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Abstract: Recent research in computational topology found sets of counterexamples demonstrating that several recent
mathematical articles purporting to describe a mathematical concept of realizable Gauss diagrams contain a
mistake. In this study we propose several ways of encoding Gauss diagrams as binary matrices, and train
several classical ML models to recognise whether a Gauss diagram is realizable or unrealizable. We test their
accuracy in general, on the one hand, and on the counterexamples, on the other hand. Intriguingly, accuracy
is good in general and surprisingly bad on the counterexamples. Thus, although human mathematicians and
AI perceive Gauss diagrams completely differently, they tend to make the same mistake when describing
realizable Gauss diagrams.

1 Introduction

The concept of realizable Gauss diagrams belongs to
the mathematical area of topology and, more specifi-
cally, the study of closed planar curves. For a closed
planar curve, such as shown at (Fig. 1, a) its Gauss
code (or Gauss word) can be obtained by labelling all
intersection points by different symbols (or numbers)
and then by travelling all the way along the curve and
writing down the labels encountered on the way. For
example, one of the Gauss codes of the curve shown
at (Fig. 1, a) is 123123. It is easy to see that the Gauss
code of a curve with n intersection points has a length
2n and it is a double occurrence word, that is, each
symbol occurs exactly twice in it. With any double
occurrence word w one can associate its chord dia-
gram; it consists of a circle with all symbols of w
placed clockwise around the circle and chords which
link the points labelled by the same symbol, as in
(Fig. 1,b).

If a double occurrence word and its corresponding
chord diagram can be obtained from a planar curve,
both the word and the diagram are called realizable.
Not every Gauss diagram is realizable; for example,
the diagrams in (Fig. 2) and (Fig. 3) are not realizable.
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Figure 1: a) a planar curve; b) its Gauss diagram and c)
its interlacement graph. The corresponding Gauss word is
123123

In the 1840s Gauss (Gauss, 1900) asked which
chords diagrams are realizable, and gave a neces-
sary, but not sufficient condition; in a realizable dia-
gram every chord intersects an even number of other
chords. We will refer to the chord diagrams satis-
fying this condition as Gauss diagrams. Full char-
acterisation of realizability was first provided in the
1930s by Dehn (Dehn, 1936). Dozens of variants
and re-reformulations of the criteria and algorithms
for checking realizability have appeared since then,
see e.g. (Marx, 1969; Francis, 1969; Lovász and
Marx, 1976; Rosenstiehl, 1976; Rosenstiehl and Tar-
jan, 1984; Dowker and Thistlethwaite, 1983; Kurlin,
2008; Shtylla et al., 2009). It was shown in (Rosen-
stiehl, 1976) that the realizability of a Gauss diagram
can be decided just using its interlacement graph. An
interlacement graph of a chord diagram is an undi-
rected graph whose vertices are the chords of the di-



agram, and in which there is an edge between two
vertices, if the chords corresponding to these vertices
intersect. For example, (Fig. 1, c) is the interlacement
graphs of (Fig. 1, b). In experiments in this paper we
will be dealing only with prime Gauss diagrams, that
is those whose interlacement graph is connected (as
the name suggests, if a Gauss diagram is not prime
then it can be decomposed into parts which are prime
Gauss diagrams, so if one wants to check whether the
Gauss diagram is realizable, it can be done individu-
ally for each part).

In recent studies (Grinblat and Lopatkin, 2018;
Grinblat and Lopatkin, 2020; Biryukov, 2019) very
simple realizability conditions were formulated, ex-
pressible in terms of the interlacement graphs. How-
ever, it was later shown in (Khan et al., 2021b; Khan
et al., 2021a) that these conditions are necessary
but not sufficient, and explicit counterexamples were
found. It is not the only situation when a mistake in
mathematical publications is found, but it has created
a unique opportunity because these counterexamples
are numerous and reasonably small, therefore, can be
included in datasets for machine learning.

In this paper we approach the classical concept of
Gauss realizability from a new angle, that of machine
learning. Specifically, we explore learnability of be-
ing realizable by a classical model of multi-layered
perceptron using four different encodings of Gauss
diagrams. We show that encodings which we denote
by IG and SM yield the highest accuracy of trained
models. We further show that the accuracy of trained
models drops dramatically when tested on those dia-
grams from (Khan et al., 2021b; Khan et al., 2021a)
which are counterexamples to the realizability con-
ditions in (Grinblat and Lopatkin, 2018; Biryukov,
2019; Grinblat and Lopatkin, 2020). Thus, although
human mathematicians and AI perceive Gauss dia-
grams completely differently, it seems that they ex-
perience difficulties on the same family of Gauss dia-
grams.

2 Study design

2.1 Encodings of Gauss diagrams

Before we can use machine learning to recognize
properties of Gauss diagrams, we need to represent
Gauss diagrams using suitable encodings. We have
identified four natural encoding for Gauss diagrams,
which we denote OH, SM, PM, IG. They are de-
scribed below. A priori it is not clear which encoding
will perform best in machine learning and be most ac-
curate.

Note that from the mathematical point of view,
each of these encodings is a binary matrix, but for
the purposes of machine learning, in our experiments
we concatenate all rows of this matrix into a one-
dimensional binary array.

As you will see, the size of the four encodings is
not the same. Let us list the sizes here together, for
convenience.

• OH: n×2n = 2n2

• SM: 2n×2n = 4n2

• PM: n×n = n2

• IG: n×n = n2

2.1.1 One-hot encoding of Gauss words (OH)

Given a Gauss diagram with n chords, label its chords
with elements of {1, . . . ,n} and represent it as a Gauss
word w (recall that a Gauss word is built by travelling
around the Gauss diagram and recording what chords
are observed). Then encode the symbols of the Gauss
word using one-hot encoding (see e.g. (Zheng and
Casari, 2018)). This means that we build a binary
matrix OH of size n×2n such that OHi j = 1 (or 0) if
the j-th symbol in w is (is not) i.

2.1.2 Sparse matrix encoding (SM)

Here again, first use a Gauss word w to represent a
given Gauss diagram, but then w is encoded differ-
ently. Build a binary matrix SM of size 2n×2n such
that SMi j = 1 (or 0) if the i-th symbol in w is equal to
(is not equal to) the j-th symbol in w.

2.1.3 Permutation matrix encoding (PM)

Again, given a Gauss diagram, represent it by a Gauss
word w. When we use this encoding, we assume
that the diagram is a Gauss diagram, that is, satisfies
Gauss’s condition stated in Section 1, and not merely
a chord diagram. Then each symbol {1, . . . ,n} oc-
curring in w occurs exactly once at an odd-numbered
position in w and exactly once at an even-numbered
position in w. Build a binary matrix PM of size
n× n such that PMi j = 1 (or 0) if the symbol at the
i-th odd position in w (that is, the symbol at position
2i− 1) is equal to (is not equal to) the symbol at the
j-th even position in w (that is, the symbol at posi-
tion 2 j). Equivalently, one can say that matrix PM is
produced from the 2n× 2n matrix SM of the SM en-
coding by deleting all even-numbered rows and odd-
numbered columns in SM. Yet another way to think
of this matrix is to notice that all symbols {1, . . . ,n}
occur in odd-numbered position in w, and all sym-
bols {1, . . . ,n} occur in even-numbered position in w;



however, the order in which they appear is different;
the matrix PM is the permutation matrix changing one
of these orders into the other.

2.1.4 Interlacement graph encoding (IG)

The adjacency matrix of the interlacement graph of a
Gauss diagram is used as an encoding. For a diagram
with n chords its size is n2. A practical way of con-
structing this matrix is this: given a Gauss diagram,
represent it by a Gauss word w; then build a binary
matrix IG of size n× n such that IGi j = 1 (or 0) if
in w there is an odd (even) number of occurrences of
symbol i between the two occurrences of symbol j.

1 0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 1 0 0

i) iii)

1 0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 1 0 0
1 0 0 1 0 0
0 1 0 0 1 0 iv)
0 0 1 0 0 1

ii)
Table 1: Different encodings of the “trefoil” planar curve
shown at Fig.1 a): i) one-hot; ii) sparse matrix; iii) permu-
tation matrix; iv) interlacement graph. Incidentally iii) and
iv) are the same for this example. In general PM and IG
encodings are different.

2.2 Machine Learning Model

We consider a problem of supervised learning of the
binary classifier of realizability property of Gauss di-
agrams. While there many possible machine learning
approaches which could be applied for this task we
confine ourselves with the classical model of multi-
layer perceptron (Rosenblatt, 1958; Rosenblatt, 1961;
Rumelhart et al., 1986) and its implementation in
WEKA Workbench for Data Mining (Witten et al.,
2016). Multi-layer perceptron (MLP) is a kind of a
feedforward neural network models which supports
supervised learning using backpropagation (Rumel-
hart et al., 1986). It is one of the oldest and well-
studied models of machine learning, which is also
known to be an universal approximator (Cybenko,
1989; Hornik et al., 1989). MLP implementation
in WEKA supports sigmoid activation function (Han
and Moraga, 1995). In the initial experiments we have

used default settings of MLP in WEKA Workbench:
L = 0.3 (learning rate)
M = 0.2 (momentum rate)
N = 500 (number of epochs to train)
V = 0 (percentage size of validation set to use to

terminate training)
S = 0 (seed for Random Number Generator)
E = 20 (threshold for number of consecutive er-

rors to use to terminate training)
H = a (one hidden layer with (attribs + classes) /

2 many nodes)

2.3 Data sets

We have used Gauss-lintel open source tool (Khan
et al., 2021c) to generate various datasets. For that
purpose the tool was extended to handle new types of
encodings. The main encoding used in Gauss-lintel is
permutation based (Khan et al., 2021d), so its transla-
tion to PM is trivial, while OH, SM and IG encodings
introduced in the previous Section, were implemented
additionally by translations from PM.

Originally Gauss-lintel was used for exhaustive
generation of classes of Gauss diagrams satisfying
different properties. For the purpose of this work
it was extended by the procedure for generation
of random Gauss diagrams using built-in predicate
random_permutation(+List, -Permutation) in
SWI-Prolog (Wielemaker et al., 2012).

The datasets were generated in Attribute-Relation
File Format (ARFF) acceptable by WEKA. We use
notation like IG-9-1000x2 to denote a dataset of
Gauss diagrams with 9 chords in IG encoding con-
taining 1000 random realizable and 1000 random
non-realizable Gauss diagrams.

3 Experiments and Discussion

We have performed two types of the experiments re-
ported in the following subsections.

3.1 Encodings comparison

We have trained MLP binary classifier models for the
sets of random Gauss diagrams of various sizes for all
four encodings. We have used 80%/20% random split
of the datasets into training/testing datasets.

The results are summarized in the following table
The table presents only weighted average preci-

sion, more detailed summaries of all experiments in-
cluding TP rate, FP rate, Recall, F measure and con-
fusion matrices can be found online together with



Dataset OH SM PM IG
8-1000x2 0.88 0.87 0.85 0.91
9-1000x2 0.77 0.78 0.76 0.84
10-1000x2 0.72 0.74 0.70 0.75
10-2000x2 0.76 0.80 0.75 0.80
11-2000x2 0.67 0.77 0.74 0.76
12-2000x2 0.67 0.77 0.71 0.75

Table 2: The precision of MLP models trained with differ-
ent Gauss diagrams encodings

all datasets used in this study1. The reported results
suggest that all encodings yield similar precision of
learned models. For smaller sizes 8-10 IG encod-
ing consistently outperforms other encodings, while
starting from size 11 SM encoding slightly outper-
forms IG. One speculative explanation of IG perfor-
mance might be that the properties of interlacement
graphs, which are themselves abstracted codes of the
diagrams, determine realiziability of the correspond-
ing diagrams. So having “direct access” to the graph
properties/features might be beneficial for machine
learning of realizability. As to SM encoding, its good
performance might be attributed to the fact that it has
largest size of all encodings (4n2 for n-crossing dia-
grams) and the largest size of the hidden layer of neu-
rons in the corresponding perceptron. This advantage
of SM goes though with the much longer training time
due to the increased size of the neural network.

The exploration of the wider class of ML models
and more rigorous account of the speculative expla-
nations are the topics for our further research here.

3.2 Models behaviour on special
counterexamples datasets

In (Khan et al., 2021a) using computational approach
and Gauss-lintel tool the special sets of Gauss dia-
grams have been identified. They satisfy all crite-
ria from (Grinblat and Lopatkin, 2018; Grinblat and
Lopatkin, 2020; Biryukov, 2019) to be realiziable, but
are not in fact realisable. Thus these counterexamples
invalidate mentioned criteria and informally speaking
have non-trivial reasons to be non-realizable. There
are exactly 1, 6, 36, 235 of such diagrams of sizes
9,10,11,12 respectively. The diagrams of sizes 9 and
10 as well as realizability conditions from (Biryukov,
2019) can be seen in Appendix A. In the second series
of experiments we compared the accuracy of learned
MLP models when tested on random sets of diagrams
(using 80%/20% split as before) and on these special
sets.

The results are summarised in the following table.

1https://doi.org/10.5281/zenodo.5797950

Dataset R testing S testing Misclassified
IG-10-2000x2 0.80 0.00 6 out of 6
IG-11-2000x2 0.76 0.22 28 out of 36
IG-12-2000x2 0.75 0.07 218 out of 235
OH-10-2000x2 0.76 0.50 3 out of 6
OH-11-2000x2 0.67 0.19 29 out of 36
OH-12-2000x2 0.67 0.41 139 out of 235
SM-10-2000x2 0.80 0.50 3 out of 6
SM-11-2000x2 0.77 0.31 25 out of 36
SM-12-2000x2 0.77 0.19 190 out of 235
PM-10-2000x2 0.75 0.00 6 out of 6
PM-11-2000x2 0.74 0.11 32 out of 36
PM-12-2000x2 0.71 0.20 189 out of 235

Table 3: The accuracy of MLP models when tested on ran-
dom (R) and on special (S) sets of diagrams. The num-
bers of diagrams misclassified in the latter case are shown
in Misclassified column.

Quite surprising outcome of these results is that
ML struggles to classify correctly the diagrams from
these special sets confirming thereby inherent diffi-
culty of the problem of their recognition. The hu-
man mathematicians have made mistakes for these di-
agrams, ML appears to be following humans. The
speculative explanation of such a behaviour of ML
might be based 1) on the observation that these special
diagrams are rare and 2) the majority of the diagrams
have “simpler reasons” for non-realizability. So, if
trained on random diagrams, ML can learn the sim-
pler conditions covering majority of the diagrams, but
might have no chance to learn more complicated con-
ditions for the rare special diagrams due to not seeing
such diagrams during training process.

To provide some empirical evidence for such rea-
soning we have performed one more experiment. We
have split the set S of 235 special diagrams of size
12 into two subsets S1 and S2 of sizes 100 and
135, respectively. S1 is then used to replace 100
non-realizable diagrams in the dataset 12-2000x2.
Then we used such modified dataset 12-2000x2M for
training. The resulting model was tested on ran-
dom diagrams (using 80/20 split) and on diagrams
from S2. The first testing returned average precision
0.73 (slight drop from original 0.75 for unmodified
dataset), but the testing on S2 yielded the rise of pre-
cision to 0.62 from the original 0.07 (for unmodified
dataset and testing on S). So, it appears that indeed
seeing the special diagrams during the training helps
to increase considerably the chances of correct classi-
fication of other diagrams from this set.

We believe that more rigorous account of such ex-
planations can be given by the application of the re-
cent approach to the learnability of relational proper-
ties using model counting, proposed in (Usman et al.,
2020). This is a topic of our ongoing research.



One of the limitations of the presented study is
that the only one model of ML has been used. We
have tested quickly all implemented in WEKA classi-
fiers in default settings on the instances of the realiz-
ability problem above and the preliminary results sug-
gest that only Random Forest (RF)(Breiman, 2001)
has comparable with MLP precision of learned mod-
els. Interestingly, in the observed cases RF also strug-
gles to recognise special diagrams.

Dataset R testing S testing Misclassified
IG-12-2000x2 0.84 0.03 227 out of 235

Table 4: The accuracy of Random Forest model when tested
on random (R) and on special (S) sets of diagrams. The
numbers of diagrams misclassified in the latter case are
shown in Misclassified column.

Systematic exploration of the experiments with al-
ternative ML models will be presented in the extended
version of this paper.

4 Conclusion

In this paper we have presented our initial experi-
ments with machine learning applied to the classical
problem of computational topology, that is a recog-
nition of realizable Gauss diagrams. We have ex-
perimented with four various encodings and iden-
tified the encodings enabling the highest precision
of learned models. We have discovered an inter-
esting phenomenon where trained ML models drop
their performance dramatically when tested on spe-
cial recently discovered sets of diagrams, which are
counterexamples to the published relaiziability crite-
ria. We proposed some speculative explanations and
outlined further research directions to get more rigor-
ous account of the observed phenomena.
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Appendix A

We present the realiziability conditions for prime
Gauss diagrams from (Biryukov, 2019), equivalent to
those from (Grinblat and Lopatkin, 2018; Grinblat
and Lopatkin, 2020) and formulated in terms of in-
terlacement graphs. According to these conditions, a
prime Gauss diagram g is realizable if and only if in
its interlacement graph:

• each vertex has even degree (original Gauss con-
dition)

• each pair of non-neighbouring vertices has an
even number of common neighbours (possibly,
zero);

• for any three pairwise connected vertices a,b,c ∈
V the sum of the number of vertices adjacent to
a, but not adjacent to b nor c, and the number of
vertices adjacent to b and c, but not adjacent to a,
is even.

The following figures present counterexamples to
these conditions (n=9,10), that is diagrams which sat-
isfy the conditions, but are not realizable.

Figure 2: A counterexample diagram, n=9 (Khan et al.,
2021b)

Figure 3: All counterexamples for n=10 (Khan et al.,
2021b)


