
Received: 1 February 2022 | Revised: 12 April 2022 | Accepted: 20 April 2022

DOI: 10.1002/gepi.22455

RE S EARCH ART I C L E

Adjusting for collider bias in genetic association studies
using instrumental variable methods

Siyang Cai1 | April Hartley2 | Osama Mahmoud3 | Kate Tilling2,4 |

Frank Dudbridge1

1Department of Health Sciences,
University of Leicester, Leicester, UK
2MRC Integrative Epidemiology Unit,
University of Bristol, Bristol, UK
3Department of Mathematical Sciences,
University of Essex, Colchester, UK
4Population Health Sciences, Bristol
Medical School, University of Bristol,
Bristol, UK

Correspondence
Frank Dudbridge, Department of Health
Sciences, University of Leicester,
Leicester LE1 7RH, UK.
Email: frank.dudbridge@leicester.ac.uk

Funding information

Medical Research Council

Abstract

Genome‐wide association studies have provided many genetic markers that

can be used as instrumental variables to adjust for confounding in

epidemiological studies. Recently, the principle has been applied to other

forms of bias in observational studies, especially collider bias that arises

when conditioning or stratifying on a variable that is associated with the

outcome of interest. An important case is in studies of disease progression

and survival. Here, we clarify the links between the genetic instrumental

variable methods proposed for this problem and the established methods of

Mendelian randomisation developed to account for confounding. We

highlight the critical importance of weak instrument bias in this context

and describe a corrected weighted least‐squares procedure as a simple

approach to reduce this bias. We illustrate the range of available methods

on two data examples. The first, waist–hip ratio adjusted for body‐mass

index, entails statistical adjustment for a quantitative trait. The second,

smoking cessation, is a stratified analysis conditional on having initiated

smoking. In both cases, we find little effect of collider bias on the primary

association results, but this may propagate into more substantial effects

on further analyses such as polygenic risk scoring and Mendelian

randomisation.
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1 | INTRODUCTION

A major dividend of genome‐wide association studies
(GWAS) has been the provision of single‐nucleotide
polymorphisms (SNPs) for use as instrumental variables
(IVs) to adjust for confounding in epidemiological
studies (Hemani, Zheng, et al., 2018). This approach,

called Mendelian randomisation (MR), has given rise to
a substantial body of methodology as its applications
have broadened (Slob & Burgess, 2020). Recently,
attention has turned to other forms of bias in
observational studies, especially collider bias, which
we here regard as a general phenomenon, of
which selection, ascertainment and survival biases are
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well‐known examples (Munafo et al., 2018). Collider
bias can occur when the analysis conditions upon a
variable that is caused by two or more other variables,
whose association is then distorted by the conditioning.
Instances of collider bias that have been discussed in
genetic epidemiology include secondary analyses in
case/control studies (Lin & Zeng, 2009; Monsees et al.,
2009), conditioning on heritable covariates (Aschard
et al., 2015), case‐only studies of disease progression
(Dudbridge et al., 2019), nonrepresentative study
cohorts (Yaghootkar et al., 2017) and survival until
case recruitment (Anderson et al., 2011; Schooling
et al., 2020).

When explanatory variables can model the condition-
ing process, inverse probability weighting (Monsees et al.,
2009) or likelihood approaches (Lin & Zeng, 2009) can be
used to adjust for collider bias. When such variables are
not available, methods using genetic IVs have been
proposed. Zhu et al. (2018) developed a method to adjust
for heritable covariates in GWAS, subtracting the
covariate‐mediated effect from the total SNP effect on an
outcome, where the former is estimated using MR.
Dudbridge et al. (2019) and Mahmoud et al. (2022) have
proposed regression‐based adjustments with assumptions
analogous to those of MR. Pirastu et al. (2021) noted that
the Heckman selection model (Heckman, 1979), well
known in econometrics, could be applied with genetic IVs,
although some practical challenges are present.

Our aim in this paper is to clarify the relationships
between the genetic IV methods proposed thus far and
to make explicit the links with MR. In so doing, we put
the considerable array of MR methodology at our
disposal for dealing with collider bias in association
studies. We focus on GWAS conditioning on a
covariate, but note that some methods may be applied
to other settings. We elucidate the relevant assump-
tions and note where they have contrasting implica-
tions from MR studies. We illustrate these aspects with
some data examples.

2 | METHODS

We focus on two situations that have motivated recent
development in genetic epidemiology. In the first, the
association of an SNPG with an outcome Y is statistically
adjusted for a covariate X that may mediate this
association. This is often done when seeking effects of
G acting through pathways other than those affecting X ,
for example, GWAS of waist–hip ratio (WHR) adjusting
for body mass index (BMI) (Pulit et al., 2019). In the
second situation, the effect of G is estimated within a
stratum of X , which may reflect selection into the study
(Yaghootkar et al., 2017) or the presence of disease, such
as in GWAS of progression within cases (Lee et al., 2017).

Figure 1 shows a directed acyclic graph describing the
causal structure in both situations. Viewed in terms of
mediation analysis (Richiardi et al., 2013), the total effect
of G on Y comprises its direct effect βGY and its indirect
effect through X , a function of βGX and βXY . Our interest
is in the direct effect, which may be defined as the
controlled direct effect or the natural direct effect
(VanderWeele, 2013). Both definitions compare the
outcomes Y under different (possibly counterfactual)
values of G with X held fixed; the controlled direct effect
fixes X to a particular value of interest, and the natural
direct effect fixes X to its natural value under a reference
value of G. When seeking genetic effects through
pathways other than through X , the natural direct effect
is of interest, whereas effects estimated within strata of X
are controlled direct effects. In a study of disease
progression within cases, the controlled direct effect is
defined for each individual in the population, as the
effect on progression if (possibly counter to fact) the
individual was to experience the disease.

If there is no interaction between G and X in their
effect on Y , the controlled direct and natural direct
effects are equivalent (VanderWeele, 2016) and can be
estimated by standard regression procedures controlling
for or stratifying on X . However, if there are unmeasured

FIGURE 1 Directed acyclic graph showing
the assumed causal structure between a single‐
nucleotide polymorphism of interest G,
instrumental variable Z , mediating covariate X
and outcome Y , with confounderU . Parameters
associated with each pairwise association are
shown next to the corresponding edges.
Conditioning on X is represented by the box and
induces moral edges connecting G, Z and U ,
shown by dashed lines, creating additional paths
to Y .
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confounders U , then this would lead to bias, because
conditioning on X would open pathways between Z ,
G and U (Figure 1).

For simplicity, we assume that the gene G, IV Z and
confounder U are univariate, but the methods can be
extended to multivariate cases. In particular, multiple
SNPs can be used as IVs, and the confounders can
include polygenic effects, giving rise to the situations
discussed by Aschard et al. (2015). To fix ideas, we will
understand Z to be a SNP (as in MR), but any suitable
variable could be used as an IV, and indeed a nongenetic
variable could potentially be analysed as G in Figure 1.

2.1 | Conditioning on a covariate:
multitrait conditional and joint analysis
(mtCOJO)

As part of their mtCOJO, Zhu et al. (2018) developed an
approach to condition SNP associations on an intermedi-
ate covariate (X in Figure 1). Their aim was to perform
MR of pathways not mediated by such variables, but the
method has since been applied explicitly in GWAS to
identify disease‐specific associations (Byrne et al., 2021).

Simplified to scalar variables with zero mean,
mtCOJO assumes linear models relating the variables
in Figure 1:

X Zβ Gβ Uβ ε= + + + ,ZX GX UX X

Y Xβ Gβ Uβ ε= + + + ,XY GY UY Y

Zβ β G β β β U

β β β ε β ε

= + ( + ) +

( + ) + ( + ).

ZX XY GX XY GY

UX XY UY X XY Y

(1)

The direct effect of interest is β β β β= −GY GY GX XY
T ,

where βGY
T is the total effect ofG on Y , the terms in Z and

U being absorbed into the residual error owing to the
collapsibility of the linear model. Subtracted from the
total effect is β βGX XY , which is the indirect effect of G on
Y via X . This requires an estimate of the causal effect
βXY , which is obtained by MR of X on Y , using Z as the
IV. In principle, any MR method could be used to
estimate βXY , so many SNPs may be used for Z and need
not be valid IVs as long as the assumptions for the
particular method are met.

The direct effect is obtained from the marginal effects
of G and Z on both X and Y . This approach is useful
when those marginal effects are available, as is often the
case with summary GWAS data. Where only the collider‐
biased conditional effects are provided, mtCOJO cannot
be used to adjust them toward unbiased effects. In
particular, this approach cannot be used to correct

within‐stratum effects, as in case‐only studies of
prognosis.

2.2 | Instrument effect regression

Dudbridge et al. (2019) developed an approach based on the
same linear model framework as mtCOJO (Equation 1), but
which starts from the collider‐biased conditional effects and
adjusts them toward the direct effects. Specifically, they
showed that the magnitude of collider bias is approximately
linear in the effect of G on X :

β β bβ= + ,GY GY GX
C

(2)

where βGY
C is the conditional effect ofG on Y given X . By

conditioning on X , we open pathways between G andU
(Figure 1), so that the conditional effect is the direct
effect of interest plus the bias term. With knowledge of b,
the bias‐corrected effect is simply β β bβ= −GY GY GX

C . If Z

is a valid IV for the effect of X on Y , then b =
β

β
ZY

ZX

C

and the

problem is analogous to MR in that we estimate a linear
relationship between instrument effects on the outcome
(here conditional on covariate) and instrument effects on
the covariate.

Dudbridge et al. did not assume that any SNPs are
valid IVs, and estimated b by a genome‐wide regression
of βGY

C on βGX , including the intercept. This is logically
equivalent to MR‐Egger (Bowden et al., 2015); as this is
now rather distant from the original formulation (Egger
et al., 1997), we will call this procedure instrument effect
regression. Similar to the InSIDE assumption of
MR‐Egger, we assume that the direct effects βGY are
independent of (more precisely, uncorrelated with) the
effects on covariate βGX . As discussed below, this
assumption applies to the signed effect sizes, which
reflect the allelic coding. We will therefore use the
acronym InCLUDE (instrument coefficient linearly un-
correlated with direct effect), as opposed to the instru-
ment strength of InSIDE, which does not recognise the
dependence on allele coding.

The InCLUDE assumption may be disputed. GWAS
have been performed predominantly on the risk of
disease, with the premise that associated SNPs indicate
targets for treatment, thus assuming some genetic
correlation between incidence and progression. The
motivation of Dudbridge et al. was to use as many
SNPs as possible in estimating the slope b, so that its
sampling variance has little effect on the power of
testing βGY . They showed that under a positive
correlation between direct genetic effects on incidence
and progression, the increase in Type‐1 error remains

CAI ET AL. | 3



less than for an unadjusted analysis, with a similar
level of power.

2.3 | Slope‐hunter

In contrast, Mahmoud et al. (2022) set out to identify a
set of valid IVs from a genome‐wide set of SNPs.
Instrument effect regression is then performed on those
SNPs only and the estimated slope b is then used to
adjust the conditional effects as above.

Identification of the valid IVs follows an algorithmic
approach called Slope‐hunter. SNPs that affect X are first
identified by p value thresholding. Model‐based cluster-
ing is then used to fit a bivariate normal mixture model
to the conditional effects on outcome βGY

C and the effects
on the covariate βGX . One component of this model
assumes a proportional relationship between βGY

C and
βGX and is assumed to identify the valid IVs.

The key assumption of Slope‐hunter is that the
model‐based clustering algorithm correctly identifies
the valid IVs, and this will tend to be the case when

the largest number of similar ratios β

β
GY

GX

C

comes from the

valid IVs. This resembles the zero modal pleiotropy
assumption of the mode‐based estimator in MR (Hartwig
et al., 2017); in this context, Mahmoud et al. have called
the assumption ZEMRA (zero modal residual assump-
tion) to reflect the emphasis on the residuals rather than
the slope of the regression of βGY

C on βGX .

Under similar simulations to those of Dudbridge et al.
(2019), Slope‐hunter had correct Type‐1 error and
increased power over instrument effect regression even
under genetic correlation. The exception was under a
strong negative correlation with the valid IVs explaining
no more variation in X than the invalid IVs. In this case,
both methods had increased Type‐1 error and reduced
power compared with the unadjusted analysis. In other
simulated scenarios, in which the confounding was
strong and many SNPs were associated with the
outcome, Slope‐hunter had the better performance.

2.4 | MR methods

The above approaches have been proposed specifically
for situations entailing collider bias. However, any MR
method could be used to estimate the slope in Equation
(2) using summary estimates of βZX and βZY

C with
equivalent assumptions on instrument validity. Instru-
ment effect regression is logically equivalent to MR‐
Egger, with the InCLUDE assumption and in principle

allowing unbalanced direct effects, E β( ) 0GY ≠ . Slope‐
hunter has the same assumption as mode‐based MR and
is similar to MR‐Mix (Qi & Chatterjee, 2019) in that a
two‐component mixture is fitted to the SNP effects.
Whereas Slope‐hunter fits a bivariate model to the pair of
effects β β( , )GX GY

C , MR‐Mix fits a univariate model to the
residual β bβ−GY GX

C . Median‐based estimators (Bowden,
Davey Smith, et al., 2016) may also be entertained. In
practice, the IV assumptions cannot be verified, and a
range of analyses should be performed aiming to observe
consistent results.

There are important points of contrast with MR. First,
sample overlap does not affect instrument effect regression
or Slope‐hunter. This is because any covariance between

sample estimates β̂GY
C

and β̂GX is included in the
unmeasured confounder U , but the path through U is
explicitly estimated and then removed from the biased

estimator β̂GY
C
. Therefore, instrument effect regression is

analogous to two‐sample MR even when conducted within a
single sample, a property demonstrated in simulations
(Dudbridge et al., 2019; Mahmoud et al., 2022). mtCOJO,
however, which utilises standard MR, is affected by sample
overlap in the usual way (Burgess et al., 2016).

In the two‐sample setting, weak instruments act to
bias the estimated slope toward the null (Bowden, Del
Greco, et al., 2016; Pierce & Burgess, 2013). In MR this
leads to conservative inferences, and although the issue
is well known, it is currently unusual for applied studies
to enact corrections for weak instruments. However, in
the collider bias context, the effect is to underestimate
the slope and hence underadjust the conditional esti-
mates for unmeasured confounding.

Whereas in MR the direct effects of G on Y are
nuisance parameters that are in various ways ostracised
from the analysis (Hemani, Bowden, et al., 2018), they are
the parameters of interest in the collider bias setting and
nonzero values are explicitly sought. If a limited number
of SNPs are used as IVs, with strong associations with X , it
seems difficult to justify the InCLUDE or ZEMRA
assumptions for their direct effects on Y . However, such
assumptions may be more plausible among a very large set
of SNPs. Precise estimation of the bias correction is
desirable to retain power from the unadjusted analysis,
especially in exploratory GWAS settings where the
discovery of multiple associations is the priority. To that
effect, some bias in the slope estimation may be
acceptable, in contrast to MR where unbiased estimation
and hypothesis testing of the causal effect is favoured.

These considerations point to the use of a large set of
SNPs as IVs, which will generally include many weak IVs
that could lead to underadjustment for collider bias.
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Consideration of weak instrument bias is therefore
particularly important in the collider bias setting.

2.5 | Weak instruments

Simulations of GWAS‐scale data suggest that without
correction for weak instrument bias, instrument effect
regression has Type‐1 error rates similar to those of an
unadjusted analysis (Dudbridge et al., 2019). Dudbridge
et al. suggested two approaches to correct for weak
instruments. The first, related to the Hedges–Olkin
estimator of random effects variance in meta‐analysis,
is a simple function of the summary effect estimates. The
second is an implementation of the SIMEX algorithm,
first proposed for this problem by Bowden, Del Greco,
et al. (2016), modified to give a more precise correction.
Here, we give a more general formulation of the first
approach, now extended to a weighted regression.

Replacing parameters by their estimates, rewrite
Equation (2) as

β α bβ εˆ = + ˆ + ,GYi GXi GYi
C

(3)

where i indexes SNPs, the residual ε β α= ( − )GYi GYi

β β+( ˆ − )GYi GYi

C C includes both the direct effect and

sampling error, and E ε( ) = 0GYi . By setting b as a
constant, we assume that the confounding is the same
for all SNPs, which is approximately true when SNPs
have small effects. Note that the sampling variances of

β̂GYi
C

and β̂GXi may differ across SNPs. To allow for

variable precision in the β̂GYi
C

, we can estimate b by
weighted least squares, specifically

   
  ( )

b
w w β β w β w β

w w β w β

ˆ =
ˆ ˆ − ˆ ˆ

ˆ − ˆ
,

i i GXi GYi i GXi i GYi

i i GXi i GXi

C C

2 2

where wi is the weight of SNP i, typically the inverse

sampling variance of β̂GYi
C

normalised sow = 1i . Note that
the residual variance in Equation (2) is greater than the
sampling variance by βvar( )GY and so the inverse sampling
variance weighting is not the most efficient estimator of b.

To deal with the imprecision in β̂GXi , write b̂ in terms
of the true but unknown βGXi

 
 

  

( )

( )
b

w w β ε β

w β ε w β

w w β ε w β ε

ˆ =

+ ˆ

− ( + ) ˆ

( + ) − ( + )
,

i i GXi GXi GYi

i GXi GXi i GYi

i i GXi GXi i GXi GXi

C

C

2
2

   
    ( )

w w β β w β w β

w w β w β w w ε

ˆ − ˆ

− +
,

i i GXi GYi i GXi i GYi

i i GXi i GXi i i GXi

C C

2 2 2
≈

where εGXi is the sampling error in β̂GXi , assumed to have
zero mean. Approximate w εi GXi

2 in the denominator by
w σi GXi

2 , where σGXi is the (estimated) standard error of
β̂GXi . Then, compared to the estimate based on the true
βGXi , the numerator is the same, but the denominator is
increased by  w w σi i GXi

2 . We, therefore, subtract that
term from the observed denominator and obtain the
weak‐instrument corrected slope as

   
    ( )

b
w w β β w β w β

w w β w β w w σ

ˆ =
ˆ ˆ − ˆ ˆ

ˆ − ˆ −
.

i i GXi GYi i GXi i GYi

i i GXi i GXi i i GXi

cor

C C

2 2 2

(3)

A special case is a zero‐intercept model assuming
E β( ) = 0GY , hence α = 0. Then,


 

b
w β β

w β w σ

ˆ =
ˆ ˆ

ˆ −
.

i GXi GYi

i GXi i GXi

cor

C

2 2
(4)

Because we have not estimated the unknown
βvar( )GY , there is residual heteroscedasticity in Equation

(3). To estimate the variance of b̂ when using a large
number of SNPs, we suggest using a sandwich variance
estimator, similarly scaled to correct for weak IVs.

We call this approach corrected weighted least
squares (CWLS), and will compare it to MR using the
robust adjusted profile score (MR‐RAPS) (Zhao et al.,
2020), which has been developed for MR using genome‐
wide SNPs. MR‐RAPS uses the zero‐intercept model and
defines a likelihood for b while also estimating βvar( )GY .
By accounting for that variance in the estimation of b,
MR‐RAPS might be more efficient than CWLS.

2.6 | Allele coding

Instrument effect regression is sensitive to allele coding
in that the estimated slope can change depending on
which allele of each SNP is taken as the effect allele
(Burgess & Thompson, 2017). These changes arise from
a violation of the InCLUDE assumption. Equation (2)
shows that changing the effect allele preserves the same
linear relationship between βGY

C and βGX because the
signs of all terms are reversed. Any change in the
estimated relationship comes from a change in compli-
ance with the model assumptions. In fitting the model
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via Equation (3), the intercept may change, but the
slope is unchanged as long as the InCLUDE assumption
holds.

To standardise the allele coding, a common practice
is to take the effect allele as the one with a positive
effect on X (Burgess & Thompson, 2017). The InCLUDE
assumption is then that the direct effect of the
X ‐increasing allele on Y is uncorrelated with its effect
on X . Although this assumption remains unverifiable, it
has the desirable property of expressing the assumption
only in terms of allelic effects, as opposed to, say, taking
the effect allele as the minor allele. Furthermore, when
viewing MR as an analogy to a randomised trial, positive
allele coding corresponds to each SNP representing the
same direction of treatment effect.

However, in practice, the positive effect alleles are
identified from estimates β̂GXi and this biases the
sampling errors toward positive values. This is not a
problem when using strongly associated SNPs as IVs,
because this ensures that estimates tend to have the
same sign as the true effects. But when weak instru-
ments are used, the adjustments discussed above
assume sampling errors with a mean zero and are thus
invalid when using positive effect coding. In the Results
section, we will demonstrate through simulation that
such coding can lead to increased Type‐1 error rates.
The exception is when the positive effect alleles are
identified from an independent data source, a practice
also encouraged to reduce the winner's curse in
selecting SNPs as IVs (Zhao et al., 2019), but which is
currently not widespread.

When the intercept α is set to 0 in Equation (2), the
regression is invariant to allele coding. The zero‐intercept
assumption is therefore a pragmatic solution to the allele
coding problem when many SNPs are used as IVs, as we
argue is desirable in the collider bias setting. More
precisely, the assumption is that there is an allele coding
under which E β( ) = 0GY and the InCLUDE assumption
holds. This is the assumption made by MR‐RAPS, and as
a simple alternative, we also suggest the CWLS estimator
(Equation 4) with a sandwich variance estimate.

In summary, we argue that in the collider bias
setting it is desirable to use a large number of SNPs as
IVs, potentially leading to substantive weak instrument
bias. The bias cannot be properly corrected under an
MR‐Egger regression model with positive allele coding,
so we, therefore, suggest using only the zero‐intercept
model, estimated by MR‐RAPS or through a CWLS
formula (Equation 4), or by using Slope‐hunter or
polygenic MR methods that estimate the slope using an
identified set of valid IVs.

2.7 | Within‐stratum effects

So far, we have considered bias in the conditional effects
βGY
C marginalised over the conditioning covariate X . In

some situations, the interest is within certain strata of X ,
a particular case being studies of disease progression in
which the outcome Y is only observed among cases. The
within‐stratum effects need not equal the conditional
effect, and the linear relationships (Equations 1 and 2)
exploited by the IV methods above need not hold. Even if
the within‐stratum effects are constant across X and
equal to the conditional effect, it is not given that they are
linear in βGX as in Equation (2), because the distribution
of U may vary across X .

The Heckman selection model is an established
approach using IVs to adjust for selection on a binary
event such as disease incidence (Heckman, 1979). In the
first step, a probit regression model is fitted to the
selection event

X G Z α Zβ GβPr( = 1 | , ) = Φ( + + ).ZX GX

In the second step, the fitted probability is included,
after transformation, as a covariate in the regression

E Y G Z X Gβ

ϕ α Zβ Gβ

α Zβ Gβ
γ

( | , , = 1) =

+
( + + )

1 − Φ( + + )
,

GY

ZX GX

ZX GX

where γ is a nuisance parameter to be estimated (for
simplicity we continue to assume that G, Z and Y have
an unconditional mean of zero). The underlying intuition
is an assumption that all individuals have a latent
(possibly counterfactual) outcome Y whether or not
X = 1, which is modelled by linear regression with a
normally distributed error. Conditional on X = 1, the
error becomes truncated normal with its mean estimated
from the first‐stage model and then included in the
second‐stage model.

In its use of IVs and substitution in Stage 2 of the
fitted values from Stage 1, the Heckman correction is
reminiscent of the two‐stage least‐squares estimate in
MR. Similar to that approach, it requires individual‐level
data on G and Z . Moreover, the probit model is rarely
used in the analysis of single‐SNP data. For these
reasons, the Heckman selection model appears problem-
atical if only summary‐level GWAS data are to hand
(Pirastu et al., 2021).

However, when SNP effects on X are assumed small, as
is the case for polygenic traits, we may take a first‐order

6 | CAI ET AL.



approximation to the coefficient of γ above (called the
inverse Mills ratio) and write

E Y G Z X G β bβ Zb γ( | , , = 1) ( + ) + + *.GY GX Z≈

The within‐stratum coefficient ofG now has the same
form as the conditional effect in Equation (2), motivating
the use of instrument effect regression, Slope‐hunter or
polygenic MR methods to estimate b from summary
statistics and adjust the within‐stratum effects toward the
direct effects βGY . Simulations under logistic models for
X have suggested acceptable operating characteristics of
this approach (Dudbridge et al., 2019).

In Table 1 we summarise the methods discussed
throughout this section.

2.8 | Data examples

We illustrate the methods on two data examples, the first
conditioning on a covariate and the other a within‐
stratum analysis. First, we consider the summary
statistics in the GWAS of WHR adjusted for BMI
conducted by the GIANT consortium (Pulit et al.,
2019). That analysis aimed to find SNPs acting on
WHR through pathways other than those affecting BMI:
conditioning on BMI would block any causal effect of
BMI on WHR, or (more plausibly) attenuate effects
acting through shared determinants of the two traits.
Those authors discussed the possibility of collider bias in
the associations of 346 index SNPs and concluded that
any bias was small, based on several lines of evidence:
the unadjusted effects on WHR were stronger than those
on BMI, suggesting the presence of direct effects; the SNP
with the strongest effect on BMI was not associated with
WHR after adjustment for BMI; and polygenic score
effects on WHR adjusted for BMI were consistent with
those on WHR and BMI.

To formally quantify the degree of collider bias, we
applied IV methods to 143,000 pruned (r 0.12 ≤ , 250
SNP window) and well‐imputed (r 0.982 ≥ ) SNPs
identified in our previous study (Dudbridge et al.,
2019) and present in this data set, and adjusted the
estimated effects of the index SNPs on WHR adjusted
for BMI. We applied CWLS, MR‐RAPS, and Slope‐
hunter to all SNPs, and to those passing p value
thresholds of 10−4, 10−6 and 10−8 to assess the effects
of such thresholding. These were compared to the
inverse‐variance weighted (IVW) estimator from stan-
dard MR analysis, which can be regarded as CWLS
without correction for weak instrument bias. We further
applied mtCOJO using the total effects on WHR for
comparison with index effect regression.

Second, we consider GWAS for SNPs associated with
smoking cessation. Because this can only be conducted
among smokers, the analysis is conditional on smoking
initiation, and collider bias could plausibly be introduced
by common determinants of initiation and cessation. The
GSCAN consortium (Liu et al., 2019) identified SNPs in
24 genomic regions associated with smoking cessation
(binary current/former smoker) in a total sample of
547,219 individuals. We obtained log odds ratios from
that study in the subset of 312,821 individuals excluding
the 23andMe sample.

To adjust these associations for collider bias we
used summary statistics for smoking initiation from
the same study in 632,802 individuals excluding
23andMe. We estimated the regression slope b using
395,941 pruned SNPs (r 0.12 ≤ , 250 kb window), using
the full set and also with p value thresholds of
5 × 10−8, 10−5, 0.001 and 0.05. We again compared
CWLS, MR‐RAPS and Slope‐hunter and additionally
applied MR‐Mix. MR‐RAPS was performed within the
TwoSampleMR R package (version 0.5.6) and MR‐Mix
using the MR‐Mix package (version 0.1.0). For MR
analyses, SNPs were pruned using default parameters
in the TwoSampleMR package (r 0.0012 ≤ , 10 Mb
window). To compare results with those from non-
overlapping samples, we repeated these analyses using
only the UK Biobank subjects for smoking initiation
(N = 461,066) and non‐UK Biobank subjects for
smoking cessation (N = 143,851).

3 | RESULTS

3.1 | Simulations

Properties of the methods have been extensively explored
in previous studies (Dudbridge et al., 2019; Mahmoud
et al., 2022; Zhu et al., 2018). Here, we report simulations
to demonstrate the similarity between MR‐RAPS and
CWLS, and to show the effect of positive allele coding in
the general MR‐Egger model.

Simulations followed a similar structure to those of
Dudbridge et al. (2019) and Mahmoud et al. (2022).
We simulated 100,000 independent SNPs under
Hardy–Weinberg equilibrium with minor allele frequen-
cies drawn uniformly from (0.01, 0.49). SNP effects,
confounders and residual variation in X and Y were
drawn independently from normal distributions. 5000
SNPs had effects on X only, 5000 on Y only and 5000 on
both X and Y . X and Y were simulated as normally
distributed traits with 50% heritability, nongenetic
confounder explaining 40% variance and 10% residual
variance. Type‐1 error and power for SNP effects on Y

CAI ET AL. | 7
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conditional on X were estimated at the 5% significance
level among the SNPs with effects on X .

Table 2 shows error rates for different genetic
correlations between X and Y . The InCLUDE assump-
tion holds only when the genetic correlation is 0. The
unadjusted analysis has increased Type‐1 error arising
from collider bias, but also has increased power
compared to the adjusted results. However, the false
discovery rates are generally lower for the adjusted
analysis, except under a strong negative correlation. The
estimates for MR‐RAPS and CWLS are very similar.

Slope‐hunter performed slightly worse than CWLS
and MR‐RAPS under no or positive genetic correlation.
This is likely due to the equal numbers of SNPs with and
without effects on Y . In more extensive simulations,
Slope‐hunter tended to perform better when a majority of
SNPs had no effect on Y , in line with its ZEMRA
assumption (Mahmoud et al., 2022).

The table also shows increased Type‐1 error rates for
CWLS with free intercept (i.e., MR‐Egger), where the

alleles are coded to have positive estimated effects on X .
This confirms that identifying the positive effect allele in
the analysed sample leads to improper correction for
weak instrument bias, when very weak IVs are included
in the analysis. Although the power is also increased, the
false discovery rates are generally worse than for CWLS,
the exception being under strong negative correlation.

Table 3 gives summaries of the regression slopes
estimated in the simulations. As expected, CWLS and
MR‐RAPS are unbiased under no genetic correlation, but
exhibit bias when a genetic correlation is present. The
two methods gave very similar results: the correlation in
estimated slopes was 0.92 under no genetic correlation,
0.98 for correlation 0.45 and 0.88 for correlation −0.45.
The mean standard error was also similar, but was
underestimated by CWLS, which had a greater empirical
standard deviation. This is because we have not allowed
for the uncertainty in estimating the weak instrument
correction. Thus, MR‐RAPS provides a more efficient
estimator of the slope than CWLS, as expected, but
CWLS does in fact provide a close approximation to MR‐
RAPS. Again these simulations did not favour Slope‐
hunter. Its correlation was close to zero with both the
other methods in each simulation.

Finally, we considered how often the direction of
effect was changed by adjustment for collider bias.
Because estimates close to zero could change sign
stochastically, we considered just the SNPs with true
effects on the outcome Y and nominally significant
associations after adjustment for collider bias. For each
method, we estimated the probability that the adjusted
effect changes sign to either the correct direction or the
incorrect direction. The results in Table 4 suggest that all
methods have low rates of changes of direction to
significant results. The rates for Slope‐hunter are slightly
lower. For zero genetic correlation, the rates of correct
and incorrect changes are similar, whereas there are
more correct changes with positive correlation and fewer
with negative.

3.2 | WHR adjusted for BMI

Table 5 shows the slope of the index effect regression
estimated by various methods. MR‐RAPS and CWLS give
similar results, noting their standard errors, whereas the
estimates from Slope‐hunter had a substantially larger
magnitude. As expected, standard errors increased as
fewer SNPs were included in the regression, and the
weak instrument correction had less effect as SNPs were
more strongly selected for association with BMI. Perhaps
surprisingly, when all SNPs were included the sign of the
slope was positive for all methods, although remaining

TABLE 2 Error rates compared between methods

Genetic
correlation Method

Type‐1
error Power FDR

0 Unadjusted 0.0724 0.202 0.263

CWLS 0.0505 0.164 0.236

MR‐RAPS 0.0502 0.164 0.235

Slope‐hunter 0.0573 0.183 0.238

MR‐Egger 0.0754 0.205 0.269

0.45 Unadjusted 0.125 0.101 0.553

CWLS 0.087 0.122 0.416

MR‐RAPS 0.0872 0.121 0.419

Slope‐hunter 0.0903 0.121 0.427

MR‐Egger 0.128 0.0995 0.563

−0.45 Unadjusted 0.0538 0.204 0.209

CWLS 0.0676 0.0842 0.445

MR‐RAPS 0.0677 0.0842 0.446

Slope‐hunter 0.0503 0.165 0.234

MR‐Egger 0.0556 0.212 0.207

Note: Type‐1 error, power (both at α ≤ 0.05) and FDR for tests of SNPs with
effects on the conditioning covariate X, over 1000 simulations of quantitative
X and Y with parameters given in the main text. FDR was calculated as the
ratio of Type‐1 error to the sum of Type‐1 error and power, as there were
5000 SNPs both with and without direct effects on Y. Unadjusted, tests based
on the conditional effects β̂GY

C
. MR‐Egger, alleles coded to have positive

effects on X, that is, β̂ 0GX ≥ .

Abbreviations: CWLS, corrected weighted least squares; FDR, false
discovery rate; MR‐RAPS, Mendelian randomisation using the robust
adjusted profile score; SNP, single‐nucleotide polymorphism.
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close to zero, except for Slope‐hunter. However, the
adjusted effect sizes of the 346 index SNPs were very
close to the unadjusted effects (Supporting Information:
Table 1), with increased standard errors owing to the

estimation of the adjustment. Overall these results
suggest collider bias has a minor effect on the primary
GWAS findings, as previously suggested (Pulit et al.,
2019). Results from Slope‐hunter were somewhat distinct

TABLE 3 Summaries of the
estimated regression slope in the
simulations of Table 2

Genetic correlation True slope Method Mean Empirical SD Mean SE

0 −0.4 CWLS −0.404 0.063 0.040

MR‐RAPS −0.400 0.0414 0.0416

Slope‐hunter −0.202 0.140 N/A

MR‐Egger 0.0258 0.004 0.002

0.45 −0.5125 CWLS −0.178 0.0402 0.0338

MR‐RAPS −0.176 0.0338 0.0335

Slope‐hunter −0.184 0.146 N/A

MR‐Egger 0.0116 0.003 0.002

−0.45 −0.2875 CWLS −0.630 0.0861 0.0421

MR‐RAPS −0.624 0.0471 0.048

Slope‐hunter −0.175 0.0665 N/A

MR‐Egger 0.040 0.0036 0.003

Note: Genetic correlation, correlation between SNP effects on covariate X and outcome Y. Mean, mean
estimated slope over 1000 simulations. Slope‐hunter computes a bootstrap SE, which we omitted from the
simulation owing to time constraints. However, it was observed to be close to the empirical SD in some
randomly selected replicates.

Abbreviations: CWLS, corrected weighted least squares; empirical SD, standard deviation of the estimated
slope; mean SE, mean of the estimated standard error; MR‐RAPS, Mendelian randomisation using the
robust adjusted profile score; N/A, not available; SNP, single‐nucleotide polymorphism.

TABLE 4 Proportions of SNPs whose effects are nominally significant in the opposite direction after adjustment for collider bias

Genetic correlation Method
Correct change
(X and Y )

Correct change
(Y only)

Incorrect change
(X and Y )

Incorrect change
(Y only)

0 CWLS 0.064 0.051 0.065 0.058

MR‐RAPS 0.065 0.051 0.067 0.059

Slope‐hunter 0.028 0.021 0.019 0.017

MR‐Egger 0.121 0.117 0.371 0.379

0.45 CWLS 0.056 0.040 0.016 0.019

MR‐RAPS 0.057 0.041 0.016 0.019

Slope‐hunter 0.035 0.025 0.009 0.010

MR‐Egger 0.166 0.134 0.335 0.366

−0.45 CWLS 0.031 0.040 0.159 0.117

MR‐RAPS 0.031 0.040 0.164 0.120

Slope‐hunter 0.007 0.01 0.029 0.022

MR‐Egger 0.113 0.117 0.383 0.378

Note: Correct (incorrect) change, the adjusted effect is in the same (opposite) direction as the true effect. X and Y (Y only), SNP has a true effect on X and Y (Y
only), leading to the presence (absence) of collider bias.

Abbreviations: CWLS, corrected weighted least squares; MR‐RAPS, Mendelian randomisation using the robust adjusted profile score; SNP, single‐nucleotide
polymorphism.
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from the other methods, perhaps indicating violation of
either the InCLUDE or ZEMRA assumptions. The
positive slope estimated by Slope‐hunter when all SNPs
are included in the analysis (p 1≤ ) may reflect
instability in the clustering algorithm in the presence of
many null SNPs for both WHR and BMI. This would
support the default procedure of initially thresholding
SNPs, but at the cost of increased standard error.

We also calculated adjusted effects for all 143,000
pruned SNPs first using instrument effect regression,
adjusting the conditional effects βGY

C , and then with
mtCOJO, adjusting the total effects βGY

T , which were also
available as summary statistics. The adjusted effects from
the two methods were very similar for all SNPs, with a
correlation of 0.988. The correlation increased to 0.995
among the 681 SNPs associated with BMI at p < 10−6.
These results give empirical support for the analytic
equivalence shown in the Methods section.

3.3 | Smoking cessation

Table 6 shows the estimated slopes from index effect
regression by various methods. The estimates are

generally similar across methods and p value thresholds.
Again, standard errors increase with stricter p value
thresholding, although weak instrument correction has
less effect. Adjusted effect sizes for the 24 associated
SNPs are given in Supporting Information: Table 2, and
again are very similar to the unadjusted effects. Support-
ing Information: Table 3 shows the estimated slopes from
the nonoverlapping sample analysis, showing (for p value
thresholds less than 1) results consistent with, although
less precise than, those of Table 6.

4 | DISCUSSION

There are strong parallels between the corrections for
collider bias described here and the mature field of two‐
sample MR. Both approaches aim to estimate a linear
relationship between SNP effects on two traits, under IV
assumptions on the SNPs. Whereas the same mathemat-
ical procedures can be applied to both problems, there
are some key differences in context. In the collider bias
setting the interest is on the direct effects of SNPs on the
outcome trait, with these direct effects expected to exist
and being the target of inference. The linear relationship
itself is not of primary interest, and we believe that

TABLE 5 Regression slopes for
WHR adjusted for BMI

p 1≤ p 10−4≤ p 10−6≤ p 10−8≤

IVW 0.00416 (0.00248) −0.0511 (0.0114) −0.0807 (0.0169) −0.0872 (0.0237)

CWLS 0.00848 (0.00506) −0.053 (0.0118) −0.0826 (0.0173) −0.0888 (0.0242)

MR‐RAPS 0.0355 (0.00615) −0.0353 (0.0129) −0.0672 (0.0159) −0.0576 (0.0231)

Slope‐hunter 0.324 (0.0335) −0.165 (0.0495) −0.135 (0.070) −0.217 (0.0447)

Note: Estimated slope (s.e.) of the regression of SNP effects on WHR adjusted for BMI on SNP effects on
BMI, using SNPs selected by different p value thresholds for association with BMI.

Abbreviations: BMI, body mass index; CWLS, corrected weighted least squares; IVW, inverse variance
weighted; MR‐RAPS, Mendelian randomisation using the robust adjusted profile score; SNP, single‐
nucleotide polymorphism; WHR, waist–hip ratio.

TABLE 6 Regression slopes for smoking cessation

p 1≤ p 0.05≤ p 0.001≤ p 10−5≤ p 5 × 10−8≤

IVW 0.180 (0.015) 0.179 (0.016) 0.206 (0.019) 0.258 (0.029) 0.225 (0.033)

CWLS 0.044 (0.004) 0.051 (0.003) 0.114 (0.007) 0.194 (0.014) 0.227 (0.028)

MR‐RAPS 0.198 (0.018) 0.198 (0.018) 0.226 (0.021) 0.287 (0.030) 0.222 (0.033)

Slope‐hunter −0.604 (0.093) 0.353 (0.024) 0.335 (0.039) 0.487 (0.026) 0.558 (0.065)

MR‐Mix 0.050 (0.200) 0.110 (0.175) 0.120 (0.107) 0.430 (0.249) 2.01 × 10−17 (0.705)

Note: Estimated slope (s.e.) of the regression of SNP effects on smoking cessation on SNP effects on smoking initiation, using SNPs selected by different p value
thresholds for association with smoking initiation.

Abbreviations: CWLS, corrected weighted least squares; IVW, inverse variance weighted; MR‐RAPS, Mendelian randomisation using the robust adjusted
profile score; SNP, single‐nucleotide polymorphism.
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precision is more important than bias in estimating that
relationship, to retain the power to detect the direct
effects. This contrasts with MR in which unbiased
inference of a causal effect is the priority.

For this reason, we advocate methods designed for a
larger number of IVs. Here, we have used Slope‐hunter,
MR‐RAPS and MR‐Mix, but many other methods are
now available (Burgess et al., 2020; Darrous et al., 2021;
Morrison et al., 2020). We have described a simple
correction to the weighted least‐squares estimator in
instrument effect regression, which closely approximates
MR‐RAPS when many SNPs are used and provides a
useful alternative using elementary methods.

Heckman models have long used IVs to account for
selection bias. The contribution of the present methods is
the application of IVs to collider bias in linear models,
where the same approach can be used for conditioning
on a continuous trait and for selection on a binary trait,
assuming small effects of IVs. In turn, this allows two‐
sample analyses with summary statistics and the use of
large numbers of SNPs, which may individually violate
the IV assumptions while meeting collective assumptions
such as InCLUDE.

The link with MR is explicit in the mtCOJO
approach, which subtracts an estimate of the indirect
effect from the total association of an SNP with the
outcome. In our example of WHR adjusted for BMI, we
have shown that this gives equivalent results to instru-
ment effect regression, and both approaches are appro-
priate for conditioning on a continuous trait, depending
on which summary statistics are available. Indeed, both
approaches estimate the direct effect of G by subtracting
its effect on X , multiplied by the IV‐estimated effect,
from an uncorrected effect on Y . Operationally, the same
software could be used for either approach, using as the
input either the total effects βGY

T (for mtCOJO) or
conditional effects βGY

C (for instrument effect regression),
along with the effects on exposure βGX .

We have presented results for Type‐1 error, power
and false discovery rate, reflecting the emphasis on
testing over estimation in GWAS. Parameter estimates
are nevertheless important for subsequent analyses,
including polygenic scoring and MR and are the direct
subject of collider bias. Because the bias varies with the
βGX effects, the net bias in a GWAS can be close to zero
and it is difficult to characterise a typical bias on
individual SNPs. For this reason, we have focussed on
error rates as a proxy for estimation bias. In our earlier
work, we showed that Type‐1 errors at the nominal level
correspond to low absolute bias on parameter estimates
(Dudbridge et al., 2019; Mahmoud et al., 2022).

In our data examples, the primary results were
barely changed by adjustment for collider bias. This is

reassuring but should not be taken to mean that
adjustment is unnecessary. Estimating the adjust-
ment, even if small, increases the standard error of
the estimates and this may play into subsequent
analyses.

In the situations we have considered, SNP associa-
tions on the conditioning trait are readily available, as are
the associations with the outcome. However, there are
other scenarios in which collider biases are not so
amenable to the present methods. In case/control GWAS
using prevalent cases, the analysis is conditional on
individuals surviving until study recruitment and geno-
typing, with collider bias arising if there are common
determinants of short‐term survival and longer‐term
disease. This may be a particular issue for acute events
such as myocardial infarction (Hu et al., 2017). Correc-
tion for such bias would require GWAS of survival to
recruitment, but such a study would be difficult to carry
out. A similar situation occurs when the process of being
tested for disease depends on factors common to the
disease itself (Griffith et al., 2020).

Representativeness is a common concern in epide-
miological studies, but determinants of study participa-
tion may give rise to collider bias (Yaghootkar et al.,
2017). GWAS of participation cannot be directly per-
formed, although insight might be gained by comparing
genotype frequencies between volunteer‐based studies
and birth cohorts, or through linkage of large‐scale
studies. MR and mediation analyses, which include
additional exposures in the model structure, introduce
further scope for collider biases that may be amenable to
genetic IVs (Griffith et al., 2020; Munafo et al., 2018;
Paternoster et al., 2017).

Currently, therefore, the approaches we have
described have limitations. Nevertheless, when there
may be unknown confounding between a conditioning
trait and an outcome of interest, they do offer a useful
addition to the existing toolkit of sensitivity analysis,
inverse probability weighting and other model‐based
corrections. Indeed genetic IV methods may be applied
in conjunction with those approaches to provide
improved assessment of and adjustment for collider
bias. We expect further developments of genetic IV
approaches to address collider bias in applications
such as secondary analyses of case/control studies and
MR of factors affecting disease progression.
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