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Abstract
We revisit the discrete heterogeneous two-facility
location problem, in which there is a set of agents
that occupy nodes of a line graph, and have private
approval preferences over two facilities. When the
facilities are located at some nodes of the line, each
agent derives a cost that is equal to her total dis-
tance from the facilities she approves. The goal is
to decide where to locate the two facilities, so as to
(a) incentivize the agents to truthfully report their
preferences, and (b) achieve a good approximation
of the minimum total (social) cost or the maximum
cost among all agents. For both objectives, we de-
sign deterministic strategyproof mechanisms with
approximation ratios that significantly outperform
the state-of-the-art, and complement these results
with (almost) tight lower bounds.

1 Introduction
In the classic truthful single-facility location problem, there is
a set of agents with private positions on the line of real num-
bers, and a public facility (such as a library or a park) whose
location we need to decide. This decision must be made so as
to (a) incentivize the agents to truthfully reveal their positions
(an agent would be willing to lie if this leads to the facility
being located closer to her true position), and (b) optimize a
social objective (such as the total distance of the agents from
the facility location, or the maximum distance). Since the
celebrated paper of Procaccia and Tennenholtz [2013], this
problem and its many variants have been studied extensively
in the literature on approximate mechanism design without
money. For a comprehensive introduction to the various dif-
ferent facility location models that have been considered over
the years, we refer the interested reader to the recent survey
of Chan et al. [2021].

A recent stream of papers have focused on heterogeneous
facility location problems, with multiple facilities (typically,
two) that are different in nature (e.g., a school and a bar). As
such, the agents care both for the location and the types of the
facilities, aiming for the facilities they like the most to be as
close to their position as possible. To give an example, a fam-
ily would like to be closer to a school than to a bar, a single
person might want to be closer to the bar, and a young couple

might want to be close to both facilities. Many settings have
been proposed to model the different preferences the agents
may have about the facilities (see the discussion in the re-
lated work). With few exceptions, all of these models assume
that both facilities can be placed at any point of the real line,
even at the same one. Serafino and Ventre [2016] deviated
from these assumptions and studied a discrete version of the
problem. In this model, the line is a discrete graph, and each
node of this graph is either occupied by a single agent, or is
empty. This information is assumed to be common knowl-
edge. There are also two facilities (such as the school and
the bar in our example above) which can only be placed at
different nodes of the line. Each agent has a private approval
preference over the facilities, that is, she either wants to be
close to a facility or is indifferent about its location. Given
the locations of the facilities, the cost of an agent is then de-
fined as the total distance from the facilities she approves.

Serafino and Ventre presented bounds on the approxima-
tion ratio of deterministic and randomized mechanisms in
terms of both social objectives of interest. In particular, for
the social cost, they showed that the best possible approxi-
mation ratio of deterministic mechanisms is between 9/8 and
n − 1, where n is the number of agents. In contrast, they
designed a randomized mechanism that always outputs a so-
lution with minimum expected social cost. For the maximum
cost objective, they showed that the best possible approxima-
tion ratio of deterministic mechanisms is between 3/2 and 3,
and that of randomized mechanisms is between 4/3 and 3/2.
In this paper, we focus exclusively on deterministic mecha-
nisms, and improve upon the bounds of Serafino and Ventre
for both the social and the maximum cost.

1.1 Our Contribution
The main technical difficulty of designing deterministic strat-
egyproof mechanisms with low approximation ratio in terms
of the social cost is the constraint of locating the two facil-
ities at different nodes. Observe that if each agent approves
just a single facility, then locating each facility to the median
agent among those that approve it would be a strategyproof
mechanism with minimum social cost. However, in general
there might exist agents that approve both facilities, in which
case the medians for the two facilities might coincide, and
any choice of how to break this tie could lead to some agent
having incentive to misreport.



To overcome this bottleneck, Serafino and Ventre presented
a deterministic mechanism, named TWOEXTREMES, which
works along the lines of the mechanism considered by Pro-
caccia and Tennenholtz [2013] for homogeneous 2-facility
location. TWOEXTREMES locates one of the facilities at the
node occupied by the leftmost agent among those that ap-
prove it, and the other facility at the node occupied by the
rightmost agent among those that approve it; in case of a
collision, one of the facilities is moved a node to the left
or the right. There are two main reasons for the deficiency
of TWOEXTREMES: (i) the boundary agents (leftmost and
rightmost) among those that approve a facility may be rather
far away from the median such agent, whose node would be
the ideal location for the facility, and (ii), it does not exploit
the available information about the position of the agents in
any way. Our improved mechanisms take care of these two
reasons: We place the facilities closer to median agents (with-
out breaking strategyproofness), and exploit the information
about the agent positions of the agents.

For the social cost, we design the FIXED-OR-MEDIAN-
NEAREST-EMPTY (FMNE) mechanism with an approxima-
tion ratio of at most 17/4 = 4.25. The mechanism switches
between two cases based on the structure of the line: If there
are no empty nodes, it fixes the locations of the facilities to be
the two central nodes of the line, it locates one of the facilities
at the position of the median agent among those that approve
it, and the other facility at one of the nearest empty nodes to
the median agent among those that approve it. We comple-
ment this result with an improved lower bound of 4/3 on the
approximation ratio of all mechanisms, which follows by two
instances with only three agents and no empty nodes. Moti-
vated by this lower bound construction, we then focus on in-
stances with three agents, and design the 3-agent PRIORITY-
DICTATORSHIP mechanism that achieves the best-possible
bound of 4/3.

For the maximum cost, we design a parameterized class of
mechanisms α-LEFT-RIGHT (α-LR), each member of which
partitions the line into two parts, from the first node to node
α, and from node α + 1 to the last node. Then, the decision
about the locations of the facilities is based on the prefer-
ences of the agents included in the two parts. We show that
all mechanisms of the class are strategyproof, and there are
members with approximation ratio at most 2. In particular,
when the size m of the line is an even number, the bound is
achieved by m/2-LR, and when m is odd, it is achieved by
(m+ 1)/2-LR. Finally, we show a tight lower bound of 2 on
the approximation ratio of all strategyproof mechanisms, us-
ing a construction involving a sequence of five instances with
three agents and no empty nodes. An overview of our bounds,
and how they compare to the previously best ones shown by
Serafino and Ventre [2016], is given in Table 1.

1.2 Related Work
As already mentioned above, the survey of Chan et al. [2021]
nicely discusses the many different facility models that have
been considered over the years. Here, we will mainly dis-
cuss papers on heterogeneous facility location models that
are closely related to ours. Besides the work of Serafino and
Ventre [2016], our paper here, and a few ones on homoge-

Lower bound Upper bound
Social cost 4/3? (9/8) 17/4 (n− 1)

Maximum cost 2 (3/2) 2 (3)

Table 1: An overview of our bounds on the approximation ratio of
deterministic strategyproof mechanisms for the social cost and the
maximum cost. The bounds in parentheses are the previously best
known ones shown by Serafino and Ventre [2016]. The lower bound
of 4/3 marked with a ? is tight for instances with three agents.

neous truthful facility location (e.g., [Feldman et al., 2016;
Filos-Ratsikas and Voudouris, 2021]) and on characteriza-
tions of onto strategyproof mechanisms for the single-facility
location problem on discrete lines, cycles and trees [Dokow
et al., 2012; Filimonov and Meir, 2021], the literature has
focused on continuous settings, where the facilities can be lo-
cated at any point of the line, even the same one.

The first heterogeneous facility location model, combin-
ing elements from the classic single-facility location problem
and the obnoxious single-facility location problem [Cheng et
al., 2011; Cheng et al., 2013], was independently proposed
and studied by Feigenbaum and Sethuraman [2015] and Zou
and Li [2015]. In this setting, there are two facilities to be lo-
cated on the real line, and each agent has dual preferences (ei-
ther likes or dislikes a facility). The authors showed bounds
on the approximation ratio of deterministic and randomized
strategyproof mechanisms for different cases depending on
whether the positions or the preferences of the agents are their
private information. Kyropoulou et al. [2019] considered an
extension of this model, where the location space of the two
facilities is a constrained region of the Euclidean space.

Chen et al. [2020] studied a setting with agents that have
approval preferences over the facilities (as we do here). The
authors consider two different cost functions of the agents,
either the distance from the closest facility that the agent ap-
proves, or the distance from the farthest such facility. Li et
al. [2020] studied an extension of this setting in more general
metrics, and designed mechanisms that improve some results
of Chen et al.. Deligkas et al. [2021] considered a similar
preference model, but with the objective of locating only one
of the facilities (and, more generally, k out of m).

Anastasiadis and Deligkas [2018] considered a model that
combines dual and approval preferences, in the sense that the
agents can like, dislike or be indifferent about a facility. Fong
et al. [2018] considered a setting with fractional preferences,
where each agent has a weight in [0, 1] for each facility indi-
cating how much she likes it. Finally, Xu et al. [2021] con-
sidered the problem where the locations of the two facilities
must satisfy a minimum distance requirement.

2 Preliminaries
We consider the discrete two-facility location problem. An
instance I of this problem consists of a set N of n ≥ 2
agents, two facilities, and a line graph with m ≥ n nodes.
Each agent occupies a node xi of the line, such that different
agents occupy different nodes. By x we denote the position
profile which includes information about which nodes are oc-
cupied by which agents and which nodes are left empty (if



any); the position profile is assumed to be common knowl-
edge. Every agent i also has a private approval preference
ti ∈ {0, 1}2 over the two facilities: If tij = 1, agent i ∈ N
approves facility j ∈ {1, 2}; otherwise, she disapproves it.
By t = (ti)i∈N we denote the preference profile consisting
of the preferences of all agents. It will be useful to denote by
Nj the set of agents that approve facility j ∈ {1, 2}. Clearly,
the two setsN1 andN2 need not be disjoint if there are agents
that approve both facilities. As x and t implicitly include all
the necessary information related to an instance, we denote
I = (x, t).

A feasible solution z = (z1, z2) determines the node zj
where each facility j ∈ {1, 2} is located, so that z1 6= z2.
Given a feasible solution z, the cost of any agent i in instance
I is her total distance from the facilities she approves, i.e.,

costi(z|I) =
∑

j∈{1,2}

tij · d(i, j),

where d(i, j) = |xi − zj | is the distance between agent i and
facility j.

A mechanism takes as input an instance and outputs a fea-
sible solution. A mechanism M is said to be strategyproof
if the solution M(I) it computes when given as input the in-
stance I = (x, t) is such that no agent i has incentive to report
a false preference t′i 6= ti to decrease her cost, i.e.,

costi(M(I)|I) ≤ costi(M(x, (t′i, t−i))|I),

where (t′i, t−i) is the preference profile according to which
agent i’s preference is t′i, while the preference of any other
agent is the same as in t.

We consider two well-known social objectives, which are
functions of feasible solutions. Given an instance I , the social
cost of a feasible solution z is the total cost of all the agents,
i.e.,

SC(z|I) =
∑
i∈N

costi(z|I).

The max cost of z is the maximum cost among all agents, i.e.,

MC(z|I) = max
i∈N

costi(z|I).

Let SC∗(I) = minz SC(z|I) be the minimum possible social
cost for instance I , achieved by any feasible solution. Simi-
larly, let MC∗(I) = minz MC(z|I) be the minimum possible
maximum cost for I .

For any objective f ∈ {SC,MC}, the f -approximation ra-
tio of a mechanism M is the worst-case ratio (over all pos-
sible instances) between the objective value of the solution
computed by M over the minimum possible objective value
among all feasible solutions, i.e.,

ρ(M) = sup
I

f(M(I)|I)
f∗(I)

.

Our goal is to design strategyproof mechanisms with an as
low f -approximation ratio as possible (close to 1). Due to
lack of space, the proofs of some statements are omitted.

Mechanism 1: FIXED-OR-MEDIAN-NEAREST-
EMPTY (FMNE)

1 Input: Instance I with n agents ;
2 Output: Feasible solution z = (z1, z2) ;
3 if there are no empty nodes then // FIXED part
4 z1 ← bn/2c;
5 z2 ← bn/2c+ 1;
6 else // MEDIAN-NEAREST-EMPTY part
7 for j ∈ {1, 2} do
8 yj ← position of the leftmost median agent in

Nj ;
9 z1 ← y1;

10 z2 ← nearest empty node to y2, breaking ties in
favor of the rightmost such empty node;

3 A Constant-Approximation Strategyproof
Mechanism for the Social Cost

For general instances with n agents, we design the strate-
gyproof mechanism FIXED-OR-MEDIAN-NEAREST-EMPTY
(FMNE) with approximation ratio 17/4 for the social cost,
thus greatly improving upon the previous bound of n − 1
of Serafino and Ventre [2016]. Our mechanism exploits the
known information about the position profile, and distin-
guishes between two cases depending on whether the given
instance contains empty nodes or not. If there are no empty
nodes, FMNE locates the facilities next to each other at
central nodes of the line (in particular, nodes bn/2c and
bn/2c+ 1); this is the FIXED part of the mechanism. If there
are empty nodes, FMNE locates facility 1 at the node occu-
pied by the median agent among those that approve facility
1, and facility 2 at the empty node that is nearest to the node
occupied by the median agent among those that approve fa-
cility 2; this is the MEDIAN-NEAREST-EMPTY part of the
mechanism. See Mechanism 1.
Theorem 1. FMNE is strategyproof.

To argue about the approximation ratio of FMNE, we will
distinguish between instances with and without empty nodes.
In our proofs, we exploit the following lower bounds on the
optimal social cost. Here, 1 {X} is equal to 1 if the event X
is true, and 0 otherwise.
Lemma 1 ([Serafino and Ventre, 2016]). For any instance I
in which there are nj agents that approve facility j ∈ {1, 2},
it holds that

SC∗(I) ≥ 1

4

(
n21 + n22 − 1 {n1 odd} − 1 {n2 odd}

)
≥ 1

4

(
n21 + n22 − 2

)
.

For instances without empty nodes and n ≥ 5, we will
show that the approximation ratio of the FIXED part of FMNE
is at most 3; note that for n ≤ 4, the TWOEXTREMES mech-
anism of Serafino and Ventre [2016] is 3-approximate.
Theorem 2. For instances with n ≥ 5 agents and no empty
nodes, the SC-approximation ratio of FMNE is at most 3.



For instances with empty nodes, we show that the ap-
proximation ratio of the MEDIAN-NEAREST-EMPTY part of
FMNE is 17/4 for n ≥ 6; observe that TWOEXTREMES
achieves an approximation ratio of at most 4 when n ≤
5 [Serafino and Ventre, 2016]. Our proof for the approxima-
tion ratio in this case relies on the following technical lemma.

Lemma 2. Let f(x, y) = y2+4xy+2y+1
x2+y2−2 . For non-negative

integers x, y such that x+ y ≥ 6, it holds f(x, y) ≤ 13/4.
We are now ready to prove the bound.

Theorem 3. For instances with n ≥ 6 and at least one empty
node, the SC-approximation ratio of FMNE is at most 17/4.

Proof. Consider any instance I . We first argue a bit about the
optimal social cost of I . A solution that minimizes the social
cost locates each facility j ∈ {1, 2} to the node yj occupied
by a median agent inNj . However, this solution might not be
feasible if y1 = y2, and so the optimal social cost can only be
larger. We have that

SC∗(I) ≥
∑
i∈N1

d(xi, y1) +
∑
i∈N2

d(xi, y2). (1)

Now, let us focus on the social cost of the solution z com-
puted by the mechanism. Let e be the empty node where fa-
cility 2 is located; without loss of generality, we can assume
that xe > y2. Combined with the fact that facility 1 is located
at y1, we have that z = (y1, xe), and

SC(z|I) =
∑
i∈N1

d(xi, y1) +
∑
i∈N2

d(xi, xe).

The first term appears in the lower bound of the optimal social
cost given by Inequality (1), so all we need to do is bound the
second term of the above expression.

We partition the set N2 into three sets L, M and R de-
pending on the positions of the agents in N2 compared to
y2 and xe, as follows: L = {i ∈ N2 : xi ≤ y2},
M = {i ∈ N2 : xi ∈ (y2, xe)}, R = {i ∈ N2 : xi > xe}.
By the definition of median, we have that |L| ≥ |M |+ |R|; in
particular, this is an equality if n2 = |N2| is even, and a strict
inequality if n2 is odd (as L also includes the median agent
in this case). Due to this, we have the following:

• For every agent i ∈ M , we match i to a unique agent in
j ∈ L such that

d(xj , xe) = d(xj , xi) + d(xi, xe)

= d(xj , y2) + d(xi, y2) + d(xi, xe).

• For every agent i ∈ R, we match i to a unique agent
j ∈ L such that
d(xj , xe) + d(xi, xe) = d(xj , y2) + d(y2, xe) + d(xi, xe)

= d(xj , y2) + d(xi, y2).

Hence, we have that∑
i∈N2

d(xi, xe) =
∑
i∈L

d(xi, xe) +
∑
i∈M

d(xi, xe) +
∑
i∈R

d(xi, xe)

≤
∑
i∈N2

d(xi, y2) + d(y2, xe)1 {n2 odd}

+ 2 ·
∑
i∈M

d(xi, xe).

Next, we will bound the second and third terms of the
above expression. Since each agent occupies a different node,
we can upper-bound the total distance of the agents in M as
follows:

d(y2, xe)1 {n2 odd}+ 2 ·
∑
i∈M

d(xi, xe)

≤ d(y2, xe)1 {n2 odd}+ 2

(
d(y2, xe)− 1 + d(y2, xe)− 2

+ . . .+ d(y2, xe)− |M |
)

= −|M |2 + (2d(y2, xe)− 1)|M |+ d(y2, xe)1 {n2 odd} .

Now observe that d(y2, xe) > |M | (since all agents in M
are between y2 and e); thus, the last expression in the above
derivation is an increasing function in terms of |M |. It is
clearly also an increasing function in terms of d(y2, xe).
Since |M | ≤ 1

2 (n2 − 1 {n2 odd}) and d(y2, xe) ≤ n1 + 1 +

|M | ≤ n1 + 1 + 1
2 (n2 − 1 {n2 odd}), by doing calculations

and using the fact that 1 {n2 odd} ≤ 1, we obtain

d(y2, xe)1 {n2 odd}+ 2 ·
∑
i∈M

d(xi, xe)

≤ 1

4

(
n22 + 4n1n2 + 2n2 + 1

)
.

By putting everything together, we have

SC(z|I) ≤
∑
i∈N1

d(xi, y1) +
∑
i∈N2

d(xi, y2)

+
1

4

(
n22 + 4n1n2 + 2n2 + 1

)
≤ SC∗(I) +

1

4

(
n22 + 4n1n2 + 2n2 + 1

)
.

By Lemma 1, we have SC∗(I) ≥ 1
4

(
n21 + n22 − 2

)
, and thus

the approximation ratio is bounded by

SC(z|I)
SC∗(I)

≤ 1 +
n22 + 4n1n2 + 2n2 + 1

n21 + n22 − 2
.

The bound of 17/4 follows by applying Lemma 2 with x =
n1 and y = n2.

We conclude this section by showing that our analysis of
the approximation ratio of FMNE is tight.
Lemma 3. There exists an instance with n ≥ 5 and no empty
nodes such that the SC-approximation ratio of FMNE is at
least 3, and an instance with n ≥ 6 and at least one empty
node such that the SC-approximation ratio of FMNE is at
least 17/4.

4 A Tight Bound for Three Agents
In this section, we restrict to instances with three agents
(and possibly many empty nodes). We show a tight bound
of 4/3 on the approximation ratio of strategyproof mecha-
nisms. In particular, we first present a rather simple instance
without empty nodes showing that the approximation ratio of



Mechanism 2: PRIORITY-DICTATORSHIP

1 Input: Instance I with three agents `, c, and r such
that x` < xc < xr ;

2 Output: Feasible solution z ;
3 if c ∈ N1 \N2 then
4 if r ∈ N2 then
5 z← (xc, xr);
6 else
7 z← (xc, x`);

8 else if c ∈ N2 \N1 then
9 if r ∈ N1 then

10 z← (xr, xc);
11 else
12 z← (x`, xc);

13 else
14 if r ∈ N2 then
15 z← (xc, xc + 1);
16 else
17 z← (xc + 1, xc);

any strategyproof mechanism is at least 4/3, which improves
upon the previous lower bound of 9/8 shown by Serafino and
Ventre [2016].
Theorem 4. The SC-approximation ratio of any strate-
gyproof mechanism is at least 4/3.

Proof. We consider two instances with three agents and no
empty nodes. In the first instance I1, all agents approve both
facilities. Clearly, any mechanism must locate a facility to
the first or the third node (or, perhaps, both). Without loss
of generality, suppose the mechanism locates facility 2 at the
third node.

In the second instance I2, the first two agents approve both
facilities, while the third agent approves only facility 2 (that
is, the only difference between I1 and I2 is the preference of
the third agent). Since facility 2 is located at the third node
in I1, the same must happen in I2; otherwise, agent 3 would
have cost at least 1 in I2 and incentive to misreport that she
approves both facilities, thus changing I2 to I1, and decreas-
ing her cost to 0. However, both possible feasible solutions
z1 = (1, 3) and z2 = (2, 3) have social cost 4 in I2, whereas
an optimal solution (such as z∗ = (1, 2)) has social cost 3;
the theorem follows.

Next, we design the 3-agent strategyproof mechanism
PRIORITY-DICTATORSHIP which achieves the approxima-
tion ratio of 4/3. Consider any instance with three agents,
called `, c, and r, and let x` < xc < xr. Without loss of
generality, let xr − xc ≤ xc − x`. Our mechanism gives pri-
ority to the central agent over the right agent, and does not
take into account the preference of the left agent. In particu-
lar, the mechanism locates at xc one of the facilities approved
by c, and decides the location of the other facility based on
the preference of r. See Mechanism 2.
Theorem 5. PRIORITY-DICTATORSHIP is strategyproof and
its SC-approximation ratio is at most 4/3.

Mechanism 3: α-LEFT-RIGHT

1 Input: Instance I with n agents;
2 Output: Feasible solution z = (z1, z2);
3 L← left part of line from node 1 to node α;
4 N(L)← agents that occupy nodes in L;
5 R← right part of line from node α+ 1 to node m;
6 N(R)← agents that occupy nodes in R;

// (case 1): Each part includes agents that approve only
one, different facility

7 if ∃X,Y ∈ {L,R}: N1 = N(X) and N2 = N(Y )
then

8 z1 ← median node of line defined by N(X) (ties
in favor of nodes farther from α);

9 z2 ← median node of line defined by N(Y ) (ties
in favor of nodes farther from α);

// (case 2): One part includes agents that approve only
one facility

10 else if ∃ ` ∈ {1, 2}, X ∈ {L,R}: N` ⊆ N(X) then
11 if N` is empty then
12 X ← L;
13 z` ← median node of line defined by N(X) (ties

in favor of nodes farther from α);
14 z3−` ← β ∈ {α, α+ 1} \X;

// (case 3): Both parts include agents from N1 and N2

15 else
16 z1 ← α (i.e., rightmost node of L);
17 z2 ← α+ 1 (i.e., leftmost node of R);

5 Maximum Cost
We now turn our attention to the maximum cost. For this
objective, Serafino and Ventre [2016] showed an upper bound
of 3 achieved by the TwoExtemes mechanism, and a lower
bound of 3/2 on the approximation ratio of any strategyproof
mechanism. We improve both bounds, by showing a tight
bound of 2.

5.1 Improving the Upper Bound
We consider a class of mechanisms that use only the part
of the line that is occupied, from the first to the last occu-
pied node, with possible empty nodes in-between; with some
abuse of notation, we denote by m the size of exactly this
part of the line. These mechanisms, termed α-LEFT-RIGHT,
are parameterized by an integer α ∈ {1, . . . ,m − 1}, and
their general idea is as follows: They partition the line into
two parts depending on the value of α, and then decide where
to locate the facilities based on the preferences of the agents
occupying nodes in these two parts. See Mechanism 3.

Theorem 6. For any α ∈ {1, . . . ,m− 1}, mechanism α-LR
is strategyproof.

Next, we focus on the approximation ratio of α-LR mech-
anisms for the max cost. We distinguish between cases where
m even or odd, and show that there are values of α such that
α-LR achieves an approximation ratio of at most 2. Before
we do this, we prove a lemma providing a lower bound on the
optimal max cost of a given instance.



Lemma 4. Let I be an instance. If there are two agents po-
sitioned at x and y > x, and q ∈ {0, 1, 2} is the number of
facilities they both approve, then MC∗(I) ≥ q · y−x2 .

We are now ready to bound the approximation ratio of par-
ticular α-LR mechanisms. For instances with evenm, we use
α = m/2.

Theorem 7. Whenm is even, the MC-approximation ratio of
m/2-LR is at most 2.

Proof sketch. Consider any instance I . We distinguish be-
tween the three cases considered by the mechanism; in this
proof sketch we present only Cases 1 and 2.

Case 1. Since the agents inN(X) approve only facility 1 and
the agents in N(Y ) approve only facility 2, the mechanism
outputs the optimal solution in this case.

Case 2. Suppose that N1 ⊆ N(L) and that N2 contains
agents in both N(L) and N(R); this is one of the symmetric
instances captured by case 2. The mechanism locates facility
1 at the median node yL (with 1 ≤ yL ≤ bm+2

4 c) of the line
defined by N(L), and facility 2 at node m

2 + 1 (the leftmost
node of R). We distinguish between the following cases:

Case 2a: The cost of the mechanism is equal to the cost of
an agent that approves a single facility. As all agents that
approve facility 1 are in N(L), and facility 1 is located at the
median of the line defined byN(L), the cost of any agent that
approves only facility 1 can be at most max{bm+2

4 c−1, m2 −
bm+2

4 c} ≤
m
4 . Since facility 2 is located at node m

2 + 1, the
cost of any agent that approves only facility 2 can be at most
m
2 + 1 − 1 = m

2 . Hence, MC(z|I) ≤ m
2 . As N2 contains

at least one agent in N(L), there exists at least one agent at a
node x ≤ m

2 that approves facility 2. By applying Lemma 4
with x and y = m, we have that MC∗(I) ≥ m−x

2 ≥ m
4 ,

yielding that the approximation ratio is at most 2.

Case 2b: The cost of the mechanism is equal to the cost
of an agent that approves both facilities. Since we are in
case 2 with N1 ⊆ NL, let x ≤ m/2 be the position of the
agent i that approves both facilities and has the maximum
cost among all such agents. The cost of agent i, and thus of
the mechanism, is MC(z|I) = |x− yL|+ m

2 + 1− x.
If x > yL, we have MC(z|I) = m

2 +1−yL ≤ m
2 . Similarly

to Case 2a, MC∗(I) ≥ m
4 , and thus the approximation ratio

is at most 2.
If x ≤ yL, we have MC(z|I) = m

2 + 1 + yL − 2x ≤
3(m+2)

4 − 2x. Since agent i and the agent at node m both ap-
prove facility 2, Lemma 4 implies MC∗(I) ≥ m−x

2 . Hence,
the approximation ratio is at most 3m+6−8x

2m−2x . This is a non-
increasing function in terms of x, and attains its maximum
value of 3m−2

2m−2 for x = 1. For every m ≥ 2, it holds that
3m−2
2m−2 ≤ 2.

The proof of the following theorem is only slightly more
complicated than the one for even m.

Theorem 8. When m is odd, the MC-approximation ratio of
(m+ 1)/2-LR is at most 2.

5.2 A Tight Lower Bound for all Mechanisms
We conclude with a tight lower bound of 2 on the MC-
approximation ratio of any strategyproof mechanism.

Theorem 9. The MC-approximation ratio of any strate-
gyproof mechanism is at least 2.

Proof. Suppose that there exists a strategyproof mechanism
M with approximation ratio strictly smaller than 2. Consider
an instance I1, where agents 1 and 3 approve facility 1, while
agent 2 approves facility 2. M must return (2, 3) or (2, 1) as
MC((2, 3)|I1) = MC((2, 1)|I1) = 1, and the max cost of any
other solution is 2. Suppose that M returns (2, 3).

Next, consider instance I2, where agent 1 approves facility
1, while the other two approve facility 2. M must output
either (2, 3) or (1, 3) due to strategyproofness. Any solution
where facility 2 is not placed at the third node leads to a cost
of at least 1 for agent 3, who would misreport that she only
approves facility 1 to lead to instance I1 and thus obtain a cost
of 0 from the resulting solution (2, 3).

IfM returns (2, 3) for I2, consider instance I3, where agent
1 approves both facilities, while the other two approve facility
2. M must return the optimal solution (1, 2) with max cost
1, since any other solution has max cost at least 2. However,
agent 1 in I2 would misreport that she approves both facili-
ties to reduce her cost from 1 to 0; this contradicts that M is
strategyproof.

IfM returns (1, 3) for I2, consider instance I4, where agent
1 approves facility 1, agent 2 approves both facilities, and
agent 3 approves facility 2. The (2, 3) and (1, 2) are both op-
timal with max cost 1; any other solution has max cost 2. Out
of these, (1, 2) would give agent 2 in I2 incentive to misreport
that she approves both facilities to reduce her cost from 1 to 0.
Hence,M must return (2, 3) for I4. Finally, consider instance
I5, where agents 1 and 2 approve both facilities, while agent
3 approves facility 2. The optimal solution is (1, 2) with max
cost 1; any other solution has max cost at least 2. But then,
agent 1 in I4 will misreport that she approves both facilities
to reduce her cost from 1 to 0; this again contradicts the fact
that M is strategyproof.

6 Conclusion and Open Problems
In this paper, we showed improved bounds on the approxima-
tion ratio of deterministic strategyproof mechanisms in terms
of the social and the maximum cost objectives for the discrete
truthful heterogeneous two-facility location problem. There
are many open questions and directions for future research.
While we managed to improve the previous linear bound for
the social cost to a small constant, we were unable to com-
pletely close the gap between the lower bound of 4/3 and
the upper bound of 17/4. Besides deterministic mechanisms,
it would be interesting close the gap between 4/3 and 3/2
for randomized mechanisms and the max cost objective. Go-
ing beyond the particular model studied here, one could study
settings with more than two facilities, settings where the posi-
tions of the agents are their private information and can report
empty nodes as their positions, settings with different het-
erogeneous preferences such as fractional or obnoxious ones,
and settings with more general location graphs.
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