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Abstract

Purpose

The Oswestry Disability Index (ODI) is a common aggregate measure of disability for people

with Low Back Pain (LBP). Scores on individual items and the relationship between items of

the ODI may help understand the complexity of low back disorders and their response to

treatment. In this study, we present a network analysis to explore how individualised physio-

therapy or advice might influence individual items of the ODI, and the relationship between

those items, at different time points for people with LBP.

Methods

Data from a randomised controlled trial (n = 300) comparing individualised physiotherapy

versus advice for low back pain were used. A network analysis was performed at baseline,

5, 10, 26 and 52 weeks, with the 10 items of the Oswestry Disability Index modelled as con-

tinuous variables and treatment group (Individualised Physiotherapy or Advice) modelled as

a dichotomous variable. A Mixed Graphical Model was used to estimate associations

between variables in the network, while centrality indices (Strength, Closeness and

Betweenness) were calculated to determine the importance of each variable.

Results

Individualised Physiotherapy was directly related to lower Sleep and Pain scores at all fol-

low-up time points relative to advice, as well as a lower Standing score at 10-weeks, and

higher Lifting and Travelling scores at 5-weeks. The strongest associations in the network

were between Sitting and Travelling at weeks 5 and 26, between Walking and Standing at

week 10, and between Sitting and Standing scores at week 52. ODI items with the highest

centrality measures were consistently found to be Pain, Work and Social Life.
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Conclusion

This study represents the first to understand how individualised physiotherapy or advice dif-

ferentially altered disability in people with LBP. Individualised Physiotherapy directly

reduced Pain and Sleep more effectively than advice, which in turn may have facilitated

improvements in other disability items. Through their high centrality measures, Pain may be

considered as a candidate therapeutic target for optimising LBP management, while Work

and Socialising may need to be addressed via intermediary improvements in lifting, stand-

ing, walking, travelling or sleep. Slower (5-week follow-up) improvements in Lifting and Trav-

elling as an intended element of the Individualised Physiotherapy approach did not

negatively impact any longer-term outcomes.

Trials registration

ACTRN12609000834257.

Introduction

Low Back Pain (LBP) is the leading cause of years lived with disability globally, with a point

prevalence of 7.5% in 2017 [1]. In Western countries, the socio-economic cost of LBP has been

estimated to be 1–2% of the gross national product [2, 3], particularly among individuals

whose symptoms persist longer than six weeks (for this paper called post-acute LBP) [4]. The

greater cost associated with post-acute LBP is unsurprising given that the rates of improve-

ment in pain and disability plateau after six weeks from symptom onset [5]. It has been

reported that between 28%-79% of participants reported incomplete recovery or had recurrent

symptoms one year from study inception [5, 6]. Given the significant burden of disease associ-

ated with LBP, research into the treatment, prevention, and prognosis of this complex disorder

has flourished over the past 30 years [5, 7, 8].

A primary outcome measure used in LBP research is the Oswestry Disability Index (ODI)

for measuring the impact of LBP on activities of daily living [9]. The ODI is composed of 10

items and the aggregate score indicates the overall disability level attributable to LBP [9, 10].

ODI has demonstrated good internal consistency [11], intrinsic validity [12], test-retest reli-

ability [13], and responsiveness [13]. A fundamental theoretical construct underpinning the

contemporary use and interpretation of the ODI is known as the “reflective model” (RM) [14].

Put simply, observed item responses on the ODI are determined by a latent trait—disability.

The principal advantage of using the aggregate score, over individual item scores, is that it

makes it easier and more streamlined for statistical modelling in epidemiological and clinical

research.

The reflective model interpretation of ODI total scores does have disadvantages. Firstly,

two individuals could have identical ODI aggregate scores but with different item responses.

Understanding what precisely is being affected in people with LBP is required for providing

individualised treatment. Second, the relationship between different items of the ODI, a fea-

ture not captured when using only an aggregate score, maybe just as important as individual

item responses in providing a holistic understanding of the functional limitations in individu-

als with LBP [15]. This would mean that simultaneous changes to the responses of multiple

items, thereby influencing their relationship, may be important in determining recovery in

individuals with LBP. In addition, understanding the relationship between different items may
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be important given that changes to one item may “trigger” changes to other items (i.e. be cor-

related). For example, an individual who has difficulty standing may also have difficulty walk-

ing potentially due to the biomechanical loading and motor control similarities between these

activities. Despite the stated disadvantages, using the aggregate score is still recommended in

research focused solely on assessing the impact of LBP on overall disability.

A common critique of clinical intervention trials is that they fail to consider the complexity

and multifactorial nature of conditions such as LBP [16, 17]. Qualitative studies have sup-

ported the notion that disability in people with LBP is a dynamic and complex construct [18–

20]. A previous qualitative study proposed that perceptions of recovery in individuals with

LBP may be best explained by an “interactive model”, whereby symptoms, function and quality

of life all interact to influence a person’s perceived recovery [18]. A quantitative method to

measure such an “interactive model” in LBP, and how such complex associations can be

understood within the context of a clinical intervention, is network analysis [21]. In network

analysis of the ODI for example, individual ODI items would be treated as nodes, and a net-

work model would conceptualize LBP disability as a set of mutually interacting associations

between these nodes. Associations between two nodes in a network are connected by an “edge”

and reflect the magnitude of the relationship after statistically controlling for all other nodes in

the network model [22]. Statistically, the association between two variables calculated in net-

work analysis is analogous to the beta coefficient in a traditional multiple linear regression

model, where one variable is the outcome and all the remaining variables are the predictors

[22].

In contrast to network analysis, structural equations modelling (SEM) is a more common

statistical technique used in spinal pain research to understand how different interventions

alter relationships between multiple variables [23, 24]. Network analysis and SEM represent

two alternate ways of describing the same variance-covariance structure of the modelled vari-

ables [25]. One key difference between the two approaches is that network analysis focuses on

structural learning from the data (i.e. what variables are associated with each other), while

SEM requires a fixed hypothesis to be tested with the data. In other words, network analysis

focuses on hypothesis generation while SEM focuses on hypothesis confirmation. A second

difference between SEM and network analysis is that SEM focuses on directional relationships

whilst network analysis focuses on undirected (reciprocal) relationships. For example, it is

known that poor sleep quality is associated with greater pain experience but greater pain can

result in poor sleep [26], a reciprocal relationship that would be best suited to modelling via

network analysis.

Given that there is little prior knowledge about the relationships between different elements

of disability measured on the ODI, no prior knowledge on the impact of interventions on indi-

vidual ODI items, and the plausibility that items on the ODI could be reciprocally related, net-

work analysis represents a more appropriate technique than SEM for exploring how

treatments influence individual items of the ODI. Network analysis has only recently been

used in pain research [27, 28]; but has already been used substantially to investigate general

psychopathologies [29–31]. To our knowledge, no studies in LBP research have used network

analysis to understand how different treatment approaches influence different elements of dis-

ability as measured via individual items of the ODI.

To explore the impact of different interventions on various elements of disability via net-

work analysis, data from a large randomised controlled trial comparing distinctive treatment

approaches and measuring outcomes on the ODI across multiple timepoints is required. The

Specific Treatment of Problems of the Spine (STOPS) trial was a large (n = 300) RCT conclud-

ing that individualised physiotherapy was more effective than advice for people with LBP in

improving disability across a 12-month follow-up [32]. This dataset, with its high rate of
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follow-up at all time points, was well suited to exploratory network analysis. The current study

aimed to explore how the different treatments used in the STOPS trial influence individual

items of the ODI at different follow-up stages. Such an approach has been previously used to

understand the mechanisms of how cognitive-behavioural therapy positively influenced

insomnia and depression [33]. Given that the STOPS trial reported a significantly greater

improvement in overall disability with individualized physiotherapy compared to advice [32],

we hypothesised that the variable of treatment group would positively influence several items

of the ODI. As an exploratory study, however, we did not impose any prior assumptions on

the direction or magnitude of interactions between any items of the ODI.

Methods

Study design

A network analysis was undertaken using data from the STOPS randomised controlled trial

[32, 34]. The trial has received ethical approval from the La Trobe University Human Ethics

Committee and has been registered with the Australian New Zealand Clinical Trials Registry

(#12609000834257). Written informed consent was provided by participants prior to their

inclusion. The network analysis explored relationships between individual items of the ODI,

as well as the influence of treatment type (individualised physiotherapy versus advice) on those

items, at multiple time points over a 12-month period.

Participants

Participants were eligible for the trial if they: had a primary complaint of LBP (pain between

the inferior costal margin and inferior gluteal fold), with or without referred leg pain, between

6 weeks and 6 months duration, were aged 18–65 years, spoke English, and belonged to one of

five low back disorder subgroups (disc herniation with associated radiculopathy, reducible dis-

cogenic pain, non-reducible discogenic pain, zygapophyseal joint dysfunction, and multifacto-

rial persistent pain) [32]. Exclusion criteria were: the presence of a compensation claim,

serious pathology (active cancer, cauda equine syndrome, foot drop making walking unsafe),

pregnancy or childbirth within the last 6 months, history of lumbar spine surgery, spinal injec-

tions in the past six weeks, pain intensity < 2/10 (on a 0–10 numerical rating scale) or minimal

activity limitation. All selection criteria, including the diagnosis of LBP, were confirmed by a

physiotherapist after an initial 60-minute assessment before entry to the trial.

Randomisation

Eligible participants were randomised into one of two treatment groups via a computer-gener-

ated randomisation sequence; Individualised physiotherapy or advice. Allocation was con-

cealed using an offsite randomisation service that allocated participants to treatment groups.

Interventions (10 weeks)

Participants were randomised via an offsite randomisation service to either individualised

physiotherapy (n = 156, 76 female and 80 male) or guideline-based advice (n = 144, 71 female

and 73 male). Treatment was administered over 10-weeks. Participants were discharged to

self-management. Outcomes were measured at baseline, and at 5, 10. 26 and 52-week follow-

up.

Guideline based advice. Guideline-based advice comprised 2 x 30-minute sessions with a

physiotherapist over 10 weeks based on the approach described by Indahl [35]. The first ses-

sion was delivered shortly after randomisation, and the second approximately 4–5 weeks later.
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Advice included an explanation of the hypothesized pain source, reassurance regarding a

favourable prognosis, advice to remain active, and instruction regarding appropriate lifting

technique [34].

Individualised physiotherapy. Individualised physiotherapy comprised 10 x 30-minute

physiotherapy sessions over 10-weeks. Sessions were typically spaced weekly, although thera-

pists had the option to deliver treatment more frequently in the first 2–3 weeks and less fre-

quently in the last 2–3 weeks if clinically indicated. Physiotherapy was individualised firstly

based on five subgroups, with further individualisation achieved within subgroups based on

each participant’s presenting barriers to recovery. Available treatment components included

pathoanatomical or neurophysiological information, education, self-management strategies

(posture, pacing, pain management, sleep management, relaxation strategies), inflammatory

management strategies, exercise (specific muscle activation, goal-oriented graded activity/

exercise), manual therapy (zygapophyseal joint dysfunction subgroup only), directional prefer-

ence management (reducible discogenic pain subgroup only) and cognitive-behavioural strate-

gies. Full details of the treatment protocols have been published previously [34, 36–39].

Data collection

Self-administered questionnaires containing the ODI among other outcomes were posted to

participants at each time point. Non-respondents were followed up directly and via alternative

provided contacts if necessary.

Approach to network analysis

Software and packages. The data set was analysed with the R software (version 3.6.0,

available at https://www.r-project.org) [40]. Several packages were used to carry out the analy-

ses, including qgraph [41], and mgm [42] for network estimation, and bootnet [43] for stability

analysis. All codes and results can be found on the public code hosting platform GitHub (doi:

10.5281/zenodo.5902763).

Variables included in network analysis. A network structure is composed of nodes (vari-

ables influencing each other) and edges (connections or associations between nodes). In our

study, the 10 items of a modified version of the ODI (that replaces the original “sex life” item

with a “work/housework” item) were used as nodes and were included in the network model

as continuous variables [9, 44], whilst treatment “group” was included as a dichotomous vari-

able (coded as 0: advice, 1: individualised physiotherapy) (see Table 1 for abbreviated version;

Table 1. Items and scorings of the Oswestry Disability Index.

Node Variable Least disabled (0) Most disabled (5)

Q1 Pain intensity I have no pain at the moment The pain is the worst imaginable at the moment

Q2 Personal care (washing, dressing,

etc.)

I can look after myself normally without causing extra

pain

I do not get dressed, wash with difficulty and stay in bed

Q3 Lifting I can lift heavy weights without extra pain I cannot lift or carry anything

Q4 Walking Pain does not prevent me walking any distance I am in bed most of the time

Q5 Sitting I can sit in any chair as long as I like Pain prevents me from sitting at all

Q6 Standing I can stand as long as I want without extra pain Pain prevents me from standing at all

Q7 Sleeping My sleep is never disturbed by pain Pain prevents me from sleeping at all

Q8 Social life My social life is normal and gives me no extra pain I have no social life because of pain

Q9 Traveling I can travel anywhere without pain Pain prevents me from traveling except to receive treatment

Q10 Work/Housework My normal housework/work activities do not cause pain Pain prevents me from performing any housework/work

duties.

https://doi.org/10.1371/journal.pone.0263574.t001
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full ODI scale is reported in the S1 File). The replacement of the “sex life” item with a “work/

housework” item was previously undertaken to overcome frequent missing responses to the

original sex life question [45]. This modified version has been shown to not adversely affect

the construct validity of the ODI [44]. We treated the items of the ODI as continuous variables

and applied a nonparanormal transformation to ensure that these ten variables were multivari-

ate normally distributed [46]. Higher ODI aggregate and item scores represent greater

disability.

Edges represent the existence of an association between two nodes, conditioned on all

other nodes. Each edge in the network represents either a positive regularized association

(blue edges) or a negative regularized association (red edges). Given their continuous

nature, associations between items of the ODI reflect partial correlation coefficients, analo-

gous to regression beta coefficients. Given that “group” was modelled with the advice

group coded as 0 and the individualised physiotherapy group as 1, red edges (negative asso-

ciations) between the “group” node and an ODI item would indicate that the individualised

physiotherapy group had lower scores on that ODI item than the advice group [33]. If the

two treatment groups had a similar influence on an ODI item score after controlling for all

other items, an edge will not be present between the group and that ODI item. The thick-

ness and colour saturation of an edge denotes its weight (the strength of the association

between two nodes).

Network estimation. A Mixed Graphical Model was used to estimate the network [42].

Networks were estimated on complete datasets (n = 300, 283, 273, 271, 264) at each time point

(baseline, weeks 5, 10, 26, 52), to understand the effects of different treatments on individual

ODI items and their relationships at different time points. Least absolute shrinkage and selec-

tion operator (LASSO) regularization was used during modelling to elicit a sparse model.

Compared to a saturated model, a sparse model is one with a comparatively fewer number of

edges to explain the covariation structure of the data–with the benefit that the ensuing model

becomes more interpretable [22].

Node centrality. Not all nodes in a network are equally important in determining the net-

work structure [47]. Centrality indices provide a measure of a node’s importance, and they are

based on the pattern of connectivity of a node of interest with its surrounding nodes–with the

ensuing information potentially useful for guiding future interventions [48].

In the present study, we calculated three centrality indices:

• Strength centrality is defined as the sum of the weights of the edges (in absolute value) inci-

dent to the node of interest [49, 50]. Clinically, a high Strength node represents a logical and

efficient therapeutic target, because a change in the value of this node has a strong direct and

quick (because of its strong direct connections) influence on other nodes within the

network.

• Closeness centrality [49] is defined as the reciprocal of the sum of the length (inverse of the

absolute value of edge’s weight) of the shortest paths between a node of interest and all other

nodes in the network. Clinically, a high Closeness node may represent a potentially good

therapeutic target, because the effects of a change in the value of this node will spread more

quickly throughout the network, via direct and indirect connections to other nodes.

• Betweenness centrality is defined as the number of times a node acts as a bridge along the

shortest path between two other nodes. [49, 51]. Clinically, a high Betweenness node may

suggest that the node represents a potential mediator since it acts as a bridge for “informa-

tion flow” connecting different nodes, or even different clusters of nodes.
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Accuracy and stability. We assessed the accuracy of the edge weights and the stability of

three centrality indices using bootstrapping [43], which re-estimates the network parameters

several times using a resampling technique. Accuracy and stability analyses are essential in net-

work analysis studies to correctly interpret the results obtained. We bootstrapped using 2000

iterations, to generate 95% confidence intervals (CI) of all edge weights.

Given that LASSO regularization aims to estimate less important edges to be zero, the edge-

weight bootstrapped CIs should not be interpreted using a null-hypothesis significance testing

framework of a null relationship [43]. Instead, these edge weight CIs reflect the variability in

estimated edge-weights and may be used to make a relative comparison of the different edge

weights [43]. Whether the presence of an edge in the modelled network can be interpreted as

such, is unaffected by large CIs as the LASSO already only keeps non-zero association edges in

the model.

To gain an estimate of the variability of the three centrality indices, we applied the case-

dropping subset bootstrap [43]. This procedure drops a percentage of participants, re-esti-

mates the network and re-calculates the three centrality indices; producing a centrality-stabil-

ity coefficient (CS-coefficient) that should not be lower than 0.25 and preferably above 0.5. CS

reflects the maximum proportion of cases that can be dropped, such that with 95% probability

the correlation between the centrality value of the bootstrapped sample versus that of the origi-

nal data, would reach a certain value, taken to be a correlation magnitude of 0.7 presently. It is

suggested that CScor = 0.7 should not be below 0.25 and better if > 0.5 [43].

Results

The mean (standard deviation [SD]) of the variables (original scale) used in the network analy-

sis can be found in the S1 File. Fig 1 shows the networks at baseline and at each of the four fol-

low-up time points. Edge weights, variability and centrality indices values are reported in the

manuscript graphically (Figs 2 and 3), but also as tabular text in the S1 File.

Edge weights and variability

At baseline, Group was negatively related to Standing with a value of -0.09 (95%CI [-0.29 to

0]), whilst the edge with the greatest weight magnitude was between Sitting and Travelling

with a value of 0.34 (95%CI [0.25 to 0.45]) (Fig 1). Given that ODI was administered before

randomisation or any intervention at baseline, we interpreted the Group-Standing relationship

as adjusted baseline differences in Standing response between the two groups that likely arose

by chance given the randomised nature of the study.

The IP Group was directly associated with lower Sleep and Pain scores at all follow-up time

points, with the strongest relation with Sleep occurring at week 5: -0.24 (95%CI [-0.42 to

-0.07]), and the strongest relation with Pain at week 26: -0.15 (95%CI [-0.34 to 0]) (Figs 1 and

2). The IP Group was associated with higher Lifting and Travelling scores with values of 0.16

(95%CI [0 to 0.35]), and 0.08 (95%CI [0 to 0.27]), respectively, at week 5 only (Figs 1 and 2).

At week 10, the IP Group was related to lower Standing scores with a value of -0.07 (95%CI

[-0.32 to 0]) (Figs 1 and 2).

The edge with the greatest weight magnitude in the network was between Sitting and Trav-

elling at week 5 with a value of 0.41 ([95%CI (0.3 to 0.5]); between Walking and Standing at

week 10 with a value of 0.32 ([95%CI (0.21 to 0.45]; between Sitting and Travelling at week 26

with a value of 0.37 ([95%CI (0.24 to 0.48]); and between Sitting and Standing at week 52 with

a value of 0.3 ([95%CI (0.18 to 0.41]) (Figs 1 and 2).
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Centrality and variability

Across all three centrality measures, the two nodes with the greatest averaged value were Social

life and Travelling at baseline, Social life and Work at week 5, Pain and Work at week 10, Pain

and Work at week 26, and Social life and Work at week 52 (Fig 3). The stability of the centrality

measures across all follow-up time points can be found in Table 2, which suggests that the cen-

trality measure of Strength was most stable, i.e. CScor = 0.7 > 0.25, across all time points (Fig 4).

Discussion

Disability is a complex construct that emerges as a consequence of the simultaneous influence

of many biopsychosocial factors. To capture the complex mechanisms of different physiother-

apy approaches for low back pain, we used network analysis applied to individual items of the

ODI. This is the first study to investigate how different physiotherapy approaches influence

individual items of the ODI, and the relationships between those items. Three important find-

ings are revealed by the network analysis. First, IP was better than advice at improving Pain

intensity and Sleep quality at all follow-up time points of 5, 10, 26, and 52 weeks, which in turn

may have facilitated positive changes in other items of the ODI. Second, Pain, Social life, and

Work demonstrated the highest centrality measures in the network. As such, Pain may be con-

sidered as a candidate therapeutic target for optimising LBP management, while Work and

Socialising may be best influenced by targeting functional components that impact these

Fig 1. Network analysis of the association between items of the Oswestry Disability Index and treatment group, at five follow-up

time points. Edges represent connections between two nodes and are interpreted as the existence of an association between two nodes,

adjusted for all other nodes. Each edge in the network represents either positive regularized adjusted associations (blue edges) or negative

regularized adjusted associations (red edges). The thickness and colour saturation of an edge denotes its weight (the strength of the

association between two nodes). Abbreviation: Q1 –Pain Intensity, Q2 –Personal Care, Q3 –Lifting, Q4 –Walking, Q5 –Sitting, Q6 –

Standing, Q7 –Sleeping, Q8 –Social life, Q9 Travelling, Q10 –Work/Housework.

https://doi.org/10.1371/journal.pone.0263574.g001
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activities such as lifting, standing, walking, travelling or sleep quality. Third, Lifting and Trav-

elling improved less with IP than advice in the short term (week 5), likely due to the different

aims of the two treatment programs, but this was not to the detriment of longer-term

outcomes.

Participants who received IP achieved a greater improvement in Sleep at all follow-up time

points compared to those who received advice. Our study found that Sleep lay on the path

between Group and Pain, but Sleep also had a significant direct link to Group, suggesting that

IP positively influenced Sleep by both direct and indirect pathways. Specific management of

sleep impairment—which included management of inflammation, sleep posture and sleep

Fig 2. Bootstrapped 95% quantile confidence interval of the estimated edge weights of the network at all follow-

up time points. “Bootstrap mean” reflects the average magnitude of edge weights across the bootstrapped samples.

“Sample” reflects the magnitude of edge weights of the original network built on the entire input dataset. Abbreviation:

Q1 –Pain Intensity, Q2 –Personal Care, Q3 –Lifting, Q4 –Walking, Q5 –Sitting, Q6 –Standing, Q7 –Sleeping, Q8 –

Social life, Q9 Travelling, Q10 –Work/Housework.

https://doi.org/10.1371/journal.pone.0263574.g002
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hygiene strategies, was provided in the IP but not advice group [34]. This may explain the

direct pathway between Group and Sleep, where IP was more effective than advice for improv-

ing Sleep at all follow-up time points. The indirect pathway between Group and Sleep involved

the Sleep-Pain relationship. IP had a significantly better effect on improving pain intensity

than advice, which in turn improved sleep. Given that a bidirectional relationship between

sleep and pain is well established [26], IP potentially provides two pathways for treating pain

or sleep dysfunction: either by directly targeting the outcome of interest or by targeting the

other variable in the sleep-pain relationship to influence the other. Our findings provide multi-

ple options for clinicians hoping to improve particular variables by considering synergistic

bidirectional relationships between multiple variables. This is in contrast to some previous

studies that only consider unidirectional relationships, such as when assuming a one-way rela-

tionship between sleep and pain [52, 53].

It has been suggested that the nodes which optimally span the network, evidenced by high

centrality measures, may be the most important variables to target in an intervention program

[54]. In the present study, Pain, Social life and Work were the most important nodes at follow-

up in the network. Single (eg. cognitive behavioural therapy) [55] and multi-disciplinary

Fig 3. Centrality measures of Closeness, Strength, and Betweenness of each node in the network at all follow-up time points. Centrality value of 1

indicates maximal importance, and 0 indicates no importance. Abbreviation: Q1 –Pain Intensity, Q2 –Personal Care, Q3 –Lifting, Q4 –Walking, Q5 –

Sitting, Q6 –Standing, Q7 –Sleeping, Q8 –Social life, Q9 Travelling, Q10 –Work/Housework.

https://doi.org/10.1371/journal.pone.0263574.g003
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treatment programs [56] are effective for improving pain, function and psychosocial outcomes

in post-acute LBP. In the present study, Pain was directly reduced by IP more than by advice,

and the high centrality of Pain in the network suggests that it may have subsequently improved

multiple connected variables. This is consistent with findings reported in the STOPS trial [32],

where numerous superior outcomes were attributable to the IP intervention (including pain,

disability and psychosocial factors including work). Although a preliminary finding, the cur-

rent network analysis suggests that targeting pain in an IP treatment program may be an effi-

cient way to achieve positive outcomes on several other biopsychosocial variables.

Previous studies have demonstrated that LBP can have a profound negative impact on an

individual’s social life [57, 58] and work [58, 59]. The high centrality measures for Social Life

and Work found in this study are therefore important findings that could have various inter-

pretations. Firstly, these variables may be candidate therapeutic targets most likely to influence

many other items of the ODI and overall disability. In that case treatment approaches (includ-

ing IP) could potentially become more efficient by aiming to directly improve an individual’s

capacity to engage in meaningful social activities and work (as the variables with high central-

ity ratings) rather than impacting those variables through indirect or intermediary pathways.

Alternatively, it may be difficult to directly influence complex multifactorial outcomes such as

Social life and Work without intermediary mechanisms. In that case, due to bidirectionality in

the network, improvements in Social Life and Work could potentially be achieved by targeting

one or more of several direct connections in the network (such as lifting, standing, walking,

travelling or sleeping). It is plausible that these connected variables could individually or

cumulatively impact a patient’s ability to socialise or work, which may explain their high

degree of centrality in the network. A strength of the network analysis is the large number of

potential treatment targets that could, directly and indirectly, improve an outcome of interest.

Whether a network informed precision treatment approach could assist clinicians to better tar-

get their individualised or stratified treatment needs to be validated in future studies.

A potentially surprising finding of the present study was that Group was positively associ-

ated with Lifting and Travelling at week 5, indicating that IP improved these items less than

the advice group at this early time point. This relationship was not due to an artefact of our

analysis (e.g. adjusting for a common effect between two nodes [22]), as it can be corroborated

Table 2. Centrality stability (CS) at each follow-up time points.

time measure CS

0 betweenness 0.00

0 closeness 0.00

0 strength 0.59

5 betweenness 0.21

5 closeness 0.21

5 strength 0.28

10 betweenness 0.05

10 closeness 0.13

10 strength 0.28

26 betweenness 0.05

26 closeness 0.28

26 strength 0.44

52 betweenness 0.00

52 closeness 0.00

52 strength 0.59

https://doi.org/10.1371/journal.pone.0263574.t002
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by simple descriptive measures (S1 File). This finding is consistent with the intent of the

respective IP and advice treatment protocols. The aim of advice was to facilitate a quick return

to all activities. By contrast, the emphasis of the IP intervention in the first 5 weeks for many

patients was to minimise provocative activities such as lifting and prolonged sitting/driving

while underlying pathophysiological processes (such as inflammation, discogenic pathology,

and suboptimal motor control) were addressed, before a graded return to all activities was

facilitated over the subsequent weeks. Some would argue that restricting activities such as lift-

ing or sitting/driving for people with LBP is commonly unnecessary or counterproductive

[60]. However, our study suggests that temporarily restricting these potentially provocative

activities for the intervertebral disc could be justified. Despite limiting lifting and sitting/driv-

ing for the first five weeks in many participants in the IP group, we found that neither Lifting

or Travelling (or any other ODI item) were associated with higher scores in the IP group at the

10–52 week follow-ups, and the overall outcomes for pain (5, 10 & 26 weeks) and function (10,

26 and 52 weeks) favoured the IP group in the RCT [32]. This finding confirms our rationale

for the current study that looking at relationships between individual ODI items (rather than

only looking at the overall score) may help understand how different interventions impacted

individual elements of disability at particular time points.

Fig 4. Average correlations between centrality indices of networks sampled with persons dropped and networks built on the entire input dataset,

at all follow-up time points. Lines indicate the means and areas indicate the range from the 2.5th quantile to the 97.5th quantile.

https://doi.org/10.1371/journal.pone.0263574.g004
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Given the novelty of network analysis, it may be prudent to clarify the limitations of infer-

ences drawn from them. Conditional independence relationships, as encoded by the edge

weights in the networks, cannot be a source of confirmatory causal inference, but may provide

indicative potential causal pathways [22, 61]. For example, if all relevant variables are modelled

in a network, an observed adjusted association between variables X and Y would only be possi-

ble if, either X causes Y, Y causes X, X and Y exhibits a bidirectional relationship, or X and Y

have a common effect [22, 61]. Hence, network analysis may be conceptualized as a highly

exploratory hypothesis-generating technique, indicative of potential causal effects. Another

limitation is that no statistical comparisons between networks at different time points could be

undertaken. This meant that whether alterations across time in network structure, edge

weights, and node centrality, were statistically different were not quantified. Readers could

make a qualitative judgment as to whether two networks across time differ, but caution should

be exercised in making any substantive conclusions about their differences. Although network

comparison tests via permutation are available [62], the current implementation of the soft-

ware package is limited to the analysis of either a network containing only continuous vari-

ables, or a network containing only binary variables.

Conclusions

This study represents the first to understand how individualised physiotherapy or advice dif-

ferentially altered disability in people with LBP. IP directly reduced Pain and Sleep more effec-

tively than advice, which in turn may have facilitated improvements in other ODI items.

Through their high centrality measures, Pain may be considered as a candidate therapeutic tar-

get for optimising LBP management, while Work and Socialising may need to be addressed

via intermediary improvements in lifting, standing, walking, travelling or sleep. Slower

(5-week follow-up) improvements in Lifting and Travelling as an intended element of the IP

group approach did not negatively influence any longer-term outcomes.
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