicator Value 
Timeliness analysis for  

Good nowcast 

TnT: Total number of trends 17,588 TimelinessPrice 
TimelinessTime 

(seconds) 

Nc: Number of nowcasts 202 Maximum Maximum 

GN: Number of good nowcasts 166 0.15445 13622 

CN: Number of correct 

nowcasts 
166 Minimum Minimum 

IN: Number of incorrect 

nowcasts 
36 0.00 1 

Nc = CN + IN 202 Median Median 

Recall = CN / TnT 0.94% 0.1 63 

PrecisionCorrect = CN / Nc 82.17% Average Average 

PrecisionGood = GN / CN 100% 0.084 364 

False Positive = IN / Nc 17.83% 
Standard 

deviation 

Standard 

deviation 

 0.04 1178 

Nowcast results in the Nowcasting periodUSD/JPY under threshold 0.0016 

Nowcast Indicator Value 
Timeliness analysis for  

Good nowcast 

TnT: Total number of trends 3,892 TimelinessPrice 
TimelinessTime 

(seconds) 

Nc: Number of nowcasts 43 Maximum Maximum 

GN: Number of good nowcasts 35 0.1845 5006 

CN: Number of correct 

nowcasts 
35 Minimum Minimum 

IN: Number of incorrect 

nowcasts 
8 0.1055 2 
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Nc = CN + IN 43 Median Median 

Recall = CN / TnT 0.9% 0.124 185 

PrecisionCorrect = CN / Nc 81.39% Average Average 

PrecisionGood = GN / CN 100% 0.1255 779 

False Positive = IN / Nc 18.61% 
Standard 

deviation 

Standard 

deviation 

 0.017 1208 

Table 5. 17 Both Training periodUSD/JPY and Nowcasting periodUSD/JPY nowcasting result  

Table 5. 17 Shows the result for both the Training periodUSD/JPY and the 

Nowcasting periodUSD/JPY nowcasting result.  

Under the Training periodUSD/JPY when the threshold is 0.0016. In the first 

two columns, we record the values of different performance indicators. In 

these two columns, we can see that in the Training periodUSD/JPY, when the 

threshold is 0.0016, we have 17,588 trends in total. NCA nowcasts 202 

times. In these 202 nowcasts, 166 are correct; among which all are useful. 

82.17% of nowcast from the total nowcast are good (PrecisionCorrect), and 

100.00% of correct nowcast are good nowcast (PrecisionGood). We use 

recall as a reference: out of all trends, 0.9% are nowcasted good. 

Within those good nowcasts, we summarize their timeliness in the 

rightmost two columns in Table 5. 17. Under the TimelinessPrice column, 

the maximum value of TimelinessPrice is 0.15445 and the minimum value is 

0. In the Training periodUSD/JPY when the threshold is 0.0016, the average 

timelinessPrice is 0.084 and the median is 0.1. Readers are reminded that the 

theoretical TMV at DC confirmation is 1 by definition. So 0.084 means we 

manage to nowcast the new trend nearly 8.4% of the way to DCC.  
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TimelinessTime measures how early we manage to recognize a new trend 

before DCC. The bigger the TimelinessTime is, the earlier we know the new 

trend started. In the Training periodUSD/JPY, when the threshold is 0.0016 

the maximum TimelinessTime is 13,622 seconds and the minimum is 1. The 

average value of TimelinessTime is 364 which means, on average NCA can 

get around 364 seconds ahead of the DCC point. Furthermore, when we 

look at the standard deviation of both TimelinessPrice and TimelinessTime. At 

first, when we get the result of the standard deviation of TimelinessPrice is 

equal to 0.04, this is a very small number which means most of the 

nowcasting prices are reasonably close to the average value of 

TimelinessPrice. The standard deviation of TimelinessTime is 1,178, which is 

quite a big number. This means in the good nowcast, we will get some of 

the new trends early before the DCC point, but some are not. As we can 

also see the median value of TimelinessTime is 63 while the average value 

is 364. 

Table 5. 17 also shows the nowcasting results for NCA in the Nowcasting 

periodUSD/JPY when the threshold is 0.0016. In the first two columns, we 

record the values of different performance indicators. In these two columns, 

we can see that in the nowcasting period, when the threshold is 0.0016, we 

have 3,892 trends in total. NCA nowcasts 43 times. In these 43 nowcasts, 

35 are correct, among which 35 are useful (hence good). 81.39% of 

nowcast from the total nowcast are good (PrecisionCorrect), and 100% of 
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correct nowcast are good nowcast (PrecisionGood). We use recall as a 

reference: out of all trends, 0.9%. 

Within those good nowcasts, we summarize the in the rightmost two 

columns in Table 5. 17 their timeliness. Under the TimelinessPrice column, 

the maximum value of TimelinessPrice is 0.1845 and the minimum value is 

0.1055. In the nowcasting period when the threshold is 0.0016, the average 

timelinessPrice is 0.1255 and the median is 0.124. Readers are reminded that 

the theoretical TMV at DC confirmation is 1 by definition. So, 0.12 means 

we manage to nowcast the new trend 12% ahead of the way to DCC. The 

standard deviation of TimelinessPrice is 0.16, which is reasonably small. 

TimelinessTime measures how early the NCA manage to recognize a new 

trend before the DCC. The bigger the TimelinessTime is, the earlier we 

manage to recognize the start of the new trend. In the Nowcasting period, 

under threshold 0.0016, the median TimelinessTime is 185 while the average 

value is 779. The big difference is explained by extreme values: The 

maximum TimelinessTime is 5,006 seconds and the minimum is 2. The 

standard deviation of TimelinessTime is 1,208 seconds, which is quite a big 

number. This means amongst the good nowcast, some are early before the 

DCC point, but some are not. 
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5.11.3 Discussion 

In this section, we shall assess the performance of NCA based on the results 

presented so far. Key performance measures are shown below. We shall 

comment on NCA’s nowcasts’ timeliness in terms of price and time. We 

shall also comment on the robustness of NCA. 

Summary of key performance measures under USD/JPY  

 Training PeriodUSD/JPY Nowcasting PeriodUSD/JPY 

Threshold 0.0016 0.0016 

PrecisionCorrect 82.17% 81.39% 

PrecissionGood 100.00% 100.00% 

Recall 0.94% 0.9% 

Average 

TimelinessPrice 
0.084 0.125 

Standard deviation 

of TimelinessPrice 
0.04 0.168 

Maximum 

TimelinessPrice 
0.1545 0.1854 

Average 

TimelinessTime 
364 sec. 779 sec. 

Standard deviation 

of TimelinessTime 
1,178 sec. 1,208 sec. 

Maximum 

TimelinessTime 
13,622 sec. 5,006 sec. 

Table 5. 18 Summary of key performance measures of nowcasting under USD/JPY 

In summary, Table 5. 18 shows the average TimelinessPrice in both the 

Training and Nowcast periods for USD/JPY under thresholds 0.0016 

between 0.084 and 0.125. That means, on average, good nowcasts were 

made around 10% of the price from the extreme point to the DCC point. 

The relatively small standard deviations of TimelinessPrice across Table 5. 

18 suggest that most of the nowcasts are not far from around 10% from the 
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extreme price to the DCC price. 

Table 5. 18 also provides evidence that NCA provides timely nowcasts in 

terms of time: the average Timeliness in both Training and Nowcasting 

Periods under USD/JPY, under threshold 0.0016, ranged from 364 to 779 

seconds. The standard deviations of TimelinessTime are big compared to the 

averages. This suggests that thousands of seconds can be gained through 

good nowcasting by NCA.  

 

5.12. Experimental work for GBP/USD   

In the previous section, we tested NCA on USD/JPY to see whether results 

are any different from our results on EUR/USD. In this section, we shall 

further examine the consistency of NCA by applying it to GBP/USD. 

5.12.1 Experimental work set up  

5.12.1.1 Data Used and their profiles 

To prepare for our nowcasting algorithm, as in section 5.3, we will use 

Tick-to-tick GBP/USD rates are used throughout this section. Table 5. 19 

summarizes the data used in this chapter. We separate the data into the 

Training and Nowcasting periods. Statistics in the former is used to 

determine the parameters used in our nowcasting algorithm, which will be 

used for nowcasting in the Nowcasting period. In this section, we will use 
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thresholds=0.0032 which will namely 0.0032.  
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 Data in the Training 

PeriodGBP/USD 

Data in the Nowcasting 

PeriodGBP/USD 

Threshold 0.0032 0.0032 

Period From: 00:00:01  

27th September 2009 

To: 23:59:59  

31st December 2013 

From 00:00:01  

1st January 2014  

To: 23:59:59  

31st December 2015 

Number of 

transactions 
71,136,369 28,026,456 

Number of 

DCs 
3,354 747 

Median aTMV 1.702382 1.699942 

Median T 15,813 25,116 

Table 5. 19 Tick-to-tick data used in this section, with their profiles compared 

We call the period from 00:00:01 on 27/09/2009 to 23:59:59 on 31/12/2013 

as the Training PeriodGBP/USD. We call the period from 00:00:01 on 

01/01/2014 to 23:59:59 on 31/12/2015 the Nowcasting PeriodGBP/USD. 

Let us compare and contrast the profiles of the two periods. From the above, 

we can see that, under threshold 0.0032, the median aTMV values in the 

Training PeriodGBP/USD is 1.702382, whereas the median aTMV in the 

Nowcasting PeriodGBP/USD under the same threshold is 1.699942. Under 

these thresholds, the median aTMV in the Training PeriodGBP/USD is more 

or less the same as Nowcasting PeriodGBP/USD. 

But when we look at the Median T values, we can see that under threshold 

0.0032, a trend takes 15,813 seconds to finish a trend in the Training 

PeriodGBP/USD, but 25,116 seconds (nearly 1.7 times of the time) to finish in 

the Nowcasting PeriodGBP/USD.  

Both aTMV and T are indicators of volatility in a market-period: the former 
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measures the magnitude of price changes and the latter measures the 

frequency of changes. The above comparisons suggest the following: 

1. There is nearly no difference in the two periods’ volatility as 

measured by median aTMV. 

2. Measured by median T, the Nowcasting Period is much more 

volatile than that Training Period: direction changes happened 

slower in the Nowcasting Period. 

To summarize: the two periods are quite different in their volatility, though 

not in the magnitude of price changes in the trends (measured by aTMV), 

but in the frequency of directional changes (measured by T).  

5.12.1.2 Distribution of TMVEXT in Training periodGBP/USD under 

threshold 0.0032 

In this section, we study the historical distribution of TMVEXT. We shall 

show later how this could be used to support nowcasting.  

As explained in Table 5. 19 We call the period from 00:00:01 on 

27/09/2009 to 23:59:59 on 31/12/2013 as the Training PeriodGBP/USD. We 

call the period from 00:00:01 on 01/01/2014 to 23:59:59 on 31/12/2015 the 

Nowcasting PeriodGBP/USD. We calculate TMVEXT under threshold 0.0032 

of Training PeriodGBP/USD. 
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We calculate the TMVEXT under 0.0032 for Training PeriodGBP/USD. Then 

we collect it from every trend. In the Training PeriodGBP/USD when the 

threshold is equal to 0.0032, we got 3,354 TMVEXT. 

  
Figure 5. 24 Distribution of TMVEXT in the Training periodGBP/USD under threshold 

0.0032 

Figure 5. 24 show the graph of the probability of TMVEXT happening in 

each bin and the probability of reaching a certain number of TMVEXT in 

the Training periodGBP/USD when the threshold is equal to 0.0032  
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The of TMVEXT in the Training periodGBP/USD under threshold 0.0016 that we pick 

Bin 
TMVEXT 

Frequency 

TMVEXT 

Probability  

Probabilities of reaching this 

TMVEXT 

1 0   

1.08110049 271 8.08% 100.00% 

…… 

5.37942646 2 0.06% 1.01% 

5.38  1.00% 

5.46052695 1 0.03% 0.95% 

…… 

9.110049 1 0.03% 0.03% 

Table 5. 20 The TMVEXT we pick to use under the distribution of TMVEXT in the 

Training periodGBP/USD under threshold 0.0032 

When the threshold is equal to 0.0032, we will use the TMVEXT value 5.38 

which would have a probability of 1.00% happening in the Training 

periodGBP/USD to nowcast the Training periodGBP/USD and Nowcasting 

periodGBP/USD, which will be used in Section 5.12.2. In this section, we pick 

up the TMVEXT only 1.00% historical probability happened in the Training 

periodGBP/USD. 

5.12.1.3 Distribution of MBM in Training periodGBP/USD under 

threshold 0.0032 

We use the distribution of MBM in the Training periodGBP/USD under 

threshold 0.0032 for nowcasting. We run the Nowcast Constant 

Algorithm (Section 5.6.1) on the Training periodGBP/USD for backtesting 

and the Nowcasting PeriodGBP/USD for assessment of the algorithm. We use 

the Nowcasting periodGBP/USD in our experiments. We conduct the 

experiments on DC thresholds 0.0032. We use the same methodology as in 
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Section 5.4 to summarize the distribution of MBM for GBP/USD.  

 
Figure 5. 25 Distribution of MBM in Training periodGBP/USD under threshold 0.0032 

Figure 5. 25 show the graph of the probability of MBM happening in each 

bin and the probability of reaching a certain number of MBM in the 

Training periodGBP/USD when the threshold is equal to 0.0032. 
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Distribution of Max Below Max in Training periodGBP/USD under Threshold 0.0032 

Bin MBM 

Frequency 

MBM 

Probabilities 

Probabilities of reaching this 

MBM value 

0.01 18239 9.66% 100.00% 

…… 

0.52 115 0.06% 1.06% 

0.53  1.00% 

0.54 100 0.05% 0.95% 

…… 

1 10 0.01% 0.01% 

Table 5. 21 Distribution of Max Below Max in Training periodGBP/USD under Threshold 

0.0032 

When the threshold is equal to 0.0016, we will choose 0.53 as the 

parameter to nowcast the Training periodGBP/USD and Nowcasting 

periodGBP/USD. We only got a 1.00% historical probability that BM is bigger 

than 0.53. We will use this probability to nowcast both training and 

nowcasting data under 0.0032.  

Now we follow the NCA nowcasting rule in Section 5.6, and in this section, 

we use the same PTMV and PBM to summarize the Training period and 

nowcasting.  

In this section, we will choose: 

Under NCA in Training periodGBP/USD when Threshold is equal to 0.0032 

we choose PTMV=5.38 and PBM=0.53. There is a 1% historical probability 

that the PTMV and PBM values would simultaneously exceed 5.38 and 0.53, 

respectively. 

In this case, when aTMV is bigger than 5.38 in a trend and MBM is bigger 
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than 0.53, we will be recorded as a nowcast. 

Under NCA in Nowcasting periodGBP/USD when Threshold is equal to 0.0032 

we choose PTMV=5.38 and PBM=0.53 as we introduced before. 

We repeat the work as we do in the Training periodGBP/USD, any of aTMV is 

bigger than 5.38 and MBM is bigger than 0.53 but less than 1, we recorded 

it as a nowcast. 

5.12.2 Result 

Nowcast results in the Training periodGBP/USD under threshold 0.0032 

Nowcast Indicator Value 
Timeliness analysis for  

Good nowcast 

TnT: Total number of trends 3,354 TimelinessPrice 
TimelinessTime 

(seconds) 

Nc: Number of nowcasts 45 Maximum Maximum 

GN: Number of good nowcast 32 0.0352 222,260 

CN: Number of correct 

nowcasts 
32 Minimum Minimum 

IN: Number of incorrect 

nowcasts 
13 0.0025 8 

Nc = CN + IN 45 Median Median 

Recall = CN / TnT 0.95% 0.0027 1908 

PrecisionCorrect = CN / Nc 71.11% Average Average 

PrecisionGood = GN / CN 100% 0.027 13,335 

False Positive = IN / Nc 28.89% 
Standard 

deviation 

Standard 

deviation 

 0.00020 39,546 

Nowcast results in the Nowcasting periodGBP/USD under threshold 0.0032 

Nowcast Indicator Value 
Timeliness analysis for  

Good nowcast 

TnT: Total number of trends 747 TimelinessPrice 
TimelinessTime 

(seconds) 

Nc: Number of nowcasts 9 Maximum Maximum 

GN: Number of good nowcast 7 0.00428 13,559 

CN: Number of correct 7 Minimum Minimum 
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nowcasts 

IN: Number of incorrect 

nowcasts 
2 0.00251 11 

Nc = CN + IN 9 Median Median 

Recall = CN / TnT 0.93% 0.00271 2,607 

PrecisionCorrect = CN / Nc 77.78% Average Average 

PrecisionGood = GN / CN 100% 0.00292 5,189 

False Positive = IN / Nc 22.22% 
Standard 

deviation 

Standard 

deviation 

 0.0006 5,461 

Table 5. 22 Both Training periodGBP/USD and Nowcasting periodGBP/USD nowcasting 

result  

Table 5. 22 Shows the result for both Training periodGBP/USD and 

Nowcasting periodGBP/USD nowcasting result.  

Under Training periodGBP/USD when the threshold is 0.0032. In the first two 

columns, we record the values of different performance indicators. In these 

two columns, we can see that in the Training periodGBP/USD, when the 

threshold is 0.0032, we have 3,354 trends in total. NCA nowcasts 45 times. 

In these 45 nowcasts, 32 are correct; among which all are useful. 71.11% 

of nowcast from the total nowcast are good (PrecisionCorrect), and 100.00% 

of correct nowcast are good nowcast (PrecisionGood). We use recall as a 

reference: out of all trends, 0.95% are nowcasted good. 

Within those good nowcasts, we summarize their timeliness in the 

rightmost two columns in Table 5. 22. Under the TimelinessPrice column, 

the maximum value of TimelinessPrice is 0.0352 and the minimum value is 

0.0025. In the Training periodGBP/USD when the threshold is 0.0032, the 

average timelinessPrice is 0.0027 and the median is 0.0027. Readers are 
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reminded that the theoretical TMV at DC confirmation is 1 by definition. 

So 0.0027 means we manage to nowcast the new trend nearly 0.27% of the 

way to DCC.  

TimelinessTime measures how early we manage to recognize a new trend 

before DCC. The bigger the TimelinessTime is, the earlier we know the new 

trend started. In the Training periodGBP/USD, when the threshold is 0.0032 the 

maximum TimelinessTime is 222,260 seconds and the minimum is 8. The 

average value of TimelinessTime is 13,335 which means, on average NCA 

can get around 13,335 seconds ahead of the DCC point. Furthermore, when 

we look at the standard deviation of both TimelinessPrice and TimelinessTime. 

At first, when we get the result of the standard deviation of TimelinessPrice 

is equal to 0.0002, this is a very small number which means most of the 

nowcasted prices are reasonably close to the average value of 

TimelinessPrice. The standard deviation of TimelinessTime is 39,546, which 

is quite a big number. This means in the good nowcast, we will get some 

of the new trends early before the DCC point, but some are not.  

The table above also shows the nowcasting results for NCA in the 

Nowcasting periodGBP/USD when the threshold is 0.0032. In the first two 

columns, we record the values of different performance indicators. In these 

two columns, we can see that in the nowcasting period, when the threshold 

is 0.0032, we have 747 trends in total. NCA nowcasts 9 times. In these 9 
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nowcasts, 7 are correct, among which 7 are useful (hence good). 77.78% 

of nowcast from the total nowcast are good (PrecisionCorrect), and 100% of 

correct nowcast are good nowcast (PrecisionGood). We use recall as a 

reference: out of all trends, 0.9%. 

Within those good nowcasts, we summarize the in the rightmost two 

columns in Table 5. 22 their timeliness. Under the TimelinessPrice column, 

the maximum value of TimelinessPrice is 0.00428 and the minimum value is 

0.00251. In the nowcasting period when the threshold is 0.0032, the 

average timelinessPrice is 0.0029 and the median is 0.0027. The standard 

deviation of TimelinessPrice is 0.32, which is reasonably small(0.0006）. 

TimelinessTime measures how early the NCA manage to recognize a new 

trend before the DCC. The bigger the TimelinessTime is, the earlier we 

manage to recognize the start of the new trend. In the Nowcasting 

periodGBP/USD, under threshold 0.0032, the median TimelinessTime is 2,607 

while the average value is 5,189. The big difference is explained by 

extreme values: The maximum TimelinessTime is 13,559 seconds and the 

minimum is 11. The standard deviation of TimelinessTime is 5,461 seconds, 

which is quite a big number. This means amongst the good nowcast, some 

are early before the DCC point, but some are not. 
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5.12.3 Discussion 

In this section, we shall assess the performance of NCA based on the results 

presented so far. Key performance measures are shown below. We shall 

comment on NCA’s nowcasts’ timeliness in terms of price and time. We 

shall also comment on the robustness of NCA. 

Summary of key performance measures under GBP/USD  

 Training PeriodGBP/USD Nowcasting PeriodGBP/USD 

Threshold 0.0032 0.0032 

PrecisionCorrect 71.11% 77.78% 

PrecissionGood 100.00% 100.00% 

Recall 0.95% 0.9% 

Average 

TimelinessPrice 
0.0027 0.0029 

Standard deviation 

of TimelinessPrice 
0.0002 0.0006 

Maximum 

TimelinessPrice 
0.1545 0.00428 

Average 

TimelinessTime 
13,335 sec. 5,189 sec. 

Standard deviation 

of TimelinessTime 
39,546 sec. 5,461 sec. 

Maximum 

TimelinessTime 
222,260 sec. 13,559 sec. 

Table 5. 23 Summary of key performance measures of nowcasting under GBP/USD 

In summary, Table 5. 23 shows that the average TimelinessPrice in both the 

Training and Nowcast periods for USD/JPY under thresholds 0.0032 

between 0.0027 and 0.0029. That means, on average, good nowcasts were 

made around 2.7% of the price from the extreme point to the DCC point. 

The relatively small standard deviations of TimelinessPrice across Table 5. 

23 suggest that most of the nowcasts are not far from around 10% from the 

extreme price to the DCC price. 
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Table 5. 23 also provides evidence that NCA provides timely nowcasts in 

terms of time: the average Timeliness in both Training and Nowcasting 

Periods under GBP/USD, under threshold 0.0032, ranging from 39,546 to 

5,461 seconds. The standard deviations of TimelinessTime are big compared 

to the averages. This suggests that thousands of seconds can be gained 

through good nowcasting by NCA. 

5.13. Conclusion on Nowcasting 

In summary, this chapter presents a nowcasting problem in DC: the 

problem of recognizing a new trend before reaching the DC confirmation 

(DCC) point (Section 5.1). We have introduced a new algorithm, namely 

NCA (Section 5.6.1), for this nowcasting problem. NCA makes use of two 

indicators in DC: aTMV (05.2) and BM (0Section 5.2). The principle of 

the method is: as a trend reaches a higher aTMV, the probability of 

directional change happening increases (see Section 5.4). The higher the 

price bounces back from the maximum aTMV, the more likely that the 

direction has already changed (Section 5.5). Nowcast in NCA is based on 

the simultaneous happening of these two events with a reasonably big 

aTMV and BM thresholds (Section 5.6.4). 

Experiments were set up (Section 5.7) to run NCA on a substantial amount 

of high-frequency data (Section 5.3). Results (Section 5.8) suggest that 

NCA is effective, in the sense that it can nowcast new trends way before 
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DCC points, both in terms of both price (TimelinessPrice, Section 5.9.1) and 

time (TimelinessTime, Section 5.9.2). We have also shown that NCA is 

robust across market conditions (Section 5.9.3) and thresholds (Section 0). 

As parameters used by NCA were picked arbitrarily, there is still plenty of 

room for improvement (Section 5.9.4). 

In Chapter 3, we presented a guideline for limiting the thresholds to be 

used for DC. We suggested that if we use a threshold that is too small, DC 

summaries contain a lot of noise. In section 5.10. we run experiments to 

test our guideline this guideline. The results in section 5.10.2 show that if 

we use a small threshold that is out of our guideline range, no nowcasting 

could be observed under the training period because most overshoots are 

too small (see discussion in Section 5.10.3). In conclusion, this set of 

experiments supports the usefulness of our guideline in Chapter 3. 

NCA is proposed as a proof of concept. Parameters for NCA were picked 

arbitrarily. If NCA were to be developed to be operational, then the 

parameters should be fine-tuned. This will be left for future research. 

More experiments have been conducted to test the robustness of NCA. For 

experiments with USD/JPY (Section 5.11) and GBP/USD (Section 5.12), 

we picked different PBM and PTMV parameters (we used 1% historical 

probability for both). The results show that the performance of NCA is 

insensitive to the parameters picked. In other words, preliminary research 
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suggests that NCA is robust. 

More experimental results (on USD/JPY and GBP/USD) were presented 

in Sections 5.11 and 5.12. The results show that NCA’s performance was 

robust across markets. They also show that NCA’s performance is not 

sensitive to the NCA parameters picked.  
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6. Chapter Six: Conclusion  

6.1. Summary 

This section summarizes the work done in this thesis. This research is built 

under the framework of Directional Change (DC). It builds on profiling 

research conducted by Ran Tao (Tao PhD 2018, Tsang et al 2017), which 

defined several indicators. 

6.1.1. The usable range of thresholds for profiling 

We have proposed two guidelines for assessing the threshold that we have 

chosen is too small or too big. This is a data-driven approach that data will 

tell us whether a threshold is too small or too big. It is based on Olsen’s 

empirical research (Glattfelder, 2011) and profiling concepts proposed by 

Tsang et al (2017) and Tao (2018). 

6.1.2. Monitor markets with multiple indicators 

We have tracked the EUR/USD market (the most traded currency market) 

over a long period of time (June 2009 to July 2016) using standard 

deviation in returns under Time Series (TS) and median aTMVEXT and 

NDC under DC. We show that while volatility could be high under 

multiple measures, it could be low under one indicator, but high under 

another. This suggests that all of the above indicators are useful. 
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6.1.3. Nowcasting with multiple indicators 

By definition, that DC is only confirmed in hindsight. A trend may have 

reversed, but it is not recognized before we reach the next DC confirmation 

point. We have created an algorithm called Nowcasting Constant 

Algorithm (NCA) with new indicators and demonstrated how, together 

with established DC indicators, it could help us nowcast whether a new 

trend has begun in DC. NDC has been tested across markets with different 

parameters. Results suggest that the performance of NDC is consistent 

across markets and parameters. 

6.2. Contributions 

This thesis contributes to the continuing research on the use of DC in the 

financial market: 

Contribution 1: Usable range of thresholds for profiling 

This is the first piece of work that studies what is the range of 

usable thresholds for profiling (Section 3.6). 

This is important as when thresholds which are either too small or too big 

are used, the profiles observed are distorted by noise. By proposing a data-

driven approach for determining the useful range of thresholds, we 

contribute to scientific research in DC. 
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Contribution 2: Tracking and monitoring markets with multiple 

indicators  

We have confirmed the hypothesis that each volatility indicator 

provides a partial view of volatility in the market. We have 

demonstrated how DC indicators could complement TS in 

tracking the market for volatility information (Section 4.6). The 

new indicators we set up in this section lay the foundation for the 

next Contribution. 

Contribution 3: Formulation of nowcasting problem in DC 

We have formulated a nowcasting problem in DC: the problem 

is to detect directional change before the DC confirmation point 

is reached (Section 5.1).  

Contribution 4: Introduction of new DC indicator: BM 

We have introduced BM, a new indicator in DC (Definition 5.4, 

Section 5.2.3). We have shown that it is useful for nowcasting 

new trends.  

Contribution 5: Nowcasting new trends 

We have proposed an algorithm (NCA, Section 5.6.1) to nowcast 

new trends using aTMV and BM. We have demonstrated how 
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this algorithm allows us to nowcast directional effectively. 

6.3. Future work 

We have shown in Chapter 4 that by using DC indicators to track the 

market, we could not only reinforce what we learn from TC, we could also 

gain information beyond TS. In this thesis, we have only used two 

indicators that represent different kinds of volatility under DC. Is there any 

chance that we can combine DC indicators and SD? If yes, could we 

introduce a formulate that contain DC and TS indicators altogether? This 

is the first direction that we would like to explore in the future.  

In Chapter 5, we have only proposed a simple nowcasting algorithm, NCA. 

Parameters for NCA were picked arbitrarily. They show that the 

performance of NCA does not rely on fine-tuning of its parameters. That 

does not mean that NCA could not be improved with fine-tuned parameters.  

NCA uses fixed PTMV and PBM values. There is no reason why PBM should 

not be varied depending on Max13. In DC, when aTMV is high, the trend 

is more likely to end soon (see Section 5.2.1). Therefore, when Max is high, 

we may nowcast a change of direction with a smaller BM value (see 

Section 5.2.2). On the other hand, when the aTMV of Max is low, we 

demand a bigger BM to increase the probability that we enter into new 

 
13 Readers are reminded that Max is the maximum aTMV in the current trend (Section 5.2.2). 
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trends.  

Following this principle, let us introduce a new algorithm which we shall 

call Nowcast Progressive Algorithm (NPA). NFA takes three parameters, 

PTMV, PBM1 and PBM2. Here PBM1 and PBM2 are the parameters that we choose 

used under different ranges of PTMV we choose, with PBM1 smaller PBM2. 

When the aTMV of Max reaches the predefined threshold PTMV, we apply 

the smaller BM value PBM1: a new trend is nowcasted if the BM of the 

current price is greater than PBM1. When the aTMV of Max is less than PTMV, 

we apply the bigger BM value PBM2. 

Nowcast Progressive Algorithm (PTMV, PBM1 and PBM2): 

Given a current transaction ct: 

• If (1) aTMV(Max) ≥ PTMV and (2) BM(ct) ≥ PBM1, then we 

nowcast that ct is in a new trend; 

• If (3) aTMV(Max)<PTMV and (4) BM(ct) ≥ PBM2, then we 

nowcast that ct is in a new trend 

• Otherwise, we do not nowcast that ct is in a new trend. 

For example, we track each new transaction as it emerges. We record the 

Max of the current trend. If its aTMV of Max is greater than the PTMV value, 

then we track the BM value of the transactions. As soon as BM(ct) exceeds 
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PBM1, we nowcast that a new trend has started. If the aTMV of Max is 

smaller than PTMV, then PBM2 is applied.  

It is worth noting that both PBM1 and PBM2 cannot be bigger than one, this 

is because once BM is bigger than one, we have already entered into a new 

trend. In other words: 

0 < PBM1 < PBM2 < 1 

There is no reason why one should stop at NPA. With deeper analysis, one 

could extend NPA by making PBM a function of PTMV: as the aTMV of Max 

increases, PBM is progressively reduced. This will be left for future research. 

■ 
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7. Appendix 

Table A.1. Distribution of TMVEXT in Training period under threshold 

0.0016 

Bin 
TMVEXT 

Frequency 

TMVEXT 

Probability  

Probabilities of reaching this 

TMVEXT 

1 - - 100.00% 

1.09575712 1101 11.53% 88.47% 

1.19151424 897 9.39% 79.08% 

1.28727136 729 7.63% 71.45% 

1.38302848 689 7.21% 64.24% 

1.4787856 595 6.23% 58.01% 

1.57454272 570 5.97% 52.04% 

1.67029984 524 5.49% 46.56% 

1.76605696 437 4.57% 41.98% 

1.86181408 370 3.87% 38.11% 

1.9575712 386 4.04% 34.07% 

2.05332832 321 3.36% 30.71% 

2.14908544 279 2.92% 27.78% 

2.24484256 276 2.89% 24.90% 

2.34059968 227 2.38% 22.52% 

2.4363568 203 2.13% 20.39% 

2.53211392 170 1.78% 18.61% 

2.62787104 159 1.66% 16.95% 

2.72362816 164 1.72% 15.23% 

2.81938528 140 1.47% 13.77% 

2.9151424 140 1.47% 12.30% 

3.01089952 99 1.04% 11.26% 

3.10665664 102 1.07% 10.20% 

3.20241376 102 1.07% 9.13% 

3.29817088 85 0.89% 8.24% 

3.393928 69 0.72% 7.52% 

3.48968512 63 0.66% 6.86% 

3.58544224 56 0.59% 6.27% 

3.68119936 73 0.76% 5.51% 

3.77695648 55 0.58% 4.93% 

3.8727136 60 0.63% 4.30% 

3.96847072 31 0.32% 3.98% 

4.06422784 29 0.30% 3.67% 

4.15998496 39 0.41% 3.27% 
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4.25574208 24 0.25% 3.02% 

4.3514992 30 0.31% 2.70% 

4.44725632 26 0.27% 2.43% 

4.54301344 22 0.23% 2.20% 

4.63877056 18 0.19% 2.01% 

4.73452768 10 0.10% 1.91% 

4.8302848 17 0.18% 1.73% 

4.92604192 11 0.12% 1.61% 

5.02179904 15 0.16% 1.46% 

5.11755616 13 0.14% 1.32% 

5.21331328 11 0.12% 1.20% 

5.3090704 14 0.15% 1.06% 

5.40482752 8 0.08% 0.97% 

5.50058464 7 0.07% 0.90% 

5.59634176 8 0.08% 0.82% 

5.69209888 5 0.05% 0.76% 

5.787856 9 0.09% 0.67% 

5.88361312 6 0.06% 0.61% 

5.97937024 7 0.07% 0.53% 

6.07512736 4 0.04% 0.49% 

6.17088448 4 0.04% 0.45% 

6.2666416 6 0.06% 0.39% 

6.36239872 2 0.02% 0.37% 

6.45815584 6 0.06% 0.30% 

6.55391296 5 0.05% 0.25% 

6.64967008 2 0.02% 0.23% 

6.7454272 2 0.02% 0.21% 

6.84118432 4 0.04% 0.17% 

6.93694144 0 0.00% 0.17% 

7.03269856 0 0.00% 0.17% 

7.12845568 2 0.02% 0.15% 

7.2242128 1 0.01% 0.14% 

7.31996992 0 0.00% 0.14% 

7.41572704 1 0.01% 0.13% 

7.51148416 0 0.00% 0.13% 

7.60724128 0 0.00% 0.13% 

7.7029984 1 0.01% 0.12% 

7.79875552 1 0.01% 0.10% 

7.89451264 1 0.01% 0.09% 

7.99026976 2 0.02% 0.07% 

8.08602688 0 0.00% 0.07% 

8.181784 1 0.01% 0.06% 

8.27754112 1 0.01% 0.05% 
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8.37329824 1 0.01% 0.04% 

8.46905536 0 0.00% 0.04% 

8.56481248 0 0.00% 0.04% 

8.6605696 1 0.01% 0.03% 

8.75632672 1 0.01% 0.02% 

8.85208384 1 0.01% 0.01% 

8.94784096 0 0.00% 0.01% 

9.04359808 0 0.00% 0.01% 

9.1393552 0 0.00% 0.01% 

9.23511232 0 0.00% 0.01% 

9.33086944 0 0.00% 0.01% 

9.42662656 0 0.00% 0.01% 

9.52238368 0 0.00% 0.01% 

9.6181408 0 0.00% 0.01% 

9.71389792 0 0.00% 0.01% 

9.80965504 0 0.00% 0.01% 

9.90541216 0 0.00% 0.01% 

10.00116928 0 0.00% 0.01% 

10.0969264 0 0.00% 0.01% 

10.19268352 0 0.00% 0.01% 

10.28844064 0 0.00% 0.01% 

10.38419776 0 0.00% 0.01% 

10.47995488 0 0.00% 0.01% 

10.575712 1 0.01% 0.01% 
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Table A.2. Distribution of TMVEXT in the Nowcasting period under 

threshold 0.0016 

Bin 
TMV  

Frequency  

TMV  

Probabilities 

Probabilities of reaching this 

TMV 

1   100.00% 

1.09157793 557 11.99% 88.01% 

1.18315586 491 10.57% 77.43% 

1.27473379 351 7.56% 69.88% 

1.36631172 319 6.87% 63.01% 

1.45788965 287 6.18% 56.83% 

1.54946758 226 4.87% 51.96% 

1.64104551 213 4.59% 47.37% 

1.73262344 191 4.11% 43.26% 

1.82420137 170 3.66% 39.60% 

1.9157793 152 3.27% 36.33% 

2.00735723 131 2.82% 33.51% 

2.09893516 137 2.95% 30.56% 

2.19051309 162 3.49% 27.07% 

2.28209102 113 2.43% 24.63% 

2.37366895 134 2.89% 21.75% 

2.46524688 94 2.02% 19.72% 

2.55682481 108 2.33% 17.40% 

2.64840274 84 1.81% 15.59% 

2.73998067 67 1.44% 14.15% 

2.8315586 65 1.40% 12.75% 

2.92313653 74 1.59% 11.15% 

3.01471446 56 1.21% 9.95% 

3.10629239 46 0.99% 8.96% 

3.19787032 42 0.90% 8.05% 

3.28944825 27 0.58% 7.47% 

3.38102618 36 0.78% 6.70% 

3.47260411 29 0.62% 6.07% 

3.56418204 21 0.45% 5.62% 

3.65575997 29 0.62% 5.00% 

3.7473379 22 0.47% 4.52% 

3.83891583 22 0.47% 4.05% 

3.93049376 13 0.28% 3.77% 

4.02207169 16 0.34% 3.42% 

4.11364962 15 0.32% 3.10% 

4.20522755 13 0.28% 2.82% 

4.29680548 11 0.24% 2.58% 
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4.38838341 10 0.22% 2.37% 

4.47996134 12 0.26% 2.11% 

4.57153927 12 0.26% 1.85% 

4.6631172 8 0.17% 1.68% 

4.75469513 8 0.17% 1.51% 

4.84627306 3 0.06% 1.44% 

4.93785099 8 0.17% 1.27% 

5.02942892 2 0.04% 1.23% 

5.12100685 4 0.09% 1.14% 

5.21258478 8 0.17% 0.97% 

5.30416271 4 0.09% 0.88% 

5.39574064 7 0.15% 0.73% 

5.48731857 3 0.06% 0.67% 

5.5788965 4 0.09% 0.58% 

5.67047443 0 0.00% 0.58% 

5.76205236 2 0.04% 0.54% 

5.85363029 3 0.06% 0.47% 

5.94520822 4 0.09% 0.39% 

6.03678615 1 0.02% 0.37% 

6.12836408 3 0.06% 0.30% 

6.21994201 1 0.02% 0.28% 

6.31151994 1 0.02% 0.26% 

6.40309787 1 0.02% 0.24% 

6.4946758 1 0.02% 0.22% 

6.58625373 1 0.02% 0.19% 

6.67783166 0 0.00% 0.19% 

6.76940959 0 0.00% 0.19% 

6.86098752 2 0.04% 0.15% 

6.95256545 0 0.00% 0.15% 

7.04414338 1 0.02% 0.13% 

7.13572131 0 0.00% 0.13% 

7.22729924 0 0.00% 0.13% 

7.31887717 1 0.02% 0.11% 

7.4104551 0 0.00% 0.11% 

7.50203303 1 0.02% 0.09% 

7.59361096 1 0.02% 0.06% 

7.68518889 0 0.00% 0.06% 

7.77676682 0 0.00% 0.06% 

7.86834475 0 0.00% 0.06% 

7.95992268 0 0.00% 0.06% 

8.05150061 0 0.00% 0.06% 

8.14307854 0 0.00% 0.06% 

8.23465647 0 0.00% 0.06% 
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8.3262344 0 0.00% 0.06% 

8.41781233 0 0.00% 0.06% 

8.50939026 0 0.00% 0.06% 

8.60096819 0 0.00% 0.06% 

8.69254612 0 0.00% 0.06% 

8.78412405 1 0.02% 0.04% 

8.87570198 0 0.00% 0.04% 

8.96727991 0 0.00% 0.04% 

9.05885784 0 0.00% 0.04% 

9.15043577 1 0.02% 0.02% 

9.2420137 0 0.00% 0.02% 

9.33359163 0 0.00% 0.02% 

9.42516956 0 0.00% 0.02% 

9.51674749 0 0.00% 0.02% 

9.60832542 0 0.00% 0.02% 

9.69990335 0 0.00% 0.02% 

9.79148128 0 0.00% 0.02% 

9.88305921 0 0.00% 0.02% 

9.97463714 0 0.00% 0.02% 

10.06621507 0 0.00% 0.02% 

10.157793 1 0.02%  
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Table A.3. Distribution of TMVEXT in the Training period under 

threshold 0.0032 

Bin 
TMV  

Frequency  

TMV  

Probabilities 

Probabilities of reaching this 

TMV 

1   100.00% 

1.07790733 154 7.50% 92.50% 

1.15581466 144 7.02% 85.48% 

1.23372199 108 5.26% 80.21% 

1.31162932 129 6.29% 73.93% 

1.38953665 126 6.14% 67.79% 

1.46744398 109 5.31% 62.48% 

1.54535131 99 4.82% 57.65% 

1.62325864 98 4.78% 52.88% 

1.70116597 79 3.85% 49.03% 

1.7790733 65 3.17% 45.86% 

1.85698063 82 4.00% 41.86% 

1.93488796 51 2.49% 39.38% 

2.01279529 57 2.78% 36.60%  

2.09070262 56 2.73% 33.87% 

2.16860995 47 2.29% 31.58% 

2.24651728 49 2.39% 29.19% 

2.32442461 42 2.05% 27.14% 

2.40233194 36 1.75% 25.39% 

2.48023927 46 2.24% 23.15% 

2.5581466 36 1.75% 21.39% 

2.63605393 35 1.71% 19.69% 

2.71396126 22 1.07% 18.62% 

2.79186859 29 1.41% 17.20% 

2.86977592 18 0.88% 16.33% 

2.94768325 25 1.22% 15.11% 

3.02559058 20 0.97% 14.13% 

3.10349791 28 1.36% 12.77% 

3.18140524 20 0.97% 11.79% 

3.25931257 15 0.73% 11.06% 

3.3372199 18 0.88% 10.19% 

3.41512723 19 0.93% 9.26% 

3.49303456 11 0.54% 8.72% 

3.57094189 14 0.68% 8.04% 

3.64884922 12 0.58% 7.46% 

3.72675655 14 0.68% 6.77% 

3.80466388 7 0.34% 6.43% 
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3.88257121 9 0.44% 5.99% 

3.96047854 9 0.44% 5.56% 

4.03838587 7 0.34% 5.21% 

4.1162932 11 0.54% 4.68% 

4.19420053 10 0.49% 4.19% 

4.27210786 6 0.29% 3.90% 

4.35001519 6 0.29% 3.61% 

4.42792252 6 0.29% 3.31% 

4.50582985 4 0.19% 3.12% 

4.58373718 4 0.19% 2.92% 

4.66164451 4 0.19% 2.73% 

4.73955184 5 0.24% 2.49% 

4.81745917 3 0.15% 2.34% 

4.8953665 2 0.10% 2.24% 

4.97327383 2 0.10% 2.14% 

5.05118116 1 0.05% 2.10% 

5.12908849 2 0.10% 2.00% 

5.20699582 4 0.19% 1.80% 

5.28490315 2 0.10% 1.71% 

5.36281048 5 0.24% 1.46% 

5.44071781 5 0.24% 1.22% 

5.51862514 4 0.19% 1.02% 

5.59653247 0 0.00% 1.02% 

5.6744398 3 0.15% 0.88% 

5.75234713 1 0.05% 0.83% 

5.83025446 3 0.15% 0.68% 

5.90816179 2 0.10% 0.58% 

5.98606912 1 0.05% 0.54% 

6.06397645 0 0.00% 0.54% 

6.14188378 0 0.00% 0.54% 

6.21979111 2 0.10% 0.44% 

6.29769844 1 0.05% 0.39% 

6.37560577 0 0.00% 0.39% 

6.4535131 1 0.05% 0.34% 

6.53142043 0 0.00% 0.34% 

6.60932776 0 0.00% 0.34% 

6.68723509 0 0.00% 0.34% 

6.76514242 0 0.00% 0.34% 

6.84304975 0 0.00% 0.34% 

6.92095708 0 0.00% 0.34% 

6.99886441 1 0.05% 0.29% 

7.07677174 0 0.00% 0.29% 

7.15467907 1 0.05% 0.24% 
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7.2325864 0 0.00% 0.24% 

7.31049373 0 0.00% 0.24% 

7.38840106 0 0.00% 0.24% 

7.46630839 0 0.00% 0.24% 

7.54421572 1 0.05% 0.19% 

7.62212305 0 0.00% 0.19% 

7.70003038 0 0.00% 0.19% 

7.77793771 1 0.05% 0.15% 

7.85584504 0 0.00% 0.15% 

7.93375237 0 0.00% 0.15% 

8.0116597 0 0.00% 0.15% 

8.08956703 0 0.00% 0.15% 

8.16747436 0 0.00% 0.15% 

8.24538169 2 0.10% 0.05% 

8.32328902 0 0.00% 0.05% 

8.40119635 0 0.00% 0.05% 

8.47910368 0 0.00% 0.05% 

8.55701101 0 0.00% 0.05% 

8.63491834 0 0.00% 0.05% 

8.71282567 0 0.00% 0.05% 

8.790733 1 0.05%  
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Table A.4. Distribution of TMVEXT in the Nowcasting period under 

threshold 0.0032 

Bin 
TMV  

Frequency  

TMV  

Probabilities 

Probabilities of reaching this 

TMV 

1   100.00% 

1.05194809 39 3.29% 96.71% 

1.10389618 72 6.08% 90.63% 

1.15584427 61 5.15% 85.49% 

1.20779236 129 10.89% 74.60% 

1.25974045 75 6.33% 68.27% 

1.31168854 56 4.73% 63.54% 

1.36363663 54 4.56% 58.99% 

1.41558472 67 5.65% 53.33% 

1.46753281 55 4.64% 48.69% 

1.5194809 28 2.36% 46.33% 

1.57142899 28 2.36% 43.97% 

1.62337708 22 1.86% 42.11% 

1.67532517 21 1.77% 40.34% 

1.72727326 29 2.45% 37.89% 

1.77922135 23 1.94% 35.95% 

1.83116944 27 2.28% 33.67% 

1.88311753 19 1.60% 32.07% 

1.93506562 26 2.19% 29.87% 

1.98701371 17 1.43% 28.44% 

2.0389618 20 1.69% 26.75% 

2.09090989 12 1.01% 25.74% 

2.14285798 22 1.86% 23.88% 

2.19480607 13 1.10% 22.78% 

2.24675416 12 1.01% 21.77% 

2.29870225 11 0.93% 20.84% 

2.35065034 7 0.59% 20.25% 

2.40259843 10 0.84% 19.41% 

2.45454652 9 0.76% 18.65% 

2.50649461 11 0.93% 17.72% 

2.5584427 11 0.93% 16.79% 

2.61039079 14 1.18% 15.61% 

2.66233888 12 1.01% 14.60% 

2.71428697 10 0.84% 13.76% 

2.76623506 10 0.84% 12.91% 

2.81818315 7 0.59% 12.32% 

2.87013124 10 0.84% 11.48% 
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2.92207933 9 0.76% 10.72% 

2.97402742 6 0.51% 10.21% 

3.02597551 3 0.25% 9.96% 

3.0779236 5 0.42% 9.54% 

3.12987169 5 0.42% 9.11% 

3.18181978 2 0.17% 8.95% 

3.23376787 3 0.25% 8.69% 

3.28571596 7 0.59% 8.10% 

3.33766405 6 0.51% 7.59% 

3.38961214 4 0.34% 7.26% 

3.44156023 6 0.51% 6.75% 

3.49350832 6 0.51% 6.24% 

3.54545641 5 0.42% 5.82% 

3.5974045 5 0.42% 5.40% 

3.64935259 3 0.25% 5.15% 

3.70130068 2 0.17% 4.98% 

3.75324877 3 0.25% 4.73% 

3.80519686 1 0.08% 4.64% 

3.85714495 3 0.25% 4.39% 

3.90909304 4 0.34% 4.05% 

3.96104113 1 0.08% 3.97% 

4.01298922 0 0.00% 3.97% 

4.06493731 3 0.25% 3.71% 

4.1168854 4 0.34% 3.38% 

4.16883349 2 0.17% 3.21% 

4.22078158 1 0.08% 3.12% 

4.27272967 2 0.17% 2.95% 

4.32467776 2 0.17% 2.78% 

4.37662585 1 0.08% 2.70% 

4.42857394 2 0.17% 2.53% 

4.48052203 0 0.00% 2.53% 

4.53247012 2 0.17% 2.36% 

4.58441821 0 0.00% 2.36% 

4.6363663 4 0.34% 2.03% 

4.68831439 1 0.08% 1.94% 

4.74026248 0 0.00% 1.94% 

4.79221057 3 0.25% 1.69% 

4.84415866 2 0.17% 1.52% 

4.89610675 0 0.00% 1.52% 

4.94805484 6 0.51% 1.01% 

5.00000293 2 0.17% 0.84% 

5.05195102 0 0.00% 0.84% 

5.10389911 2 0.17% 0.68% 
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5.1558472 0 0.00% 0.68% 

5.20779529 2 0.17% 0.51% 

5.25974338 0 0.00% 0.51% 

5.31169147 1 0.08% 0.42% 

5.36363956 1 0.08% 0.34% 

5.41558765 1 0.08% 0.25% 

5.46753574 0 0.00% 0.25% 

5.51948383 0 0.00% 0.25% 

5.57143192 0 0.00% 0.25% 

5.62338001 0 0.00% 0.25% 

5.6753281 0 0.00% 0.25% 

5.72727619 1 0.08% 0.17% 

5.77922428 0 0.00% 0.17% 

5.83117237 0 0.00% 0.17% 

5.88312046 0 0.00% 0.17% 

5.93506855 0 0.00% 0.17% 

5.98701664 0 0.00% 0.17% 

6.03896473 0 0.00% 0.17% 

6.09091282 0 0.00% 0.17% 

6.14286091 1 0.08% 0.08% 

6.194809 1 0.08%  
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Table A.5. Distribution of Max Below Max in the Training period 

under Threshold 0.0016 

Bin MBM 

Frequency 

MBM 

Probabilities 

Probabilities of reaching this MBM 

value 

0.01 16168 2.87% 100.00% 

0.02 14776 2.62% 97.13% 

0.03 14521 2.58% 94.51% 

0.04 15027 2.67% 91.93% 

0.05 140909 25.01% 89.26%  

0.06 36137 6.41% 64.26% 

0.07 21582 3.83% 57.85% 

0.08 16566 2.94% 54.02% 

0.09 36879 6.54% 51.08% 

0.1 61216 10.86% 44.53% 

0.11 17758 3.15% 33.67% 

0.12 8824 1.57% 30.52% 

0.13 10646 1.89% 28.95% 

0.14 23065 4.09% 27.06% 

0.15 19592 3.48% 22.97% 

0.16 7719 1.37% 19.49% 

0.17 5019 0.89% 18.12% 

0.18 7669 1.36% 17.23% 

0.19 9359 1.66% 15.87% 

0.2 6557 1.16% 14.21% 

0.21 4215 0.75% 13.05% 

0.22 4204 0.75% 12.30% 

0.23 4783 0.85% 11.55% 

0.24 4552 0.81% 10.70% 

0.25 3167 0.56% 9.89% 

0.26 3003 0.53% 9.33% 

0.27 2886 0.51% 8.80% 

0.28 2956 0.52% 8.29% 

0.29 2527 0.45% 7.76% 

0.3 2285 0.41% 7.31% 

0.31 2407 0.43% 6.91% 

0.32 1887 0.33% 6.48% 

0.33 1956 0.35% 6.15% 

0.34 1756 0.31% 5.80% 

0.35 1585 0.28% 5.49% 

0.36 1555 0.28% 5.21% 
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0.37 1548 0.27% 4.93% 

0.38 1393 0.25% 4.66% 

0.39 1208 0.21% 4.41% 

0.4 1262 0.22% 4.19% 

0.41 1100 0.20% 3.97% 

0.42 1186 0.21% 3.78% 

0.43 1004 0.18% 3.57% 

0.44 1036 0.18% 3.39% 

0.45 863 0.15% 3.20% 

0.46 908 0.16% 3.05% 

0.47 807 0.14% 2.89% 

0.48 772 0.14% 2.75% 

0.49 706 0.13% 2.61% 

0.5 634 0.11% 2.48% 

0.51 730 0.13% 2.37% 

0.52 629 0.11% 2.24% 

0.53 695 0.12% 2.13% 

0.54 448 0.08% 2.01% 

0.55 559 0.10% 1.93% 

0.56 495 0.09% 1.83% 

0.57 542 0.10% 1.74% 

0.58 429 0.08% 1.64% 

0.59 409 0.07% 1.57% 

0.6 458 0.08% 1.49% 

0.61 448 0.08% 1.41% 

0.62 430 0.08% 1.33% 

0.63 329 0.06% 1.26% 

0.64 352 0.06% 1.20% 

0.65 389 0.07% 1.14% 

0.66 356 0.06% 1.07% 

0.67 339 0.06% 1.00% 

0.68 273 0.05% 0.95% 

0.69 262 0.05% 0.90% 

0.7 261 0.05% 0.85% 

0.71 248 0.04% 0.80% 

0.72 260 0.05% 0.76% 

0.73 233 0.04% 0.71% 

0.74 274 0.05% 0.67% 

0.75 224 0.04% 0.62% 

0.76 209 0.04% 0.58% 

0.77 184 0.03% 0.55% 

0.78 171 0.03% 0.51% 
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0.79 209 0.04% 0.48% 

0.8 196 0.03% 0.45% 

0.81 153 0.03% 0.41% 

0.82 171 0.03% 0.38% 

0.83 174 0.03% 0.35% 

0.84 160 0.03% 0.32% 

0.85 125 0.02% 0.29% 

0.86 125 0.02% 0.27% 

0.87 162 0.03% 0.25% 

0.88 132 0.02% 0.22% 

0.89 126 0.02% 0.20% 

0.9 74 0.01% 0.18% 

0.91 120 0.02% 0.16% 

0.92 139 0.02% 0.14% 

0.93 89 0.02% 0.12% 

0.94 74 0.01% 0.10% 

0.95 86 0.02% 0.09% 

0.96 82 0.01% 0.07% 

0.97 105 0.02% 0.06% 

0.98 78 0.01% 0.04% 

0.99 71 0.01% 0.03% 

1 72 0.01% 0.01% 
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Table A.6. Distribution of Max Below Max in Training period under 

Threshold 0.0032 

Bin MBM 

Frequency 

MBM 

Probabilities 

Probabilities of reaching this MBM 

value 

0.01 12461 5.32% 100.00% 

0.02 11570 4.94% 94.68% 

0.03 68389 29.17% 89.75% 

0.04 13744 5.86% 60.58% 

0.05 38282 16.33% 54.72% 

0.06 10034 4.28% 38.39% 

0.07 13846 5.91% 34.11% 

0.08 11238 4.79% 28.20% 

0.09 5455 2.33% 23.41% 

0.1 6983 2.98% 21.08% 

0.11 3760 1.60% 18.10% 

0.12 4348 1.85% 16.50% 

0.13 2937 1.25% 14.65% 

0.14 2798 1.19% 13.39% 

0.15 2390 1.02% 12.20% 

0.16 2187 0.93% 11.18% 

0.17 1851 0.79% 10.25% 

0.18 1691 0.72% 9.46% 

0.19 1553 0.66% 8.74% 

0.2 1391 0.59% 8.07% 

0.21 1267 0.54% 7.48% 

0.22 1164 0.50% 6.94% 

0.23 1010 0.43% 6.44% 

0.24 960 0.41% 6.01% 

0.25 809 0.35% 5.60% 

0.26 814 0.35% 5.26% 

0.27 709 0.30% 4.91% 

0.28 650 0.28% 4.61% 

0.29 636 0.27% 4.33% 

0.3 611 0.26% 4.06% 

0.31 592 0.25% 3.80% 

0.32 465 0.20% 3.55% 

0.33 512 0.22% 3.35% 

0.34 442 0.19% 3.13% 

0.35 423 0.18% 2.94% 

0.36 373 0.16% 2.76% 
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0.37 351 0.15% 2.60% 

0.38 353 0.15% 2.45% 

0.39 245 0.10% 2.30% 

0.4 308 0.13% 2.20% 

0.41 290 0.12% 2.07% 

0.42 282 0.12% 1.94% 

0.43 206 0.09% 1.82% 

0.44 254 0.11% 1.73% 

0.45 164 0.07% 1.63% 

0.46 203 0.09% 1.56% 

0.47 176 0.08% 1.47% 

0.48 169 0.07% 1.39% 

0.49 196 0.08% 1.32% 

0.5 142 0.06% 1.24% 

0.51 132 0.06% 1.18% 

0.52 125 0.05% 1.12% 

0.53 112 0.05% 1.07% 

0.54 136 0.06% 1.02% 

0.55 111 0.05% 0.96% 

0.56 92 0.04% 0.91% 

0.57 117 0.05% 0.88% 

0.58 91 0.04% 0.83% 

0.59 89 0.04% 0.79% 

0.6 87 0.04% 0.75% 

0.61 84 0.04% 0.71% 

0.62 84 0.04% 0.68% 

0.63 78 0.03% 0.64% 

0.64 70 0.03% 0.61% 

0.65 82 0.03% 0.58% 

0.66 59 0.03% 0.54% 

0.67 62 0.03% 0.52% 

0.68 53 0.02% 0.49% 

0.69 60 0.03% 0.47% 

0.7 48 0.02% 0.44% 

0.71 48 0.02% 0.42% 

0.72 50 0.02% 0.40% 

0.73 49 0.02% 0.38% 

0.74 53 0.02% 0.36% 

0.75 50 0.02% 0.34% 

0.76 45 0.02% 0.32% 

0.77 55 0.02% 0.30% 

0.78 38 0.02% 0.27% 
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0.79 30 0.01% 0.26% 

0.8 37 0.02% 0.24% 

0.81 28 0.01% 0.23% 

0.82 31 0.01% 0.22% 

0.83 38 0.02% 0.20% 

0.84 35 0.01% 0.19% 

0.85 45 0.02% 0.17% 

0.86 29 0.01% 0.15% 

0.87 42 0.02% 0.14% 

0.88 30 0.01% 0.12% 

0.89 25 0.01% 0.11% 

0.9 22 0.01% 0.10% 

0.91 19 0.01% 0.09% 

0.92 23 0.01% 0.08% 

0.93 24 0.01% 0.07% 

0.94 17 0.01% 0.06% 

0.95 22 0.01% 0.05% 

0.96 17 0.01% 0.04% 

0.97 28 0.01% 0.04% 

0.98 22 0.01% 0.03% 

0.99 13 0.01% 0.02% 

1 24 0.01% 0.01% 
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Table A.7. Distribution of Max Below Max in Nowcasting period 

under Threshold 0.0016 

Bin MBM 

Frequency 

MBM 

Probabilities 

Probabilities of reaching this MBM 

value 

0.01 16251 7.38% 100.00% 

0.02 17496 7.94% 92.62% 

0.03 13634 6.19% 84.68% 

0.04 10815 4.91% 78.49% 

0.05 17552 7.97% 73.58% 

0.06 27085 12.29% 65.62% 

0.07 14920 6.77% 53.32% 

0.08 12031 5.46% 46.55% 

0.09 9580 4.35% 41.09% 

0.1 10507 4.77% 36.74% 

0.11 7801 3.54% 31.97% 

0.12 8003 3.63% 28.43% 

0.13 4888 2.22% 24.80% 

0.14 5038 2.29% 22.58% 

0.15 3940 1.79% 20.29% 

0.16 3278 1.49% 18.50% 

0.17 3198 1.45% 17.01% 

0.18 2644 1.20% 15.56% 

0.19 2427 1.10% 14.36% 

0.2 1999 0.91% 13.26% 

0.21 1794 0.81% 12.35% 

0.22 1569 0.71% 11.54% 

0.23 1780 0.81% 10.83% 

0.24 1465 0.67% 10.02% 

0.25 1271 0.58% 9.35% 

0.26 1164 0.53% 8.78% 

0.27 935 0.42% 8.25% 

0.28 1136 0.52% 7.82% 

0.29 981 0.45% 7.31% 

0.3 879 0.40% 6.86% 

0.31 813 0.37% 6.46% 

0.32 650 0.30% 6.09% 

0.33 642 0.29% 5.80% 

0.34 680 0.31% 5.51% 

0.35 660 0.30% 5.20% 

0.36 617 0.28% 4.90% 



 

 

 241 

0.37 520 0.24% 4.62% 

0.38 470 0.21% 4.38% 

0.39 456 0.21% 4.17% 

0.4 476 0.22% 3.96% 

0.41 436 0.20% 3.75% 

0.42 416 0.19% 3.55% 

0.43 307 0.14% 3.36% 

0.44 326 0.15% 3.22% 

0.45 367 0.17% 3.07% 

0.46 319 0.14% 2.91% 

0.47 336 0.15% 2.76% 

0.48 306 0.14% 2.61% 

0.49 247 0.11% 2.47% 

0.5 228 0.10% 2.36% 

0.51 283 0.13% 2.25% 

0.52 262 0.12% 2.13% 

0.53 204 0.09% 2.01% 

0.54 205 0.09% 1.91% 

0.55 180 0.08% 1.82% 

0.56 223 0.10% 1.74% 

0.57 192 0.09% 1.64% 

0.58 188 0.09% 1.55% 

0.59 170 0.08% 1.47% 

0.6 191 0.09% 1.39% 

0.61 158 0.07% 1.30% 

0.62 168 0.08% 1.23% 

0.63 124 0.06% 1.15% 

0.64 141 0.06% 1.10% 

0.65 135 0.06% 1.03% 

0.66 116 0.05% 0.97% 

0.67 121 0.05% 0.92% 

0.68 107 0.05% 0.87% 

0.69 105 0.05% 0.82% 

0.7 112 0.05% 0.77% 

0.71 106 0.05% 0.72% 

0.72 82 0.04% 0.67% 

0.73 82 0.04% 0.63% 

0.74 79 0.04% 0.60% 

0.75 79 0.04% 0.56% 

0.76 59 0.03% 0.52% 

0.77 94 0.04% 0.50% 

0.78 61 0.03% 0.45% 
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0.79 53 0.02% 0.43% 

0.8 33 0.01% 0.40% 

0.81 56 0.03% 0.39% 

0.82 50 0.02% 0.36% 

0.83 43 0.02% 0.34% 

0.84 52 0.02% 0.32% 

0.85 49 0.02% 0.30% 

0.86 58 0.03% 0.27% 

0.87 57 0.03% 0.25% 

0.88 47 0.02% 0.22% 

0.89 39 0.02% 0.20% 

0.9 45 0.02% 0.18% 

0.91 44 0.02% 0.16% 

0.92 38 0.02% 0.14% 

0.93 36 0.02% 0.13% 

0.94 46 0.02% 0.11% 

0.95 31 0.01% 0.09% 

0.96 40 0.02% 0.07% 

0.97 35 0.02% 0.06% 

0.98 24 0.01% 0.04% 

0.99 36 0.02% 0.03% 

1 28 0.01% 0.01% 
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Table A.8. Distribution of Max Below Max in Nowcasting period under 

Threshold 0.0032 

Bin MBM 

Frequency 

MBM 

Probabilities 

Probabilities of reaching this MBM 

value 

0.01 13260 14.52% 100.00% 

0.02 9658 10.57% 85.48% 

0.03 17676 19.35% 74.91% 

0.04 10491 11.48% 55.56% 

0.05 7635 8.36% 44.08% 

0.06 6369 6.97% 35.72% 

0.07 3885 4.25% 28.75% 

0.08 2969 3.25% 24.49% 

0.09 2435 2.67% 21.24% 

0.1 1845 2.02% 18.58% 

0.11 1485 1.63% 16.56% 

0.12 1433 1.57% 14.93% 

0.13 1083 1.19% 13.36% 

0.14 1025 1.12% 12.18% 

0.15 884 0.97% 11.05% 

0.16 757 0.83% 10.09% 

0.17 605 0.66% 9.26% 

0.18 658 0.72% 8.60% 

0.19 491 0.54% 7.88% 

0.2 499 0.55% 7.34% 

0.21 480 0.53% 6.79% 

0.22 365 0.40% 6.27% 

0.23 367 0.40% 5.87% 

0.24 381 0.42% 5.46% 

0.25 294 0.32% 5.05% 

0.26 302 0.33% 4.73% 

0.27 232 0.25% 4.40% 

0.28 240 0.26% 4.14% 

0.29 236 0.26% 3.88% 

0.3 218 0.24% 3.62% 

0.31 192 0.21% 3.38% 

0.32 186 0.20% 3.17% 

0.33 148 0.16% 2.97% 

0.34 147 0.16% 2.81% 

0.35 131 0.14% 2.64% 

0.36 130 0.14% 2.50% 
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0.37 110 0.12% 2.36% 

0.38 100 0.11% 2.24% 

0.39 107 0.12% 2.13% 

0.4 78 0.09% 2.01% 

0.41 80 0.09% 1.93% 

0.42 71 0.08% 1.84% 

0.43 93 0.10% 1.76% 

0.44 81 0.09% 1.66% 

0.45 84 0.09% 1.57% 

0.46 66 0.07% 1.48% 

0.47 73 0.08% 1.41% 

0.48 70 0.08% 1.33% 

0.49 57 0.06% 1.25% 

0.5 68 0.07% 1.19% 

0.51 65 0.07% 1.11% 

0.52 45 0.05% 1.04% 

0.53 41 0.04% 0.99% 

0.54 38 0.04% 0.95% 

0.55 42 0.05% 0.91% 

0.56 36 0.04% 0.86% 

0.57 43 0.05% 0.82% 

0.58 33 0.04% 0.77% 

0.59 22 0.02% 0.74% 

0.6 38 0.04% 0.71% 

0.61 31 0.03% 0.67% 

0.62 28 0.03% 0.64% 

0.63 22 0.02% 0.61% 

0.64 26 0.03% 0.58% 

0.65 31 0.03% 0.56% 

0.66 19 0.02% 0.52% 

0.67 29 0.03% 0.50% 

0.68 26 0.03% 0.47% 

0.69 28 0.03% 0.44% 

0.7 28 0.03% 0.41% 

0.71 23 0.03% 0.38% 

0.72 16 0.02% 0.35% 

0.73 16 0.02% 0.34% 

0.74 16 0.02% 0.32% 

0.75 21 0.02% 0.30% 

0.76 23 0.03% 0.28% 

0.77 14 0.02% 0.25% 

0.78 13 0.01% 0.24% 
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0.79 15 0.02% 0.22% 

0.8 12 0.01% 0.21% 

0.81 18 0.02% 0.19% 

0.82 9 0.01% 0.17% 

0.83 18 0.02% 0.16% 

0.84 8 0.01% 0.14% 

0.85 11 0.01% 0.14% 

0.86 6 0.01% 0.12% 

0.87 10 0.01% 0.12% 

0.88 8 0.01% 0.11% 

0.89 10 0.01% 0.10% 

0.9 7 0.01% 0.09% 

0.91 14 0.02% 0.08% 

0.92 8 0.01% 0.06% 

0.93 9 0.01% 0.05% 

0.94 6 0.01% 0.04% 

0.95 7 0.01% 0.04% 

0.96 4 0.00% 0.03% 

0.97 6 0.01% 0.03% 

0.98 8 0.01% 0.02% 

0.99 5 0.01% 0.01% 

1 5 0.01% 0.01% 
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Table A.9. Distribution of TMVEXT in the Traning periodT under 

threshold 0.00002 

Bin TMV Frequency  
TMV Probabilities 

Probabilities of reaching this 

TMV 

1 0   

3.08433502 44311 50.16% 100.00% 

5.16867004 24804 28.08% 49.84% 

7.25300506 8336 9.44% 21.76% 

9.33734008 4517 5.11% 12.32% 

11.4216751 2656 3.01% 7.21% 

13.50601012 1552 1.76% 4.20% 

15.59034514 787 0.89% 2.44% 

17.67468016 464 0.53% 1.55% 

19.75901518 330 0.37% 1.03% 

21.8433502 186 0.21% 0.65% 

23.92768522 110 0.12% 0.44% 

26.01202024 75 0.08% 0.32% 

28.09635526 55 0.06% 0.23% 

30.18069028 44 0.05% 0.17% 

32.2650253 32 0.04% 0.12% 

34.34936032 17 0.02% 0.08% 

36.43369534 6 0.01% 0.06% 

38.51803036 7 0.01% 0.06% 

40.60236538 9 0.01% 0.05% 

42.6867004 5 0.01% 0.04% 

44.77103542 4 0.00% 0.03% 

46.85537044 7 0.01% 0.03% 

48.93970546 1 0.00% 0.02% 

51.02404048 1 0.00% 0.02% 

53.1083755 1 0.00% 0.02% 

55.19271052 1 0.00% 0.02% 

57.27704554 2 0.00% 0.02% 

59.36138056 1 0.00% 0.01% 

61.44571558 0 0.00% 0.01% 

63.5300506 0 0.00% 0.01% 

65.61438562 2 0.00% 0.01% 

67.69872064 2 0.00% 0.01% 

69.78305566 0 0.00% 0.01% 

71.86739068 0 0.00% 0.01% 

73.9517257 1 0.00% 0.01% 

76.03606072 0 0.00% 0.01% 
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78.12039574 0 0.00% 0.01% 

80.20473076 1 0.00% 0.01% 

82.28906578 0 0.00% 0.01% 

84.3734008 0 0.00% 0.01% 

86.45773582 0 0.00% 0.01% 

88.54207084 1 0.00% 0.01% 

90.62640586 0 0.00% 0.01% 

92.71074088 0 0.00% 0.01% 

94.7950759 0 0.00% 0.01% 

96.87941092 1 0.00% 0.01% 

98.96374594 0 0.00% 0.00% 

101.048081 0 0.00% 0.00% 

103.132416 1 0.00% 0.00% 

105.216751 0 0.00% 0.00% 

107.301086 0 0.00% 0.00% 

109.385421 0 0.00% 0.00% 

111.4697561 0 0.00% 0.00% 

113.5540911 0 0.00% 0.00% 

115.6384261 0 0.00% 0.00% 

117.7227611 1 0.00% 0.00% 

119.8070961 0 0.00% 0.00% 

121.8914312 0 0.00% 0.00% 

123.9757662 0 0.00% 0.00% 

126.0601012 0 0.00% 0.00% 

128.1444362 0 0.00% 0.00% 

130.2287712 0 0.00% 0.00% 

132.3131063 0 0.00% 0.00% 

134.3974413 0 0.00% 0.00% 

136.4817763 0 0.00% 0.00% 

138.5661113 0 0.00% 0.00% 

140.6504463 0 0.00% 0.00% 

142.7347814 0 0.00% 0.00% 

144.8191164 0 0.00% 0.00% 

146.9034514 0 0.00% 0.00% 

148.9877864 1 0.00% 0.00% 

151.0721214 0 0.00% 0.00% 

153.1564565 0 0.00% 0.00% 

155.2407915 0 0.00% 0.00% 

157.3251265 0 0.00% 0.00% 

159.4094615 0 0.00% 0.00% 

161.4937965 0 0.00% 0.00% 

163.5781316 0 0.00% 0.00% 

165.6624666 0 0.00% 0.00% 
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167.7468016 0 0.00% 0.00% 

169.8311366 0 0.00% 0.00% 

171.9154716 0 0.00% 0.00% 

173.9998067 0 0.00% 0.00% 

176.0841417 0 0.00% 0.00% 

178.1684767 0 0.00% 0.00% 

180.2528117 0 0.00% 0.00% 

182.3371467 0 0.00% 0.00% 

184.4214818 0 0.00% 0.00% 

186.5058168 0 0.00% 0.00% 

188.5901518 0 0.00% 0.00% 

190.6744868 0 0.00% 0.00% 

192.7588218 0 0.00% 0.00% 

194.8431569 0 0.00% 0.00% 

196.9274919 0 0.00% 0.00% 

199.0118269 0 0.00% 0.00% 

201.0961619 0 0.00% 0.00% 

203.1804969 0 0.00% 0.00% 

205.264832 0 0.00% 0.00% 

207.349167 0 0.00% 0.00% 

209.433502 1 0.00% 0.00% 
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Table A.10. Distribution of Max Below Max in Traning periodT under 

Threshold 0.00002 

Bin 
MBM 

Frequency  

MBM 

Probabilities 

Probabilities of reaching this MBM 

value 

0 0 0  

0.01 0 0.00% 100.00% 

0.02 0 0.00% 100.00% 

0.03 0 0.00% 100.00% 

0.04 0 0.00% 100.00% 

0.05 0 0.00% 100.00% 

0.06 0 0.00% 100.00% 

0.07 0 0.00% 100.00% 

0.08 0 0.00% 100.00% 

0.09 0 0.00% 100.00% 

0.1 0 0.00% 100.00% 

0.11 0 0.00% 100.00% 

0.12 0 0.00% 100.00% 

0.13 0 0.00% 100.00% 

0.14 0 0.00% 100.00% 

0.15 0 0.00% 100.00% 

0.16 0 0.00% 100.00% 

0.17 0 0.00% 100.00% 

0.18 0 0.00% 100.00% 

0.19 0 0.00% 100.00% 

0.2 0 0.00% 100.00% 

0.21 0 0.00% 100.00% 

0.22 0 0.00% 100.00% 

0.23 0 0.00% 100.00% 

0.24 0 0.00% 100.00% 

0.25 0 0.00% 100.00% 

0.26 0 0.00% 100.00% 

0.27 0 0.00% 100.00% 

0.28 0 0.00% 100.00% 

0.29 0 0.00% 100.00% 

0.3 0 0.00% 100.00% 

0.31 0 0.00% 100.00% 

0.32 0 0.00% 100.00% 

0.33 0 0.00% 100.00% 

0.34 0 0.00% 100.00% 

0.35 0 0.00% 100.00% 
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0.36 0 0.00% 100.00% 

0.37 0 0.00% 100.00% 

0.38 0 0.00% 100.00% 

0.39 0 0.00% 100.00% 

0.4 0 0.00% 100.00% 

0.41 0 0.00% 100.00% 

0.42 0 0.00% 100.00% 

0.43 0 0.00% 100.00% 

0.44 0 0.00% 100.00% 

0.45 0 0.00% 100.00% 

0.46 0 0.00% 100.00% 

0.47 0 0.00% 100.00% 

0.48 0 0.00% 100.00% 

0.49 0 0.00% 100.00% 

0.5 0 0.00% 100.00% 

0.51 0 0.00% 100.00% 

0.52 0 0.00% 100.00% 

0.53 0 0.00% 100.00% 

0.54 0 0.00% 100.00% 

0.55 0 0.00% 100.00% 

0.56 0 0.00% 100.00% 

0.57 0 0.00% 100.00% 

0.58 0 0.00% 100.00% 

0.59 0 0.00% 100.00% 

0.6 0 0.00% 100.00% 

0.61 0 0.00% 100.00% 

0.62 0 0.00% 100.00% 

0.63 183 0.58% 100.00% 

0.64 18133 57.43% 99.42% 

0.65 13256 41.99% 41.99% 

0.66 0 0.00% 0.00% 

0.67 0 0.00% 0.00% 

0.68 0 0.00% 0.00% 

0.69 0 0.00% 0.00% 

0.7 0 0.00% 0.00% 

0.71 0 0.00% 0.00% 

0.72 0 0.00% 0.00% 

0.73 0 0.00% 0.00% 

0.74 0 0.00% 0.00% 

0.75 0 0.00% 0.00% 

0.76 0 0.00% 0.00% 

0.77 0 0.00% 0.00% 
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0.78 0 0.00% 0.00% 

0.79 0 0.00% 0.00% 

0.8 0 0.00% 0.00% 

0.81 0 0.00% 0.00% 

0.82 0 0.00% 0.00% 

0.83 0 0.00% 0.00% 

0.84 0 0.00% 0.00% 

0.85 0 0.00% 0.00% 

0.86 0 0.00% 0.00% 

0.87 0 0.00% 0.00% 

0.88 0 0.00% 0.00% 

0.89 0 0.00% 0.00% 

0.9 0 0.00% 0.00% 

0.91 0 0.00% 0.00% 

0.92 0 0.00% 0.00% 

0.93 0 0.00% 0.00% 

0.94 0 0.00% 0.00% 

0.95 0 0.00% 0.00% 

0.96 0 0.00% 0.00% 

0.97 0 0.00% 0.00% 

0.98 0 0.00% 0.00% 

0.99 0 0.00% 0.00% 

1 0 0.00% 0.00% 

 

Table A.11. Distribution of Max Below Max in  

Traning period USD/JPY under Threshold 0.00016 

Bin 
MBM 

Frequency  

MBM 

Probabilities 

Probabilities of reaching this MBM 

value 

0 0 0  

0.01 18239 9.66% 100.00% 

0.02 28020 14.84% 90.34% 

0.03 26549 14.06% 75.50% 

0.04 26029 13.79% 61.44% 

0.05 19077 10.10% 47.65% 

0.06 13493 7.15% 37.55% 

0.07 9464 5.01% 30.40% 

0.08 7027 3.72% 25.39% 

0.09 5318 2.82% 21.67% 

0.1 4179 2.21% 18.85% 



 

 

 252 

0.11 3372 1.79% 16.64% 

0.12 2949 1.56% 14.85% 

0.13 2126 1.13% 13.29% 

0.14 2149 1.14% 12.17% 

0.15 1653 0.88% 11.03% 

0.16 1688 0.89% 10.15% 

0.17 1229 0.65% 9.26% 

0.18 1332 0.71% 8.61% 

0.19 990 0.52% 7.90% 

0.2 1092 0.58% 7.38% 

0.21 847 0.45% 6.80% 

0.22 867 0.46% 6.35% 

0.23 773 0.41% 5.89% 

0.24 743 0.39% 5.48% 

0.25 632 0.33% 5.09% 

0.26 608 0.32% 4.75% 

0.27 531 0.28% 4.43% 

0.28 536 0.28% 4.15% 

0.29 441 0.23% 3.87% 

0.3 432 0.23% 3.63% 

0.31 381 0.20% 3.40% 

0.32 345 0.18% 3.20% 

0.33 332 0.18% 3.02% 

0.34 290 0.15% 2.84% 

0.35 263 0.14% 2.69% 

0.36 243 0.13% 2.55% 

0.37 255 0.14% 2.42% 

0.38 219 0.12% 2.29% 

0.39 204 0.11% 2.17% 

0.4 203 0.11% 2.06% 

0.41 217 0.11% 1.96% 

0.42 209 0.11% 1.84% 

0.43 192 0.10% 1.73% 

0.44 148 0.08% 1.63% 

0.45 156 0.08% 1.55% 

0.46 154 0.08% 1.47% 

0.47 146 0.08% 1.39% 

0.48 124 0.07% 1.31% 

0.49 146 0.08% 1.24% 

0.5 97 0.05% 1.17% 

0.51 97 0.05% 1.11% 

0.52 115 0.06% 1.06% 
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0.53 95 0.05% 1.00% 

0.54 100 0.05% 0.95% 

0.55 96 0.05% 0.90% 

0.56 100 0.05% 0.85% 

0.57 78 0.04% 0.79% 

0.58 76 0.04% 0.75% 

0.59 78 0.04% 0.71% 

0.6 54 0.03% 0.67% 

0.61 78 0.04% 0.64% 

0.62 54 0.03% 0.60% 

0.63 57 0.03% 0.57% 

0.64 52 0.03% 0.54% 

0.65 62 0.03% 0.52% 

0.66 35 0.02% 0.48% 

0.67 56 0.03% 0.46% 

0.68 42 0.02% 0.43% 

0.69 64 0.03% 0.41% 

0.7 39 0.02% 0.38% 

0.71 36 0.02% 0.36% 

0.72 42 0.02% 0.34% 

0.73 41 0.02% 0.32% 

0.74 34 0.02% 0.29% 

0.75 28 0.01% 0.28% 

0.76 24 0.01% 0.26% 

0.77 35 0.02% 0.25% 

0.78 16 0.01% 0.23% 

0.79 34 0.02% 0.22% 

0.8 25 0.01% 0.20% 

0.81 27 0.01% 0.19% 

0.82 34 0.02% 0.18% 

0.83 27 0.01% 0.16% 

0.84 22 0.01% 0.14% 

0.85 25 0.01% 0.13% 

0.86 23 0.01% 0.12% 

0.87 19 0.01% 0.11% 

0.88 15 0.01% 0.10% 

0.89 10 0.01% 0.09% 

0.9 16 0.01% 0.08% 

0.91 19 0.01% 0.08% 

0.92 16 0.01% 0.07% 

0.93 16 0.01% 0.06% 

0.94 11 0.01% 0.05% 
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0.95 10 0.01% 0.04% 

0.96 14 0.01% 0.04% 

0.97 11 0.01% 0.03% 

0.98 17 0.01% 0.02% 

0.99 18 0.01% 0.01% 

1 10 0.01% 0.01% 

 

Table A.12. Distribution of TMVEXT in the Traning period USD/JPY 

under threshold 0.00016 

Bin TMV Frequency  
TMV Probabilities 

Probabilities of reaching this 

TMV 

1 0   

1.08110049 271 8.08% 100.00% 

1.16220098 251 7.48% 91.92% 

1.24330147 191 5.69% 84.44% 

1.32440196 201 5.99% 78.74% 

1.40550245 193 5.75% 72.75% 

1.48660294 178 5.31% 66.99% 

1.56770343 169 5.04% 61.69% 

1.64880392 135 4.03% 56.65% 

1.72990441 129 3.85% 52.62% 

1.8110049 132 3.94% 48.78% 

1.89210539 119 3.55% 44.84% 

1.97320588 109 3.25% 41.29% 

2.05430637 107 3.19% 38.04% 

2.13540686 101 3.01% 34.85% 

2.21650735 74 2.21% 31.84% 

2.29760784 70 2.09% 29.64% 

2.37870833 62 1.85% 27.55% 

2.45980882 79 2.36% 25.70% 

2.54090931 72 2.15% 23.35% 

2.6220098 46 1.37% 21.20% 

2.70311029 55 1.64% 19.83% 

2.78421078 47 1.40% 18.19% 

2.86531127 44 1.31% 16.79% 

2.94641176 51 1.52% 15.47% 

3.02751225 35 1.04% 13.95% 

3.10861274 42 1.25% 12.91% 

3.18971323 29 0.86% 11.66% 

3.27081372 30 0.89% 10.79% 
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3.35191421 27 0.81% 9.90% 

3.4330147 23 0.69% 9.09% 

3.51411519 23 0.69% 8.41% 

3.59521568 28 0.83% 7.72% 

3.67631617 21 0.63% 6.89% 

3.75741666 20 0.60% 6.26% 

3.83851715 21 0.63% 5.66% 

3.91961764 18 0.54% 5.04% 

4.00071813 14 0.42% 4.50% 

4.08181862 16 0.48% 4.08% 

4.16291911 9 0.27% 3.61% 

4.2440196 15 0.45% 3.34% 

4.32512009 9 0.27% 2.89% 

4.40622058 7 0.21% 2.62% 

4.48732107 7 0.21% 2.42% 

4.56842156 4 0.12% 2.21% 

4.64952205 3 0.09% 2.09% 

4.73062254 7 0.21% 2.00% 

4.81172303 6 0.18% 1.79% 

4.89282352 4 0.12% 1.61% 

4.97392401 3 0.09% 1.49% 

5.0550245 2 0.06% 1.40% 

5.13612499 1 0.03% 1.34% 

5.21722548 5 0.15% 1.31% 

5.29832597 5 0.15% 1.16% 

5.37942646 2 0.06% 1.01% 

5.46052695 1 0.03% 0.95% 

5.54162744 4 0.12% 0.92% 

5.62272793 3 0.09% 0.81% 

5.70382842 2 0.06% 0.72% 

5.78492891 3 0.09% 0.66% 

5.8660294 1 0.03% 0.57% 

5.94712989 2 0.06% 0.54% 

6.02823038 3 0.09% 0.48% 

6.10933087 1 0.03% 0.39% 

6.19043136 0 0.00% 0.36% 

6.27153185 0 0.00% 0.36% 

6.35263234 0 0.00% 0.36% 

6.43373283 2 0.06% 0.36% 

6.51483332 0 0.00% 0.30% 

6.59593381 1 0.03% 0.30% 

6.6770343 2 0.06% 0.27% 

6.75813479 0 0.00% 0.21% 
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6.83923528 0 0.00% 0.21% 

6.92033577 0 0.00% 0.21% 

7.00143626 0 0.00% 0.21% 

7.08253675 0 0.00% 0.21% 

7.16363724 2 0.06% 0.21% 

7.24473773 0 0.00% 0.15% 

7.32583822 0 0.00% 0.15% 

7.40693871 0 0.00% 0.15% 

7.4880392 1 0.03% 0.15% 

7.56913969 1 0.03% 0.12% 

7.65024018 0 0.00% 0.09% 

7.73134067 0 0.00% 0.09% 

7.81244116 0 0.00% 0.09% 

7.89354165 0 0.00% 0.09% 

7.97464214 1 0.03% 0.09% 

8.05574263 0 0.00% 0.06% 

8.13684312 0 0.00% 0.06% 

8.21794361 1 0.03% 0.06% 

8.2990441 0 0.00% 0.03% 

8.38014459 0 0.00% 0.03% 

8.46124508 0 0.00% 0.03% 

8.54234557 0 0.00% 0.03% 

8.62344606 0 0.00% 0.03% 

8.70454655 0 0.00% 0.03% 

8.78564704 0 0.00% 0.03% 

8.86674753 0 0.00% 0.03% 

8.94784802 0 0.00% 0.03% 

9.02894851 0 0.00% 0.03% 

9.110049 1 0.03% 0.03% 

 

Table A.13. Distribution of Max Below Max in Traning period GBP/USD 

under Threshold 0.0032 

Bin 
MBM 

Frequency  

MBM 

Probabilities 

Probabilities of reaching this MBM 

value 

0 0 0  

0.01 18239 9.66% 100.00% 

0.02 28020 14.84% 90.34% 

0.03 26549 14.06% 75.50% 

0.04 26029 13.79% 61.44% 

0.05 19077 10.10% 47.65% 



 

 

 257 

0.06 13493 7.15% 37.55% 

0.07 9464 5.01% 30.40% 

0.08 7027 3.72% 25.39% 

0.09 5318 2.82% 21.67% 

0.1 4179 2.21% 18.85% 

0.11 3372 1.79% 16.64% 

0.12 2949 1.56% 14.85% 

0.13 2126 1.13% 13.29% 

0.14 2149 1.14% 12.17% 

0.15 1653 0.88% 11.03% 

0.16 1688 0.89% 10.15% 

0.17 1229 0.65% 9.26% 

0.18 1332 0.71% 8.61% 

0.19 990 0.52% 7.90% 

0.2 1092 0.58% 7.38% 

0.21 847 0.45% 6.80% 

0.22 867 0.46% 6.35% 

0.23 773 0.41% 5.89% 

0.24 743 0.39% 5.48% 

0.25 632 0.33% 5.09% 

0.26 608 0.32% 4.75% 

0.27 531 0.28% 4.43% 

0.28 536 0.28% 4.15% 

0.29 441 0.23% 3.87% 

0.3 432 0.23% 3.63% 

0.31 381 0.20% 3.40% 

0.32 345 0.18% 3.20% 

0.33 332 0.18% 3.02% 

0.34 290 0.15% 2.84% 

0.35 263 0.14% 2.69% 

0.36 243 0.13% 2.55% 

0.37 255 0.14% 2.42% 

0.38 219 0.12% 2.29% 

0.39 204 0.11% 2.17% 

0.4 203 0.11% 2.06% 

0.41 217 0.11% 1.96% 

0.42 209 0.11% 1.84% 

0.43 192 0.10% 1.73% 

0.44 148 0.08% 1.63% 

0.45 156 0.08% 1.55% 

0.46 154 0.08% 1.47% 

0.47 146 0.08% 1.39% 
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0.48 124 0.07% 1.31% 

0.49 146 0.08% 1.24% 

0.5 97 0.05% 1.17% 

0.51 97 0.05% 1.11% 

0.52 115 0.06% 1.06% 

0.53 95 0.05% 1.00% 

0.54 100 0.05% 0.95% 

0.55 96 0.05% 0.90% 

0.56 100 0.05% 0.85% 

0.57 78 0.04% 0.79% 

0.58 76 0.04% 0.75% 

0.59 78 0.04% 0.71% 

0.6 54 0.03% 0.67% 

0.61 78 0.04% 0.64% 

0.62 54 0.03% 0.60% 

0.63 57 0.03% 0.57% 

0.64 52 0.03% 0.54% 

0.65 62 0.03% 0.52% 

0.66 35 0.02% 0.48% 

0.67 56 0.03% 0.46% 

0.68 42 0.02% 0.43% 

0.69 64 0.03% 0.41% 

0.7 39 0.02% 0.38% 

0.71 36 0.02% 0.36% 

0.72 42 0.02% 0.34% 

0.73 41 0.02% 0.32% 

0.74 34 0.02% 0.29% 

0.75 28 0.01% 0.28% 

0.76 24 0.01% 0.26% 

0.77 35 0.02% 0.25% 

0.78 16 0.01% 0.23% 

0.79 34 0.02% 0.22% 

0.8 25 0.01% 0.20% 

0.81 27 0.01% 0.19% 

0.82 34 0.02% 0.18% 

0.83 27 0.01% 0.16% 

0.84 22 0.01% 0.14% 

0.85 25 0.01% 0.13% 

0.86 23 0.01% 0.12% 

0.87 19 0.01% 0.11% 

0.88 15 0.01% 0.10% 

0.89 10 0.01% 0.09% 
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0.9 16 0.01% 0.08% 

0.91 19 0.01% 0.08% 

0.92 16 0.01% 0.07% 

0.93 16 0.01% 0.06% 

0.94 11 0.01% 0.05% 

0.95 10 0.01% 0.04% 

0.96 14 0.01% 0.04% 

0.97 11 0.01% 0.03% 

0.98 17 0.01% 0.02% 

0.99 18 0.01% 0.01% 

1 10 0.01% 0.01% 

 

Table A.14. Distribution of TMVEXT in the Traning period GBP/USD 

under threshold 0.0032 

Bin TMV Frequency  
TMV Probabilities 

Probabilities of reaching this 

TMV 

1 0   

1.08110049 271 8.08% 100.00% 

1.16220098 251 7.48% 91.92% 

1.24330147 191 5.69% 84.44% 

1.32440196 201 5.99% 78.74% 

1.40550245 193 5.75% 72.75% 

1.48660294 178 5.31% 66.99% 

1.56770343 169 5.04% 61.69% 

1.64880392 135 4.03% 56.65% 

1.72990441 129 3.85% 52.62% 

1.8110049 132 3.94% 48.78% 

1.89210539 119 3.55% 44.84% 

1.97320588 109 3.25% 41.29% 

2.05430637 107 3.19% 38.04% 

2.13540686 101 3.01% 34.85% 

2.21650735 74 2.21% 31.84% 

2.29760784 70 2.09% 29.64% 

2.37870833 62 1.85% 27.55% 

2.45980882 79 2.36% 25.70% 

2.54090931 72 2.15% 23.35% 

2.6220098 46 1.37% 21.20% 

2.70311029 55 1.64% 19.83% 

2.78421078 47 1.40% 18.19% 

2.86531127 44 1.31% 16.79% 
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2.94641176 51 1.52% 15.47% 

3.02751225 35 1.04% 13.95% 

3.10861274 42 1.25% 12.91% 

3.18971323 29 0.86% 11.66% 

3.27081372 30 0.89% 10.79% 

3.35191421 27 0.81% 9.90% 

3.4330147 23 0.69% 9.09% 

3.51411519 23 0.69% 8.41% 

3.59521568 28 0.83% 7.72% 

3.67631617 21 0.63% 6.89% 

3.75741666 20 0.60% 6.26% 

3.83851715 21 0.63% 5.66% 

3.91961764 18 0.54% 5.04% 

4.00071813 14 0.42% 4.50% 

4.08181862 16 0.48% 4.08% 

4.16291911 9 0.27% 3.61% 

4.2440196 15 0.45% 3.34% 

4.32512009 9 0.27% 2.89% 

4.40622058 7 0.21% 2.62% 

4.48732107 7 0.21% 2.42% 

4.56842156 4 0.12% 2.21% 

4.64952205 3 0.09% 2.09% 

4.73062254 7 0.21% 2.00% 

4.81172303 6 0.18% 1.79% 

4.89282352 4 0.12% 1.61% 

4.97392401 3 0.09% 1.49% 

5.0550245 2 0.06% 1.40% 

5.13612499 1 0.03% 1.34% 

5.21722548 5 0.15% 1.31% 

5.29832597 5 0.15% 1.16% 

5.37942646 2 0.06% 1.01% 

5.46052695 1 0.03% 0.95% 

5.54162744 4 0.12% 0.92% 

5.62272793 3 0.09% 0.81% 

5.70382842 2 0.06% 0.72% 

5.78492891 3 0.09% 0.66% 

5.8660294 1 0.03% 0.57% 

5.94712989 2 0.06% 0.54% 

6.02823038 3 0.09% 0.48% 

6.10933087 1 0.03% 0.39% 

6.19043136 0 0.00% 0.36% 

6.27153185 0 0.00% 0.36% 

6.35263234 0 0.00% 0.36% 
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6.43373283 2 0.06% 0.36% 

6.51483332 0 0.00% 0.30% 

6.59593381 1 0.03% 0.30% 

6.6770343 2 0.06% 0.27% 

6.75813479 0 0.00% 0.21% 

6.83923528 0 0.00% 0.21% 

6.92033577 0 0.00% 0.21% 

7.00143626 0 0.00% 0.21% 

7.08253675 0 0.00% 0.21% 

7.16363724 2 0.06% 0.21% 

7.24473773 0 0.00% 0.15% 

7.32583822 0 0.00% 0.15% 

7.40693871 0 0.00% 0.15% 

7.4880392 1 0.03% 0.15% 

7.56913969 1 0.03% 0.12% 

7.65024018 0 0.00% 0.09% 

7.73134067 0 0.00% 0.09% 

7.81244116 0 0.00% 0.09% 

7.89354165 0 0.00% 0.09% 

7.97464214 1 0.03% 0.09% 

8.05574263 0 0.00% 0.06% 

8.13684312 0 0.00% 0.06% 

8.21794361 1 0.03% 0.06% 

8.2990441 0 0.00% 0.03% 

8.38014459 0 0.00% 0.03% 

8.46124508 0 0.00% 0.03% 

8.54234557 0 0.00% 0.03% 

8.62344606 0 0.00% 0.03% 

8.70454655 0 0.00% 0.03% 

8.78564704 0 0.00% 0.03% 

8.86674753 0 0.00% 0.03% 

8.94784802 0 0.00% 0.03% 

9.02894851 0 0.00% 0.03% 

9.110049 1 0.03% 0.03% 
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