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Abstract

We use PDEs to describe the pricing process of options in an illiquid market. These

equations are derived from stochastic di�erential equations built on the Ito process. With

the help of Lie symmetry analysis, this paper focuses on the pricing of a model that incor-

porates the e�ect of large traders in an illiquid market. The non-linear partial di�erential

equation representing this model incorporates a nonzero risk-neutral interest rate. This

partial di�erential equation is singularly perturbed and quadratic in the highest derivative.

Using the method of Lie symmetry analysis, we obtain symmetries in the mathematical

package Program Lie, these symmetries are used to analyze the equation and to reduce

the partial di�erential equation to ordinary di�erential equations. When the equations are

solved, they yield group invariant solutions to the partial di�erential equation. We give a

graphical representation of the obtained solutions. These invariant solutions are new to

the �eld and can be used in place of simulations.

Keywords. Reduced-form SDE model, Lie algebras, symmetries, illiquid markets.

Key messages.

• Reduction of the impact on the stock price by large traders in an illiquid market

• Singularly perturbed PDE model with a quadratic gamma function

• Linearize a lower order derivative instead of the gamma function to obtain symmetries

• New invariant solutions for pricing options

1 Introduction

One of the most signi�cant strides made in the study of Financial Mathematics was the Black-

Scholes-Merton(BSM) model [11]. Up to this day, the Black-Scholes-Merton remains relevant

in the pricing of portfolios and options. However, the Black-Scholes-Merton is based on as-

sumptions that make it only applicable in a perfect world, with ideal markets. That said,

markets are constantly bombarded with various frictions, thus making them far from ideal. For
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example, markets may be illiquid [12]. In these markets, the Black-Scholes-Merton model will

not work. However, there can be numerous derivations from the Black-Scholes-Merton model

employed in these illiquid markets.

In a bid to solve this problem, there have been many developments in various models. In this

study, the focus is on one of the well known derivations which is the Reduced-Form Stochas-

tic Di�erential Equation Model. Grull and Taschini derived �rst estimation methods which

were used to calibrate reduced-form models. They went on to show how the prices varied in

the article [13]. Graselli and Hurd [14], focused on the recoveries of par, treasury and market

value of reduced-form models by using the example of a two-factor Gaussian model. Both

articles, [14, 13], derived the reduced-form models from equilibrium models like the Black-

Scholes-Merton model. Through calibrations to historical data, their studies looked at the

stochastic behaviour of the reduced models in comparison to equilibrium models. In illiquid

markets, one of the factors acting on the market is the ability to control the equilibrium of

stock prices based on market share, especially for large traders. The reduced-form SDE model

is applied to the pricing of portfolios, provided there exist large traders.

This is what led Bordag and Frey [3] to develop a model and consequently derive a PDE.

However, not many methods can be employed to solve a PDE such as the reduced-form SDE

model.

A method that has brought tremendous results and advancements in solving PDEs is that of

Lie Symmetry Analysis [20]. Several �elds of studies have made use of this method, for exam-

ple, Caister, O'Hara and Govinder priced the Asian option in [7], Sinkala, Leach and O'Hara

obtained group invariant solutions to a PDE model for zero-coupon bonds in [17], Sophocleous,

O'Hara, and Leach obtained algebraic solutions for Stein-Stein model for stochastic volatility

in [18], and also studied a model of stochastic volatility with time-dependent parameters in

[19], just to mention a few. In this study, we solve a non-linear PDE through the method of

Lie Symmetry Analysis; see [8] for an earlier example using Lie symmetries in �nance, when

the associated PDE is non-linear.

The remainder of the paper is as follows: In Section 2 we present the derivation to the nonlinear

PDE and provide the �rst simple solution. In Section 3 we look at a more general approach to
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solving the PDE and the associated solution. We describe the method of Lie symmetry analysis

in Section 4 and explain how to use it to �nd solutions to the PDE. In this section, we also

look at the di�erent invariant solutions arrived at, and provide their graphical representations.

Section 5 contains a discussion of the holistic view of the paper and the signi�cance of the

solutions.

2 The non-linear di�erential equation

The reduced-form SDE model developed in [3] targets large traders in a market. Due to their

considerable portion of market share, large traders can signi�cantly in�uence markets. Bordag

and Frey [3] established a model where U(t, S) is the value of the option at time t, with the

stock price at time t being S. One of the crucial aspects of the model is a liquidity parameter

ρ, with σ being the volatility of the underlying asset price. Assuming that ρ ≥ 0 and Φ is

the semimartingale standing for the stock-trading strategy used by a trader, the stock price

satis�es the SDE [4]

dSt = σStdWt + ρStdΦt. (1)

It is important to note that the strength of the impact on price is dependent on ρ. We see that

when ρ = 0, the asset price follows a Black-Scholes-Merton model [4]. For their model, Bordag

and Frey [4] followed the following reasoning:

1. Large traders use the trading strategy Φ with a corresponding stock price SΦ. The

corresponding Markovian strategy being Φt = φ(t, St).

2. Applying the Itô formula on (1) shows Sφ as an Itô process with the dynamics

dSφt = vφ
(
t, Sφt

)
Sφt dWt + bφ

(
t, Sφt

)
Sφt dt,

for adjusted volatility given by

vφ(t, S) =
σ

1− ρSφS(t, S)
.
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3. Using the adjusted volatility, the relation φS = uSS and Vt = u(t, St) yielded the below

PDE.

Ut +
σ2S2USS

2(1− ρSUSS)2
= 0. (2)

They assumed that the risk-free interest rate, r, equals zero. However, with the high volatility

in �nancial markets caused by interest rates, there was a drive to determine the e�ect if r 6= 0.

When r is incorporated the model becomes

Ut + rSUS +
σ2S2USS

2(1− ρSUSS)2
− rU = 0. (3)

This equation is the focus of our study. This is clearly a strong extension to Bordag and Frey

in [4]. In this instance, it is important to note that there exists a payo� w(ST ) for a function

w : [0,∞) → R were the terminal condition at maturity date T for S ≥ 0 is U(T, S) = w(S).

In the case of a European call option w(S) = max{S −K, 0} where the strike price K > 0.

2.1 Hedging strategies

De�nition 2.1. For an option, delta ∆ is the rate of change of the option price to the price of

the underlying stock. It is the slope of the curve that relates the option price to the underlying

stock price.

∆ =
∂U(t, S)

∂S
, (4)

where U(t, S) denotes the value of price[6].

De�nition 2.2. The gamma Γ of a portfolio of options on an underlying stock is the rate of

change of the portfolio's delta with respect to the price of the underlying stock. It is the second

partial derivative of the portfolio with respect to stock price:

Γ =
∂2U(t, S)

∂S2
, (5)

where U(t, S) is de�ned above.
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Taking a close look at the denominator for (3), it is important to note Γ 6= 1
ρS

since this will

give a denominator that is equal to 0 and an unde�ned fraction.

2.2 Case when Γ = 0

Equation (3) poses a unique challenge since Γ is quadratic. We assume that Γ = 0 and we

obtain a simple non-trivial solution. This assumption implies that ∆ is independent of the

underlying stock S. The result of this is a straightforward solution to (3) of the form:

U(t, S) = a0(t) + a1(t)S, (6)

where both a0(t) and a1(t) are arbitrary functions. Since we are studying a European Call

option which is not deep in the money and also not deep out of the money, our terminal

condition being when Γ = 0, we can write the trivial solution as:

U(t, S) = S −Ke−rt. (7)

whereK is the option strike price. Mathematically, it is also important to note that by assuming

that U(t, S) is a linear combination of separable variables,

U(t, S) = X(S) + T (t), (8)

the solution obtained is of a similar form as (7). However, this assumption does not yield any

further results in the focus of this paper.
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Figure 1: Case 2.1 when Γ = 0, C1 = 0.5, C0 = 0.1 and r = 0.02. Plot of the value of the
option against the stock price and time. For the given range of stock price, S, the plot does
shows that an increase in t will increase the value of the option, U(t, S).

3 Lie Symmetry Analysis Methodology

3.1 In�nitesimal Transformations

Let

X = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
. (9)

be the in�nitesimal operator or generator of G. The in�nitesimal transformations can thus be

re-written as

xi ≈ (1 + aX)xi, uα ≈ (1 + aX)uα (10)

where a is an arbitrary constant.

Theorem 3.1. Given the in�nitesimal transformations (10) or its symbol X, G is

then obtained by solution of the Lie equations [2].

dxi

da
= ξi(x, u),

duα

da
= ηα(x, u),
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subject to the conditions

xi|a=0 = xi, uα|a=0 = uα.

The theorem is employed to obtain one-parameter groups. The above transformations form a

symmetry group G of the system if the function u = u(x) satis�es

Eσ(x, u, u(1), . . . , u(k)) = 0

whenever u = u(x) satis�es the original di�erential equation

Eσ(x, u, u(1), . . . , u(k)) = 0.

The one parameter group, G[1], is the �rst prolongation that acts in the space (x, u). Here G[1]

is formed by transformations in (x, u, u(1)) and the transformations u(1) = ψ(x, u, u(1), a). To

obtain the prolonged groups G[2] up to G[k] one uses the total derivative transforms.

Let the in�nitesimal transformations of the prolonged groups be G[1] to G[k], then

uαi ≈ uαi + aζαi (x, u, u(1))

uαij ≈ uαi + aζαij(x, u, u(1), u(2))

...

ui1...iαk ≈ uαij ...ik + aζαi1...ik(x, u, u(1), . . . , u(k)),

with prolongation formulas

ζαi = Di(η
α)− uαjDi(ξ

j)

ζαij = Dj(ζ
α
i )− uαilDj(ξ

l)

...

ζαi1...ik = Dij(ζ
α
ik...ik−1

)− uαi1...iklDj(ξ
l).
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The generators of the prolonged groups are:

X [1] = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
+ ζαi (x, u, u(1))

...

X [k] = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
+ ζαi (x, u, u(1))

+ . . . + ζαi1...ik(x, u, . . . , u(k))
∂

∂uαi1...ik
,

where X is the generator of the group G.

4 Solving the di�erential equation using Lie Symmetry

Analysis

Olver describes how to obtain Lie symmetries from a PDE in [21], which are used to reduce

the PDE. A computer package that is useful in obtaining the symmetries is Program Lie [1].

Essentially, the main idea is to reduce a PDE into a system of ordinary di�erential equations

using symmetries, thus making it easier to solve the system.

Arbitrarily, the following holds:

E(t, S, U, Ut, US, UtS, Utt, USS) = Ut + rSUS +
σ2S2USS

2(1− ρSUSS)2
− rU = 0. (11)

However, (3) is a special type of PDE. It is known as a singularly perturbed PDE, so obtaining

the symmetries by the usual method will not work. The fact that (3) is non-linear in the highest

derivative of the function U(t, S), but quadratic, poses a challenge in obtaining the symmetries.

One possible approach to solve (3) requires both σ, the volatility of the underlying stock, and

ρ, the liquidity parameter to equate to 0, i.e., ρ = 0 and σ = 0. However, this would defeat the

purpose of this study as (3) is singularly perturbed. This type of di�erential equation results
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in complex functions that may be di�cult to solve for symmetries. Frey dealt with an example

of a singularly perturbed PDE in [9].

To help solve (3), instead of linearizing the highest derivative USS as stipulated in [1], we

linearize Ut. This unconventional linearizing became one of the fundamentals of solving (3).

Applying this method in Program Lie, we obtain the following Lie symmetries:

G1 = ∂t (12)

G2 = S∂U (13)

G3 = ert∂U (14)

G4 = U∂U + S∂S. (15)

The given symmetries are vital in reducing (3) and ultimately solving it, meaning that equation

(3) admits a non-trivial four-dimensional Lie algebra extended across the obtained generators.

The algebra Di� ∆ (M) given as a linear combination of the symmetries:

G = α1G1 + α2G2 + α3G3 + α4G4. (16)

with α1, α2, α3 and α4 being arbitrary constants. In as much as there are four arbitrary

constants, α4 will fall away due to the normalization of the associated symmetry, meaning that

only α1, α2, and α3 would be associated with the solutions. These constants eventually form

part of the basis of the solution for U(t, S), but have minimal e�ect in the movement of the

value of the option with time t.

The expression G in (16) is known as an operator, and there exists G[2], which is the second

prolongation of (16). This concept can be noted in [2, 10, 15].

In the process of solving for the value of the option U(t, S), the linear combination (16) of

symmetries amounts to the following system:

dt

1
=

dU

α3U + α2etr + α1S
=

dS

α3S
. (17)

The Lagrange system in (17) is solved to get an expression for the price of the underlying stock
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G1 G2 G3 G4

G1 0 0 rG3 0
G2 0 0 0 0
G3 −rG3 0 0 G3

G4 0 0 −G3 0

Table 1: The commutator table of symmetries G1, . . . , G4. The table con�rms the eligibility of
the obtained symmetries to reduce the PDE in question.

at time S(t):

S(t) = peα3t, (18)

where p is a constant. Solving the following Lagrange system will give the value of the portfolio:

d(Ue−α3t)

dt
= α2e

t(r−α3) + α1Se
−α3t. (19)

4.1 Case when α3 6= r

Reducing equation (19) will give the value of U :

U =
α2

r − α3

etα3 − α1α3S + eα3tq(Se−α3t), (20)

where p = Se−α3t and q(p) is the constant function. Now, applying (20) to the PDE (3) and

simplifying will give a reduced ODE in p:

(α3 − r)q(p)− (α3 − r)pqp(p) +
σ2p2qpp(p)

2(1− ρpqpp)2
= 0. (21)

In the same way we are solving for (3), we now look for Lie symmetries for (21). By using the

Wolfram Mathematica [22], we arrive at a set of symmetries. However, these symmetries come

with their own sets of conditions in order for them to hold. For any given one of the symmetries

obtained, either one of the following conditions has be true:

11

John O'Hara
Cross-Out
t

John O'Hara
Highlight

John O'Hara
Sticky Note
...has to be..



ρ = 0 (22)

σ = 0 (23)

r = α3. (24)

The liquidity parameter ρ, as explained in Section 2, is the in�uence of the large trader in a

market, and so a condition ρ = 0 would defeat the purpose of this research. In the same manner,

the condition σ = 0 takes away the volatility of the market from the analysis, and would also

lead to a di�erent PDE given that fraction on (3) would fall away. Lastly, this subsection is

looking at a speci�c case when r 6= α3, and so (24) directly opposes this. At this point, none of

the symmetries obtained for (21) would add any value to the study of this section. The unique

case when α3 = r will then be looked at in the following sections.

One way of obtaining a solution for (3) in this subsection would be to exploit an assumption

qpp = 0. A simple solution exists for qpp of the form,

q = q0 + pq1, (25)

where q0 and q1 are arbitrary constants. Substituting (25) into (21) and solving gives q0 = 0

and simpli�es (25) to:

q = pq1. (26)

An invariant solution, therefore, exists when we substitute (26) into (20), to give:

U =
α2

r − α3

etα3 − α1α3S + Sq1. (27)
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Figure 2: Case 4.1 when r 6= α3, α2 = 0.063, α3 = 0.2, α1 = 0.03, q1 = 0.05 and r = 0.04. Plot
of the value of the option against the stock price and time. For the given range of stock price
S, the plot does shows that an increase in S will increase the value of the option U(t, S).

4.2 Case when r = α3

In the event that r = α3, (19) reduces to the following di�erential,

d(Ue−rt)

dt
= α2 + α1p, (28)

an immediate solution to (3) exists:

U = α2te
rt + α1tS + qert, (29)

where q(p) is a arbitrary function.

Substituting (29) into (3) will reduce (3) to an ODE:

α2 + α1p+
σ2p2qpp(p)

2(1− ρpqpp)2
= 0. (30)
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4.2.1 α1 = 0

Equation (30) brings complexity, and one way of solving this would be to assume that α1 = 0.

There exists a solution for the arbitrary function q(p). Since equation (30) is quadratic, there

would be two invariant solutions to (3), Ua+ representing the value of the option for the speci�c

solution to the quadratic equation and Ua− denoting the value of the option for the negative

part of the quadratic solution following from (29):

Ua+ =ert(α2t+ C1 + e−2rtSC2)− 1

4α2ρ2
(31)[

(4e−rtSα2ρ+
1

2
e−2rtS2σ2 − 4e−rtSα2ρ ln

[
e−rtS

]
− 8e−rtSα2ρ ln [σb1 + b2]

+
32α2

2ρ
2 ln [σb1 + b2]

σ2
− 16α2

2ρ
2 ln [σ2b1 + σb2]

σ2
+

4α2ρb1b2

σ
− 2α2ρb1b2

σ

+
1

2
σb2(e−rtS)3/2

]
,

where

b1 =
√
e−rtS (32)

b2 =
√
−8α2ρ+ e−rtSσ2.
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Figure 3: Case 4.2.1 when r = α3 and α1 = 0, r = 0.05, α2 = 0.6, C1 = 0.1, C2 = 0.5, σ = 0.18
and ρ = 0.19. First plot of the value of the option against the stock price and time. For the
given range of stock price S, the plot does shows that an increase in S results in an increase in
the value of the option U(t, S).

Ua− =ert(α2t+ C1 + e−2rtSC2) +
1

4α2ρ2
(33)[

− 4e−rtSα2ρ−
1

2
e−2rtS2σ2 + 4e−rtSα2ρ ln

[
e−rtS

]
− 8e−rtSα2ρ ln [σd1 + d2]

+
32α2

2ρ
2 ln [σd1 + d2]

σ2
− 16α2

2ρ
2 ln [σ2d1 + σd2]

σ2
+

4α2ρd1d2

σ
− 2α2ρd1d2

σ

+
1

2
σd2(e−rtS)3/2

]
,

where

d1 =
√
e−rtS (34)

d2 =
√
−8α2ρ+ e−rtSσ2.
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Figure 4: Case 4.2.1 when r = α3, α1 = 0, r = 0.05, α2 = 0.01, C1 = 0.001, C2 = 0.005,
σ = 0.25 and ρ = 0.9. Second plot of the value of the option against the stock price and time.
For the given range of stock price S, the plot does show that an increase in S results in an
increase in the value of the option U(t, S).

4.2.2 α2 = 0

Assuming α2 = 0 in solving for the arbitrary function q(p) in (30) will give two invariant

solutions as well, Ub+ denoting the value of the option for the de�nite solution to the quadratic

component of (29) and Ub− denoting the value of the option for the negative solution to the

quadratic component of (29):

Ub− =α1tS + ert

[
Stα1 + ert

[
C3 + e−rtSC4 (35)

+

[
−4α1ρ+ σ2 −

√
−8α1ρσ2 + σ4

] [
e−rtS + e−rtS ln

[
ert

S

]]
4α1ρ2

]]
.
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Figure 5: Case 4.2.2 when r = α3, α2 = 0, r = 0.05, α1 = −0.001, C1 = 0.001, C2 = 0.005,
σ = 0.25 and ρ = 0.9. First plot of the value of the option against the stock price and time.
For the given range of stock price S, the plot does shows that an increase in S results in an
increase in the value of the option U(t, S).

Ub+ =α1tS + ert

[
Stα1 + ert

[
C3 + e−rtSC4 (36)

+

[
−4α1ρ+ σ2 +

√
−8α1ρσ2 + σ4

] [
e−rtS + e−rtS ln

[
ert

S

]]
4α1ρ2

]]
.
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Figure 6: Case 4.2.2 when r = α3, α2 = 0, r = 0.05, α1 = −1, C1 = 0.01, C2 = 0.05, σ = 0.18
and ρ = 1.5. Second plot of the value of the option against the stock price and time. For the
given range of stock price S, the plot does show that an increase in S results in an increase in
the value of the option U(t, S).

4.2.3 α2 = 0 and α1 = −σ2

8ρ

There exists another pair of invariant solutions to (3) assuming α2 = 0 and α1 = −σ2

8ρ
following

solving (30):

Uc− =
−σ2

8ρ
tS + ert

[
− Stσ2

8ρ
+ ert

[
C5 + e−rtSC6 (37)

+

(
3− 2

√
2
)

(−e−rtS + e−rtS ln [e−rtS])

ρ

]]
.

Uc+ =
−σ2

8ρ
tS + ert

[
− Stσ2

8ρ
+ ert

[
C5 + e−rtSC6 (38)

+

(
3 + 2

√
2
)

(−e−rtS + e−rtS ln [e−rtS])

ρ

]]
.
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Figure 7: Case 4.2.3 when r = α3, α2 = 0, α1 = −σ2

8ρ
, r = 0.05, C1 = 0.1, C2 = 0.01, σ = 0.25,

ρ = 0.95. First plot of the value of the option against the stock price and time. For the given
range of stock price S, the plot does show that an increase in S has a negligible impact on the
value of the option U(t, S).

5 Discussion

This study focuses on the model (3), which is suitable for pricing in an illiquid market, taking

into consideration the e�ect of large traders. To solve this model, the method of Lie symmetry

analysis was mainly used. The symmetries admitted by (3) were obtained. The solutions

obtained are exact and have not yet been obtained or explored. This represents the value of a

portfolio U(t, S).

In Section 2, we obtained solution (7), with Figure 1 as the graphical representation. The

method used in Section 3 produces a solution in the same format as (7). At this point, it is

important to note that this solution (7) does not have either ρ or σ, which brings an interesting

notion to the e�ect of large traders.

In Section 2, we discussed the fact that ρ represents the strength of the impact on the price

caused by large traders. The assumption is that USS = 0 will give a PDE free of ρ. As the

volatility (ρ) approaches zero, the PDE turns to assume the Black-Scholes-Merton model and

this is another study that can be pursued. The solution (7) suggests that there exist conditions

that can give a value of the option that would not be impacted by the entry of large traders into
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the market. One can even argue that (7) can be likened to the Black-Scholes-Merton solutions

since the Black-Scholes-Merton model exists when the liquidity parameter ρ = 0.

Further research would be warranted to prove this argument. In the same manner, one can

also argue that (7) shows that the volatility, σ, of the underlying stock price would not a�ect

the value of the option.

Further to this study would be an investigation on the replacement of the large trader by high

speed, small value, but high volume transactions. In this case, speed would most likely be a

variable. The reason that this notion would add value in the market is the notion that comes

with these numerous high-speed trades that would speak to the volume of traders with a shared

belief in a particular underlying stock, as opposed to one large trader whom the market might

not have con�dence in. Within this reasoning, one large trader may be contrary to the rest of

the market, and intuitively their entry into the market would have minimal to no in�uence on

the price associated.

Second to this build would be an investigation that quanti�es a large trade. This research looks

at a large trader in umbrella form, but it would be essential to identify at which point a trade

can be classi�ed as signi�cant.

Section 4 employs the method of Lie Symmetry. This gave a whole host of solutions (27), (31),

(32), (33), (34), (35), and (36) all with an existing interest rate r. Apart from these solutions

suggesting that a large trader has an impact on the price of the underlying stock, they can also

be utilized in an illiquid market with high volatility where the interest rate is not equal to zero.

In as much as these solutions have not yet been explored, their implication �ts the qualitative

analysis associated with an illiquid market and is also in line with Bordag and Frey's research

on a similar market [4]. A further study on the extent to which the value of the option can be

impacted by a large trader would be a worthy follow-up to this study. This further study could

then be useful in determining at what point a trader can be classi�ed as a large trader.

In conclusion, the study of this paper validates the traditional qualitative analysis that suggests

that a large trader will have an impact on the underlying stock of a given portfolio, and has

also uncovered the possibility of a large trader-free portfolio. The obtained solutions can be

used to validate solutions obtained using numerical methods.

20

BPRG003
Comment on Text
Item 10 and 11 on the correction list.



Acknowledgements: We thank the University of KwaZulu-Natal and the National Research

Foundation for their ongoing support.

Declarations of Interest: The authors report no con�icts of interest. The authors alone are

responsible for the content and writing of the paper.

References

1. A. K. Head, LIE, a PC program for Lie analysis of di�erential equations, Computer Physics

Communications 71 (2003), pp. 241�248

2. G. W. Bluman, S. K. Kumei, Symmetries and Di�erential Equations, Springer-Verlag, 1989

3. L. A. Bordag, R. Frey, Pricing Options in Illiquid Markets : Symmetry Reductions and

Exact Solutions, Springer (2008)

4. L. A. Bordag, R Frey, Nonlinear option pricing models for illiquid markets:scaling properties

and explicit solutions, Elsevier (2007)

5. L. A. Bordag, A. Y. Chmkova, Explicit Solutions For A Nonlinear Model Of Financial

Derivatives, International Journal of Theoretical and Applied Finance Vol.10 No.1 (2007)

1-21

6. J. C. Hull, Options, Futures, and other Derivatives, Prentice Hall, Boston, USA

7. N. C. Caister, J. G. O'Hara, K. S. Govinder, Solving the Asian option PDE using Lie

symmetry methods, International Journal of Theoretical and Applied Finance 13 (8), 1265-

1277 5 2010

8. N. C. Caister, J. G. O'Hara, K. S. Govinder, Solving a Non-Linear PDE that Prices Real

Options using Utility Based Pricing Methods, Nonlinear Analysis Series B: Real World

Applications 12 (2011) 2408-2415

9. R. Frey, Perfect option replication for a large trader, Finance and Stochastics, vol. 2, (1998),

pp. 115-148

21



10. K. S. Govinder, Ordinary Di�erential Equations, Honors notes (2010)

11. R. K. Gazizov, N. H. Ibragimov, Lie Symmetry analysis of di�erential equations in �nance,

Nonlinear Dynamics 17, (1998), pp. 387 - 407

12. N. Garleanu, Portfolio choice and pricing in illiquid markets, Journal of economic theory

144, (2009), pp. 532 - 564

13. G. Grull, L. Taschini, A comparison of reduced-form permit price models and their empirical

perfomances, Center for Climate Change Economics and Policy (CCCEP), (2010)

14. M. R. Graselli, T. R. Hurd, Credit Risk Modelling, Maths 774 notes

15. N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Di�erential Equations,

Wiley, (1999)

16. R. A. Jarrow, S. M. Turnbull, Pricing derivatives on �nancial securities subject to credit

risk, Journal of Finance, (1995), pp. 50:53-85

17. W. Sinkala, P. G. L. Leach, J. G. O'Hara, Zero-coupon bond prices in the Vasicek and

CIR models: Their computation as group-invariant solutions, Mathematical Methods in

the Applied Sciences 31 (6), 665-678 8 2008

18. C. Sophocleous, J. G. O'Hara, P. G. L. Leach, Algebraic solution of the Stein-Stein model

for stochastic volatility, Communications in Nonlinear Science and Numerical Simulation

16 (4), 1752-1759 7 2011

19. C. Sophocleous, J. G. O'Hara, P. G. L. Leach, Symmetry analysis of a model of stochastic

volatility with time-dependent parameters, Journal of computational and applied mathe-

matics 235 (14) 4158-4164 2011

20. Sophus Lie, Vorlesungen, ddotuber Di�erentialgleichungen mit bekannten in�nitesimalen

Transformationen, Teubner, Leipzig (1912)

21. P. J. Olver, Application of Lie groups to di�erential equations, Springer-Verlag, New York,

USA

22



22. Wolfram Research, Inc., Mathematica, Version 7 Wolfram Research, Urbana-Champaign,

(2008)

23




