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Abstract.

Objective.

Semantic concepts are coherent entities within our minds. They underpin our thought

processes and are a part of the basis for our understanding of the world. Modern

neuroscience research is increasingly exploring how individual semantic concepts are

encoded within our brains and a number of studies are beginning to reveal key

patterns of neural activity that underpin specific concepts. Building upon this

basic understanding of the process of semantic neural encoding, neural engineers are

beginning to explore tools and methods for semantic decoding: identifying which

semantic concepts an individual is focused on at a given moment in time from

recordings of their neural activity. In this paper we review the current literature

on semantic neural decoding.

Approach.

We conducted this review according to the Preferred Reporting Items for Systematic

reviews and Meta-Analysis (PRISMA) guidelines. Specifically, we assess the eligibility

of published peer-reviewed reports via a search of PubMed and Google Scholar. We

identify a total of 74 studies in which semantic neural decoding is used to attempt to

identify individual semantic concepts from neural activity.

Results.

Our review reveals how modern neuroscientific tools have been developed to allow

decoding of individual concepts from a range of neuroimaging modalities. We discuss

specific neuroimaging methods, experimental designs, and machine learning pipelines

that are employed to aid the decoding of semantic concepts. We quantify the efficacy

of semantic decoders by measuring information transfer rates. We also discuss current

challenges presented by this research area and present some possible solutions. Finally,

we discuss some possible emerging and speculative future directions for this research

area.
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Significance.

Semantic decoding is a rapidly growing area of research. However, despite its

increasingly widespread popularity and use in neuroscientific research this is the first

literature review focusing on this topic across neuroimaging modalities and with a

focus on quantifying the efficacy of semantic decoders.

Keywords : semantic decoding, conceptual decoding, semantic concepts, literature re-

view, functional magnetic resonance imagining (fMRI), functional near infrared spec-

troscopy (fNIRS), electroencephalography (EEG), magnetoencephalography (MEG),

electrocorticography (ECoG), intracranial electrodes
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1. Introduction

Our experience of the world has long being

regarded by some philosophers as an internal

subjective experience that is individual to us

[1, 2]. We may have tasted the same apples,

smelt the same roses, and heard the same bird

song as our neighbours, but our individual

mental states have long been thought to have

a very distinct and subjective nature [1].

Many philosophers refer to this individual

introspective experience as our ‘qualia’, our

own introspectively accessible experience of

the world [1, 2]. It has long been considered,

by some, to be impossible to know, with

absolute certainty, how anyone else experiences

the world.

While this may remain true, modern

neuroscience is increasingly beginning to reveal

how our brains respond to specific experiences

within the world. We now know what

specific patterns of activity occur in the brain

as we eat an apple, or smell a rose, and,

broadly speaking, for many people the parts

of the brain that become active during these

experiences are similar [3, 4, 2].

Indeed a significant portion of modern

neuroscience is focused on exactly how our

conscious mental states as we experience the

world (our ‘qualia’) relate to the activity in our

brains [5]. This work has rapidly accelerated

in recent years with the development of

modern, non-invasive, neuroimaging tools that

are capable of observing activity in our brains

in real-time [6].

Techniques such as functional magnetic

resonance imaging (developed in the 1990’s [7,

8]) and electroencephalography (developed be-

tween the 1870’s to 1890’s [9], but much more

recently coupled with powerful computer-

driven statistical analysis techniques) have

been combined with studies of neurological

aetiologies to revolutionise our understanding

of how semantic concepts are encoded in the

brain. This new understanding of how our

brains encode semantic concepts has given rise

to a further field of study, semantic decoding,

defined as the decoding of semantic concepts

from recordings of our brain activity.

Semantic decoding refers to a combination

of hardware and software systems that may

be employed to identify the specific semantic

concept(s) an individual is focused on, or

thinking of, from a recording of their brain

activity [10]. It is a technique which opens the

doors to a wide range of exciting possibilities

and future applications.

In this literature review we review the

current state of the art research in semantic

decoding methods. We discuss current neu-

roimaging methods and experimental designs

used in semantic decoding and how they may

be combined with machine learning pipelines

to reveal which specific semantic concepts an

individual is focused on. We also discuss

the current challenges in this research area,

including how to effectively combine multi-

modal neuroimaging techniques to more accu-

rately decode semantic concepts and how to

develop effective machine learning methods to

deal with the typically large, non-stationary,

noisy, multi-dimensional datasets involved in

this work. Finally, we discuss some current

and future applications of this research area.

2. Literature review methods

2.1. Study selection

To review the topic of semantic decoding

we following the Preferred Reporting Items

for Systematic reviews and Meta-Analysis

(PRISMA) guidelines [11]. We systematically

searched within PubMed and Google Scholar
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databases to identify papers which report

neural semantic decoding attempts. The

search was run in January 2022 and the search

queries used for each database are listed in

Table 1.

We first removed duplicate results that

arose from our four search queries. We then

screened the records for their relevance. Specif-

ically, we included papers which described at-

tempts to build and evaluate models that are

able to decode the individual discrete semantic

concepts an individual participant was focused

on at a discrete moment of time from record-

ings of their neural activity. Consequently, we

screened the records according to the criteria

set out in Table 2.

To further identify additional articles not

found by our initial search queries each of the

articles short-listed by applying the screening

criteria in Table 2 were then inspected.

Specifically, the reference list from each article

was also screened according to the criteria in

Table 2. This produced a final list of 74

articles which describe attempts to develop

and evaluate neural semantic decoders.

2.2. Definitions

2.2.1. Semantic concepts At the most basic

level a concept is the idea of what something

is or how it works and may be held in the mind

or expressed in language. Semantics refers

to the study of meaning. Thus, a semantic

concept may be defined as the meaning of what

something is or how it works. This may be

distinguished from a perceptual concept, which

defines how a concept is perceived (e.g. how it

looks or sounds).

Within the field of neuroscience it has

been known for some time that different

neural systems exist for semantic processing

of concepts and perceptual processing of those

same concepts [12]. Specifically, early work by

Elizabeth Warrington described how patients

could match perceptual features of objects

without being able to match descriptions of the

objects with their names.

More recently, the specific neuro-anatomical

basis of these systems have been identified in

detail by a series of neuroimaging studies as

well as studies of individuals with neurologi-

cal aetiologies that effect their ability to access

semantic memory [13]. Specifically, seman-

tic memory (the process of retrieving seman-

tic information related to a concept) involves

a distributed-plus-hub network in which a dis-

tributed network of brain regions selectively

respond to modality specific features, while a

central semantic hub acts to represent seman-

tic similarity between concepts. There is con-

siderable evidence locating this hub within the

left hemisphere anterior temporal lobe [13].

A widely supported theory describing how

semantic concepts are encoded in the brain

is embodiment theory. This states that the

meaning of a concept is situated within our

experience of the world [14]. So for example,

the concept of a tool is situated within our

understanding of how tools are used (they are

held in the hands, they are used to manipulate

other objects, etc.). This may be contrasted

with other approaches, which state that the

meaning of a concept is grounded in abstract

symbols or in a universal organisational system

[15].

Neuroimaging support for both embod-

iment theory and the distributed-plus-hub

model comes from functional magnetic reso-

nance imagining (fMRI) studies, which report

significant changes in blood flow within both

brain regions responsible for percepto-motor

circuits during processing of words related to

perception of motion and the anterior tempo-

ral lobe. For example, processing of words re-
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Table 1: Search queries used to identify articles relating to neural semantic decoding.

Database Query

PubMed ((semantic AND decoding) OR (semantic AND prediction) OR (concept AND

prediction) OR (concept AND decoding) OR (noun AND prediction) OR (noun

AND decoding)) AND (”brain activity” OR neural)

PubMed ((semantic AND decoding) OR (semantic AND prediction) OR (concept

AND prediction) OR (concept AND decoding) OR (noun AND prediction)

OR (noun AND decoding)) AND (EEG OR electroencephalography OR

electroencephalogram OR fMRI OR ”functional magnetic resonance imaging”

OR MEG OR ”magnetoencephalogram” OR ”magnetoencephalography”

OR fNIRS OR ”functional near infrared spectroscopy” OR ECoG OR

”electrocortiography”)

PubMed ((semantic AND decoding) OR (semantic AND prediction) OR (concept AND

prediction) OR (concept AND decoding) OR (noun AND prediction) OR (noun

AND decoding)) AND (‘intracranial EEG’ OR iEEG OR ‘stereotactic EEG’ OR

sEEG OR ‘invasive EEG’ OR ‘depth electrodes’ OR ‘implanted electrodes’ OR

‘human single-unit’ OR ‘human single neuron’ OR ‘concept cells’)

Google

Scholar

allintitle: (semantic AND decoding AND ”brain activity”) OR (semantic

AND decoding AND neural) OR (semantic AND decoding) OR (semantic

AND prediction AND ”brain activity”) OR (semantic AND prediction AND

neural) OR (semantic AND prediction) OR (concept AND prediction AND

”brain activity”) OR (concept AND prediction AND neural) OR (concept AND

prediction) OR (concept AND decoding AND ”brain activity”) OR (concept

AND decoding AND neural) OR (concept AND decoding) OR (noun AND

prediction AND ”brain activity”) OR (noun AND prediction AND neural) OR

(noun AND prediction) OR (noun AND decoding AND ”brain activity”) OR

(noun AND decoding AND neural) OR (noun AND decoding)

lated to tools has been shown to activate the

sensori-motor cortex [16].

For the purposes of our review we define a

semantic concept as an idea of what something

is or how it works that is independent of the

perceptual features of the concept such as how

it looks or how it sounds.

2.2.2. Semantic encoding and decoding

Semantic encoding may be broadly described

as the study of how the brain encodes specific

concepts. This includes studying how specific

brain regions are involved in the encoding of

concepts, as well as exploring how networks of

brain regions work together to encode specific
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Neural decoding of semantic concepts: A systematic literature review 6

Table 2: Screening criteria for records returned

by search queries.

Criteria

Include Report describes an attempt

to develop and evaluate, on

humans, a model capable of

neural semantic decoding.

Include Clear description of methods

and results in terms of decod-

ing accuracy / efficacy.

Include Report published in a peer re-

viewed article (journal, con-

ference, or peer-reviewed book

chapter).

Exclude Review, position, theory, and

discussion articles.

semantic concepts [17].

In general, semantic encoding and decod-

ing may be realised by constructing encoding

and decoding models [18, 19]. Semantic encod-

ing models are a group of modelling techniques

that seek to predict brain activity from stimuli,

while semantic decoding models seek to predict

the stimuli from neural activity [10].

Both types of model involve the develop-

ment of signal processing and machine learning

pipelines to relate distinct semantic categories

to recordings of neural activity. Consequently,

these models are frequently confused with one

another in the literature [10]. Indeed, encoding

and decoding models are often closely related

to one another. Although, an encoding model

is not a necessary prerequisite of a decoding

model, it has two advantages over a decod-

ing model. First, it can in principle provide

a complete description of the related encoding

process, while a decoding model can provide

only a partial description. Second, it can be

transformed into an optimal decoding model,

a process which is more difficult the other way

around [10].

Encoding and decoding models are appli-

cable to a wide range of questions in neuro-

science. For example, decoding models have

been developed to decode scenes from a TV

show viewed by individuals [20], faces seen by

individuals [21], pieces of music heard by par-

ticipants [22], and the quantity of displayed ob-

jects [23].

In our review we focus on decoding

models applied to the problem of semantic

decoding, identifying the single coherent

semantic concept an individual is focused on at

a given discrete epoch of time from recordings

of their neural activity.

3. Results

3.1. Outline

Figure 1 illustrates the process of study

selection and the resulting number of identified

studies.

A wide range of different neuroimaging

tools and methods have been employed

by researchers seeking to decode semantic

concepts from the brain.

Semantic decoding models seek to identify

the discrete semantic concepts an individual is

focused on at a given moment in time. Conse-

quently, neural semantic decoding studies start

with an experiment that is designed to cue par-

ticipants to focus their attention on single se-

mantic concepts for discrete periods of time.

Neural activity is recorded while participants

are cued to pay attention to a single concept.

This recorded neural activity is then processed
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Records identified from:
Pubmed (n = 4648)

Google Scholar (n = 21)

Records removed before 
screening:

Duplicate records removed 
(n = 552)
Records marked as ineligible 
by automation tools (n = 0)
Records removed for other 
reasons (n = 0)

Reports sought for retrieval
(n = 4117)

Reports not retrieved
(n = 1)

Reports assessed for eligibility
(n = 4116) Reports excluded:

Incl. criteria 1 unmet (n = 4033)
Incl. criteria 2 unmet (n = 36)
Incl. criteria 3 unmet (n = 0)
Excl. criteria 1 met (n = 13)

Records identified from:
Citation searching (n = 520)

Reports assessed for eligibility
(n = 296) Reports excluded:

Incl. criteria 1 unmet (n = 207)
Incl. criteria 2 unmet (n = 28)
Incl. criteria 3 unmet (n = 0)
Excl. criteria 1 met (n = 21)

Studies included in review
(n = 74)

Identification of studies via databases and registers Identification of studies via other methods

Reports sought for retrieval
(n = 296)

Reports not retrieved
(n = 0)

Records removed before 
screening:

Duplicate records removed 
(n = 224)
Records marked as ineligible 
by automation tools (n = 0)
Records removed for other 
reasons (n = 0)

Figure 1: Study selection flowchart.

to remove signal noise and increase the signal

to noise ratio of key discriminative features.

Semantic decoding models are then trained on

these features and evaluated in terms of their

decoding accuracy.

3.2. Neuroimaging methods

Table 3 enumerates the modalities used in

neural semantic decoding studies.

The majority of decoding studies to date

have used fMRI. This is due, in large part,

to the superior spatial resolution provided by

fMRI, which allows whole brain neuroimaging.

However, the fMRI does have a number

of disadvantages when it comes to studying

brain activity related to semantic meaning.

Specifically, fMRI has a particularly poor

temporal resolution and is only able to detect

and monitor changes in oxygenated blood flow

(BOLD) that follow electrophysiological neural

activity by 2-4 seconds [98]. Additionally,

fMRI is extremely expensive, cumbersome,

and requires participants to lie in a confined

space in tightly controlled conditions for

extended periods of time. Consequently, fMRI

studies typically focus on small numbers of

participants and are often only able to answer

relatively straightforward questions [99].

In contrast, electro-physiological neu-

roimaging methods, such as electroencephalog-

raphy (EEG) or magnetoencephalography

(MEG), provide a direct recording of neural

activity in mainly cortical neurons with a very

high temporal resolution. This provides the

potential to explore how semantic encoding

patterns change over time [82] at the cost of

a considerably poorer spatial resolution.

EEG has been explored as a tool for

semantic decoding by a relatively small

number of authors and has been demonstrated,

in some circumstances, to be able to reveal

activity related to processing of a subset of

semantic concepts. For example in work

by Murphy and colleagues [25] differences in

EEG correlates of the concepts for ‘tools’ and

‘mammals’ were reported to allow a mean
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Table 3: Modalities used for developing neural

semantic decoding models.

Modality No. References

EEG 5 [24, 25, 26, 27, 28]

EEG +

MEG

3 [29, 30, 31]

EEG +

ECoG +

SEEG

1 [32]

fMRI 45 [33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 43, 44,

45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56,

57, 58, 59, 60, 61, 62,

63, 64, 65, 66, 67, 68,

69, 70, 71, 72, 73, 74,

75, 76, 77]

fMRI +

MEG

1 [78]

fNIRS 2 [79, 80]

MEG 6 [81, 82, 83, 84, 85, 86]

Macro

electrodes

(ECoG,

SEEG)

9 [87, 88, 89, 90, 91, 92,

93, 94, 95]

Micro elec-

trodes

2 [96, 97]

decoding accuracy of 72 %. Additionally,

work by Simanova and colleagues [24] reported

semantic decoding for the concepts of ‘animals’

and ‘tools’ with a mean accuracy of up to 79 %.

Two alternative neuroimaging techniques

that provide direct recordings of electrophys-

iological neural activity with the same high

temporal resolution as the EEG, while also af-

fording a high spatial resolution and specificity,

are macro intracranial electrodes (such as elec-

trocorticogram (ECoG) and stereoencephalog-

raphy (SEEG)) and micro intracranial elec-

trodes. Macro intracranial electrodes record

neural activity from large groups of neurons

via a grid of electrodes. This grid is either

placed directly on the cortical surface under

the skull, in the case of ECoG [100], or can

be placed at a wide range of locations in the

brain, in the case of SEEG [101]. On the other

hand, micro intracranial electrodes allow ac-

tivity to be recorded from individual neurons

at any position in the brain. Consequently,

both techniques provide signals with high spa-

tial and temporal resolution that have high sig-

nal to noise ratios. However, this comes at

the cost of coverage (ECoG and SEEG only

cover a limited region of the brain and mi-

cro electrodes only allow recordings from a

few dozen individual neurons) and with the

added risk from the brain surgery that is nec-

essary to implant the electrodes. A set of

studies have demonstrated that recordings of

ECoG signals, SEEG signals, and micro elec-

trodes may be used for semantic decoding

[87, 88, 89, 90, 93, 94, 96, 95, 97].

In contrast, recent work has demonstrated

that it is possible to differentiate semantic

concepts from functional near infrared spec-

troscopy (fNIRS) [79, 80]. For example, recent

work by Rybář and colleagues [80] reported a

mean decoding accuracy of up to 80.9% for

differentiating the concepts of ‘animals’ and
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‘tools’. fNIRS records levels of oxygenated and

de-oxygenated haemoglobin in the cortex by

shining an infra-red light through the skull and

measuring how the reflected and refracted light

changes with blood flow. It measures the same

physiological process as fMRI, while allowing

participants to sit or move more freely, which

enables a wider range of experiment designs at

the cost of lower spatial resolution and cover-

age.

Techniques that record electrophysiolog-

ical brain activity, such as EEG, provide a

direct measure of neural activity as it hap-

pens with very high time resolution, whereas

blood flow based neuroimaging methods, such

as fNIRS, are only able to provide indirect

measures of neural activity via changes in the

concentration of haemoglobin, a time delayed

and spatially imprecise response to electro-

physiological neural activity [99]. An addi-

tional consideration is that non-invasive tech-

nology, such as EEG and fNIRS, are relatively

cheap and portable, potentially allowing their

use in experiments that better capture every-

day use of semantic concepts.

However, the considerably poorer spatial

resolution of technologies such as EEG and

fNIRS presents a significant challenge when

compared to technologies that provide a higher

resolution recording of brain activity such as

fMRI, and this is reflected in the corresponding

number of semantic decoding publications that

make use of each technique. This is because

different semantic concepts can be spatially

encoded throughout the brain, including in

sub-cortical regions [72] which can be observed

by fMRI but, conventionally, are harder

to measure with scalp based measurement

technologies [102].

Indeed, work by Murphy and Poesio

suggests that the ability to identify semantic

concepts from the EEG is closely related to the

ease with which the associated neural activity

may be identified from electrophysiological

recordings of cortical brain activity (EEG

and MEG). For example, the concepts of

‘tools’ and ‘mammals’ are differentiable from

EEG data alone [25] and fMRI neuroimaging

work by Pulvermüller and colleagues [16] has

shown these two concepts involve activations

in the sensorimotor and parietal cortices,

which are cortical regions observable via EEG.

Conversely, other semantic concepts that are,

perhaps, more complex in nature (e.g. such as

specific foods or ‘hunger’) have been shown to

involve sub-cortical brain areas, making them

potentially considerably harder to identify via

current non-invasive neuroimaging techniques

[72].

3.3. Open datasets

A small proportion of the neuroimaging

datasets that have been recorded during

studies developing and evaluating neural

semantic decoders have been made publicly

available, allowing other research groups to

re-use datasets to develop and evaluate new

methods. We list publicly available datasets

for developing and evaluating neural semantic

decoders in Table 4. We also list which

study originally recorded the dataset and other

studies which have made use of the same

dataset.

Note, a number of studies (such as [52, 71,

91, 94]) make use of datasets recorded in other

studies but not made publicly available. This

is typically because the studies were conducted

within the same lab and re-used data that was

available in the lab but not publicly available.

A small number of studies make use of data

that is described as being available on request,

either to eligible researchers [38], or to all

[45, 82]. However, these datasets are not
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published. Finally, one study by Carlson and

colleagues, used data that is described in the

study as publicly available [63]. However, on

further investigation the data was found to no

longer be publicly available because the archive

site was taken down due to lack of funding. We

do not include these datasets in Table 4.

3.4. Experimental design

The experimental design is probably the most

important set of decisions to make when

attempting semantic decoding. Here, we

review three crucial elements of experimental

design: semantic concepts and categories,

mental tasks, and stimulus or cue presentation.

3.4.1. Semantic concepts and categories

The semantic categories that neural semantic

decoders have been trained to differentiate

vary from study to study. However, there

are some groups of semantic categories that

are frequently used to train and evaluate

neural semantic decoders. Figure 2 illustrates

which pairs of semantic categories semantic

neural decoders have been developed to

differentiate. Specifically, we illustrate a

network on semantic categories where each

node represents an individual category and

each edge represents an attempt to build

a decoder to differentiate those categories.

The size of the nodes is proportional to the

number of studies that report attempts to

build decoders that recognise that category,

while the widths of the edges between pairs

of nodes are proportional to the number of

studies that report attempts to differentiate

those pairs of categories.

The most frequently differentiated seman-

tic categories include animals and tools [80, 24,

35, 38, 81, 42, 65, 67, 69, 72, 93], tools and

buildings [81, 42, 65, 67, 69, 72], and animals

and body parts [79, 81, 42, 28, 65, 67, 69, 72].

Several studies have also shown that it is pos-

sible to differentiate more than two semantic

categories at a time [59, 60, 65, 67, 85, 69].

There is a relatively dense network

of semantic categories that are frequently

decoded, including tools, buildings, body

parts, and animals. However, it is important

to note that this may not necessarily indicate

that these specific concepts are easier to decode

than other concepts, as many authors opt to

replicate and extend the work of other authors,

particularly when selecting which categories to

attempt to decode.

We also identified a set of studies focused

on differentiating individual concepts within

a single category [36, 72, 81, 40, 79, 38], for

instance, physics concepts [40], sets of 180

words [39], and sets of 240 sentences [73]. We

did not include these studies in Figure 2 to

avoid over-complicating the illustration.

The selection of semantic categories and

concepts is occasionally not clearly justified

and only a few studies have focused on

this problem in detail. Several studies used

concepts based on previous research. For

instance, Bauer and colleagues [37] used

concepts based on a previous behavioural

study that collected pairwise dissimilarity

ratings. While, a small number of studies

employed a data-driven strategy to generate

the concepts or the semantic categories.

For instance, Pereira and colleagues [39]

partitioned a semantic vector space, which was

used to encode individual concepts (see section

3.5), by a clustering method and a core concept

was selected from each region.

3.4.2. Tasks A wide variety of different men-

tal tasks have been used in semantic decoding

studies to date. These are enumerated in Table

5. They all share the common goal of encour-
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Table 4: Publicly available datasets for developing and evaluating semantic decoding models.

Modality Available at Reported Re-used in

ECoG http://klab.tch.harvard.edu/resources/

liuetal_timing3.html#sthash.BiYFH24Z.dpbs

[88] [89]

ECoG https://purl.stanford.edu/xd109qh3109 [92]

Micro electrodes https://github.com/rebrowski/

abstractRepresentationsInMTL

[97]

EEG https://www.cs.cmu.edu/~tom/science2008/ [72] [69]

fMRI https://openneuro.org/datasets/ds000105/

versions/00001

[75] [43]

fMRI https://datadryad.org/stash/dataset/doi:

10.5061/dryad.vmcvdncpf

[49]

fMRI https://www.cs.cmu.edu/~tom/science2008/ [72] [65,

69]

aging participants to hold a target concept in

their minds, while at the same time many aim

to also test participants focus during the ex-

periment.

In the “silent naming” task [29, 25, 49,

80, 31, 76], participants are asked to silently

name, in their minds, a semantic concept. An

alternative, related task, is the “aloud naming”

task [87, 31, 59, 90, 83] in which participants

name the concept aloud. This task has the

advantage that participant responses can be

recorded.

Many studies [36, 72, 34, 33, 40, 37,

69, 41, 42, 46, 60, 56, 65, 67, 62] asked

participants to think of the same properties

of the semantic concept in each experimental

trial. Each participant was asked to come

up with a set of properties for each concept

before the start of the experiment. Several

studies [87, 49] restricted the properties to

various sensory and motor properties. A study

by Zinszer and colleagues [79] removed the

constraint of generating the properties before

the experiment and let participants think

freely about the meaning of the given concept

or any memory it evoked. Conversely, a study

by Bauer and Just [58] asked participants

to think about features of animals that they

had been taught about thus far. Pereira

and colleagues [39] asked participants to think

about the meaning of the concept in the given

context (in a sentence, with an accompanying
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Table 5: Mental tasks used by the semantic decoding studies. Note, some studies employ two

or more task types and, therefore, appear in 2 or more rows.

Task type Specific task References

Naming
silent naming task [29, 25, 49, 80, 31, 76]

aloud naming task [87, 31, 59, 90, 83]

Properties

silent properties generation (think about a consistent pre-

generated set of properties)

[36, 72, 34, 33, 40, 37, 69,

41, 42, 46, 60, 56, 65, 67]

think about sensory and motor properties of the concept [87, 49]

think about taught features [58]

think about characteristics of the concept [62]

Meaning

think freely about meaning of stimulus or evoked memories [79]

contextual meaning reflection (think about the meaning of the

concepts in the given context)

[39, 91, 94]

think about associated situation with the concept [53, 71]

contextual meaning reflection (think about overall meaning of

a sentence/phrase)

[73, 66, 45, 54, 61, 74]

read story then answer comprehension question [52]

Imagery

visual imagery, auditory imagery, tactile imagery [80]

generate detailed mental images as similar as possible to pre-

seen images

[68]

Category /

property

recognition

out-of-category recognition [24, 35, 27]

in-category recognition [47, 28]

yes/no questions [81]

size judgement [30]

orientation judgement [92]

category specific judgement [32, 96, 97]

answer whether it can be directly experienced with senses [64, 55]

concept similarity judgment (scale 1-4) [57]

semantic similarity of 2 words to a key word [48]

semantic congruity judgment [70]

name the colour of the object or the background [83]

silently name a word from a cued category with a cued initial

letter

[84]

oddball task [78, 82, 86, 62, 93]

1-back task [82, 88, 89, 85]

1-back match task [51, 75, 95]

delayed matching [63, 77]

remember all six elements presented in a sequence [26]

Object

recognition

name an object that was closest to the one shown in the

picture

[87]

object identification + naming [38]

Passive passive task [43, 50, 31, 44, 63]
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Figure 2: Semantic categories that neural semantic decoders have been developed to differentiate.

The size of the nodes is proportional to the number of studies that have investigated a particular

category, while the width of the edges between nodes is proportional to the number of studies

that have reported attempts to build decoders to differentiate particular pairs of concepts. Note,

the positions of the concepts in the network diagram are arbitrary.

image, or with accompanying concepts).

While, a study by Rybář and colleagues [80]

restricted the imagery modalities to three

different tasks in which participants were asked

to visualize the concept in their minds, imagine

the sounds made by the concept, and imagine

the feeling of touching the concept (a concrete

object). Additionally, a study by Reddy and

colleagues [68] asked participants to vividly

imagine detailed mental images as similar as

possible to pre-seen images.

In a work by Anderson and colleagues

[53, 71], participants were asked to imagine

a situation that they individually associated

with the concept. Some related research

focused on more complex concepts or scenarios

described by sentences, typically one sentence

was presented one word (or phrase) at a time

and participants were asked to think about the

meaning of each phrase as it appeared and then

the overall meaning of the sentence [73, 66, 45,

54, 61]. For more information in this direction,

see related research on encoding or decoding

of episodic recollection and autobiographical

memory [103, 104, 105, 106, 107, 108, 109, 110,

111], or procedural knowledge [112].

In several studies [24, 35, 27, 47, 28],

participants were presented with target and

non-target semantic categories and asked to

respond upon the appearance of items from the

non-target (or target) category, for instance,

by pressing a mouse button. While, in

some studies [82, 88, 89, 85], participants

were asked to press a button if any image

repeated itself consecutively (1-back task) to

ensure that participants were paying attention.
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Studies by a few researchers [51, 75, 95] used

a 1-back match task in which participants

were asked to judge whether the category

matched the category presented immediately

before. Studies by Carlson and colleagues

and by Niazi and colleagues [63, 77] used

delay matching in which participants indicated

which choice of stimulus matched the target

stimuli presented previously. Additionally, a

study by Alizadeh and colleagues [26] asked

participants to remember all six elements

presented in a sequence.

Other studies rather focused on other

semantic aspects of the concepts. For

example, in a study by Sudre and colleagues

[81], participants answered semantic yes/no

questions for concrete nouns (e.g. “Was it ever

alive?”, “Can you pick it up?”). In a study

by Chan and colleagues [30], participants

responded based on a size judgement of the

concept, i.e. smaller or larger than 0.3 meters

in any dimension, while in a study by Miller

and colleagues [92] the orientation of an image

stimuli was used as a form of oddball task.

Studies by Fernandino and colleagues [64,

55] asked participants whether the stimulus,

either a word or a pseudoword, referred to

something that can be experienced through the

senses. In a study by Wei and colleagues [87],

participants were instructed to name a concept

that was closest to the one shown in the

picture. While, Kivisaari and colleagues [38]

provided three verbal clues for each concept

(e.g. “has 4 legs”, “is found in the savannah”,

“has a trunk”) and participants attempted to

identify the concept. In a study by Simanova

and colleagues [84], participants were asked to

internally produce a word in the cued semantic

category with the initial cued letter. Dehghani

and colleagues [52] conducted a study in

which participants were asked to read a story

and then answer a comprehension question.

Similarly, in a study by Mahon and Caramazza

[57], participants were asked to judge the

conceptual similarity of two objects on a scale

from 1 to 4, while Wang and colleagues [48]

asked participants to judge which of two words

was most similar to a key word. In a study

by Li and colleagues [70], participants were

asked to silently judge semantic congruity of

the presented stimuli with a cued category.

Finally, in a study by Honari-Jahromi and

colleagues [83] participants were asked to name

the colour of the object or the background (in

images)

However, several studies used passive

tasks, for instance, passive viewing of images

[63, 43], passive reading [50], and passive

listening [31, 44]. It has been shown that

the viewed object can be identified from the

passive viewing of images [113, 114, 115,

116, 117, 118], which is the focus of the

field of image retrieval. The same argument

applies for instance for speech production and

passive listening. For this reason, passive

tasks alone may not be sufficient to allow

semantic decoding. To mitigate this issue and

ensure participants attention, several studies

[78, 82, 86, 62, 93] included an oddball task

in which participants were asked to respond,

typically by pressing a button, when a different

type of stimulus was presented.

3.4.3. Stimulus / cue The stimulus modal-

ities used to cue participants to focus on a

particular semantic category are enumerated

in Table 6.

The most common stimuli type used is a

visual image presentation modality, which 41

studies used. Stimuli included photographs

(grey-scale or coloured) or line drawings of

the concepts the participants were instructed

to focus on. In 12 studies written captions

or spoken words were added to the images.
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Table 6: Stimulus presentation modalities used

by the semantic decoding studies.

Modality References

image [24, 36, 46, 67, 35, 25,

29, 87, 80, 43, 47, 28,

78, 82, 59, 83, 54, 63,

85, 70, 88, 89, 93, 75,

96, 77, 95, 92, 97]

image + written

caption

[33, 34, 81, 39, 58, 65,

69, 72, 74, 32]

image + audi-

tory (speech)

[34, 79]

auditory

(speech)

[24, 35, 30, 31, 27, 57,

68, 94, 51, 38]

auditory (natu-

ral sounds)

[35, 44]

written word [24, 35, 37, 30, 40, 41,

42, 31, 46, 48, 49, 26,

53, 55, 56, 60, 62, 64,

84, 90, 71, 91]

written text or

phrases

[39, 45, 50, 52, 61, 66,

86, 73, 54]

Written words or text, presented all at once

or each word one by one, were the second

most used modality and were employed by 31

studies. Spoken words (or speech) and natural

sounds were used less often and were employed

in only 12 studies.

A concern when using cues to instruct

participants to focus on particular categories

is that the presentation of the stimulus

may introduce potential processing-related

confounds into the classification process. For

instance, focusing on a concept while seeing its

image raises the question of what is used for

the differentiation between different concepts:

the visual processing of the image (low-

level perceptual features), the imagination of

the concept, or some combination of brain

activities related to both processes. Some

studies explicitly analysed the influence of

some of these possible confounds. For

instance, Murphy and colleagues [25] examined

brightness, mean spatial frequency, and visual

complexity of the stimuli images. However, the

set of potential confounds and methods (for

instance, how to measure image complexity)

has not been comprehensively studied. An

alternative method is to use only certain brain

regions or networks in the analysis, typically

excluding visual areas [39]. However, this

approach is only feasible for neuroimaging

techniques with good spatial resolution, such

as fMRI, intracranial electrodes, or ECoG.

The separation of the task and stimulus

presentation can potentially avoid this issue,

see also the related field of mental imagery

[118, 119, 120, 121, 122, 123]

3.5. Feature extraction

Depending on the recording modality, a

wide variety of features can be used for

semantic decoding. In fMRI and fNIRS,

signals are typically epoched from 4 up

to 9 seconds after the stimulus onset to

account for the haemodynamic delay in event-

related designs. EEG, MEG, and intracranial

electrode recordings are traditionally analysed

in the temporal domain (e.g. ERP analysis),

the frequency domain to reveal the signal

power distribution over frequencies, or the

time-frequency domain for varying spectral

activities over time.

Apart from these traditional features,

studies have started to utilize domain-specific

multi-dimensional information in which each

concept is encoded by “semantic features” that

are not acquired from the recordings. The two

main approaches used can be categorized as
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attribute-based views and vector space models

of semantics, see also a recent review [124].

In the attribute-based view, a concept can

be encoded according to its semantic attributes

or features. Each attribute is assigned a value

or a set of values related to its probability,

weight, or importance [125, 126, 127, 128, 129].

A study by Sudre and colleagues in MEG [81]

used a semantic knowledge base consisting of

218 interpretable semantic attributes. This

dataset was collected by asking 218 questions

to a group of Amazon Mechanical Turk users

about the semantic properties of 1000 concrete

nouns [130, 81]. For example, some questions

were related to size, shape, surface properties,

context, and typical usage, with answers on a

scale of 1 to 5, and then rescaled to a range

of -1 to 1. In particular, they employed a

two-stage classifier with a layer of intermediate

semantic features between the input features

and the class label. While, Fernandino and

colleagues [64, 55] used a semantic model based

on five semantic attributes directly related to

sensory-motor processes: sound, colour, shape,

manipulability, and visual motion. Ratings for

these attributes on a scale from 0 to 6 were

collected for 900 words.

In another example, Anderson and col-

leagues [66] used an experiential attribute

model with 65 attributes [126] that modelled

semantic representation using people’s ratings

of their association with different attributes

of experience on a scale of 0 to 6. Col-

lected attributes spanned sensory, motor, af-

fective, spatial, temporal, causal, social, and

abstract cognitive experiences. Lastly, a study

by Wang [73] developed a set of 42 concept-

level semantic features. These binary features

included information from categories such as

the perceptual and affective characteristics of

an entity (e.g. whether it was man-made,

size, colour, temperature, positive affective va-

lence, and high affective arousal), animate be-

ings (person, human-group, animal), and time

and space properties (e.g. unenclosed setting,

change of location). For example, the noun

‘judge’ was encoded with the following fea-

tures: person, social norms, knowledge, and

communication. The study used an encoding

regression model to determine the mapping be-

tween 42 semantic features as well as 6 the-

matic role markers of phrases in sentences and

neural activation patterns assessed with fMRI.

In vector space models of semantics, au-

tomated methods can be used to learn se-

mantic features from the statistical properties

of words and phrases in large text corpora

[131, 132, 133, 134, 135]. Computational lin-

guistics has shown that contextual information

provides a good approximation to word mean-

ing [136, 137, 138, 139]. Mitchell and col-

leagues [72] developed a model to learn pre-

dictive relationships between the statistics of

word co-occurrences (with a set of 25 verbs

in a large text corpus) and fMRI neural ac-

tivation patterns (BOLD activation patterns).

Zinszer and colleagues [79] used representa-

tional similarity-based neural decoding to test

whether semantic information of words and

pictures represented by textual co-occurrence

frequency in large text corpora is encoded in

fNIRS.

More recently, word2vec [140, 133] and

GloVe [134] have become popular semantic

spaces [141, 135]. In word2vec, semantic vector

representations are learnt in a way that a word

can be predicted given the average semantic

vector of the other words in the context (e.g.

5 words before and 5 words after the word

of interest). In GloVe, representations are

created in a way that the dot product of two

vectors equals the logarithm of the probability

of the associated words co-occurring in text.

For instance, Pereira and colleagues [39] used
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GloVe to decode individual word meanings

in fMRI while participants were instructed to

think about the meaning of a target word

in the given context (either in a sentence,

with an accompanying image or accompanying

words). Djokic and colleagues [50] investigated

processing of literal and metaphoric sentences

in fMRI using GloVe, a visual model, and a

compositional model. While, Kivisaari and

colleagues [38] used word2vec to decode a

semantic concept in fMRI while participants

read brief verbal descriptions of the target

concept. Participants received clues about

individual concepts in the form of three

isolated semantic features, given as verbal

descriptions. Dehghani and colleagues [52]

used an extension of word2vec for paragraph

vectors to decode specific stories participants

were reading in fMRI. Honari-Jahromi and

colleagues [83] used word2vec to investigate

neural representations of words within phrases

in MEG.

3.6. Feature selection

Nowadays, multivariate analyses methods,

such as multivariate pattern analysis (MVPA)

in fMRI literature, utilizing information from

multiple channels (voxels in fMRI, electrodes

in EEG, etc.) are dominant, while historically

many studies used to apply univariate analy-

ses methods to the semantic decoding prob-

lem. Feature selection methods are thus typi-

cally needed to decrease the number of features

from inherently high-dimensional neuroimag-

ing data. Furthermore, feature selection meth-

ods may be used to attempt to address inter-

person differences in neural encoding.

A basic method is to restrict the neu-

roimaging data, for instance to certain chan-

nels, time points, or frequencies. For exam-

ple, the analysis can be performed on anatom-

ically defined regions of interest or to repeat

the analysis on small local areas (searchlight

analysis in fMRI literature). Many studies

[72, 36, 40, 79, 73, 37, 38] attempt to select

the most stable channels over presentations of

concepts within a participant. While, some

studies [40, 73] have applied a two-level hierar-

chical factor analysis to select brain locations

over multiple participants.

We illustrate which regions of the brain

are most commonly used in semantic neural

decoding studies in Figure 3. Specifically, we

coarse grain the brain regions into 8 regions:

frontal, parietal, temporal, and occipital brain

regions in the left and right hemispheres.

We then illustrate the percentage of neural

semantic decoding studies which make use of

information from each region.

It can be seen that the left temporal

lobe is most frequently used as the basis

for extracting features for semantic decoding.

This is not a surprising result as the left

temporal lobe of the brain has been widely

reported to be involved in conceptual naming

[142] and, as we saw in section 3.4.2, naming

tasks are used in several studies, while, as

we saw in section 3.4.3, many studies use

written or spoken concept names to present

concepts to study participants. Furthermore,

the anterior temporal lobe is well-known to

be the hub, within the distributed-plus-hub

model, for semantic memory retrieval in the

brain [143, 13].

Statistical-based feature selection meth-

ods making use of the category labels can also

be used. For instance, some studies [34, 33, 50]

used channel selection based on ANOVA. Al-

ternatively, supervised machine learning can

be used to drive the channel selection.

Dimensionality reduction methods that

project the data into a smaller subspace are

popular. For example, principal component
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Figure 3: Illustration of the most informative

brain lobes for the semantic decoding. Values

represent percentages from the number of stud-

ies that reported this information, typically in-

spected in a post-analysis (see the supplemen-

tary material). Left and right frontal, parietal,

temporal, and occipital lobes were chosen for

a broad overview, which could be useful for a

wide range of neuroimaging modalities includ-

ing EEG and fNIRS decoding.

analysis (PCA) projects the data into a space

with components that successively maximize

the variance of the projected data, indepen-

dent component analysis (ICA) decomposes

the data into statistically independent com-

ponents, and common spatial patterns (CSP)

[144, 145] (used to aid binary classification)

projects the data into a space that maximizes

the signal variance for one class, while simulta-

neously minimizing the signal variance for the

opposite class. These projections are then fol-

lowed by a selection of only a certain number

of dimensions, typically the ones that describe

the most useful aspects of the data. It is impor-

tant to note this decomposition can be spatial

(over channels), temporal (over time), spectral

(over frequencies), or any combination of these

dimensions.

3.7. Machine learning models

Machine learning methods are used within

semantic decoding to identify the specific

semantic concept(s) an individual is focused on

from a recording of their brain activity. Thus,

the core aim of the machine learning part of the

semantic decoding process is to categorise and

classify recordings of brain activity into labels

describing the associated semantic concepts.

Machine learning methods may, in gen-

eral, be grouped into two distinct categories:

unsupervised methods and supervised meth-

ods.

Unsupervised machine learning methods

do not make use of any underlying category

labels in order to process the data. Thus, they

are best suited to aiding the categorisation pro-

cess by, for example, reducing the dimension-

ality of the feature space. However, they can-

not, by themselves, be used to classify data

[146, 147].

Supervised machine learning methods, by

contrast, make use of category labels in order

to attempt to identify rules by which the data

may be classified [146, 147]. For example,

supervised machine learning methods may

be used to identify rulesets or thresholds

to separate neural feature sets into their

associated semantic category labels.

Table 7 enumerates the machine learn-

ing classifiers used for semantic decoding.

The most frequently used machine learning

methods were support vector machines, naive

bayes classifiers, and regression based meth-

ods. Somewhat surprisingly, we have not found

semantic decoders to date that make use of

deep learning methods such as convolutional

neural networks or long short-term memory
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Table 7: Machine learning classifiers used by

the semantic decoding studies. Note, some

studies employ two or more classifiers and,

therefore, appear in 2 or more rows.

Method References

Support vector ma-

chine

[35, 25, 29, 37, 87,

30, 44, 49, 51, 27,

54, 62, 65, 67, 68,

70, 90, 88, 26, 58,

91, 94, 76, 97]

Logistic regression [33, 34, 24, 80, 41,

48, 84, 77]

Naive Bayes [36, 87, 40, 42, 45,

46, 47, 28, 56, 60,

61, 65]

Regression [38, 81, 52, 55, 39,

83, 64, 66, 86, 72,

73, 61, 93]

Linear discriminant

analysis

[78, 82, 63, 85, 76,

96, 92]

K-nearest neigh-

bours

[59, 65, 89, 31]

Neural network [43, 53, 89, 74]

Correlation-based [79, 50, 69, 57, 71,

75, 95]

networks [148]. This is despite the rapid recent

growth of the use of these methods in many re-

lated domains of neuroscience [149]. We antic-

ipate that semantic decoding studies that use

these advanced machine learning methods will

begin to appear in the near future.

3.8. Measuring performance

The final step of any decoding pipeline is to

evaluate the decoding performance. When

only a few classes are being distinguished, stan-

dard machine learning evaluation methods can

be used for binary or multi-class classification

problems, such as classification accuracy, F1

score, Cohen’s kappa, or preferably a confu-

sion matrix.

With an increasing number of classes to

distinguish, the above methods do not tell us

the whole picture, for instance, the class may

be incorrectly predicted but it would be the

second choice of a multi-class classifier or it

may be semantically similar to the true class (if

this makes sense in the application context). In

these cases, several studies used rank accuracy

[36, 37, 39, 40, 41, 42, 45, 55, 56, 58, 60, 61,

67, 72, 73], which is defined as the percentile

rank of the correct class in the classifier’s

rank output. The list of predicted classes is

rank-ordered from most to least likely and the

normalized rank of a correct class in a sorted

list is computed. Rank accuracy ranges from

0 to 1 and the chance level performance is 0.5.

Several studies used leave-two-out pair-

wise comparison [72, 81, 39, 38, 79, 52, 82,

83, 63, 69, 86, 71, 75]. This procedure leaves

two samples s1 and s2 for testing during cross-

validation. With two classes C1 and C2, it com-

pares two predicted classes and decides which

order is a better match whether (s1 = C1 and

s2 = C2) or (s1 = C2 and s2 = C1). The chance

level performance is 0.5. For two samples and

two classes, this is mathematically equivalent

to the area under the curve measure. However,

this metric makes comparisons between studies

difficult unless more information is provided.

Furthermore, performance measured this way

is not appropriate for many real-world use-

case scenarios where only two samples could

be predicted and it does not consider the same

class for the two samples. To make this is-

sue more confusing, several studies incorrectly

refer to this procedure as leave-two-out cross-

validation. Whereas, from a machine learn-

ing perspective, leave-two-out cross-validation
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leaves two samples from the training and then

classifies each sample separately to which class

it belongs (from all possible classes). On a

related note, a small number of studies only

reported mean or individual pairwise accura-

cies from multi-class classification (e.g. from

one-vs-one or one-vs-rest strategies) without

trying to aggregate them together. Neverthe-

less, we must acknowledge that the main re-

search focus of many studies, presented here,

was on localization of brain regions involved in

semantic decoding or encoding. Thus, not all

reported performance metrics are useful when

attempting to compare decoding accuracy be-

tween studies.

Overall, the selection of the evaluation

metrics ultimately depends on the application

scenario. We strongly suggest reporting ev-

erything necessary, such as confusion matrices,

so that one can compute any other metric of

interest, whenever this is feasible. Neverthe-

less, it is important to note that these metrics

do not represent the whole picture of the ap-

proach used. This issue is similar to the issue

of the information transfer rate (ITR) metric,

which is a popular metric in brain-computer

interface (BCI) systems (see section 5.3) and

measures the amount of information in bits

that is conveyed by a system’s output within

a given time [150, 151, 152] (see equation 2 in

section 3.9). Whereas, in real-case BCI scenar-

ios, users’ states, such as fatigue and perceived

ease of use of the BCI must also be taken into

consideration.

3.9. Decoding performance

We compare semantic decoding performance

between studies. Due to differences in

reporting metrics used in different studies

we are unable to compare performance of

all the studies in our review. However,

to make at least a partial comparison, we

decided to use ITR to compare decoding

performance. ITR incorporates the number

of classes the semantic decoder is attempting

to differentiate, the time taken to decode the

concepts, and the reported decoding accuracy.

It is defined, in [153], by

B = log2C + p log2p+ (1− p) log2

( 1− p

C − 1

)
(1)

ITR = B ×
(60

T

)
(2)

where C denotes the number of classes,

p denotes the classification accuracy, and T

denotes the time taken to make a selection in

seconds.

Thus, it allows meaningful comparisons of

decoding performance to be made between se-

mantic decoding studies, even when different

numbers of semantic categories and/or differ-

ent time windows are employed. For compar-

ison, consider the case where studies are com-

pared in terms of accuracy, or some similar

metric such as area under the curve. Such a

comparison is only meaningful when the num-

ber of classes and the time windows are the

same across studies. For example, an accuracy

of 50 % may be good when there are 4 different

classes, but could be no better than random

chance when there are only 2 classes.

Figure 4 shows ITRs in bits per minute

for studies that reported decoding accuracies.

Nevertheless, this information represents an

optimistic view. To compute ITR, we ig-

nored inter-stimulus intervals in experimental

paradigms and instead only used the end of

the time window after the stimulus onset which

was used for classification. It is important to

note that all studies were conducted offline. In

real-time semantic decoding applications, ITR

would most probably be significantly lower.

As expected, neuroimaging techniques

affected by a slow haemodynamic delay, such
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Figure 4: Information transfer rate (ITR) in

bits per minute for semantic decoding studies,

for which it was possible to calculate ITR (see

the supplementary material). Macro electrod.

indicates macro intracranial electrodes such

as ECoG or SEEG, while Micro electrod.

indicates micro intracranial electrodes used for

single unit recordings.

as fMRI and fNIRS, require longer times and

thus they typically have lower ITRs (in a

range from 0.02 to 9.08) in comparison with

electro-physiological neuroimaging methods

(with ITRs in a range from 0.09 to 149.83),

even though they typically achieve greater

accuracies. Indeed, if performance is measured

without taking into account the length of the

time window needed by the decoder for each of

the neuroimaging modalities, fMRI would out-

perform scalp based measures such as EEG.

However, given the rapidity with which human

thought can switch between semantic concepts

we consider it appropriate to incorporate the

length of the time window into our comparison

of decoder performance.

It is worth noting that ITR is not

a perfect metric for comparing semantic

decoding studies as it does not take into

account the semantic similarity of concepts.

For example, pairs of concepts that are

semantically unrelated to one another are

likely to be much easier to decode than

concepts that are closely related. This can be

seen in Figure 2, which shows that categories

that are quite distinct from one another,

such as ‘animals’ and ‘tools’, are frequently

used in semantic decoding studies, whereas

more similar concepts, such as ‘celery’ and

‘carrots’, are rarely used. An ideal metric

for measuring the performance of semantic

decoders would also incorporate some measure

of the semantic similarity of the concepts that

were decoded. However, as semantic similarity

between concepts varies across languages,

cultures, and even individuals, such a measure

could prove challenging to develop and is

beyond the scope of our review.

4. Key challenges

Semantic neural decoding has considerable

potential to aid understanding of how concepts

are held and processed in the brain. However,

it is first necessary to overcome current gaps

in our understanding of how the brain works.

For example, more accurate characterisation of

activity patterns in terms of location, timing,

and morphology has the potential to enable

more accurate semantic neural decoding.

It is also necessary to improve current

machine learning methods used to identify

semantic concepts from neural data. This may

include using joint recording methods, such as

simultaneous EEG and fMRI to improve the

accuracy of semantic decoding.

An additional challenge is identifying the

most appropriate combinations of methods
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to differentiate specific sets of semantic

concepts and determine which methods may

be employed for particular applications. For

example, fMRI may be used to differentiate a

wide range of different semantic concepts, but

is impractical for many possible applications

of semantic decoding (for example, building a

practical semantic communication device, see

section 5.3).

It is also important to note that the

specific concepts that semantic decoders are

able to differentiate currently depends largely

on the neuroimaging methods employed. In

general we observed that decoders that used

techniques with higher spatial resolution -

such as fMRI or intracranial electrodes -

were better able to decode concepts that are

more semantically similar to one another than

neuroimaging techniques with lower spatial

resolution, such as EEG or fNIRS. Advances

in signal processes techniques for the EEG and

fNIRS may help to close this gap in future,

but it is likely to remain the case that a higher

spatial resolution is needed to more accurately

decode more semantically similar concepts.

Finally, differences in inter-participant

and inter-language neural encodings of seman-

tic concepts represent a considerable challenge

[33]. Ideally, one would wish to build a decod-

ing model from one sub-group of individuals

and be able to apply this with any new indi-

vidual.

However, neural signatures of semantic

encoding vary considerably across individuals

and even across experiments with the same

individual [99]. There are a variety of rea-

sons for this. In particular neuroanatomical

differences between individuals mean that di-

rect one-to-one mappings of neural encoding

patterns for a given semantic concept between

participants are not possible [99]. In addi-

tion, non-stationarity in neural representations

of meaning results in differences in neural en-

coding patterns between experimental sessions

with the same participant [154].

Some of these differences can be corrected

for by pre-processing the recorded neural data.

For example, fMRI recordings can be fit to

common templates via a series of warping

and translation steps to provide some degree

of neuroanatomical homogeneity, at the cost

of reduced spatial precision and resolution

[155]. However, conceptual organisation of

semantic concepts differs between individuals

as different people relate concepts to one

another quite differently. For example, while

one individual may relate the concept of

‘celery’ to the concept of ‘hunger’ another

may not. These differences in conceptual

organisation result, according to embodiment

theory, in differences in neuroanatomical

localisation of encoding patterns for concepts.

Consequently, even with correct inter-person

neuro-anatomical alignment there may still be

considerable differences in encoding patterns

between individuals. Methods to address this

include searching for signatures of semantic

concepts within neural data [156] or joint

feature ranking selection [33]. For example,

joint feature ranking identifies signatures of

concepts across different neuro-anatomical

structures and localisations by searching for

temporal dynamic modulations of neural

activity that co-vary with presentations of

specific semantic concepts.

An additional consideration is differences

in neural encoding of semantic concepts by

individuals who speak different languages. A

semantic concept may be, to some extent,

independent of language; the concept of ‘food’

(for example) is a universal one. However, the

way specific concepts are encoded in our brain

is determined by multiple factors including,

but not limited to, mappings to other related
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concepts, and societal and cultural views of the

concept. Moreover, the meaning of concepts

can change over the life span [157].

Emerging evidence suggests a mixed pic-

ture, with some similarities in neural repre-

sentations reported (e.g. [158, 159]). How-

ever it is not certain that these similarities will

generalise well across all languages. There-

fore, inter-participant / language differences

(e.g. in neuro-anatomical structure, as well

as in structuring of neural encoding) need to

be accounted for when attempting to under-

stand semantic encoding or build semantic de-

coding models [99]. Methods have been devel-

oped to attempt to help overcome these differ-

ences, such as hyper-alignment analysis [154]

or mutual similarity relationships [156, 160].

5. Current and future applications and

directions

Semantic decoding allows the identification of

the specific semantic concept(s) an individual

is presented with or focused on at a given

moment in time. This emerging field of

research suggests many application areas.

5.1. Tools for neuroscience

Semantic decoding has the potential to provide

a useful toolset to neuroscientists seeking to

investigate how our brains store, relate, and

process semantic concepts. For example, the

multivariate pattern analysis method used in

some semantic decoding studies has also been

widely used to understand which brain regions

are involved in representing semantic concepts

[161]. Semantic decoding has also been used

to build and test models of memory re-

consolidation after receiving further, refining,

information from input sentences [162].

A more specific example of this is

the use of semantic decoding to explore

neural representations of naturalistic stimulus

complexity in the early visual and auditory

cortices. A recent neuroscientific study by

Güçlütürk and colleagues [163] used semantic

decoding methods to identify how complex

natural stimuli are encoded in these parts of

the brain.

Other researchers have used tools devel-

oped for semantic decoding to explore how con-

cepts at different ‘levels’ are encoded in our

brains. For example, early work by Rosch and

colleagues [164] defined a ‘basic level’ concept

upon which other more complex concepts may

be constructed. For example, Rosch defined a

‘bird’ as a basic level concept while more spe-

cific concepts (such as ‘robin’ or ‘crow’) exist

at subordinate levels in this hierarchy.

This early conceptual framework has been

shown, via the application of semantic decod-

ing tools, to map to specific organisational

structures for semantic encoding in the brain.

For example, work by Bauer and Just [41]

showed that ‘basic level’ concepts occupied

more spatially distributed neural encoding pat-

terns, while subordinate level concepts occu-

pied less widely distributed, more concentrated

brain areas.

This, in turn, relates to the distributed-

plus-hub model of semantic memory retrieval

in the brain. Under this model, visual,

perceptual, and motor related features of

individual concepts involve a distributed

network of brain regions located within the

brain regions responsible for the associated

cognitive processes [13]. So for example, the

concept of ‘tools’ is likely to be associated

with motor-related cognitive processes and

involves a distributed network that includes

the motor cortex. This distributed network

is then bound together in a central amodal

hub, located within the anterior temporal

Page 23 of 37 AUTHOR SUBMITTED MANUSCRIPT - JNE-105027.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Neural decoding of semantic concepts: A systematic literature review 24

lobe, which is responsible for relating semantic

concepts to one another. So, for example,

basic level and more complex concepts are

related to one another in the anterior temporal

lobe and semantic decoding studies can aid

understanding of this process.

5.2. Clinical applications

The ability to accurately decode and classify

concepts from recordings of brain activity

has potential clinical applications in treating

disease. An early review in this area

suggested that many of the computational

and neuroimaging techniques developed for

semantic neural decoding could be employed to

classify brain disorders such as schizophrenia

and depression [165].

This approach was shown to be usable

in the diagnosis of developmental dyscalcu-

lia in a small study with 13 individuals with

dyscalculia and 36 control participants [166].

A time-resolved multivariate analysis method

was used to analyse fMRI recorded from par-

ticipants while they judged the correctness of

multiplication results. The results showed de-

tailed differences between the groups, indicat-

ing that neural decoding techniques could be

adopted for clinical diagnosis in future.

Following on from this early work, neural

decoding techniques have also been applied to

attempt to understand and treat aphasia [167].

Aphasia is a disorder of language that results

from damage to the brain and causes deficits

in the production and/or comprehension of

speech. Pasley and Knight [167] suggested that

neural decoding of semantic concepts could

be used to understand how semantic encoding

is affected by aphasia. Furthermore, they

suggested that, during attempted treatment

of aphasia, semantic decoding could be used

to judge the effectiveness of the treatment.

Treatments could then be adjusted according

to this neural measure of their efficacy.

Semantic neural decoding has also been

shown to be able to differentiate between

individuals with schizophrenia and healthy

controls [168]. Specifically, a multivariate

state space model was used to analyse

the representations of mental processes of

individuals as they performed the Sternberg

Item Recognition Paradigm [169]. Significant

differences were found between controls and

individuals with schizophrenia, suggesting a

possible further clinical application.

More recently, neural decoding techniques

have been shown, in two separate studies, to be

able to differentiate between individuals with

autism and control participants [170, 171].

Another recent exciting example of this

is the suggestion that neural decoding of

semantic concepts may be used as a potential

test for Alzheimer’s disease [172].

Alzheimer’s disease is a progressive neuro-

degenerative disease that leads to gradual loss

of cognitive function and, in many cases,

ultimately leads to death. One of the

symptoms of Alzheimer’s disease is a loss of

semantic knowledge that begins years before

the onset of dementia [173] and it has been

suggested that this early loss of semantic

knowledge could be used as an early test

for Alzheimer’s disease. Specifically, it was

suggested in [172] that the semantic neural

decoding methods, developed in fMRI studies

and extended to use with other neural imaging

technologies, could be deployed as a test for

Alzheimer’s disease.

However, there are considerable chal-

lenges that first need to be overcome be-

fore this potential application can be realised.

Specifically, the relationships between seman-

tic knowledge decline and specific Alzheimer’s

disease pathologies needs to be more thor-
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oughly investigated.

As a final example, neural decoding has

also been demonstrated to allow identification

of individuals who are engaged in suicidal

ideation. Specifically, a fMRI study by Just

and colleagues [174] was used to identify

neural signatures related to the concepts of

‘death’, ‘cruelty’ and other concepts related

to suicide in 17 suicidal ideators and 17

controls. Significant differences in neural

encoding patterns for these concepts allowed

differentiation of these groups with a 91 %

accuracy, suggesting semantic decoding could

potentially be used to identify individuals at

risk of suicide.

5.3. Communication aids

The possibility to accurately decode the

concept an individual is focused on also

suggests an application as a communication

aid; specifically, as a unique form of brain-

computer interface (BCI).

BCIs have been proposed as a technolog-

ical solution to aid communication [175, 176].

They can be intuitive and easy to use [177,

178, 179, 180]. However, the current com-

munication speeds and accuracies achievable

with BCIs are relatively low when compared

to other communication platforms [179, 180].

Indeed, most current BCIs achieve communi-

cation rates (speeds and accuracies) of around

27 bits per minute [153, 181], while eye track-

ers can achieve communication rates of around

41 bits per minute [182] and human speech is

typically between 160-190 words per minute

[183, 184] making BCIs for communication

only really useful when other interfaces are not

feasible [185].

One of the key limits to communication

speed in BCI systems stems from the serial

communication paradigm, which forms a part

of the basis of all BCI systems, and indeed

the majority of assistive technologies used

to aid with communication. Specifically,

communication proceeds 1 bit at a time and,

as a consequence of this, virtually all efforts

to improve BCI bit rates have focused on

simply increasing the speed at which serial

input may be made with the BCI [186, 187,

188, 189, 181, 190, 191, 192]. Indeed, even

the relatively new research area of hybrid

BCIs [193] uses serial communication, albeit

with the occasional possibility to enter two

commands together [194].

Semantic decoding could be employed to

achieve a form of parallel communication with

BCI, improving their communication speed

considerably. For example, identifying the

multi-bit semantic concept of ‘hunger’ directly

from neural data could be much faster than

spelling out ‘I–A-M–H-U-N-G-R-Y’ in series

via a current state-of-the-art BCI.

Some work in the field of BCI is already

moving in this direction. For example, the

use of a single shot decoding attempts to

identify the concept an individual is focused

on is one of the first attempts in BCI to

deploy semantic decoding techniques as a

communication paradigm [195, 81, 38, 196].

Related BCIs have been developed based

on semantic relations. Geuze and colleagues

[197] introduced a BCI based on EEG to

determine which prime word a user had in

mind. Users were presented with a probe word,

the BCI detected whether the word is related

to the prime word, and a new probe word

was chosen from an association network. This

process was repeated until a certain confidence

threshold was met. An average decoding

accuracy of 38 % was reported using 100 probes

and 150 possible words. Additionally, Wenzel

and colleagues [198] used a combination of

EEG and eye gaze. Users looked for words
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belonging to a semantic category of interest

from a stream of words on the screen. The

online BCI detected whether the words were

subjectively relevant to the category. An

average rank for the category of interest among

the five categories was 1.62 after a hundred

words had been read.

Some related research focuses on identifi-

cation of cognitive concepts from neural signals

in ‘cognitive BCIs’ [199]. However, these cog-

nitive BCIs make use of implanted electrodes

(a technology which fundamentally limits their

utility due to the inherent safety and ethical

concerns entailed in such an approach), and are

not based on semantic concepts, but rather the

broader concept of ‘cognitive states’ (which in-

cludes emotions, intention, executive function,

motor commands, etc.) [199].

Asides from this work, a small amount of

work has also been conducted in electrocor-

tiography (ECoG) based BCIs [87] that seek

to identify semantic concepts. However, this

also comes with the same impracticalities as

cognitive BCIs. Additionally, a small number

of studies have attempted to provide control

for users by identifying the semantic concepts

‘yes’ or ‘no’ responses [200]. However, the re-

sults of these attempts have been inconclusive

(even when conducted with fMRI [201]).

The use of semantic decoding for com-

munication may be interpreted as a semiotic

system [202]. Indeed, BCIs have been inter-

preted as semiotic translation systems that

translate intention to action [203], wherein the

link between intention, brain activity, and re-

sulting action can be expressed within a semi-

otic framework. By linking intention, brain ac-

tivity, and action to specific semantic concepts

in the mind semantic decoding has the poten-

tial to allow this interpretation to be made

more explicit.

5.4. Other applications and privacy concerns

Finally, the ability to identify the specific

semantic concept an individual is focused on,

or thinking of, has numerous other potential

applications that, to date, have only been

briefly suggested in the literature.

One such application is the use of neu-

ral decoding in the field of “neuromarketing”.

This field suggests the use of neuroscientific

techniques to develop, refine, and test market-

ing strategies for commercial products, for ex-

ample by measuring neural signature of affec-

tive (emotional) responses to particular prod-

ucts [204].

Semantic decoding methods may be

used to identify which specific concepts an

individual focuses on when shown advertising

material. This could, in turn, be used to

identify more effective advertising strategies.

However, applications such as this and

other similar possible uses of semantic decod-

ing suggest the need to consider the privacy

and ethical issues raised by semantic decod-

ing [6]. Specifically, neural decoding offers the

possibility to decode and interpret a part of an

individuals current mental state. This could,

theoretically, be done without the permission

of the individual, for example as a part of a

criminal investigation.

The associated privacy and ethical issues

are rarely considered in the majority of

the literature on semantic neural decoding,

perhaps because the technology is currently at

a very early stage where such applications feel

a long way off. However, one recent discussion

paper [205] begins to consider these issues and

develops an evaluation framework to consider

issues of privacy and ethics in the field of neural

decoding. We anticipate considerably more

discussion on these issues as the field develops

further.
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6. Discussion and Conclusions

We systematically sought records of studies

that attempted to develop semantic neural

decoders. Our search methodology included

searches of PubMed records and Google

Scholar and included all relevant peer reviewed

articles that we could identify on these

databases. However, no literature review

can ever be completely comprehensive and we

may have neglected to include some records

that describe semantic neural decoders, either

because the title and abstract did not indicate

that this was attempted in the study, or

because we misunderstood the title and

abstract and incorrectly excluded the paper.

Thus, while our review considers the majority

of semantic neural decoding studies it may not

be comprehensive. Nevertheless, we are able to

draw some key conclusions from our analysis of

this literature.

Specifically, the majority of neural seman-

tic decoders make use of the fMRI to record

neural data, while a smaller number of studies

use other methods such as EEG or MEG. The

range of concepts that these decoders attempt

to identify is relatively large but there is a core

subset of concepts (such as animals and tools)

that are very frequently decoded. Experimen-

tal designs vary considerably across studies

with a wide range of different types of cues

and experimental tasks used. On the other

hand the range of machine learning methods

used by semantic decoders is relatively modest,

comprised largely of support vector machines

and regression based methods.

The relationship between semantic encod-

ing models and decoding models is not always

consistently described in the literature. In-

deed some studies confuse these two terms and

present an encoding study as a decoding study

or visa-versa. We have endeavoured to only

include studies that present semantic decod-

ing models in this review. However, an im-

portant caveat is that some encoding models

are constructed in such a way that adapting

the model to achieve semantic decoding would

be extremely trivial. Indeed, in some cases an

encoding model is also, in effect, a decoding

model because the predicted encoding maps

the model identifies are explicitly linked to dis-

crete semantic concepts. In such cases we have

included the study in our review.

Understanding how our brains encode

semantic concepts is an important goal in

modern neuroscientific research and enables

many new and exciting areas of research. Not

least amongst these is the rapidly developing

area of semantic decoding, the attempt to

develop processing pipelines and decoding

models to identify the specific semantic

concept an individual is focused on from

recordings of their brain activity.

We have identified several key methods

employed to tackle the challenge of semantic

decoding. Although there are many challenges

inherent in developing and evaluating effective

models, semantic decoding has the potential

to identify, sometimes with quite high levels

of accuracy, the specific concept an individual

is focused on. This may, in future, enable

a wide range of applications such as new

clinical diagnostic tests or fast and accurate

communication aids.
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