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Abstract

In Chapter [0 of this thesis, the importance of the term structure of interest rates is
discussed in terms of reflecting the general economic stance and expectations.

In Chapter [, I examine the predictive power of the Heterogeneous Autoregressive
(HAR) model on government bond return volatility of major European government
bond markets. The HAR-type volatility forecasting models show that short-term and
medium-term volatility is a robust and statistically significant predictor of the term
structure of intraday volatility. Also, I find the jump tail risk component contributes in
forecasting the bond market volatility. Lastly, I show that almost half of the monetary
policy announcement dates coincide with identified the jumps in bond returns, and the
pre-announcement drift is present in the bond market. Hence, the monetary policy
announcements are a crucial determinant of European bond market volatility.

Chapter B shows that the latent factors of the German government bond yield curve
provide sufficient information in representing euro-area monetary policy dimensions. In
this context, I identify three factors to encompass the multidimensional structure of the

European Central Banks policies: target rate, monetary policy stance, and quantitative



Chapter 0. Abstract

easing. Moreover, I measure the impact of monetary policy surprises on euro area asset
prices and financial market indicators around the relevant announcement windows.

In Chapter 8, I examine whether the inclusion of yield curve volatility improves
the stock market volatility forecasting. Using the foundations of the dividend growth
model, I extend the model to incorporate and relate the shape of the yield curve that
affects the transmission from bond markets to equity markets volatility. By including
the risk premium and hedging premium, I show the shape of the yield curve is one of
the determinants of equity market volatility and directly affects volatility through the
transmission from bond volatility.

Chapter B concludes this thesis by highlighting significant remarks, limitations, and

avenues for future research.
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Chapter 1

Introduction

The term structure of interest rates carries crucial information on the current state of
the economy as well as expectations regarding the future. Therefore, financial market
participants, from investors to policymakers pay close attention to the interest rate
developments in great detail. Since the risk-free interest rate is a primary input for
asset pricing, analysing the risk-free rate developments is important not only for its
significance in representing economic information but also for the asset pricing as a
discount factor. Furthermore, the time variation of interest rates indicates the volatility
in the economic agents’ decision-making process. Thus, it is vital to develop models
that reveal the dynamics of the interest rate volatility by generating reliable forecasts,
and by exhibiting its representative power in major economic events, such as monetary
policy and its transmissible nature.

Although volatility is generally perceived only as a risk measure, it yields much

more information for financial decision-makers, as it shows the clustering in the returns.
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There are many sources of volatility such as news’ flows, macroeconomic fundamentals,
and behavioral factors. In this perspective, the volatility of sovereign bonds is critical for
being a direct recipient of macroeconomic news, from policy changes to datareleases, and
as a hedging instrument against downside risks. Thus, this study depends on government
bonds in covering; volatility forecasting models to demonstrate the forecasting efficacy
of well-exploited models in other asset classes, monetary policy effects to discover the
market behavior before and after the policy changes, and the link between sovereign
bonds and equity market volatility to show the importance of the term structure.

In Chapter D of this study, I fill a gap in the bond market volatility forecasting
literature by analysing the predictive power of the Heterogeneous Auto-regressive model
of Realized Volatility (HAR-RV) following Corsi (2009) by using European government
bond market data in the high-frequency setting. The primary motivation to focus on the
European bond markets is the increased turbulence in European economies, especially
during the Global Financial Crisis period, which is then followed by the European debt
crisis and raised major concerns by the distressed debt investors. During the crisis
periods, the volatility of government bond markets surged to unprecedented levels. 1
focus on the euro-zone (France and Germany) and non-euro-zone markets (Switzerland
and the UK) to control the debt crisis affects between 2005 and 2019. I apply a cascade
type HAR model to capture short-, medium-, and long-term dynamics in the volatility

forecasting structure. By utilizing the theoretical foundations of Barndorff-Nielsen &
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Shephard (20072), the integrated variance of a price process is consistently approximated
by realized variance, having sufficient intraday partitions in the price series. Therefore,
the intraday term structure of volatility in the European government bond markets can be
used to infer the diffusive and jump components of volatility. Those separate components
are found to improve the forecasting power of the HAR model using bond market data.

Furthermore, 1 examine the role of monetary policy announcements within the
HAR model of bond return volatility. These findings indicate that there is a common
coincidence between the intraday jumps and monetary policy meetings. In addition, I
extend the HAR models to incorporate the monetary policy meetings. In the literature
(Lucca & Moench (2015)), the excess returns of US stock markets are reported before
the FOMC decisions, which is called pre-FOMC drift, but this effect is found to be
insignificant in the bond markets. I modify the HAR models so that models can be
used to test for the presence of pre-meeting effect before the monetary policy decisions
of the European Central Bank, Swiss National Bank, and Bank of England. Although
the presence of pre-announcement drift in the bond market returns is refused in the
literature, my findings show the pre-announcement drift is present in the volatility. In
addition, I report that the pre-announcement drift appears through the continuous part
of the volatility, integrated variation, not the jump variation.

My contributions to the extant literature have three-fold. Firstly, this is the first study

that indicates the efficacy of HAR models in forecasting the European bond markets’
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volatility. Secondly, I contribute to the existing literature by showing the importance of
intraday jumps in bond volatility forecasting (Andersen, Bollerslev & Diebold (2007)).
Thirdly, I provide evidence of the significant pre-announcement effect in the bond market
from the volatility perspective.

In Chapter B of this study, I quantify ECB’s monetary policy shocks using the term
structure of German government bonds. During and after the Global Financial Crisis,
central banks cut the policy rates to historically low levels. The monetary policymakers
started to use unconventional monetary policy tools extensively as forward guidance and
large-scale asset purchase programs. Since the central bank policy rates rarely changed
due to zero lower bound, measuring the impact of monetary policy on the economy via
asset prices became a major challenge.

In the literature, there are other attempts to use fixed income securities in extracting
policy shocks (Kuffner (2001)); Gurkaynak et al! (2005); and Giurkaynak et al] (2007)
for FOMC, and ATfavilla_ef_all (201Y9); Andrade & Ferroni (2021]); and Leombroni_ef all
(2021)) for ECB). In this context, I use the foundations on fixed-income securities for
being the representative of the monetary policy surprises around the monetary policy
announcement windows. I show that the term structure of German bonds is a robust
indicator of ECB policy surprises, even without the information on short-term securities.
The surprises extracted from the bond market have a notable effect on the euro-zone

financial markets: core and peripheral yields, exchange rate, credit costs, and inflation
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expectations. In addition, I find that quantitative easing (QE) shocks have more potency
in affecting yield spreads and inflation expectations than target rate and forward guidance
shocks.

The contribution of Chapter B lies in both my approach and empirical results. This
study contributes to the literature on the high-frequency identification of the ECB’s
monetary policy shocks. Besides contributing relatively scarce existing literature on the
impact of ECB policy surprises, to my knowledge, this is the first attempt to extract the
information using intraday government bond yield curve fitting factors to represent the
target rate, forward guidance, and QE shocks of the ECB policies around the scheduled
policy announcement windows. Furthermore, this approach shed new light on the
significant financial market effects of ECB policy surprises on euro area asset prices.

Since the changes in the term structure have the potential to reflect the macroeco-
nomic stance and expectations of financial decision-makers, the transmission of bond
volatility to other markets carries crucial information. Therefore, in Chapter B, the
impact of government bond market volatility on the stock market volatility is examined
conditional on the shape of the yield curve.

In the discounted cash flow model, the changes in the interest rates affect the equity
prices through two channels; expected cash flows and discount rates, which are chal-
lenging to decompose. In this context, I try to link interest rate volatility and stock

market volatility in the high-frequency setting. This approach enables us to focus only
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on the impact from the lens of the discount rate channel on stock prices by eliminating
the factors stemming from long-term shocks. In a high-frequency setting, I assume that
the expected cash flows are unchanged, and discounted cash flow structure is simplified
by linking the impact of interest rate shock to equity prices generated solely from the
discount rates. Also, it is well-known that although the macroeconomic policies affect
the term structure, especially in the short term, market participants’ expectations are the
main driver of the term structure. Therefore, I modify the discounted cash flow model
by appending the growth expectations and risk premium. Following Cieslak & Pang
(2027)), I separate the risk premium into two parts: the (common) risk premium and
hedging premium, which have a diverse set of effects on the term structure.

Results indicate that the shape of the yield curve, whether it is bull steepener, bull
flattener, bear steepener, or bear flattener, determines the degree of transmission of
volatility from bond markets to equity markets. I theoretically and empirically show
that the bull steepener shift in the yield curve increases the sensitivity of equity market
volatility to bond market volatility, on the contrary, the bear flattener yield curve reduces
this sensitivity. In addition, I find that extending the HAR model in stock market
volatility forecasting with term structure volatility, conditional on the shape of the yield
curve, improves the forecasting capacity.

To my knowledge, this is the first attempt to provide a theoretical background on the

transmission of bond market volatility to stock market volatility from the yield curve’s
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shape perspective in a testable framework. By extending the Gordon growth model using
the risk premium and hedging premium, following Cieslak & Pang (2021), this study
tries to explain the shifts in the yield curve using the premium dynamics embedded in the
government bond markets. Also, this study is the first to unveil the empirical asymmetry
that while the bear flattener shift in the yield curve reduces the transmission and the bull
steepener move magnifies the volatility transmission to the stock markets. Moreover,
the variation of latent yield curve factors helps to improve the forecasting performance

of equity market volatility.



Chapter 2

Volatility Forecasting in European Government Bond Markets

A version of the study was published in International Journal of Forecasting in 2021.

2.1 Introduction

Financial market participants, banks, firms and policymakers pay close attention to in-
terest rate volatility since it plays a key role in a variety of settings, ranging from risk
management ( Faulkender (20035); Markellos & Psychoyios (2018)) and asset pricing (
Flannery et all] (T997)) to firms investment decisions ( Bo & Sferken (2007?)) and the
transmission mechanism of monetary policy ( Landier_ef all (2013); Hotfmann ef all
(201R)). The market for government bonds is essential for the analysis of interest rate
volatility since sovereign yields provide the basis for the pricing of other securities,
derivatives, and loans. Moreover, this market has been the object of significant inter-
ventions by central banks (CBs) during Quantitative Easing programs, whereby the CB

purchases assets from banks and other financial companies, in both the US and Europe.
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Hence, it is important to develop models that generate good forecasts of bond market
volatility in order to enhance the information set of various economic agents. Surpris-
ingly, despite the importance of this exercise, there are only a few previous studies that
attempted to forecast bond market volatility, and existing studies are in the context of
the US market for Treasuries (Remolona & Fleming ([999); Balduzzi ef all (2001);
Andersen, Bollerslev, Diebold & Vega (200074)). At the same time, the literature on the
forecasting of stock and commodity market volatility is quite dense. (Bollerslev ef al
(201R); Dueker (T997); Baollerslev_ef all (ZOTA); Baollerslev & Mikkelsen (1T996); Lua
of all (2027)).

In this study, I attempt to fill this gap in the bond market volatility forecasting lit-
erature by analysing the predictive power of the Heterogeneous Autoregressive model
of Realized Volatility (HAR-RV), developed by Corsi (2009), for the volatility term
structure of European bond markets. HAR-type volatility forecasting models utilize the
continuous and the discontinuous (jump) component of volatility and are popular in
studies of stock and commodity markets (Degiannakis et al] (20272); Luo_ef all (2022))
fl. The primary motivation to focus on the European bond markets is the increased
turbulence in European economies, especially in the post-2007 crisis period. During

the 2007-2008 global financial crisis and the subsequent European sovereign debt crisis,

IThe relevant literature on HAR modeling and volatility forecasting in bond markets has been exten-
sively focused on US government bond market. Andersen. Bollerslev & Diebold (Z007) and Corsief al
(P0T10) depend on US T-bond future data for fixed income market. Also, Andersen & Benzoni (2(11()
employ the HAR-type model to show the unspanned stochastic volatility phenomenon using US bond
data.
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the volatility of government bond markets soared to unprecedented levels and therefore
became a major concern for fixed income investors, banks, firms, and European policy-
makers. In order to have a more comprehensive picture, I use government bond data for
two major euro-area markets (France and Germany) and two important non-euro-area
members (Switzerland and the UK)) between 2005 and 2019.

I collect intraday bond market data for these four economies over the period January
2005 to October 2019. Specifically, I use data between 10:00 am and 16:00 pm in 10-
minute intervals to estimate the realized volatility of bond returns. In order to compute
the zero-coupon prices for 1-year, 2-year, 5-year, 10-year, 20-year, and 30-year maturity
securities, I employ the Nelson & Siegel (T987) (NS) model in the intraday frequency.
I then estimate HAR-type volatility forecasting models for daily, weekly, and monthly
forecasting horizons.

The results reveal that the HAR components of realized volatility are robust and
statistically significant predictors of European bond return volatility across different
maturities at 1-day, 5-day, and 22-day horizons. The in-sample R? values range from
40% up to 80%. Furthermore, out-of-sample forecasts show that HAR models can
be used for real-time forecasting since the respective out-of-sample R’s remain high,
ranging from 20% to 70%, especially for bonds with short-term maturities. These
results provide evidence of the long-memory property of government bond volatility

since regardless of forecasting horizon 1-day to 22-day components of HAR models

10
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are found to be effective on future volatility. Moreover, including price jumps as an
additional predictor in the HAR model, the jump tail risk component is found to be a
significant predictor of bond return volatility.

I proceed by examining the role of monetary policy announcements within HAR
models of bond return volatility. I show that large jumps in realized bond market volatility
tend to coincide with monetary policy announcements. More specifically, 80% of all
policy announcement dates for the case of Switzerland, 40% in Germany and the UK,
and 34% in France overlap with at least one statistically significant bond price jump in
the respective bond market. In addition, using the HAR model framework, I identify the
impact of monetary policy announcements on volatility forecasts. My findings indicate
that there is a positive and significant monetary policy pre-announcement impact on
future bond market volatility. This analysis is motivated by Lucca & Moench (2OT5),
which document large excess returns on US stock markets one day ahead of the FOMC
meetings. Although Lucca & Moench (2019) find the presence of pre-FOMC drift in
the equity market, the drift is not found to be present for fixed income securities. On
the contrary, findings in this paper verify the monetary policy pre-announcement drift
on the European bond market volatility. In addition, I report that the pre-announcement
drift is effective through the continuous part of the volatility, integrated variation, not
the jump variation.

My work is related, and contributes, to several strands of the literature. This is

11
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the first study to demonstrate the in-sample and out-of-sample forecasting power of
HAR-type models on the term structure of European bond volatility. Thus, it extends
the literature that developed following the seminal work by Corsi (20009) and provides
additional evidence to the successful forecasting performance of HAR-type for the stock
and commodity market volatility (Bollerslev ef all (2018); Dneker (1997); Bollerslev
ef_all (2016); Bollerslev & Mikkelsen ([[996); Degiannakis et al] (202?); Gong & Lin
(P0TR); Luo et all (2022); Franses & Van DijK (1996); [Tian_ef all (20177); Wen_ef al
(20T1€)). Furthermore, the findings on the importance of jumps for bond market volatility
forecasting reveal differences between European markets and the US. While the bond
volatility literature (see for example Andersen, Bollerslev & Diebold (2007) ) identifies
a negative and insignificant jump effect on future US bond volatility, I show that bond
price jumps have a positive impact on European bond return volatility. The results are in
line with those of Corsief all (Z0T0) who find that US bond price jumps have a positive
and significant impact on US bond return volatility. I also show that the monetary
policy announcements are an important determinant of bond market volatility, and the
pre-announcement drift is present in the European bond market using the HAR model
structure.

This analysis is also related to the extant literature that considers the effect of
macroeconomic and monetary policy announcements on stock and commodity market

volatility forecasting and shows that such announcements, and the associated jumps,
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are key drivers of volatility releases (Bomfim (2003); Engle & Siriwardang (PZ01R);

Evans (201T1); (20171); Miao et all (2014)); Papadamou & Sogiakas (201¥);

(201T1); Andersen, Bollerslev, Diebold & Vegd (2Z003); Andersen, Bollerslev &

(2Z007); Andersen, Bollerslev, Diebold & Vega (2007d); Corsi_ef_all (2010),

(P01R); Ced (PZ0T172); Prokopczuk et al] (2016); Schmifz_ef all (ZOT4))B. It is

also linked to previous work on the impact of such announcements for US treasuries

( Remolona & Fleming (1999); Balduzzi ef all (200T); Andersen, Bollerslev, Diebold

(P007d); Corsi_ef_all (2010); Andersen & Benzoni (2010); Arnold & Vrugt

(2010); de Goeij & Marquering (2006); Ederington & Le¢ (1T9973); lones_ef all (T99K);

Perignon & Smith (2007)) and FX markets (Andersen, Bollerslev, Diebold & Vega

(2003); Andersen, Bollerslev, Diebold & Vega (P000074)). The empirical studies on the

determinants of European bond return volatility tend to focus on the effects of the ECBs

QE programme ( Zhang & Dufour (Z019); (2016)) and the link between

volatility and liquidity ( Beber ef all (2009); O’Sullivan & Papavassiliou (?0201)). Finally,

this chapter contributes to the pre-announcement drift literature by providing evidence
of the significant pre-announcement effect on the bond market volatility prior to the
monetary policy meetings.

The rest of the chapter is structured as follows. Section 2 reviews the literature in

2For example, (Z0TX) finds that large stock-price jump variations are more frequently observed
during macroeconomic announcement days. (2011) show that the US stock market co-
jumping behavior is positively affected by macroeconomic news and monetary policy announcements,
while Miao“ef-all (2014) show that macroeconomic news announcements coincide with approximately
three-fourths of the intra-day US stock-market index price jumps.

13



Chapter 2. Volatility Forecasting in European Government Bond Markets

volatility models and forecasting. In Section I3, I provide the information regarding
data and methodology. In Section 224 I present the results of the empirical findings. In
Section 23 I report the robustness checks and in Section 6 I provide a brief conclusion

along with some policy recommendations and suggestions for further research.

2.2 Literature Review

Volatility constitutes one of the most active research subject areas in the contemporary
finance literature due to its importance in risk management, asset pricing, and asset
allocation. Intrinsically, volatility is a latent stochastic process that evolves through time,
and therefore uncertainty generated by volatility constitutes one of the main pillars in
the financial decision-making process. Since the introduction of time-varying volatility
models after the seminal auto-regressive conditional heteroscedasticity (ARCH) study
of Engle (T982), research on the behavior of volatility became popular. With the
conditional volatility models, there is strand literature accumulated in the empirical
volatility modeling with various extensions. Depending on the availability of data,
both parametric and non-parametric methods are utilized to measure volatility, and
the development of high-frequency-based estimators led to estimating financial market
volatility using non-parametric estimators.

Since Merfon (T98() asserts that using sufficiently high-frequency returns volatility

may arbitrarily be estimated, there is a pile of volatility modeling literature accumulated

14



Chapter 2. Volatility Forecasting in European Government Bond Markets

with the help of increased data availability. Intuitively, high-frequency volatility mod-
eling exploits the stochastic diffusive setting in asset pricing by assuming that since the
long-term trend component of the prices barely changes in the shorter-term intervals, it
is straightforward to use price changes in volatility estimation when the time intervals
are sufficiently small enough. The realized volatility provides an efficient estimator
using intraday data (see Andersen & Bollerslev (TY98); Bollerslev ef all (2Z00(); and
Barndorff-Nielsen & Shephard (20072)). In addition, Andersen, Bollerslev., Diebold &
Labyg (2003) find that simple non-parametric realized volatility outperforms parametric
models, such as GARCH and stochastic volatility models, in out-of-sample forecasting.
Thus, non-parametric volatility modeling has become more popular as being practical
and computationally efficient to estimate.

The empirical literature using high-frequency, or intraday, financial time series ar-
gued that the autocorrelations of squared and absolute returns tend to decay at a slow
rate and have a long memory (see eg. Andersen & Bollerslev (TY998); and Andersen
Bollerslev & Diebold (2007)). Also, the volatility structure of asset returns seems to be
highly dependent on its longer window trends which constitutes one of the most puzzling
issues of volatility modeling. Andersen (T996) indicates the mixture of distributions
hypothesis (MDH) could be employed in understanding the slow decay of volatility
through the time spectrum by aggregation of numerous components and processes that

apply to financial market instruments. The MDH relates volatility with the diverse
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arrival of heterogeneous information on its pattern. The empirical evidence suggests
that volatility clusters in terms of intra-daily and inter-daily frequencies and it is best
described as following a long persistent pattern. To handle the persistent behavior of
return volatility is therefore attempted to be incorporated in models.

The persistence of shocks and their implications in terms of modeling financial time
series is underscored to avoid the restrictive knife-edge restrictions on stochastic trends.
Therefore, long-memory fractionally integrated (FI) processes were introduced in asso-
ciating the slow hyperbolic decay rate of persistent shocks (Adensfedi (1974)); Granger.
(T9R0); and Baillieef all (T996)). To capture both short and long memory dynamics of
time series, Granger & Joyeux (T980) developed an autoregressive fractionally integrated
moving average (ARFIMA) model, where autocorrelation exhibits a very slow rate of
hyperbolic decay. Moreover, similar to the long-memory dependencies in the condi-
tional mean models, there exists an extensive literature on the persistence of shocks
to conditional variance models (Bollersiev (T986)). Therefore, modeling conditional
variance accounting for decay rate becomes relevant. To incorporate the long memory
feature Baillie_ef all (T996) apply the ARFIMA notion using the fractionally differenc-
ing operator on autoregressive lag polynomial GARCH models and develop FIGARCH.
Consequently, the volatility forecasts using FIGARCH do not exhibit an exponentially
mean-reverting behavior as the models that follow standard short memory ones. In ad-

dition to conditional volatility models, researchers employ the stochastic volatility (SV)
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model in the estimation of latent instantaneous volatility. Although the preliminary SV
models also suffer from having exponentially fast decaying, the attempts to constitute
long-memory SV (LMSV) by Breidf ef all (1998) and Harvey (20007) were success-
ful in including long memory properties, while providing an appropriate framework in
discrete-time data.

In addition to, parametric methods in estimating the volatility structure of asset
returns, observed data is used to measure latent volatility. In theory, as the intraday sam-
pling frequency increases sufficiently, the cumulative sum of intraday returns converges
to genuine unobserved volatility, which is so-called realized volatility (RV) (Andersen
& Bollerslev (T998); and [Andersen, Bollerslev, Diebold & Labys (2003)). Since the
introduction of realized volatility as a natural measure of volatility and the increased
availability of high-frequency data, both ex-post volatility estimation and ex-ante forecast
models started to employ observation-based non-parametric methods to a great extent.
Since RV-type models inherently reflect main features of volatility such as long memory,
those models have become ubiquitous in the empirical practices using high-frequency
data.

Besides the success of volatility estimation methods in representing the stylized
facts of its nature, the forecast performance of volatility is crucial for its being an
input for risk management, derivative pricing, and an overall financial market soundness

indicator. The use of non-parametric volatility measures is preferred in the literature due
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to being successful in representing information of data and forecasting ex-ante volatility.
There has been almost a consensus in using RV type models in volatility forecasting
over parametric models as GARCH and stochastic volatility models (for a review see
Andersen, Bollerslev, Diebold & Labys (2003); Andersen ef all (2005); /Andersen.
Bollerslev, Diebold & Vega (20074)). Due to developments in computational capacity
and the increased availability of high-frequency data, ex-post non-parametric volatility
indicators gained popularity among academics and practitioners. RV-type models are
a natural estimation method that incorporates the long-memory behavior of volatility
while being resilient to microstructure noise (Andersen, Bollerslev, Diebold & Labys
(CD03)).

Although fractionally integrated (FI) parametric methods are found to be effective
in capturing crucial stylized facts of volatility, their main drawback is that as sample
size increases the estimation of parametric methods becomes challenging. In addition
to estimation complexity, fractionally differencing operators in those models are crit-
icized due to not having an economic interpretation whereas providing a framework
for mathematical interpretation (Corsi (2009)). While the ARFIMA model of realized
volatility and FIGARCH model of returns provide solid results in terms of stylized facts
of quadratic variation (QV), those FI models pose some difficulties in resolving short-
term and long-term characteristics and in extending models to multivariate cases (Comfe

& Renaulfl (T998); and Corsi (2009)). Due to difficulties in estimating latent volatility
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with representing its stylized facts, Corsi (2009) proposes a cascade-type model called
as Heterogeneous Autoregressive model (HAR) for realized volatility. The intuition
of HAR is supported by the heterogeneous market hypothesis (HMH) of Miiller_ef al
(T997). The MDH advocates differences among market participants have implications
for the sensitivity of different time horizons, which is also effective in explaining the
long memory of volatility indicators ( Miiller ef-all (I997)). In addition, market agents’
risk perceptions and therefore investment horizons differ, which creates an asymmetric
transmission of volatility through the time span. The asymmetric propagation mech-
anism of volatility in short and long-time horizons contributed to the development of
auto-regressive type cascade models in modeling and forecasting volatility. Ever since
the introduction of HAR models, these additive volatility cascade structures became
popular due to their simplicity and being able to reflect persistent memory facts in
volatility.

In the HAR-type models, Corsi (2009) assumes that the general pattern of volatility
structure is generated from three different frequencies; the high-frequency component for
short-term traders is reflected by daily volatility, for medium-term traders weekly and for
investors focusing on long term trends by monthly component with an additive cascade
model. Corsi (2009) uses daily lagged volatility, weekly and monthly averages of RV
as a restricted form of autoregression (AR) model for USD/CHF currency pair, SP500

Index, and US 10 year T-Bond futures and finds that HAR coefficients are significant in
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contributing to future volatility in except for daily coefficient for T-Bond. In addition to
the significance of HAR parameters for volatility forecasts, the HAR model outperforms
short memory models or unconstrained AR models, and its results are analogous to the
ARFIMA model, which requires more complex estimation.

The simplicity to implement HAR models leads to extensions of volatility forecast-
ing models. In the asset pricing literature, the price processes are generally represented
using a jump diffusive setting, which considers a continuous path of volatility and the
jumps or discontinuities (Merfon (T976); and Chernov ef all (2003)). Barndorff-Nielsen
& Shephard (2002, 2004) introduce realized power variation measures and show that
using bipower variation, a sum-product of scaled consecutive intraday returns could
be employed in extracting jumps on a high-frequency basis. Analogous to stochastic
volatility models, bipower variation (BV) is introduced as a robust estimate of quadratic
variation, the continuous part, where the difference between realized volatility and BV
corresponds to model-free jumps, the discontinuous part. Therefore, in addition to fore-
casting volatility, intraday data could be employed to detect discrete jumps (Barndorff-
Nielsen & Shephard (2004); Andersen, Bollerslev & Diebold (?007); Wright & Zhou
(2009); and Tauchen & Zhou (2011))). Using this methodology, /Andersen, Bollerslev
& Diebold (2007) implement the idea of jump variation in the RV framework using the
results of Barndorff-Nielsen & Shephard (2004) in extending the HAR model. /Ander

sen, Bollerslev & Diebold (2007) find that the jump variations in the HAR framework
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are mostly ineffective in contributing to model forecasts for the S&P500 index futures,
30-year US T-Bond Futures, and spot foreign exchange markets. In comparison to other
markets, they find the volatility in the fixed income is the least predictable. The jumps
based on intraday data are found to be effective in explaining bond risk premia and credit
spreads of corporate bonds (Wright & Zhou (2009); and Tauchen & Zhou (Z01T)).

In addition to RV models, Barndortt-Nielsen, Kinnebrock & Shephard (2008) intro-
duced a new measure, realized semivariances (RSV), which considers the contribution
of downward and upward market movements to the volatility separately. Using the logic
of separation, Patton & Sheppard (2015) extend the HAR model into RSV estimates and
use positive and negative RV and negative and positive jumps in the volatility forecasts.
The findings indicate that negative RV has a larger impact on future volatility than pos-
itive RV. Also, disentangling the effects of jumps in up and down markets reveals the
asymmetric relationship between positive and negative jumps in their impact on future
volatility. Paffon (20TT) state that while negative jumps increase the volatility forecast,
positive jumps decrease the volatility. Thus, the findings of the previous literature that
assert that jumps have only a limited impact on volatility forecasts (see Andersen, Boller-
slev_& Diebold (2007) and Busch ef all (201T1)) may be justified with the asymmetric

effect of signed jumps.
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2.3 Data and Methodology

2.3.1 Data

In this analysis, I include the European sovereign bond markets (UK, Germany, France,
and Switzerland) using intraday data in the January 2005 October 2019 period from
Thomson Reuters Tick History (TRTH) database. I use 1-, 2-, 5-, 10-, 20- and 30-year
maturity bonds. The dataset relies on quotes for "on-the-run", generic, instruments
which are more liquid in terms off-the-run securities.

There is a strand of the literature on optimal intraday sampling frequency using high-
frequency data in the computation of RV (for example Barndortt-Nielsen & Shephard
(2004) and Aif-Sahalia_ef all (2005) ). Zhang et al] (Z005) provide a comprehensive
review of the causes and effects of sampling bias in the high-frequency data-dependent
volatility estimators. Although itis inevitable to remove all the microstructure noise from
the high-frequency data, the problems resulting from sampling frequency are limited
when the sampling frequency is 5 minute to 10 minute periods (Zhang et al] (2Z005)
). Andersen ef all (OTT) give a detailed framework on robust volatility estimation and
how to cope with possible ramifications resulting from microstructure noise. In this
study, I prefer to take into account not only the sampling effect of microstructure noise
but also the liquidity component of noise. While a large part of the RV literature on
equity market volatility utilizes 5-minute intervals in estimating realized volatility, in

the case of European bond markets, I choose to use 10-minute time intervals due to

22



Chapter 2. Volatility Forecasting in European Government Bond Markets

liquidity considerations. The ten-minute sampling frequency for European government
bond markets is consistent with the bias-variance tradeoff, and a large part of the bias
is assumed to vanish at this frequency (Hansen & Tunde (2006)). I additionally control
for remaining microstructure noise by employing realized kernel estimators for volatility
and provide results using alternative volatility estimators that are more jump robust (see
Section 29).

The bonds used in the analysis bear coupon payments, and they are subject to changes
in terms of underlying notes. Thus, I convert the instruments to zero-coupon securities
using the underlying bonds. In zero-coupon estimation, I take into consideration the
changes in the underlying instruments on the daily basis. When there is a change in the
underlying bond of the generic security, I assume the change takes place at the beginning
of the trading day. Then, I aggregate the tick data bond returns using 10-minute intraday
time intervals between 10:00 am and 4:00 pm to compute daily variations, since the
liquidity in the fixed income markets may not be representative during the market
opening and closing hours. Also, when defining the volatility indicators as a sum of
squared intraday daily logarithmic bond returns, I include the price change between
10:00 am of the next day (t+1) and 4:00 pm of today (t) for the estimation of daily (t)

realized volatility.
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2.3.2 The Nelson-Siegel Model

In this analysis, I use the Nelson & Siegel (T987) model to obtain zero-coupon govern-
ment bond returns. This model estimates the relationship between interest rates with
various maturities by fitting a discount function to bond price data. It assumes the

following functional form for the instantaneous forward rates (BIS (2005)).

-m m -m
fim = Bro + Briexp(—) + B — exp(—) 2.1
Tl Tt1 Tl

where, the forward rates f;, are defined as the instantaneous rates and m is maturity.
The parameters, B, 0, B:.1, B2 and 7,1 are estimated by minimizing the squared deviations
of theoretical rates of equation Eq. (1) and observed rates.

The zero-coupon spot interest rates s;,,, are then related to the NS procedure by
defining forward rates as instantaneous rates and continuously compounding the forward

rate up to given time to maturity as shown below:

Stm = —l /m f(u)du. 2.2)
mJo

Thus, the NS function for zero coupon interest rates could easily be obtained by

combining equations Eq. (Z1l) and Eq. (Z2):

11 —m —m
Stm = Bro + (Br1 + ﬁf,z)‘;(l - eXp(T—l)) — B exp(T—l). (2.3)
t, [
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For each 10-minute time interval, the zero-coupon curves of European government
bonds are fitted using equation Eq. (Z22). The zero-coupon rates and bond prices of
corresponding maturities which are obtained using the NS model are then used for the
estimation of the realized volatility. In this study, I use bond prices (not yields) to
estimate bond return volatility.

Since P(t,T) = exp(—7s:m), the return series using prices are scaled to 7,

r(t+h,h,t)=p(t+h7t)—pt71) (2.4)

where p(t,7) = log(P(t,7)). Then, the intraday return of zero-coupon bond is

computed according to equation 3 below:

rT(H%,ﬁ) :_T(ST(H%)_S,(H (i‘l)h)). 2.5)
n n n n

2.3.3 Realized Volatility Measurement and Jump Detection

I follow the methodology of [Andersen & Bollerslev (199R) for the estimation of realized
volatility and jumps in the European sovereign bond markets. As the intraday sampling
frequency increases sufficiently, the cumulative sum of intraday returns converges to
genuine unobserved volatility, which is the so-called realized volatility (RV) (Andersen
& Bollerslev (T998); Andersen, Bollerslev, Diebold & Labys (?003); Barndorff-Nielsen

& Shephard (2002, 2004))). Since the returns are scaled to 7, the volatility also becomes
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proportional to 72 as follows:

n . . 2
vol,zr(t + hh) = TZ(ST(I + &) — sT(t + U 1)h)) . (2.6)

n n
i=1

S| -

Therefore, intraday bond volatility increases by the square of time to maturity. I then

re-scale the volatility series, vol,ZT (t+h,h), by 72 to obtain comparable realized volatility.

1
RVi(t + h,h) = —Z(vozr{ (t +h, h)). (2.7)
T

The scaled estimator of volatility as shown in equation Eq. (I7), ensures that realized
bond return volatility satisfies the asymptotic properties of quadratic variation.

In addition to intraday volatility, I also focus on the importance of jumps on an
intraday basis. To decompose realized volatility into its continuous and discontinuous
components, I follow the procedure suggested by Barndortt-Nielsen & Shephard (2004).
This provides a partial generalization of latent volatility, namely bipower variation (BV),
which approaches the diffusive part of volatility in continuous sample paths and equally
spaced discrete data. In estimating realized BV, I also need to re-scale the return series

by the factor of 7. Therefore, the modified BV process is measured as:

(i — Dh

n

)IAip(r +

%ﬂ (2.8)

1 n <
BV:(t+ h,h) = (ﬁ)ﬂfz(m) Z |Ai-1p(t +
i=2
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where u; = V2/+/7.

The first term in equation Eq. (ZR), 1/72, modifies the BV parameter proposed
by Barndortt-Nielsen & Shephard (20004) as an extension for bond returns which have
different time to maturity. In this article, I follow the jump separation process of
Barndorft-Nielsen & Shephard (2004), where the realized volatility is assumed to have a
continuous, quadratic variation, and a discontinuous, jump, component. The logarithmic
price of a government bond is assumed to follow a semimartingale process, which can be
formalized as a drift term plus a local martingale. Thus, a general class of arbitrage-free

return process is given below:

dp(t) = u(t)dt + o(t)dw(t) + k(t)dq(t),0 <t < T. (2.9)

where u(t) is a drift term having a locally finite variation process and the rest
constitutes local martingale. o () is a strictly positive continuous volatility process
with discrete jumps «(¢). Barndorff-Nielsen & Shephard (2004) show that the quadratic
variation equals the integrated variance of instantaneous returns as given in Equation

10 below:

RV — QV = ! d 2(s). .
(0] [_IU(S)S+ Z k“(s) (2.10)

r—1<s<t
Therefore, equation Eq. (1) ensures that the realized volatility estimator does not

converge to integrated volatility due to the presence of the discrete jump process even
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under observing no noise in the prices. Barndorff-Nielsen & Shephard (2004) extend
the analysis on volatility and indicate that BV is an unbiased estimator of integrated

variance (IV), asymptotically. Then BV is approximated as shown below:

1
BV — 1V = / o?(s)ds, for n— . (2.11)
t—1

Thus, using equations Eq. (-10) and Eq. (Z-1TI), it is trivial to obtain an approximation

of jump variationB.

RV - BV — Z K2(s), for n— oo. (2.12)

t—1<s<t

Under the assumption of absence of jumps:

Vn(RV - BV) — MN(0, 21Q), (2.13)

where /Q is integrated quarticity.

In addition, integrated variation (IQ) could be represented by a generalized realized
power quarticity measure, namely tripower quarticity (TQ), which is a robust and con-
sistent estimator of IV even in the presence of jumps (Barndortf-Nielsen & Shephard

(200?) and Andersen, Bollerslev & Diebold (?007)). I compute TQ as follows8:

3Barndorft-Nielsen & Shephard (2004)) give the definitions of realized volatility (RV) and bipower
variation (BV) for a general asset class, which does not have any time to maturity. Since the estimations
are based on bond data, in order to have a comparable estimate, I scaled the return series by 1/7 and thus
RV and BV series by 1/72.

4Similar to RV and BV estimations, TQ measure also requires scaling concerning time to maturity.
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I i—2)h i—1Dh
TQ = ”#4/33 Z |Ai-ap(t + %)ﬁﬁmi—l}?(f + %“4/3

i=3

(Dh :
|Aip(t + 7)|4/3, 219
t
where TQ — / o*(s)ds for n— co.
-1

Since I assume that there exists a discrete jump variation process in the asset returns,
I follow the jump detection methodology, according to which a jump occurs when
the ratio statistic is significant. In the literature, there are plenty of jump detection
techniques, which are compared in Huang & Tauchen (2005). They find that the usage of
ratio-statistics gives more powerful results than the test statistics provided by Barndortt-
Nielsen & Shephard (2004). I use the following ratio statistic to identify statistically

significant bond price jumps following Huang & Tauchen (2005):

[RV - BV]|RV™!

\/(/1;4 +2u7? = 5) max {1, ;—32

-1/2

~ N(0,1). (2.15)

I use z-test statistics to identify the statistically significant bond price jumps in the
sample. This test has powerful properties and is quite accurate at detecting asset price
jumps (Huang & Tauchen (2005); Andersen, Bollerslev & Diebold (2007); Wright &

Zhou (2009); and Tanchen & Zhoul (2011)).

Hence TQ =TQ/7*.

29



Chapter 2. Volatility Forecasting in European Government Bond Markets

2.3.4 Realized Semivariance

The dynamic dependencies between volatility and underlying returns are also the research
focus on the empirical volatility literature. In this study, I look for the relevance of the
feedback effect, which is defined as the relationship between contemporaneous returns
and volatility by Bollerslev & Zhoul (2006), in the government bond markets B.

To observe the feedback effect, I follow the seminal procedure of Barndorff-Nielsen
ef_all (2010) by estimating realized semivariance, which is then extended by Patfon &
Sheppard (2015) to incorporate the impact of signed jumps.

Realized semivariances (RSV) for positive and negative intraday returns are com-

puted as follows:

, 1< )h )h

RSV, = — ; Ap(r + %)lzl(Aip(t + %) > o), (2.16)
1< )h )h

RSV, = — ; \Aip(t + %)PI(AUD(; + %) < 0), (2.17)

where RV; = RSV} + RSV, .
In the equation Eq. (16) and Eq. (ZI2), I(.) corresponds to indicator function.

RSV series are calculated in the intraday basis in line with RV.

5The asymmetric response of current volatility to the lagged returns with respect to the sign of returns
was firstly introduced by Black (T976). Although the empirical findings of the literature indicate that such
an asymmetry exists, its power is found to be weak and insignificant (Nelson (T991) and Bekaerf & Wii
(2000)). In addition, Bollerslev_& Zhou (PZ006) provide empirical evidence that there is no significant
relationship between contemporaneous returns and volatility, therefore they reject the presence of feedback
effect.
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2.3.5 Heterogeneous Auto-Regression Model

In the HAR model of Corsi (2009), it is assumed that the heterogeneous markets hy-
pothesis (HMH), which depends on market participants’ non-homogeneity in terms of
expectations and behaviors, is valid. Therefore, the general pattern of volatility structure
can be generated from three different frequencies. The high-frequency component for
short-term traders is reflected by daily volatility, for medium-term traders by weekly
volatility, and for investors focusing on long-term trends by monthly volatility. Although
the HAR structure does not externally impose long memory in the volatility process, the
cascade type model generates slow decaying memory for the forecast horizons.
To represent weekly and monthly trends, I use simple averages as below.

1 3
R‘/tlitz = m ZR‘/;, where h < b (218)

=t

Then, weekly and monthly averagesB are given in the Eq. (Z19) below:

1 -2
RVisia=7 ) RV. (2.19)
t=t-5
1 t—6
RViay6=15 ) RV (220)
t=t-22

6] prefer to use non-coinciding periods in the HAR variables to avoid double counting lagged obser-
vations.
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Then, HAR-RV model A is given in Eq. (Z221):

RVisn-1: = Bo + BaRVi—1 + BwRVi_5:1-2 + BuRVi_22:-6 + €, (2.21)

h corresponds to forecast horizon.

I decompose the continuous and discontinuous part of RV by following Barndorft-
Nielsen & Shephard (2004). Using the discontinuous jump variations, I can employ
extended HAR models such as the HAR-RVJ model and HAR-CJ model of Andersen.
Bollerslev & Diebold (2007). The inclusion of jump parameters in the volatility fore-
casting regressions enables us to measure the possible magnitude of daily jumps on the
future volatility and its significant life span in the investment horizon.

I identify the significant jump series following jump ratio test of Huang & Tauchen

(Z003):

Ji = L5y, (RV; = BV,)*, (2.22)

where ¥, is the cumulative distribution function at @ confidence level. In this paper
I choose @ = 0.999, which corresponds to a critical value of 3.0902. In addition
(RV; — BV;)* stands for max(0, RV, — BV;) and I, is the indicator function that takes

values of unity when there is a significant jump.

7For simplicity, I report the general form of HAR model, while the estimations are conducted using
realized volatility, RVY/ 2 in exchange for realized variance, RV.
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Then, the continuous part quadratic variation accounts for the significant jumps given

in Eq. (Z223).

I also compute weekly, C,_s5:1_», and monthly, C,_27.1—¢, continuous variation series,

C, similar to Eq. (Z19) and Eq. (ZZ20).

A 1 )
Cis5012= 1 ' (2.24)
t=t-5
1 t—6
Crmi6 = 3= s (2.25)
t=t-22

Therefore, it becomes natural to extend the HAR-RV model to include the effect of

continuous and jump variation separately.

HAR-RVJ model:
RViih-1: = Bo + BaRVic1 + BuRVi_su—2 + BuRVi—2n—6 + BjJi-1 + &. (2.26)
HAR-CJ model:
RVien—t1:4 = Bo + BaCim1 + BuwCis—a + PunCinzi—6 + BjJi=1 + &. (2.27)
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2.4 Empirical Findings

2.4.1 Descriptive Statistics

In this section I present the summary statistics in Table -1 and 4.

I report summary statistics of realized volatility, VRV, and significant realized jumps,
\/7 , for European government bond markets. The descriptive statistics reveal that the
volatility term structure of European government bond markets indicates a U-shaped
pattern on an intraday basis since the mean of RVs for short and long-term maturities
is higher than the mean of medium-term maturities. The same pattern is followed
for the volatility-of-volatility term structure (standard deviation of RVs) of European
government bonds. On the other hand, there is no clear evidence of similar behavior for
the realized jump series in Table 2-4.

Figure D1 shows the boxplots of intraday volatility across European T-bond markets
across the maturity span.

In all of the markets except France, the volatility shows a U-shaped path for all the
maturities. Moreover, the 1-year and 30-year maturities are more volatile compared to
the other maturities. Also, the volatility of the volatility can be inferred from the spread
between 1% and 3™ quartile of the plots. It is obvious that volatility of volatility is higher
for short-term maturities, while some upward outliers are observed for the longer-term
maturities.

Figure 72 and 23 show the boxplots of the realized semivariances (RSV).
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Figure 2.1: Box Plot of RV

Similar to the realized volatility in Figure 1, RSV series indicate a U-shaped
pattern in the volatility yield curve with respect to 2" and 3™ quartiles. In addition, the
interquartile range for 1-year and 30-year securities is higher than the other maturities.
In any quartile of the boxplot figures, I do not observe any fraction between negative
and positive semivariances so any feedback effect. Therefore, in line with the literature
(Nelson (1991)); Bekaerf & Wii (2000); and Bollerslev & Zhoui (2006)) I reject asymmetry
hypothesis between contemporaneous bond returns and volatility.

The most straightforward comparison is likely to be made between France’s and
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Figure 2.2: Feedback Effect: Box Plots of Negative, RSV, and Positive, RSV*, Semi-
variances across Maturity Span

Germany’s sovereign bond markets due to both being euro denominated. Except for the
1-year T-bill, French markets are found to be reflecting a higher level of volatility in the
median and other quartiles.

Figures 4 to 77 give the realized volatility series for the major European bond
markets between January 2005 to October 2019.

These figures reveal a high degree of volatility co-movement across the maturity and
market spectrum. I observe that government bond volatility peaks in the GFC period

and the sovereign debt markets are faced with another common high volatility period
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Figure 2.3: Feedback Effect: Box Plots of Negative, RSV, and Positive, RSV*, Semi-
variances Maturity Span

during the European debt crisis of 2010. These periods correspond to the most important
disruption of bond markets in the sample period.

In addition to the crisis impact on the bond yields and volatility, another key driver
of heightened European bond volatility is the 2016 United States presidential elections.
In addition to the surprising result of the election, the promises of expansionary fiscal
policies in tax cuts and infrastructure expenditures resulted in a euphoria mood in the
stock markets and at the same time triggered a sell-off in the bond markets in November

2016 due to heightened risk in the US budget balance. Andersson ef all (2009) study the
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Figure 2.4: Realized Volatility: The squared root of realized volatility, RV'/?, is given
in percentages.

causes that move bond markets in the Euro area and shows that bond markets are more
sensitive to the US-related news due to investor perceptions of the US as a main global
factor. In this perspective, findings validate Andersson ef all (2009) since I show that
the uncertainty generated by the elections at the end of 2016 is transmitted to the major
European bond markets.

Moreover, from Figures 24 to 77 I can easily see that the Brexit referendum in June
2016 has a positive impact on the volatility term structure of the UK government bond
market. On the contrary, the low reaction of 1-year UK T-bond volatility shows that the

effect of UKs decision to leave the EU had an effect on medium to long-run UK bond
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Figure 2.5: Realized Volatility: The squared root of realized volatility, RV'/?, is given
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market expectations. Also, before and after the Brexit vote, financial market participants
tried to hedge their positions by increasing their allocations of safe-haven securities,
specifically Japanese yen, and Swiss franc denominated assets. This created a gradual
rise in the volatility of the Swiss bond market.

In terms of idiosyncratic volatility periods, the analysis shows that the most significant
country-specific event was the removal of the Swiss franc peg to the euro, which resulted
in an immense volatility clustering in Swiss financial markets. On 15" January 2015,
the Swiss National Bank unexpectedly removed the peg of the franc to the euro, which

was effective since 2011. This decision led to a massive impact on Swiss FX and bond
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markets and resulted in to increase in Swiss bond return volatility during this period.
In addition, the analysis shows that German bond volatility increased during May-June
2015, which is known as a "bund tantrum". The tantrum in the bond markets is mainly
attributed to the ECBs Public Sector Purchase Program (PSPP) that is introduced in early
2015. While, low-interest rate and quantitative easing policies tame the market volatility
in the bond markets, their impact on liquidity make the government bond markets more

fragile and open to sudden volatility spikes Riordan & Schrimpf (Z015)8. During this

8In Riordan & Schrimpf (Z0135), it is stated that the ECB purchased 46.3 billion of German bonds by
June 30, 2015, since the start of PSPP.
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period the large price swings on the intraday basis lead to volatile bond markets due to
deterioration of liquidity especially in the medium to long run securities (see Figure 7).
These initial descriptive results are some preliminary evidence showing the significant
effect of major macroeconomic events (e.g Brexit) on the volatility term structure of

European bond markets.

2.4.2 HAR Results

In this section, I present the volatility forecasting results of HAR-type models. The
econometric results for the Swiss, German, French, and UK realized bond return volatil-
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ity term structure are given in Tables B3 to E10 B.

In order to compare the results of the volatility forecasting models, I follow the
procedure proposed by Paffon (20TT) according to which the QLIKE loss function
gives the most robust estimator in assessing volatility forecasts using imperfect volatility
proxies. Additionally, I use Mincer-Zarnowitz (MZ) R? of forecasting regressions’ for

evaluating performance.

T
1 RV, RV,
QLIKE = — L _Jog(=2)-1), (2.28)
T;(  —log(G) = 1)

where RV; is estimated using equation Z21], and Z777.

I also report the QLIKE and MZ R? when there is a jump at the time "t-1", which
is denoted with J, and when the path is continuous for RV;_;, denoted with C. These
HAR-type models are similar to those of Corsi ef all (Z010) for US financial markets.

The results are presented in Tables to B0, indicating that daily, weekly and
monthly trends of volatility are robust determinants of future bond market volatility,
regardless of forecasting horizon and time to maturity of the securities. More specifically,
the estimated coefficients of daily, weekly, and monthly realized variance are positive
and statistically significant when forecasting the European government bond volatility
term structure in the short (1-day) and medium-term (weekly and monthly) horizons.

Following the HAR-type models of Corsi (2009), I aggregate realized volatility over

°T exclude the Swiss government bond with 2-year maturity from analysis due to some non-
convergences in the estimations.
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a diverse set of horizons, which is assumed to reflect the MDH and therefore relative
contributions (weights) of non-homogeneous investors to the market volatility. As a
result, short-term traders are found to have the largest impact on the volatility for one
day forecasting horizon, while the impact of longer-term traders is found to increase as
the forecasting horizon extends.

When the realized volatility is decomposed into its continuous and jump components,
the jump variations have a high and positive effect on future volatility. The jump tail risk
measure has a significantly positive effect on the volatility forecasts and its impact on
volatility is found to be persistent for 1-day to 22-day horizons. Although the contribution
of jump variation is present, its magnitude and effectiveness are relatively reduced as
the forecasting horizon increases. The contribution of this study lies in demonstrating
the volatility literature that jump tail risk is a significant determinant of volatility in
European government bond markets for the first time. While the relevant literature so far
has shown that the jump coefficient in the HAR-CJ model on equity (Forsberg & Ghysels
(2006); Giof & Tanrenf (2007); Busch ef all (2011))) and bond market volatility (Corsi
ef all (20T0);Andersen, Bollerslev & Diebold (?0007)) is negative and/or insignificant,
this study shows that jumps play a significant role when forecasting European bond
market volatility.

Moreover, my analysis is the first to show the superior forecasting power of HAR-

type when used for European bond volatility forecasting, when compared to those of the
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literature focusing on US bond volatility forecasting. For example, I report in sample
R? values ranging from 40% to 80%, while Andersen & Benzoni (201(), when testing
the HAR regression model for the US treasury bond market their R? values ranging
from 15% to 20%. Hence, the analysis is the first to show that HAR-type volatility
models explain a much larger part of time-varying volatility in European bond markets
as opposed to US bond markets.

I additionally examine the out-of-sample forecasting performance of the HAR-type
volatility models using a rolling window. Tables T3 and T8 below report the out-of-
sample forecasting results.

The results are in-line with those of the literature (see Andersen. Bollerslev & Diebold
(2007); Corsi_ef_all (2010); Bollerslev_ef all (2016); and Bollerslev_ef all (Z01R)), as
I find that the inclusion of jump variation as an explanatory variable helps to reduce
forecast errors. According to Diehold & Mariana (1995) forecast comparison test results,
extending the HAR model as HAR-RVJ and HAR-CJ improves the QLIKE loss functions
significantly for most government bonds.

In addition, I report average out-of-sample forecast regression R?s. Out-of-sample
forecasting exercises show that the HAR-type models produce significant out-of-sample
forecasts with out-of-sample R’s ranging from 20% to 70%. As expected, the out-of-
sample forecasting power is higher when forecasting the volatility of government bonds

with short-term maturity.
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2.4.3 Monetary Policy and Bond Market Volatility

Through risk-taking and uncertainty channels monetary policy is a major determinant
of market volatility. In the literature, US stock and bond market volatility is largely
attributed to monetary policy shocks and to the news regarding monetary policy(see
Bekaerf ef all (20173); David & Veronesi (2014); Bruno & Shin (2015); [Iriantafyllou
& Dofsid (2017); and Mallick ef all (2017)). Motivated by these findings, I examine
the impact of monetary policy meetings on realized volatility of European government
bonds on an intraday basis. Figure I8 shows the response of financial markets to
the monetary policy announcements among major European central banks. Firstly, the
announcement calendar of the Swiss National Bank (SNB) is irregular in the estimation
period. SNB announces the policy decision at 8:30 (GMT), 12:00 (GMT) and 13:00
(GMT), while the most frequent time is 8:30 (GMT). As I observe, on the top left of
Figure R, the volatility of Swiss bonds during these announcement dates is higher at the
focused interval and its impact persists for one day long. Secondly, European Central
Bank (ECB) always announces the decision at 12:45 (GMT). It is obvious that for
France (bottom left of Figure X)), and Germany (top right of Figure I.8), bond markets
exhibit a gradual rise in volatility especially after the ECB announcement and during
the governor’s press conference. Lastly, the Bank of England (BoE) monetary policy

meeting announcements are released at 12:00 (GMT), that is when UK gilt volatility
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(bottom right of Figure _8), shows a sudden spikel™.
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Figure 2.8: Realized Volatility Averages by Time of Day: The squared root of realized
volatility, RV'/?, is given in percentages. Averages correspond to the average volatility

in the whole sample period of January 2005-October 2019. Lines represent the average
volatility on the yield curves.

The jump variations for bond markets signal at least one jump in 80% of all central
bank monetary policy announcement days for the Swiss market, at least one jump in
42% for the German market, at least one jump in 34% for the French market, and at

least one jump in 40% for UK market. Therefore, results show that monetary policy

(MP) announcements are key drivers and early warning signals of increasing turbulence

10The absolute returns for the time of the day basis given in Figure 9.
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in European government bond markets. Figure 10 reports the average jumps and
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volatility of the yield curve on the announcement datest.

The volatility spikes and the presence of jumps on the MP announcement days pave
the way for studying the timing and the dynamics of the bond market volatility. In
this framework, I investigate whether there exists any impact of the meeting days on
the volatility forecasting dynamics in the HAR framework. Lucca & Moench (Z0TY5)

document that there is a presence of excess return in the US equity market before the

UThe distribution of jumps are available upon request.
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Figure 2.10: Average Volatility and Jump Variation: Averages correspond to the average
variation in the date of monetary policy committee meetings of SNB, ECB and BoE

respectively. Numbers represents number of meetings in the January 2005 and October
2019 period.

FOMC meetings, which is then called pre-FOMC drift. The excess return is justified
by bearing non-diversifiable risk and systemic risk around the meeting (see
Moench (2015) for more detail). In addition, Guo_ef all (202(]) show that pre-FOMC
drift is dependent on underlying economic sentiment and uncertainty. In this paper, I
focus on the impact of pre-announcement and announcement day drifts on bond market

volatility forecasts.
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In this paper, I focus on the pre-MP announcement, called pre-announcement, impact
on European bond market volatility. To my knowledge, it is the first paper trying to
explain the pre-meeting impact in the volatility forecasting framework.

To test the impact of MP announcement, I simply extend HAR-RV models by incor-
porating a pre-announcement date and announcement date dummy variables, separately.

Therefore, HAR-RV model2 becomes:

RVieno1:e = Bo + ByRVi—11(pre — announcement) + BaRVi—1 + By RVi—sy—2 + BuRVi-224-6 + €1,

(2.29)

and

RViin-1: = o + ByRVi-1 1(announcement) + BaRVi—1 + BuRV: 512 + BuRVi-22:6 + €.
(2.30)
Table 211 gives the results for extended HAR-RV model using pre-announcement
day dummy variable. Firstly, the contribution of daily lagged volatility onto future
volatility in the non-announcement day forecasts is only material apart from the results
in the previous section, which validates the robustness of estimations. In this study,
I call the relationship between forecast period and daily lag as volatility transmission.

The results indicate that the volatility transmission sensitivity of forecasts increases by

12Similar to the previous subsection, I conduct the analysis using realized volatility, VRV . For simplicity,
I continue to give a general HAR model representation.
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almost 40% on pre-announcement days. Increased sensitivity to the daily volatility in
terms of 1-day forward volatility corresponds to faster movement of the markets before
the monetary policy announcements. This outcome can be interpreted as a piece of
evidence of the presence of pre-announcement drift in the bond market. Therefore, the
inclusion of the day dummy variable highlights the importance of pre-announcement
drift in the European bond market.

In addition, I analyse the announcement drift after the European central banks’
meetings using equation Z30. Table shows that there is no change in the underlying
dynamics of the HAR forecasting relationship after the MP announcement. This result
provides the idea that after the announcement short-term tension is tamed by the central
banks in the European government bond markets, which can be interpreted as evidence
of the "buy the speculation, sell the fact" behavior of financial market agents. After the
monetary policy announcements generally the opportunity to speculate in the markets
evaporates and markets tend to turn back their fundamentals.

Moreover, I test the source of pre-announcement drift in the integrated variation and
jump variation framework. Therefore, I estimate the extended model of HAR-CJ as

follows:
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RViin-11 = Bo + ByCi-1 L(pre — meeting) + BjJi-1 1(pre — meeting) + BaCi-1 + BuCi-s2+

BinCi-22:1-6 + BjJi-1 + €.
2.31)

Table shows that the transmission effect is still significantly higher on the days
before policy announcements, even though its magnitude is weaker. Results indicate
that the pre-announcement drift mostly results from the continuous component of the

daily lagged volatility, not the jump variation.

2.5 Robustness

2.5.1 Market Microstructure Noise

In the realized volatility (RV) literature, the estimates are assumed to provide perfect
estimators of quadratic variation (QV) under continuous-time and without measurement
error. Therefore, using the highest possible homogeneous discrete time-frequency sum of
squared returns is assumed to approximate true QV as the sampling frequency increases
up to tick-by-tick observation.

On the other hand, in practice, it is emphasized that the presence of microstructure
noise causes the bias in the estimates that significantly increases the error in the high

frequency-based estimators (see Zhoui (1T996) and Hansen & Tunde (20006)). The mar-
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ket microstructure noise is generally documented by providing the intraday sampling
frequency impact on estimates3. Even though, using high-frequency data poses the
microstructure-related noise, volatility signature plots indicate that there is a trade-off
between frequency and RV estimation ( Hansen & Tunde (2006)). Therefore, the esti-
mations are constructed by using moderate frequency, 5 minutes to 20 minutes, to handle
the bias (see Zhang et al] (20005)). In addition to using optimal sampling frequency, there
are some filtering (/Andersen, Bollerslev, Diebold & Labys (2003)), two-scales estimator
(Zhang et al] (2005)) and kernel-based techniques ( Barndortt-Nielsen, Hansen, Lunde
& Shephard (2008), Barndorff-Nielsen ef all (200Y9)) used in the literature in providing
remedies to the market microstructure noise.

Since the seminal work by Zhou (TY96), realized kernels in the volatility estimation
became popular. In this paper, I follow Barndortt-Nielsen, Hansen, Lunde & Shephard
(2008), Barndorff-Nielsen ef all (2009) to construct realized kernels, RK, which help
in controlling the noise generated by microstructure noise. The RVg,,,e; is formed as

follows:

H

h

RVKernel = § k( ))/h’ (232)
= H+1

where y;, = 2| ApinApi—n,/ and k(x) is non-stochastic weight function.

Following 37, Hansen & T.imde (2006) propose RV, to correct bias in the realized

13)Zhang et al] (Z005) document a review on the impact of sampling bias using volatility signature plots.
14Ap; , corresponds to logarithmic change in prices.
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volatility measure, where k(x) is equal to unity, which is a restricted version of kernel-
type estimators.

RV, is given as follows:

n n n
RVac, = D" ApL,+ D" Apindpicin+ > ApinApisin (2.33)
i=1 i=1 i=1

This estimator provides a more efficient measure and reduces the noise compared to
RV estimators ( Hansen & T unde (2ZO0A)).

In this paper, I estimate RVsc, and RVk,qe; as alternative realized variance estima-
tors. Unfortunately, the intraday-based volatility estimator using the AC — type model
suffers from negative values. In order to overcome the negativity problem, I employ the
Parzen kernel, which guarantees the non-negative estimates of volatility[3.

Hansen & Tunde (2006) assert that the asymptotic variance of RVyc, increases as
the sampling frequency n increases. As a result of the trade-off between sampling
frequency and estimation noise, intraday returns should not be sampled at the highest
possible frequency. In addition to using a moderate sampling frequency, utilization of
the realized kernel-based estimators helps more in reducing microstructure noise in the
estimations.

The robustness results indicate that the main findings remain unaltered if I use RK

instead of RV in the volatility modeling. Table reports the out-of-sample regression

15In the Parzen kernel weighting function, I follow Zhoti (T996), where H is equal to one (Barndortts
Nielsen, Hansen, Lunde & Shephard (2Z00R)).
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results of volatility forecasts. It verifies that the inclusion of jump variation into the

HAR model improves volatility forecasts for most of the European bond markets.

2.5.2 Alternative Volatility Estimator

In addition to market microstructure noise, realized volatility models suffer from finite
sample jump distortion that can result in upward bias in jump estimators. In order
to achieve asymptotically more feasible results, I employ the estimators proposed by
Andersen_ef all (2012), which use nearest neighbor truncation. I estimate "MinRV"
and "MedRV" as jump robust estimators in exchange for bipower variation (BV) and
their relevant tripower variation measures, namely "MinRQ" and "MedRQ" in order to
measure the significance of daily jumps.

Firstly, I compute "MinRV" as summing the square of the minimum of two sequential

absolute returns as follows:

2

Ok )| (2.34)

n—1
n .
— 1) E mm(|A,-p(t + —)|, |Ai+1p(t +
i=1

MinRV, = (i)ﬂiz(

i+ 1)h
2 n

n
where, min(.,.) corresponds to the minimum of the returns.
MinRYV benefits from one-sided truncation in estimating jump robust volatility esti-

mator. On the other hand, MedRV depends on two-sided truncation as taking the median

value of three consecutive absolute returns in volatility estimation as follows:
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L i- 1)h

MedRV; = (1)6 4\/_+7T — Zmed(m, 1p(t ), |A,~p(t+%)|,

|Ai+1p(t +

i+ 1h, \*
)]
n
(2.35)
where, med(_, .,.) corresponds to the median of the returns.

The jump robust estimators have their unique asymptotic distribution properties for

constructing jump statistics given in Andersen ef all (2017).

Vn(RV — MinRV) — MN (0, 3.811Q),

Vn(RV — MedRV) — MN(0, 2.961Q). (2.36)

where /Q is integrated quarticity.
Also, alternative to tripower quarticity given in D714, T estimate "MinRQ" and

"MedRQ".

1 n—1

MinRV; = (3)3:? < (nf ) me(m,-p(; + Q)| |Ai1p(t +
i=1

(i + Dh

0

(2.37)
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, and

1 37 no S ( (i — Dh (i)h
MedRV; = (— med||A;—1p(t + L 1Aip(t + ——)1,
(74)9“72_52\5(”_2); i+ ——=)L1Ap(t + ==)

i+ Dk \*

)|

(2.38)

|A,~+1p(t +

Then, I adjust the jump z-test with respect, T3 to the asymptotic distribution of
truncation based estimators, given in 236,

The volatility forecasting results of European bond markets are in line with the results
in Section 4. Out-of-sample regression results verify that inclusion of jump variation
into the HAR model improves volatility forecasts for most of the bond markets (See

Tables 22277 - 2230).

2.6 Conclusion

In this paper, I study the forecasting power of HAR-type models on the volatility term
structure of European government bond markets using intraday data covering the period
from January 2005 up until October 2019. Econometric analysis shows that the daily,
weekly, and monthly realized variance is a robust predictor of volatility in European
government bond markets. In addition inclusion of jump variation helps to improve
volatility forecasts. Overall, HAR models exhibit extraordinary in-sample and out-of-

sample forecasting power with in sample R’s ranging from 50% to 80% and out-of-

56



Chapter 2. Volatility Forecasting in European Government Bond Markets

sample R’s ranging from 20% to 75%. Moreover, the analysis shows that 83% of
central bank rate decisions for the Swiss market, 42% for the German market, 34% for
the French market, and 40% for the UK market coincide with at least one statistically
significant bond price jump. In addition, HAR-type models identify the significant
predictive power of jumps in government bond volatility. Hence my analysis implicitly
reveals that monetary policy announcements are early warning signals of rising volatility
in European bond markets. Results also indicate the presence of pre-monetary policy
meeting drift in the bond markets.

To the best of my knowledge, this is the first study that forecasts European bond
volatility on an intraday basis using the HAR-type cascade model. Secondly, the
findings indicate that the discrete jumps which are associated with monetary policy
announcements are effective in ex-post bond return volatility forecasting. Thirdly, this
paper reveals the dynamics of the volatility dependency structure of major European
bond markets, where findings indicate that the future volatility is significantly affected
by its short and medium-term trend components. I also show that the monetary pol-
icy announcements are an important determinant of bond market volatility and the
pre-announcement drift is present in the European bond market using the HAR-model
structure.

The policy recommendation which comes out of my analysis is that since monetary

policy announcements are key determinants (and significant early warning signals) of
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rising volatility in the respective government bond markets, then the central banks are
able to indirectly reduce instability in the respective bond markets if needed. For example,
according to the analysis, a reduction of monetary policy announcements during a given
time period will result in less turbulence and instability in European government markets

during this period.
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Chapter 3

Intraday Monetary Policy Shocks and Asset Prices in the Euro

Area: A Latent Yield Curve Factor Approach

3.1 Introduction

Since the Global Financial Crisis the role of monetary policy, policy tools and scope
diversified in order to convey the Fine Tuning in the economy. The use of unconventional
monetary policy tools through forward guidance and quantitative easing policies required
innovative tools besides the short term rates to gauge the policy effects. Therefore,
measuring the impact of monetary policy on the economy via asset prices became a
great challenge for not only policy makers but also investors and academics.

There exists a strand literature on identifying monetary policy shocks that primarily
focus on Federal Reserves policies. In this paper, I aim to identify European Central
Banks (ECB) policy framework and measure the shocks using market based indicators.

This paper primarily links the behavior of shape factors of yield curve with ECB’s
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monetary policy shocks on the announcement days by focusing on press release and
press conference windows. In this scope, I introduce target rate, monetary policy stance
(MPS) and quantitative easening (QE) shocksl using intraday government bond market
dataf.

Changes in fixed income securities’ prices/yields at monetary policy announcements
windows reveal significant information about monetary policy surprises (Kuffnet (200T);
Giirkaynak et al] (2005); Giirkaynak et al] (2007)). While there is extensive literature
linking US securities with the Feds policy announcements, there are only a few empirical
studies relating European yield curve fluctuations to the ECB’s policy actions (Alfavilla
efall (2019); Andrade & Ferroni (2021); Leombroni_ef all (2021])). Since the seminal
study of Lifferman & Scheinkman (T99T) most of the variation in the yield curve is
attributed to three latent factors, namely level, slope and curvature of the yield curve. In
this paper, I start by analysing the link between time variation in the latent shape factors of
the German yield curve and the ECBs actions. I adopt an event study approach, focusing
on intraday windows that are constructed on announcement days, and are centred around
the ECBs press releases and subsequent press conferences. In this scope, I introduce

target rate, monetary policy stance (MPS henceforth), and Quantitative Easing (QE

IKuffned (Z00T) finds that the interest rates’ response to unanticipated shocks are more prominent than
the anticipated shocks. Therefore, I use monetary policy shocks and surprises interchangeably, since 1
extract those factors directly from government bond yield curve.

2In order to represent Euro Area yield curve, I use German government bonds. Ehrmann_ef-all (201T)
indicate that after the after the single currency implementation, there has been a substantial convergence
between sovereign yields in the Euro zone. Also, I try to exclude peripheral divergences due to credit risk
turmoils during the estimation period.
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henceforth) shocks using intraday government bond latent factors.

Importantly, I demonstrate that the QE factor is not only effective during the confer-
ence window, but also during the press release window. This is another key difference
between my work and previous studies, including Alfavilla_efall (2019). Moreover, |
show that the impact of the QE factor on asset prices and inflation expectations sig-
nificantly increases in magnitude following the introduction of ECBs unconventional
policies. The results are more clear-cut for the case of QE shocks, relative to the other
two indicators, thereby highlighting the importance of QE as a monetary policy tool.
They reveal that expansionary QE surprises lower sovereign bond yields and spreads.
Additionally, they are associated with a weakening Euro against the US dollar, lower cost
of euro-denominated corporate credit, and higher market-based inflation expectations.

This chapter relates, and contributes, to several strands of the extant literature.
First, the literature on the high-frequency identification of monetary policy shocks (see
Kuffner (2001)); Gurkaynak et all (2005); Gurkaynak et all (2007)). This study relies on
the identification of surprises using intraday variations of bond factors by assuming that
the main driver of market movements in a short intraday window surrounding monetary
policy announcements is solely the information content of the release itself. Second,
I extend the relatively scarce existing literature on the impact of ECB policy surprises
(see Brand ef_all (2010); ATfavilla_ef_all (2019); Ceombroni_ef all (Z021])). Third, I

contribute to the literature by using a yield curve-based identification methodology in the
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high-frequency setting. The high-frequency identification of monetary policy surprises
typically depends on a factor rotation of changes in money market rates, such as using
FFRs in Giirkaynak et al] (2005), and OIS in [ATfavilla ef all (2019), at the predetermined
intraday windows around the policy release and communication with some restrictions.
Our approach is similar to Inoue & Rossi (201R), Inoue & Rossi (201Y9), and Korfela &
Nelimarkka (2020), who use daily yield curve shifts during the announcement days for
the extraction of monetary policy surprises. Finally, the findings shed new light on the
significant financial market effects of ECB policy surprises. Overall, the impact of QE
surprises dominates that of target rate and stance shocks both in terms of magnitude and
statistical significance (see Alfavillaef all (Z0T9) and Rogers et al] (2014)).

The rest of the chapter is structured as follows. Section B2 reviews the literature
on the extraction methods of monetary policy shocks. In Section B3, I provide the
information regarding data and methodology by detailing on the identification strategy.
In Section B4 I present the results of the empirical models. In Section B3 I provide a

brief conclusion of this research.

3.2 Literature Review

Measuring the impact of monetary policy announcements constitutes the main focus of
this study. The multidimensional nature of policy decisions especially in the unconven-

tional monetary policy era is challenging to gauge the effect of policies. There are al-
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ternative approaches in attempting to extract monetary policy shocks. Some researchers
measure the policy shocks by depending their analysis on the theoretical foundations
of monetary policy and macroeconomic stance using the vector autoregression (VAR)
structure. In those models, policy shocks are identified through restrictions on VARs that
constitute the link between the theory and policy announcements (Bernanke & Blinder
(1992); Chrisfiano_ef all (I996); Uhlig (2005)). Also, the presence of heteroscedastic-
ity within financial time series is being exploited in order to identify monetary policy
shocks within VAR models (Rigobon & Sackl (2004); Gilchrist & Zakrajsek (20173)). In
addition, with the high-frequency data being widely available the policy surprises are
identified using the intraday variations of fixed income assets on the announcement days
(Kuffner (20071); Gurkaynak et al] (2005); Alfavilla_ef all (2019)). Those approaches
assume that the main driver of market movements in a short intraday window around
monetary policy announcements is solely the information content of the release itself.

While employing high-frequency data approach measures the instantaneous impact
of policy shocks, it has some limitations especially in identifying the persistence of
shocks and the response of macroeconomic variables. Thus, some studies combine a
hybrid approach that follows the VAR models with high-frequency data, which in turn
led them to examine the dynamic responses of real and financial variables (Hanson &
Stein (2019), Nakamura & Steinsson (Z0TX), Gerfler & Karadi (2019)).

In the identification of monetary policy shocks, I employ high-frequency data ap-

81



Chapter 3. Intraday Monetary Policy Shocks and Asset Prices in the Euro Area: A
Latent Yield Curve Factor Approach

proach following Kuffner (2001)), which enables us to extract indicators without suffering
from severe endogeneity issues. In focusing on the windows around announcements,
I avoid using exact release points in time since it takes time to digest new information
from the financial market players, especially during the press conferences. Therefore, a
convenient time interval is chosen by considering that a narrow window may not catch
all the news, and a wide window would be contaminated by other shocks (Rogers et al!
(D013)).

In the literature, various indicators are used to extract monetary policy shocks. Due to
the availability of liquid monetary policy rate futures contract, the studies focusing on the
US monetary policy depend their analysis on Fed Funds Futures (FFR) (Kuffnexd (2001));
Giirkaynak et al] (20035); Gerfler & Karadi (2015); Swanson (2021)). Further, Overnight
Index Swaps (OIS) are used to identify monetary policy shocks, especially when the
liquidity of monetary policy futures contracts is not prominent. Studies focusing on the
ECB policies are generally use a factor analysis to extract the information within OIS
rates (Alfavilla_et all (2019); Andrade & Ferroni (20721)); Leombroni ef all (Z021)). Not
only the money market rates but also government sovereign bonds and bills are exercised
to identify monetary policy shocks in a high-frequency setting. To evaluate the monetary
policy surprises of the Federal Reserve (Fed), ECB, Bank of England (BoE), and Bank
of Japan (BoJ), Rogers et al] (2(114) depend on the intraday movement of government

bond yields. Also, Alfavilla_ef all (2019) use German short-term bills and bonds in
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exchange for OIS for the period that short-term OIS rates are not available and find that
the change of results after using whether OIS or German bonds are indistinguishable.

Furthermore, the impact of monetary policy surprises can be decomposed around
monetary policy releases, especially during the conference, or communication, window,
into two distinct parts; the information channel on economic fundamentals and the risk
premium channel using the co-movement between interest rates and stock returns (some
contemporary studies are Cieslak & Schrimpf (2019); Tarociski & Karadi (2020)); and
Andrade & Ferroni (Z021))).

Using high-frequency data, the monetary policy indicators are extracted by factor
rotations but there is a challenge on how many factors are enough to represent the
multidimensional impact of policy announcements. While, in the era of conventional
monetary policy, a single factor is used to measure the monetary policy surprises (Kuffner
(200T)), Gurkaynak et al] (2005) show that only a single policy rate surprise is not
sufficient to represent the market reaction to the announcements. In order to incorporate
the surprise component regarding the path of monetary policy, they introduce a second
factor for the future horizons of the policy. In addition, the use of unconventional
policies in the form of asset purchase programs led to the introduction of a third factor,
namely the QE factor by Swanson (202T). Following these developments, Alfavillaef all
(20719) posit that ECB policy surprises are multi-dimensional, in having a target, timing,

path/forward guidance, and QE surprises. Also, scheduled policy announcements of the

83



Chapter 3. Intraday Monetary Policy Shocks and Asset Prices in the Euro Area: A
Latent Yield Curve Factor Approach

ECB have a multi-step structure. At the time of press release they find that target surprise
is significant, while during press release timing, forward guidance, and QE surprises are
effective on asset prices. In addition to using rotated factors, Bomfim (2003) suggests
that the variation due to monetary policy changes is captured by latent factors, where
the level moves in line with the short-term rates and the slope is associated with the
expected short rate in the future.

Following those developments, my approach is similar to Rogers et al] (?(014) that use
intraday change in the government bond yields around monetary policy announcement
windows in order to capture the impact of policy shocks on asset prices. While trying
to capture the pass through the policy release shocks from bond markets to asset prices,
Rogers et all (20014) use a single factor model without decomposing the separate effects
policy tools. I follow the foundations that the first three latent factors explain most of the
variation of the yield curve by Lifferman & Scheinkman (TY91)), and use those factors
to represent the multidimensional nature of monetary policy announcements similar to
Swanson (202T), and [Alfavilla_ef all (2019). I contribute to the literature by examining
whether the government sovereign bonds carry the information value in representing all
the dimensions of policy announcements.

There exists a large empirical literature on the monetary policy shocks and asset
prices and economic indicators. I study the effects of ECB shocks on the government

bond markets, exchange rates, corporate spreads, and inflation indicators. Using the
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two-step nature of ECB policy decision announcements, some investigate the impact
of information flow in separate windows (Brand ef all (2010); Alfavilla_ef all (201Y9);
_eombroni_ef all (2021))), and some use a combined window (Rogers et al] (2014)).
Also, some studies use a single target rate shock (Rogers et al! (2014))), while others
employ both target rate and path surprises in measuring the effect of policy surprises
(Brand“ef all (2010); Ceombroni_ef all (202T)). To this extent, my approach is in line
with ATfavilla_ef all (2019) and Andrade & Ferroni (2021)) that use not only target rate
and path surprises, but also QE surprises to measure the monetary policy impact in a
separate window setting.

This study contributes to the literature by exploring the effects of monetary policy
announcements on asset prices. I show that monetary policy is an effective tool in
lowering euro area yield spreads (Alfavillaef all (2019)) and there presents a preserving
euro effect of monetary policy (Brand_ef all (2010)). One of the major findings of
this paper is that QE policies are the most effective tool in reducing long-term bond
yields, sovereign bond spreads, and credit costs even though the short-term interest rates
are restricted by an effective lower bound. Conversely, in the standard macroeconomic
models, QE operations are neutral, and therefore the QE should be ineffective as the future
rate reaction function is held constant (Bhaffarai ef all (Z015)). Therefore, some frictions
are incorporated in order to reduce the neutrality and accommodate the expansionary QE

shocks to have an impact, especially at the long end of the yield curve. The significance
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of QE purchases on longer-term yields is explained using a reduction in risk premium
(Chen’ef all (2017?)), existing limits to arbitrage (Gerfler & Karadi (2013)), and signaling
channelB (Bhaffarai ef all (Z015); Krishnamurthy & Vissing-Jorgensen (2011)); and Bauer

X _Rudebusch (20114)).

3.3 Data and Methodology

3.3.1 Data

To identify euro-area monetary policy surprises, which constitute the key explanatory
variable, I use high-frequency German government bond data spanning the period from
Ist January 2005 to 31st October 2019. It consists of 10-minute discrete intervals
between 10:00 am and 16:00 pm (GMT). Iemploy 1-, 2-, 5-, 10-, 20- and 30-year maturity
bonds in my analysis. I estimate the Nelson & Siegel (TY87) model using underlying
bonds information to obtain zero-coupon bond yields (see Ozhekler et all (2021), and
Chapter [ for more details). The monetary policy shocks are mapped to a vast array of
euro-area financial market variables. These include French-German government bond
yield spreads and the euro-dollar exchange rate, using intraday data from the Thomson
Reuters Tick History (TRTH) database; intraday Spanish and German government bond
yields, sourced from the euro-area Monetary Policy event study database (EA-MPD)

of Alfavilla_efall (201Y9); and daily data on credit spreads and market-based inflation

3The signaling channel refers QE policies to contain information and driving expectations on future
interest rates.
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expectations, proxied, respectively, using Markits iBoxx EUR benchmark indices and

inflation-linked swap data from Refinitiv Eikon.

3.3.2 Identification of monetary policy shocks

I identify the monetary policy surprises around ECB’s target rate announcements and
the press conference. The key feature of my identification strategy is using intraday data
around the announcement and conference windows. Since the aim is to extract the true
impact of the shocks, the inflow of information regarding external factors throughout the
announcement days cannot be eliminated using a lower data frequency, such as daily.
Another hardship in the estimation of shocks is the target rate changes to be anticipated
at least in a partly manner (Giirkaynak et al] (2005); Rogers et al! (2014))). Therefore, in
the identification process, I try to extract the surprise that is priced in the fixed-income
securities in the announcement windows. I set an interval around the monetary policy
windows that is narrow enough to capture the total impact of the surprises without being
disturbed by any other external factors by assumption similar to [Alfavilla_ef all (2019).
The identification strategy is based on the German government bonds to represent the
generic Euro Area sovereign bond market movements with the limited risk premium,
compared to peripheral countries’ markets, and the pass-through from bond markets
captures the policy changes. Thus, I propose that the German sovereign bond yield

curve changes move with the information on monetary policy decisions in the tight
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windows.

I suggest that the term structure of government bonds is capable of representing
the monetary policy surprises, which is then be used to measure the pass-through of
surprises on asset prices. A similar structure is also employed by Inone & Rossi (2Z01R),
[none & Rossi (2019), and Korfela & Nelimarkka (2020). While, in the literature, there
are attempts to extract the monetary policy shocks by the shifts in the term structure of
interest rates, the novelty of this paper is estimating the term structure on an intraday
basis to employ an event analysis of policy decisions. Since, the previous papers use
daily data to estimate term structure shifts, the scope of their studies is only limited to
showing the longer-term effect of policy surprises.

I have a two-stage identification structure. Firstly, Nelson & Siegel (T987) model is
used to obtain zero-coupon government bond returns.

=)

—nm m
fim = Bro + Brae ™) +ﬁt,z:€("" : 3.1)
t,

where, f;, is the instantaneous forward rates and m is maturity#.

In equation B1l, §;; represents level, slope and curvature factors, respectively. Sim-
ilarly, Lifferman & Scheinkman (IT991) show that most of the variation of the yield
curve can be explained by level, slope, and curvature factors. Therefore, using those

foundations, I can infer that the intraday shifts of the term structure can be represented

4Coroneo_ef all (ZO0R) show that Nelso-Siegel model satisfies the no-arbitrage constraints both in-
sample and out-of-sample exercises.
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by the shifts of the shape factors of the yield curve.

G ag L etm), (3.2)

Tt1

ft,m - ft—k,m = Aft,m = Aﬁt,O + Aﬁt,le

I use German government bonds in a maturity spectrum of 1-, 2-, 5-. 10-, 20-, and
30-year, which has a 10-minute sampling frequency in January 2005 and October 2019
period to extract policy surprises from equation B72. I then standardize the policy shocks
to have a consistent structure within each other.

In this paper, I attribute level, slope, and curvature factors to the principal compo-
nents (PC). Although my approach mechanically seems quite different than the popular
methods such as Giirkaynak et al! (Z005)H, the approaches are quite similar, intrinsically.
In the identification setup of Gurkaynak et all (Z00Y), there are some restrictions such
as the second component having no effect on the short end of the yield curve, a similar
strategy is also used by Alfavilla_ef all (2019), Leombroni ef all (2018) do not rely on
any restrictions in the factor estimation process. Furthermore, Ceombroni ef all (Z0TR)
report that these approaches bring similar results. Therefore, since the data set’s maturity
spectrum starts with 1-year bonds in the short term and by the findings of Leombroni

ef all (ZOTR), I construct an identification strategy without putting extra restrictions on

5In the seminal study of Giirkaynak et al] (2003), the policy shocks are estimated using factor rotations
using short term maturity money market rates. AY = FQ + €, where AY is the short-term rate change
matrix for the announcements, F is unobservable policy shocks, and |omega is the covariance matrix.
Then, the latent factors can be obtained by the following rotation F' = AYQ. While factor rotations give
the policy surprises in the popular approaches, I rely on the Nelson-Siegel model to reflect the shifts in
the term structure, not only the short end of the curve, to represent policy surprises.
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equation B7. I give more details on the estimation process of monetary policy surprises

in the next section.

3.3.3 Estimation of ECB monetary policy shocks

To identify monetary policy surprises, I follow a high-frequency data event study ap-
proach and assume that shocks are priced by market participants in government bond
yields. In other words, I posit that intraday shape factors of the yield curve are sufficient
to represent the shocks. The ECB employs a two-tier communication policy. The ECB
first releases its monetary policy decision at 12:45 (GMT). Following the press release,
the press conference starts at 13:30 (GMT), where the President of the ECB communi-
cates the introductory statement, followed by a question and answer session. During the
sample period, the ECB has been conducting one meeting per month up to December
2014. Since January 2015, the frequency of meetings decreased to 8 meetings per year
spread over, approximately, 6-week intervals.

More specifically, I measure the magnitude of monetary policy shocks using the
changes of the German yield curves principal components (PC henceforth), which
are sufficient to represent market reaction at separate windows: press release (between
12:30 (GMT) and 13:00 (GMT)) and press conference (between 13:20 (GMT) and 14:40
(GMT)) windows. I use German sovereign bonds in representing ECB monetary policy

since German bonds have the lowest risk premium within the euro area and are typically
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consisted to be a flight-to-safety asset during periods of financial turmoil (Arghyrou &
Konfonikas (2017)). Alfavilla'ef-all (20T9) state that using German sovereign yields as
a proxy for euro-area risk-free rates makes no significant difference compared to OIS.
In addition, I obtain results using the French yield curve (available upon request) that
have only material discrepancies compared to using the German curve. This is due to
the PCs of those markets curves being almost identical, especially during the monetary
policy windows.

Similar methods are followed by Giirkaynak et al] (2005), Swanson (2021) and
Altavilla_ef all (2019) using rotated factors of interest rate changes to extract policy
indicators. Unlike Alfavilla_ef all (2019), who use the PC of overnight interest swap
(OIS) rate changes to estimate the latent indicators for ECB policies, I employ PC
analysis on German government bond yields. I assert that the changes in the PCs during
announcement windows are significant market-based indicators of monetary policy,
and therefore the first three PCs represent target rate, MPS, and QE monetary policy
shocks. I attribute the time variation of the first PC, level, to the target rate. The
second PC, the slope of the yield curve, reflects most of the information regarding
the future path of the monetary policy, thus the intraday variation of the slope factor
reflects the MPS shock. Additionally, I attribute the changes in the third latent factor
to QE shocks since the third PC of the yield curve gives the convexity/curvature of the

yield curve. Convexity measures the sensitivity of (modified) duration to interest rate
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changes. Eser ef all (2019) highlight that QE policies could be associated with lower
overall duration, which helps policymakers to achieve control among long-term rates
through the risk premium channel. Therefore, the changes in the convexity factor of the
yield curve (PC3) quantify the QE shock resulting from the ECB announcements. In this
paper, positive (negative) innovations in the monetary policy shock indicators represent
contractionary (expansionary) shocks.

Table BTl gives the descriptive statistics for the monetary policy shocks in the esti-
mation period. The Jacque-Bera test results indicate a normal distribution within the

estimation period of shocks.

Table 3.1: Descriptive Statistics

PC1 release Pczreleuse PC3releuse PC1 conference PCZ(,'onference PC3(,'onference
Mean 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.028 0.101 0.175 -0.124 -0.035 -0.121
Skewness -0.029 -0.659 -2.385 0.518 1.152 0.341
Kurtosis 4.334 6.207 12.368 2.626 5.809 1.466
Min -4.052 -4.508 -5.721 -3.436 -2.742 -3.354
Max 4.457 3.899 2.516 3.987 5.516 2.816
JB-Stat 124.475 266.738 1164.241 | 52.811 258.779 17.314
p-value 0.000 0.000 0.000 0.000 0.000 0.000
Negative Surprises | 79 59 62 86 85 90
Positive Surprises | 80 100 97 73 74 69
No. of Obs. 159 159 159 159 159 159

(1) The monetary policy surprises are given in the normalized terms January 2005 to October 2019
period. (2) p-value corresponds to Jacque-Bera test results p-value with respect to chi-square distribution.

Figure BT plots the average response of policy shocks indicators at the ECB an-
nouncement dates vs. non-announcement dates over the trading window 10:00 am
- 4:00 pm. The evidence in Figure Bl highlights that there is substantially higher

variation in the policy shocks during announcement dates, in line with the identifying
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assumption that policy information is released on the announcement dates. Moreover,
Figure B2 depicts that the QE shock becomes apparent around the MP announcements
for the post-2013 period, which coincides with the use of unconventional monetary

policies and a similar outcome is highlighted by Alfavillaef all (Z0T9).
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157 |.mori Release -
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1 L
10:00 11:00 12:00 13:00 14:00 15:00 16:00
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12 F T T : T : T T 3
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E‘: 10F |— — — — Non-Announcement
] seeseneenenns Release
F -
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@ : : i
E 1 1 1
4—1: 13:00 14:00 15:00 16:00

QE Shock

10:00 11:00 12:00 13:00 14:00 15:00 16:00
Time of the Day

Figure 3.1: Policy shocks on the announcement and non-announcement days of ECB.
The absolute value of average policy shocks, principal components, are given on the
announcement (solid line) and non-announcement (dashed line). The vertical dotted
lines correspond to the release of the statement (blue) and the start of the conference
(black). The figure represents the period between January 2005 to October 2019.

Figure B3 and B4 report the developments in the MP surprise indicators on selected
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Figure 3.2: Policy shocks on the announcement and non-announcement days of ECB.

The absolute value of average policy shocks, principal components, are given on the
announcement (solid line) and non-announcement (dashed line). The vertical dotted
lines correspond to the release of the statement (blue) and the start of the conference

(black). The

figure represents the period between January 2014 to October 2019.

dates. Firstly, in July 2013 during the press conference, ECB communicated in form of

forward guidance by stating the rates to remain at present or lower for an extended period

of time (see

Figure B3). This was a substantial change in the ECB’s communication

policy and providing forward guidance directly affected the MPS shock by lowering

expected fut

ure rates. Figure B4 shows the announcement in December 2015 that shows

94



Chapter 3. Intraday Monetary Policy Shocks and Asset Prices in the Euro Area: A
Latent Yield Curve Factor Approach

the market’s disappointment with the ECB policy decision. While, ECB announced to

decrease of the deposit rate by 10 basis points, which was in line with the expectations,

the QE program was not increased. This results in a sell-off in the markets including

bond markets and a negative, substantial increase in the factor, QE shock.
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Figure 3.3: Monetary Policy Shock on July 4", 2013

95



Chapter 3. Intraday Monetary Policy Shocks and Asset Prices in the Euro Area: A
Latent Yield Curve Factor Approach

Target Rate Shock

-0.03 T T T T
Target Rate Shock
seeeneennecennn: Riloase
“0.032 [ |srerreeecersnns Conference
Qo0 sE—T—— L | . 4
10:00 11:00 12:00 13:00 14:00 15:00 16:00
w1072 Policy Stance Shock
2.2F T T : T : T
o Policy Stance Shock
seesescannen: Release
1.8 « Conference
w
9 1.6
D.-‘ '1 '4 L 1 1 E 1 1
10:00 11:00 12:00 13:00 14:00 15:00 16:00
-3 QE Shock
i : : 2 : E : :
QE Shock
.4 |eeereeennn Release
ceseennns Clonference
-1.86
1.8 R, Y 1 : .
10:00 11:00 12:00 13:00 14:00 15:00 16:00

Time of the Day

3.3.4 Empirical models

Figure 3.4: Monetary Policy Shock on December 3'¢, 2015

In this section, I present the models that are used to analyse the impact of ECB monetary

policy shocks on French-German spreads and other variables of interest. Using equation

B2, I proxy for the effect of policy shocks, by using the changes in PC(1), PC(2), and

PC(3) which correspond to the target rate, MPS and QE shocks respectivelyfi. The

dependent variable in Equation B3 is the maturity spectrum of French and German

6The monetary policy shocks are standardized (Z-scores).
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government bond spreads, Spreadl. 1 control for the relative macroeconomic funda-
mentals between French and German economies using the ratio of Economic Sentiment
Indicators (esi) and the impact of the Global Financial Crisis using a dummy variable,
DOYFC T focus on the impact of monetary policy shocks on intraday intervals of release

window and conference windowH.

ASpread!; = ) + B D" APC(1)] + B3DTCAPC(2)] + BLDFCAPC(3)+
(3.3)
BIAPC(1)] + BLAPC(2)] + BIAPC(3)! + prhesi! + ¢

10’

where j = {Release Window, Conference Window} and i corresponds to maturity
spectrum of 5-year to 30-year bonds.

Furthermore, using the EA-MPD database, I test for the impact of monetary policy
shocks on Spain government bond returns versus Germany bonds for 10-year maturity

using equation B-4.

returnii = yé + y{DGFCAPC(l){ + yéDGFCAPCQ)f + 7£DGFCAPC(3)¥+
(3.4)
yiAPC(l)i + yéAPC(Z)i + yéAPC(?a){ + el{i,

7Sovereign bond spreads are measured in basis points. The French-German bond spreads are, on
average, at a 30 basis points level.

8] take the period from late 2007 to June 2009, the last date of NBER’s trough month of recession, as
GFC in my estimations. This period also coincides with extreme observations of the constructed monetary
policy surprises. During the European debt crisis, such extremity is not observed.
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where j = {Release Window, Conference Window} and i corresponds to Spain and
Germany government bonds.

The policy shock sensitivity of Euro-US dollar parityl is examined using equation

B.

Aeur] = 5 + 8/ DCFCAPC(1)] + 6,DOFCAPC2)] + 5] DCFCAPC(3)]+
(3.5
SIAPC(1)] + 6IAPC(2)] + §IAPC(3)] + €],
where j = {Release Window, Conference Window}.

Since intraday time series are unavailable for corporate bond yields and market-
based inflation expectations, I study the effect of intraday shocks on the daily changes
of those indicators using equation B.6. I measure the impact of monetary policy shocks
on corporate yieldsM. In addition, I examine the impact of intraday monetary policy
shocks on daily changes in inflation-linked swap (ILS) ratest, as a market-based inflation

measure.

°The changes in the parity are measured in pip points. The increases (decreases) in the parity
correspond to appreciation (depreciation) of Euro against US dollar.

10Corporate bond yields are measured in basis points. I use Markit’s iBoxx EUR BBB index yields that
have 3-year to 5-year and 5-year to 7-year maturities

T use 5-year 5-year forward (5Y5Y) ILS rates that are measured in basis points.
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AY! = aj + &l DFCAPC(1)] + o) DP"CAPC(2)] + o DCAPC(3)]+
(3.6)
@ APC(1)] + aAPC(2)] + &l APC(3)] + €.,
where j = {Release Window, Con ference Window}.
Y; = |CorporateYieldsy_sy, CorporateYieldsy_7y, 1LSsysy
Apart from the full sample analysis, to examine the impact of Forward Guidance

(FG) and Quantitative Easing (QE) on asset prices and indicators, I perform a subsample

analysis for the FG period and for the QE-period.

3.4 Empirical analysis

In this section, I present the regression results of the time series regression models
analytically presented in Subsection B34. Tables B2 to B9 report the regression
results. The market-based monetary policy shocks are sufficient to capture up to 35%
of the variation in French-German government bond spreads (Table B2). In most of
the maturities, I find the expansionary monetary policy to help narrow core Eurozone
sovereign bond spreads which is in line with [Alfavilla_ef all (2019). Although the target

rate and QE shocks are more coherent with this finding, the results for the MPS shock

12T define FG-period starting from July 2013, with respect to ECB’s first forward guidance communi-
cation, and onward. I define the QE period starting from January 2015, the introduction of ECB’s Public
Sector Purchase Program. Since both FG-period and QE-period are in the post-GFC era, GFC-dummy
interaction terms are excluded.
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are more ambiguous, especially during the GFC period. This outcome is suspected to
be a result of the information content of the monetary policy communications regarding
the policy stance. Andrade & Ferroni (2021) highlight the importance of forward
guidance by focusing on Delphic and Odyssean shocks and assert that even though both
shocks move the yield curve in the same way, their impact on financial conditions and
macroeconomic expectations may have opposite signs. Since this is out of the scope of
this paper, I leave this discussion as a further study. Additionally, the results indicate
that the magnitude of the QE shock on spreads becomes stronger as maturity increases.
Finally, while the MPS shock has a more, usual signed and, powerful effect on spreads
during the conference, the QE information is more apparent during the release window.

Moreover, I test for the impact of monetary policy shocks on 10-year government
bond yields during release and conference windows (see Table B3). This analysis
reveals that expansionary target rate and QE shocks reduce 10-year government bond
yields. The sensitivity of Spain’s sovereign yields to the QE shock, vys, is higher than
the German yields. Therefore, expansionary QE shocks help the spreads between Spain
and Germany get narrower.

Moving on to the monetary policy effects on the Euro-dollar exchange rate in Table
BR, the findings reveal that policy shocks can explain more than 60% of its variation.
The exchange rate reaction to monetary policy shocks can be summarized as follows:

expansionary surprises are associated with the depreciation of the euro, which is in
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line with the findings of Rogers et all (2014) for the US monetary policy. Although
the impact of monetary policy on the exchange rate is more limited during the GFC
period, the results still support a link between expansionary monetary policy and the
depreciation of the euro. Furthermore, the target rate shock is found to have a stronger
effect on exchange rates that is magnified by the new information released during the
conference window. The relative impact of QE on the euro-dollar exchange rate is higher
in the release window, while the MPS becomes prominent in the conference window.
Table B9 presents daily changes in corporate borrowing costs and market-based in-
flation expectations to the intraday monetary policy shocks. I associate the expansionary
monetary policy shocks with lowering corporate bond yields and so forth borrowing
costs. The findings reveal that the target rate and QE shocks are more effective on
corporate bond yields during the release window, while QE shocks are more apparent
during the conference window. Also, similar to the French-German spread, as the ma-
turity increases the impact of QE on yields also magnifies. Furthermore, the impact of
monetary policy shocks on inflation expectations, SYSY, unveils that the expansionary
target rate and MPS shock result in a downward shift in market-based inflation expecta-
tions. Similar to my findings following an expansionary shock, Nakamura & Sfeinsson
(POTR) report a negative and insignificant reaction to inflation, and Konfonikas ef all
(20T9) associate the expansionary policy with downward revisions in inflation indica-

tors. Conversely, the findings indicate that expansionary QE shocks stimulate inflation
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expectations in the post-QE period.

3.5 Conclusion

In this chapter, I identify euro area monetary policy shocks using German intraday
government bond yields. We show that the intraday latent factors of the German
government bond yield curve can act as indicators of euro-area monetary policy, namely
target rate, MPS, and QE shocks. I find that intraday monetary policy shocks have a
significant impact on a broad range of euro-area financial market variables, including
a sample of core and periphery countries sovereign bond yields and spreads, the euro-
dollar exchange rate, corporate bond yields, and market-based inflation expectations.
Finally, the results are more univocal for the QE shocks by emphasizing the importance
of QE policies. Expansionary QE shocks are found to lower sovereign bond yields and
spreads, and are associated with a weakening Euro against the US dollar, lower cost of
euro-denominated corporate credit, and higher inflation expectations.

To the best of my knowledge, contribution in the relevant literature is that I show for
the first time that bond-based Target Rate, MPS, and QE factors have a significant impact
on a broad range of euro-area financial market variables, including a sample of core and
periphery countries sovereign bond yields and spreads, the Euro-dollar exchange rate,
European corporate bond yields, and European market-based inflation expectations.

My analysis highlights that the ECB policy announcements are priced by the markets
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both in the press release and conference windows. The findings are in line with Rosa
(2011, who finds that the communication tone of policy decisions matters more for asset
prices than the policy decisions themselves. The findings of this paper have important
policy implications by emphasizing the significance of the policy surprises and the

associated information flows, especially those related to QE.
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Table 3.5: Monetary Policy Shocks and Government Bond Yields

Table 3.6: Monetary Policy Release Window

Germany 10-Year Spain 10-Year
All FG QE All FG QE
vo| -0.03 -0.47 -0.42 | -0.26 -0.99 -0.75
(-0.23) (-1.99)** (-1.39)| (-1.5) (-2.52)*** (-1.74)*
vi| 0.06 — — 0.35 — —
(0.23) — — 1(0.87) — —
v2| -0.66 — — -0.53 — —
(-2.1)** — — |(-1.11) — —
v3| 0.12 — — -0.07 — —
(0.37) — — 1(-0.15) — —
va| 0.17 0.47 0.51 0.04 0.20 0.27
(1.09) (1.16) (0.98) | (0.16) (0.3) (0.37)
vs| -0.02 -0.36 -0.93 | -0.29 -0.64 -1.91
(-0.15) (-0.75) (-1.64)| (-1.2) (-0.79) (-2.34)***
ve| 0.19 0.82 1.05 | 0.39 1.63 2.13
(1.33) (1.64) (1.68)*|(1.87)* (1.95)* (2.38)***
R?| 2.7% 7.5%  9.77% | 1.7% 4.2% 14.5%
Table 3.7: Monetary Policy Conference Window
Germany 10-Year Spain 10-Year
All FG QE All FG QE
vo| -0.08 0.27 0.16 0.14 0.31 0.26
(-0.46)  (0.89) (0.46) (0.38) (0.73) (0.5)
v1| -0.16 — — 0.69 — —
(-0.29) — — (0.62) — —
va| 0.23 — — 0.24 — —
(0.52) — — (0.27) — —
vy 0.05 — — -0.12 — —
(0.1) — — (-0.12) — —
va| 2.21 2.87 2.51 1.24 1.81 1.73
(9.68)*** (6.35)*** (5.24)***|(2.68)*** (2.78)*** (2.36)***
vs| -0.17 -0.05 -0.16 -0.28 -1.27 -1.16
(-0.78)  (-0.12)  (-0.31) | (-0.63) (-2.08)** (-1.47)
ve| 0.26 0.16 0.80 0.43 1.44 1.38
(1.19) (0.44) (1.8)* (0.96) (2.66)*** (2.03)**
R?| 49.9%  65.7%  67.0% 7.8% 52.0%  46.8%

(1) The results in the parenthesis indicates p-valug@5(2) ***, **, * show 1%, 5% and 10% statistically

significant coeflicients, respectively. (3) All indicates the period between January 2005 and October

2019. (4) FG corresponds to the period between July 2013 and October 2019. QE corresponds to the
period between January 2015 and October 2019.
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Table 3.8: Monetary Policy Shocks and Euro-US Dollar Parity

Release Window Conference Window
All FG All FG QE
00 -4.92 -10.46 -6.25 -0.18 -10.03 -8.28
(-2.12)*%*%  ([247)***  (-1.12) (-0.06) (-1.8)* (-1.46)
01 -8.48 — — -16.20 — —
(-1.56) — (-2.12)%* — —
02 -3.65 — -3.10 — —
(-0.64) — (-0.43) — —
03 -4.22 — -14.04 — —
(-0.78) — (-1.82)* — —
04 19.39 32.67 2541 32.33 51.60 39.72
(5.78)*%**  (4.46)***  (2.63)*** | (8.37)*** (6.17)*** (5.06)***
05 -5.04 7.25 -1.21 10.45 22.32 20.90
(-1.51) (0.84) (-0.12) | (2.82)*** (2.84)*** (2.48)***
06 9.15 19.44 23.82 7.65 8.90 21.78
(2.99)***  (2.15)** (2.07)*%* | (2.02)** (1.27) (B)*x*
R? 25.4% 40.7% 23.0% 42.1% 54.5% 64.0%

(1) The results in the parenthesis indicates p-values. (2) ***, ** * show 1%, 5% and 10% statistically

significant coefficients, respectively. (3) All indicates the period between January 2005 and October

2019. (4) FG corresponds to the period between July 2013 and October 2019. QE corresponds to the
period between January 2015 and October 2019.
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Table 3.9: Monetary Policy Shocks, Corporate Bond Returns and Inflation Expectations

Table 3.10: Monetary Policy Release Window

Corporate 3Y-5Y Corporate 5Y-7Y 5Y5Y Inflation
All FG QE All FG QE All FG QE
ap| -0.41 -1.23 -1.40 -0.27 -1.17 -1.43 033 020 025
(-1.19)  (-2.89)*** (-2.59)***| (-0.77) (-2.29)** (-2.26)**|(1.77)* (0.65) (0.67)
ar| 055 — — 0.27 — — 077 — —
(0.67) — — (0.33) — —  1.78)* — —
ay| -2.61 — — -1.74 — — -0.19 — —
(-2.71)*** — — (-1.79)* — — -041) — —
3| 2.29 — — 1.33 — — -0.59 — —
(2.36)%** — — (1.37) — — (-1.37) — —
as| 1.20 2.19 2.76 1.38 2.32 2.95 0.10 0.15 -0.50
(2.48)*** (2.97)%** (2.95)%** | (2.82)*** (2.62)*** (2.7)*** | (0.37) (0.27) (-0.78)
as| 0.86 2.63 2.30 0.55 2.18 1.68 -0.13 -0.09 0.14
(1.78)*  (3.01)y*** (2.26)** | (1.14) (2.09)** (1.4) | (-0.5) (-0.15) (0.2)
as| 0.27 0.83 1.10 0.30 1.05 1.25 -0.30 -0.04 -0.49
(0.64) (0.91) (0.98) 0.7 (0.96)  (0.95) |[(-1.23) (-0.06) (-0.63)
R?| 12.5% 28.9% 27.9% 9.4% 20.3%  18.7% | 5.2% -5.4% -4.8%
Table 3.11: Monetary Policy Conference Window
Corporate 3Y-5Y Corporate 5Y-7Y 5YSY Inflation
All FG QE All FG QE All FG QE
ap| -0.55 -0.70 -0.62 -0.38 -0.54 -0.60 | 032  -0.03 0.00
(-1.94)* (-1.87)* (-1.4) | (-1.37) (-1.25) (-1.24) | (1I.7)* (-0.1)  (-0.01)
ap| 152 — — 2.03 — — -0.14 — —
(1.99)** — —  |QT72)FEx — —  |(-029) — —
ay| 222 — — 1.99 — — -0.58 — —
(3.26)***  — — (3)*** — — (-1.3) — —
az| -1.17 — — -1.55 — — 0.77 — —
(-1.54) — — (-2.08)** — — (1.58) — —
as| 2.29 1.56 1.73 2.15 1.30 1.43 0.30 0.92 1.35
(6.39)*** (2.76)*** (2.83)*%**|(6.16)*** (2.01)** (2.15)*%* | (1.2) (2.27)** (3.22)***
as| 0.27 -0.28 -0.38 -0.17 -0.75 -1.12 | 0.38 1.52 1.56
0.77)  (-0.53) (-0.57) | (-0.51) (-1.24)  (-1.56) [(1.61) (3.99)*** (3.45)***
as| 0.66 1.53 1.18 0.87 1.96 1.47 0.03 -0.44 -0.78
(1.88)* (3.25)*** (2.08)** |(2.54)*** (3.64)*** (2.38)***| (0.1) (-1.29)  (-2)**
R?| 40.8%  44.1%  46.5% | 423%  429%  47.5% | 1.6% 215%  22.9%

(1) The results in the parenthesis indicates p-values. (2) ***, **_ * show 1%, 5% and 10% statistically

significant coefficients, respectively. (3) All indicates the period between January 2005 and October
2019. (4) FG corresponds to the period between July 2013 and October 2019. QE corresponds to the
period between January 2015 and October 2019.

107



Chapter 4

Intraday Variation in the Latent Yield Curve Factors and Stock

Markets

4.1 Introduction

I examine the impact of government bond market volatility on the stock market volatility
conditional on the shape of the yield curve. The changes in the yield curve have the
potential to reflect the macroeconomic stance. Therefore, the volatility of the yield curve
during different phases of the curve shifts can reveal precious information for the market
players. The changes in the interest rates affect the equity prices through both expected
cash flows and discount rates channels under the discounted cash flow model. In this
study, I try to identify the link between interest rate volatility and stock market volatility
in the high-frequency setting, which helps us to focus only on the impact of the discount
rate channel on stock prices. 1 show that the yield curve volatility is an important

determinant of equity market volatility. This approach particularly focuses on the yield
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curve moves to unveil whether the equity market volatility is associated with the bear
or bull bond markets and/or steepening or flattening of the yield curve. The findings
indicate that the transmission of volatility from bond markets to stock markets can be
represented using the shape factors of the yield curve, namely level, slope, and curvature.
I assert that the bond market volatility is transmitted to the stock markets depending on
the shape of the yield curve. Using the latent factors, I find that the positive transmission
of volatility from bond markets to equity markets is more apparent following a bull
steepener episode in the sovereign yield curves, whereas the transmission is generally
less significant when the yield curve moves in a bear flattening shiftfl.

In this study, I use German, French, Swiss, and the UK sovereign bond markets with
a maturity span of 1-year to 30-year, and countries’ generic stock market indices using
high-frequency data from January 2005 to October 2019. To specify the shifts in the
yield curve, I depend on the analysis of the seminal paper of Lifferman & Scheinkman
(T99T)), which states the level, slope, and curvature factors of the yield curve explain
almost all the variation in the yield curve. Therefore, I classify the bull (bear) bond
market when the change in the level factor is negative (positive) in the intraday close-to-
open periods. Also, the slope factor is used to define flatten (steepen) when the intraday

change in the slope factor is negative (positive).

! Although this result is quite striking since the positive transmission of volatility is higher when interest
rates decrease (bull market) and lower when rates increase (bear market), the reaction of the stock market
does not only depend on the direction move in rates but also the slope of the yield curve. Subramanian
ef-all (Z0TX) also find a similar result using the monthly return series of aggregate stock market indices.
The report indicates that the bull steepening yield curve is the worst environment for the equity markets,
while the bear flattening is the best environment in terms of returns.
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An old wall street proverb says that the central bank determines the level of short-
term rates while the expectations drive the yield curve, which explains the determinants
of interest rates ([Imanen (1995)). The short end and long end of the yield curve have
different underlying factors such as market expectations and risk premiums. The mar-
ket participants generally relate the expectations regarding economic conditions, and
monetary policy stance, with the short end of the yield curve. In a nutshell, as eco-
nomic growth increases (decreases), it is expected that both the real interest rates and
shorter-term inflation to increase (decrease). Also, bond markets price the expecta-
tions of monetary policy in the shorter term of the yield curve. Since monetary policy
reacts to macroeconomic conditions to eliminate overheating of the economy, a coun-
tercyclical policy setting follows economic developments. Thus, increases (decreases)
in the economic growth, analogously could be interpreted as clustering expectations on
tightening (easing) of monetary policy. In addition, the long end of the yield curve
is associated with the risk premium. In this paper, I separate risk premium into two
parameters: (common) risk premium and hedging premium following Cieslak & Pang
(202T). The (common) risk premium shows the risk-taking behavior of market players
while the hedging premium indicates the hedging demand pressure on the long-term
bond markets.

I generalize the discounted dividend model to develop the theoretical foundations of

the proposed framework on the relationship between the yield curve and stock market
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volatility. This model indicates that the covariances between growth expectations and
risk premiums, common risk premium, and hedging premium, determine the magnitude
of the transmission of volatility from bond markets to stock markets. Then, I test
the transmission of bond market volatility to stock market volatility using an extended
Heterogeneous Auto-Regression (HARQ) model with yield curve factor volatility.

To my knowledge, this is the first paper to provide a theoretical background for
the yield curve episodes and bond market to stock market volatility transmission in a
testable framework. Using the foundations from the findings of Cieslak & Pang (202T)),
this chapter provides the first attempt to explain the moves of the yield curve such as
bear, or bull, and flattener, or steepener, using the combination of the risk premium and
hedging premium. Secondly, this study unveils the empirical asymmetry that during the
bear flattener yield curve episodes the sensitivity of the equity market volatility to bond
markets is reduced, the bull steepener move magnifies the transmission from the bond
market to the stock market volatility. Another contribution of this chapter can be found
within the volatility forecasting context. I uncover that the yield curve’s level and slope
volatility increase the stock market volatility, and the volatility of the curvature factor
decreases the equity volatility. Moreover, including the yield curve factors’ volatility in
equity market volatility models improves the forecasting results within in-sample and
out-of-sample windows.

The rest of the chapter is structured as follows. Section reviews the literature,
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and Section B3 gives the theoretical intuition on the link between bond and stock market
volatility. In Section B4, I provide the information regarding data and methodology by
detailing the estimation strategy. In Section B3 I present the results of the empirical

models. In Section &6 I provide a brief conclusion of this research.

4.2 Literature Review

I examine the impact of government bond market volatility on stock market volatility
conditional on the shape of the yield curve. The changes in the yield curve reflect
the macroeconomic expectations, and therefore the volatility of the yield curve during
different phases of the yield curve shifts reflects precious information about market
players. The interest rate changes have an impact on the security prices by both affecting
expected cash flows and discount rates. I identify the link between interest rate and
stock market volatility using intraday data, which paves the way to focus solely on the
impact of the discount rate channel on stock prices. This approach concentrates on the
yield curve movements to unveil whether the equity market volatility is associated with
the bear or bull bond markets and/or steepening or flattening of the yield curve. The
findings indicate that the transmission of volatility from bond markets to stock markets
is represented by the shape factors of the yield curve, namely level, slope, and curvature.

In the dividend growth model, the variation in the stock prices can be attributed to the

dividend flow and discount rates. In the earlier attempts to link the stock price volatility,
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Shillerd (TYRT) states that the stock market is too volatile to be solely attributed to the
variation in future real dividends, or cash flows while asserting that the high volatility
can be justified by the movements in the interest rates. Therefore, the expectations
regarding systematic factors, such as inflation and economic growth, are priced in
stock market returns in the discounted cash flows channel. Since the seminal paper of
Chenef all (T986), the literature on the importance of systemic state variables, such as
macroeconomic factors, on asset returns attempted to be associated. In this sense, the
systematic factors influence stock returns by affecting expected cash flow and/or discount
rate channels. In addition, the intertemporal asset pricing theory by Cox ef all (TY8Y)
state that the equilibrium asset prices depend on the state, underlying macroeconomic
variables. In the theory, the discount rate is formed by depending on expected returns,
and thus the price change can be reflected by discount rates from the variation in expected
returns. Accordingly, the market volatility is also tried to be associated with the state
variables, such as economic activity (e.g Officed (T973); Schwerf (1989)). Furthermore,
Cuflerefall (T989) assert that the innovations regarding macroeconomic news can explain
up to one-third of the stock market variation. The indicators of both past and future
systematic factors can explain the return volatility. Therefore, not only the realizations
but also expectations on macroeconomic factors are effective on stock market volatility.
Flannery & Protopapadakis (20T19) find that exposures to the changes in macroeconomic

factors are effective on equity market returns and conditional volatility. On the contrary,
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while trying to incorporate the squared bond yields and term premium in the conditional
stock return volatility structure, Flannery & Protopapadakis (2015) observe those factors
to be ineffective on the conditional volatility. There is a strong link between economic
factors and stock market volatility in the short term and long term horizons (see e.g.
Engle et al] (2013); Engle & Rangel (Z00R)). In addition, Engle & Rangel (Z008)
state that macroeconomic factors and their volatility, and short-term interest rates have
a significant effect on equity market volatility.

Volatility is an important indicator for investors’ decision-making and policymakers.
I hypothesize that the stock market volatility is directly linked to the bond market
dynamics that reflect the market participants’ perceptions regarding growth expectations
and risk premium. This framework depends on the extant literature focusing on the link
between the stock market volatility and the interest ratesB.

The yield curve itself indeed provides more information than just showing a term
structure of interest rates. In this fashion, Kessel (T971)) finds the term structure of interest
rates being synchronized with the business cycle. Moreover, Fama (TY86) observes the
shape of the yield curve changes with respect to economic activity that the curve is upward
sloping during the strong economic activity episodes, while it turns out to be inverted

and hump-shaped during recession periodsB. Therefore, the information embedded in

2While there are some studies correlate the discount rate changes with the market volatility (see Chen
ef_all (T99Y9)), some studies fail to provide significant evidence on public information flow led market
volatility (see Berry & Howe ([994)).

3Fama (T9X6) asserts that the relationship between the term structure of interest rates and the business
cycle is not always monotonic. This may be a result of consumption preferences of the economic agents to
be stable, not high, during good times and preferring low consumption during recessions (Harvey| (T98X)).
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the yield curve is used for predicting future economic activity (Harvey| (T988); Sfock &
Watson (T989)). Indeed, the yield curve carries information value regarding not only
consumption growth, or economic activity, but also inflation dynamics depending on
inflation persistence(see e.g. Esfrella & Mishkin (T997)). Wheelock & Wohat (2009)
state that the persistence of inflation reflects the underlying monetary regime. In this
study, I focus on the yield curve to reflect the economic growth dynamics depending on
studies that show the forecasting power of the term structure of the yield curve for growth
is independent of the current and future monetary policy (see e.g Estrella & Hardouvelis
(T997T)); and Esfrella & Mishkin (T997) ). Thus, I can infer that the yield curve provides
robust information regarding macroeconomic expectations.

Market prices reflect the information arrival from the market microstructure perspec-
tive. Ross (T989) shows that under no-arbitrage conditions the volatility of asset prices
comes from the volatility of information flow. Similarly, Andersen (T996) presents
that while daily returns are conditional normally distributed with information arrival,
and variances exhibit the information arrival intensity. Therefore, the volatility process
incorporates the information flow, while asset prices are adjusted based on available
information. Engle et all (TY90) explain the volatility process from the perspective of
the arrival of new information that causes clustering and the heterogeneous reaction of
market participants. Also, Engle et al] (T990) assert that there exists the transmission of

volatility across financial markets.
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In traditional portfolio management, managers try to reduce the overall riskiness of
stock and fixed income securities via portfolio diversification with stocks and bonds.
Although diversification helps to reduce exposed portfolio risks, the benefits of diver-
sification can be undermined by the volatility of asset classes. Therefore, the volatility
connectedness between the stock and bond markets carries great importance for financial
market participants. In this framework, Fleming et al] (T99R) investigate the information
and volatility linkages between the stock, bond, and money markets. Fleming et al!
(TY9R) propose a model that shows the information flow to generate volatility linkages
across markets, which is caused by fluctuations in investors’ perceptions in all markets
or perception changes in one market, and transmission of volatility through hedging
demand@.

I try to link the shifts in the shape of the government bond yield curve with macroe-
conomic expectations and risk premium. These framework hypotheses that changes in
macroeconomic perceptions of market participants, due to the public or private infor-
mation flows, cause the price formations in the government bonds in the short term,
and risk premiums in the long term. Then, I use the volatility of the shape factors of

the yield curve in explaining the stock market volatility during the different episodes

4Fleming et al] (TY9%)’s model forms a trading model, where trade is initiated by information flows.
In a frictionless market, their model implied that hedging demand and speculative demand following
any news-related trading activity causes volatility changes to be perfectly correlated across markets.
However, in practice there exist position limits, capital constraints, and trading costs that may reduce the
information-driven volatility spillover. Moreover, empirical results show that there are strong volatility
spillovers across markets, but the volatility linkage is not perfectly correlated. Therefore, markets do not
share the same information process.
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of yield curve shifts with an assumption of those shifts are related to expectations on
fundamentals. Although the implications of changes in the expectations are also priced
in the stock market, and therefore in the stock return volatility. I focus on bond markets
as a primary, and direct recipient of the modifications in macroeconomic perceptions.
My approach depends on the impact of macroeconomic news releases on bond and stock
markets. While, bond markets are found to be significantly affected by macroeconomic
fundamentals (Fleming & Remolona (1997); Balduzzi ef all (2001); Green (2004); and
Pasquariello & Vegd (200(07)), stock markets are evidenced to have weaker connectedness
with the macroeconomic news (Boyd et al] (2005); and /Andersen, Bollerslev. Diebold
& Vega (20075)). Therefore, I can infer that information flows from the changes in
macroeconomic perceptions are priced in the stock markets through the discount factor
channel that constitutes the grounding factor of volatility transmission of bonds, through

pricing factors, via the yield curve shifts’ episodes to stock markets.

4.3 Discounted Dividend Model

The determinants of stock prices can be attributed to three primary factors: the risk-free
interest rate, expected dividend growth, and the risk premium (Boyd et al] (2005)). I can

conceptualize this relationship considering the Gordon (constant) growth model.
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In the Equation B1l, P is the stock price, D is the current dividend, g is the expected
dividend growth rate and £ is the cost of capital, which consists of the risk-free interest
rate and the equity premium.

In this paper, I investigate the transmission of bond market volatility to stock market
volatility using intraday data. Since during intraday partitions, the current dividend and
dividend growth rate will be unchanged, I change the Gordon model using D = D(1 +g)
and k = k — g. Then, P = Dk~

In this context, I assume that the cost of capital, k, has a logarithmic-linear process,
which incorporates the expectations of economic growth (output), g¢, (common) risk
premium, w'?, hedge premium, w"P, and real rates, r. This model is similar to (CiesIak
& Pang (2072T)) that hypothesizes the common shocks moving both the stock markets and
the yield curve are the innovations regarding monetary policy, economic fundamentals,
and risk premium developmentsB. In addition to risk factors and economic fundamentals,
real interest rate innovations are the major determinant of nominal interest rate variation

and thus the discount rates (Campbell & Ammer (1993); and Fama (1990)).

ke = (8 (@) (w)™) ™ ()™ e, (4.2)

where [ assume common risk premium and hedging premium are contemporaneously

5In this study, I aim to generalize the yield curve dynamics through the lens of economic fundamentals
that are also the major driver of monetary policy decisions and shocks. Thus, I propose a theoretical
framework that focuses only on economic growth expectations and the risk premiums.
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orthogonal to each other. Then,

log(k;) = ag + ay log(gf) + an log(w,”) + a3 log(a)lhp) + aqlog(r;) + €. 4.3)

The Gordon model holds even when the growth rates, interest rates, and risk premi-
ums are not constant (Jagannathan et al] (2001), and Boyd et al] (2005)). Moreover, I

transform Equation BTl into log-linear form as, log(P;) = log(D;) — log(k,). Then,

log(P;) = log(D;) — [ + a1 log(g?) + az log(w;”) + a3 log(wthp) + aylog(ry) + |,
4.4)

and the one-period return of stock prices is calculated as follows:

Allog(P,)) = Allog(Dy)) — (a1 Allog(g))) + arA(log(w”)) + asA(log(w,”)) + asAlog(r)) + Aler) .
4.5)
I use intraday data in order to approximate the continuous-time dynamics of asset
price and returns, using discrete equidistant partitions. Within a short period of time, at
intraday intervals, the change in dividend and real interest rate is economically negligible

and does not affect the measurement of volatility, which paves us the way to ignore those
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developments using high-frequency data.

I follow the methodology of Andersen & Bollerslev (T99R) for the estimation of
realized volatility. As the intraday sampling frequency increases sufficiently, the cumu-
lative sum of intraday returns converges to genuine unobserved volatility, which is the

so-called realized volatility (RV) (Andersen & Bollerslev (T998); Andersen, Bollerslev!

Diebold & Labys (2003); Barndorff-Nielsen & Shephard (20072, 2004)).

n

2 n 2 n 2
RVt +h i) = (Alog(PH%)) =’ ) (A(log(gtim))) ra? ) (A(log(w:fi))) +

i=1 i=1 i=1

n 2 n
@3’ Z (A(log(wthj7 o ))) + 2012 Z (A(log(gf L in ))A(log(wtrfm)))+

i=1 i=1

n
20103 ) (A(log(g;m))A(log(wf‘fi») +o2,
i=1 " "
(4.6)

and therefore, shortly the stock price variances can be represented by a combination

of the variance of growth expectations and risk premium and their co-variances.

2.0 .22 2 2 2 2 2
Oy Z Q1 0pe + @ 0p + 3”0, + 20120 (ge ) + 2(1’1@'30-(ge’whp) + 0

“4.7)

Therefore, the volatility of stock prices depends on volatility exposure of change
in economic growth expectations, common risk premium and hedging premium, and

the co-variances between economic growth expectations and risk premiums. The sign
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and magnitude of transmission of volatility from bond markets to stock markets depend
on the co-variances between economic fundamentals and risk premiumsB. This paper
aims to use the changes in the shape factors of the yield curve in order to represent the
underlying factors that move the bond markets. Thus, I try the joint modeling of stock
market volatility and bond market volatility. There exists immense literature focusing
on the identification of shocks that affect both stock price and bond returns, and also
the volatility structure. In this context, Campbell & Ammer (T993) use a dynamic
framework to account for the variance of stock price returns using both stock and bond
markets using an accounting identity rather than studies focusing on stock market return
variability in isolation of a single market (Campbell & Shiller (T988); Campbell (T99T)).
In a similar setting, Cieslak & Pang (2021)) analyses the shock dynamics for stock and
bond markets using variance decomposition. The findings reveal a crucial difference in
the reaction of nominal yield changes with different maturities to economic fundamentals
and risk premium shocks. It is reported that most of the 2-year yield change variation
is resulted from the economic fundamental shocks, whereas 10-year yield variation
is mostly caused by the risk premium shocks. Therefore, it can be inferred that the
innovations in fundamentals are a short-term phenomenon, while risk premium shocks
are related to the long end of the yield curve.

In this perspective, I can link the episodes of the shifts in the shape of the yield

¢Taking o, @z, @3 given in Equation BT, co-variance terms determine the sign and power within the
volatility structure since the variance terms are positive definite.
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curve to the economic fundamental and risk premium shocks, whether the yield curve
moves in bear flattener, bear steepener, bull flattener, or bull steepener. First of all, the
bear flattener move corresponds to the yield curve shifting upwards while the short-term
rates increase more. [ associate the bear flattener with positive growth expectations and
a negative risk premium. In a positive growth economy, Ag® > 0, I expect the risk
premium to decrease, Aw'” < 0, and demand for hedging to decrease (less demand for
long term bonds), Aw"™ > 0, where the risk premium shock dominates. In this context,
the yields increase at the short end of the yield curve more than at the long end. Thus,
the transmission of volatility from bond markets to stock markets is reduced due to
negative co-variance between the growth expectations and risk premium, o7ge o,rr) < 0
(see Equation B-6 and B77). Moreover, when the yield curve moves in a bear steepener,
there is an upward shift of the yield curve while the change in the short-term yields
is less prominent than the change in the long term. Thus I can infer that the move
in the yield curve is not caused by the growth expectations, Ag®?, whereas either the
common risk premium, w'? > 0, or hedging premium Aw"” > 0 is positive, or both. In
this scenario, the transmission from bond markets to equity markets is positive but not
primarily driven by the risk and expectation co-variances. Similarly, a bull flattener move
in the yield curve is observed when the yields decrease on average while the decrease
in the long-term yields is more eminent than the short term. The limited downward

move in the short term indicates that there is only a little information I can infer from
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the short-term regarding growth expectations, Ag®?. Likewise, since the interest rates
are pushed downward on average along the maturity span, both risk premium and/or
hedging premium (demand) decreases, Aw'” < 0 and/or Aw”” < 0. Therefore, the
co-variances between growth expectations and risk premiums have a limited impact on
the transmission of volatility through the yield curve to stock markets. Moreover, the
bull steepener move in the yield curve is observed when the yields decrease on average
while the decrease in the short-term yields is more prominent than in the long term. The
decrease in the growth expectations, Ag¢ < 0, can be inferred from the move since the
dominance in the downward shift in the short end of the yield curve. In this environment,
I observe that the risk premium increases, Aw'” > 0, but the risk-averse behavior of
market participants put heightened demand for long term government bonds, which can
be reflected as an increase in hedging demand, and thus Aw”? < 0. Therefore, the
flight to safety behavior of financial markets to hedge themselves magnifies the volatility

transmission from bond markets to stock markets.

4.4 Data and Methodology

4.4.1 Data

In this paper, I try to analyse whether the volatility in the term structure of interest
rates influences the equity market volatility and this effect can be used in explaining

volatile episodes of equity markets. In order to show the relationship between bond
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and equity market volatility, I depend on the analysis of major European markets. In
this analysis, I use UK, Germany, France, and Switzerland sovereign bond markets, and
equity markets’ intraday data in the January 2005 —October 2019 period by relying on
Thomson Reuters Tick History (TRTH) database. The bond maturity spectrum consists
of 1-, 2-, 5-, 10-, 20- and 30-year assets. The dataset relies on quotes for "on-the-run",
generic, instruments which are more liquid in terms off-the-run securities. To represent
the equity markets, I use FTSE100 for the UK, DAX40 for Germany, CAC40 for France,
and SSMI for Switzerland.

The intraday sampling frequency is 10-minutes for sovereign bond markets and
S5-minutes for the equity markets. Using high-frequency data, there exists a trade-
off between microstructure noise and liquidity. Therefore, I prefer to use different
sampling frequencies in estimating volatility indicators. I provide a more comprehensive
discussion of the optimal sampling frequency in Chapter O.

In this study, the zero-coupon rates are obtained following Nelson & Siegel (T9K7),
which led us to extract the intraday latent factors of the yield curve. Since the seminal
paper of Lifferman & Scheinkman ([[991), which states the first three latent factors give
level slope and curvature of the yield curve, the latent factor approaches gain immense
popularity.

Using those developments, I define the bull (bear) bond market as the negative

(positive) shift in the level factor, and flattener (steepener) of the curve is defined as a
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Table 4.1: Yield Curve Shifts’ Distribution

Swiss German French UK

Bear Flattening | 21.08% 21.08% 13.19% 12.53%
Bear Steepening | 27.50% 27.50% 33.53% 34.44%
Bull Flattening | 28.08% 28.08% 38.08% 36.81%
Bull Steepening | 23.33% 23.33% 15.19% 16.22%

decrease (increase) in the slope factor. I give more information on how I construct those
factors in the next section.

The distribution of yield curve shifts is given in Table B1l. According to the distribu-
tion of yield curve shape changes, the most frequent move that the yield curve exhibits
are bull flattener, and that is followed by bear steepener. Therefore, I can infer that the
expansionary monetary policies, especially after the Global Financial Crisis (GFC), put
downward pressure on the yield curves by also limiting the term premium, which in turn
flattened the yield curve. Also, when there is a bear market for the government bonds,
this generally increased the risk premium and causes the yield curve to steepen. In terms
of bull versus bear markets, although there are more bull days present in the sovereign
bond markets in the estimation period, there is no clear dominance between the two
distinct market forces.

The basic idea on how to compute realized indicators lies in the stochastic price

process as following:

leg(Pt) = /l[dt + UtdW[, (48)
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where g is the drift, and oy is the instantaneous volatility. W; denotes the standard
Brownian motion.

Then, daily integrated variance (IV) is defined as:

t
v, = / o2ds. (4.9)
t—1

Having largely enough intraday partitions, the realized variance (RV) can be defined
as the sum of squared high-frequency returns.
i
RV, = > 1l (4.10)
M
where M is the number of intraday partitions, and M = 1/A, as A is the intraday
return period. The intraday return is calculated as r;; = log(Pi-14+ia) — l0g(Pi—14(i-1)a) B
Barndortt-Nielsen & Shephard (2002) and Bollerslev ef all (2(116) state that according
to the asymptotic distribution theory the consistency of the realized estimators depend on
the intraday sampling frequency, or number of partitions. In theory, the approximations

of integrated variation and realized variance is sustained by infinite partitions, but in the

empirical estimations M is limited. The resulting error between two are given as,

RV, = IV, + n;, 1, ~ MN(0,2AIQ;). 4.11)

I provide more theoretical foundations on realized variance indicators and high frequency distribution
in Chapter D
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The integrated quarticity (/Q) is obtained by 1Q; = ft t_l O'f ds. This indicator can
also be consistently estimated by the realized quarticity (RQ) under the sufficient number
of intraday partitions.

RQ: = % Z r (4.12)
M

In this study, the aim is to show the relationship between the bond market and equity
market volatility by controlling the different episodes of yield curve shifts. In Table B2,
I give the descriptive statistics on not the raw data but the volatility’s for the markets. I
computed the volatility (RV'/?) by the sum of squared returns for both the equity markets

and the shape factors of the yield curve, separately.

4.4.2 Empirical models

In the HAR model of Corsi (2009), it is assumed that the heterogeneous markets hy-
pothesis (HMH), which depends on market participants’ non-homogeneity in terms of
expectations and behavior, is valid. Therefore, the general pattern of volatility structure
can be generated from three different frequencies. The high-frequency component for
short-term traders is reflected by daily volatility, for medium-term traders by weekly
volatility, and for investors focusing on long-term trends by monthly volatility. Although
the HAR structure does not externally impose long memory in the volatility process,

the cascade type model generates slow decaying memory for the forecast horizons. To
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Table 4.2: Descriptive Statistics

Germany

Switzerland

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

Rvequity RVlevel RVslape RVCWleWe RVequity RVlevel RVslope RVCW‘VGlWe
1.3% 9.1% 1.8% 1.9% 1.3%

Mean | 7.2% 1.8% 1.9%
Median | 6.0% 1.4% 1.2% 0.9% 7.8% 1.4% 1.2% 0.9%
St. Dev. | 0.043 0.015 0.020 0.012 0.055 0.015 0.020 0.012

Min 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Max | 64.7% 23.1% 27.3%  14.9% | 73.7% 23.1% 27.3%  14.9%
Skewness| 3.662 3.692 4.097 3.701 3.285 3.692 4.097 3.701
Kurtosis | 26.946 30.006 32.867 26.192 | 23.526 30.006 32.867 26.192

France United Kingdom
1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Rvequity RVlevel RVslope RVCWWUWE Rvequity RVlevel Rvslope Rchrvature
1.8% 1.9% 1.3%

72% 1.8% 1.9% 1.3% 9.1%
0.9% 7.8% 1.4% 1.2% 0.9%

St. Dev. | 0.043 0.015 0.020 0.012 0.055 0.015 0.020 0.012
Min 0.0%  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Max 64.7% 23.1% 27.3%  14.9% | 73.7% 23.1% 27.3%  14.9%

Skewness| 3.662 3.692 4.097 3.701 3.285 3.692 4.097 3.701

Kurtosis | 26.946 30.006 32.867 26.192 | 23.526 30.006 32.867 26.192

(1) The descriptive statistics are given for daily equity market and, bond markets’ shape factors
volatility. (2) Mean, median, minimum, and maximum statistics are given in percentage units. (3) The

Mean
Median | 6.0% 1.4% 1.2%

estimation period is between January 2015 and October 2019.

represent weekly and monthly trends, I use simple averages as below.

RS
RV;.t,, = —— > RV,, where t; < 1. 4.1
1t t2—t1+l; t, wnere I 2 (4.13)
Then, weekly and monthly averagesB are given in the Eq. (B14) below:
=
RVi_s4—2 = 1 RV, (4.14)
t=t-5

8] prefer to use non-coinciding periods in the HAR variables to avoid double counting lagged obser-

vations.
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1 t—6
RVi26 = 3= > RV (4.15)
t=t-22

Although. the seminal work of Corsi (2009) is able to cover short-term to long-term
dynamics in volatility structure, using intraday data is prone to microstructure noise
and forecasts are subject to measurement error. In order to alleviate these weaknesses,
Bollerslev_ef all (2016) introduce the HARQ model, which incorporates the realized
quarticity into the HAR structure. Therefore, the coefficients of forecasting regression
become time-varying which helps to reduce the estimation errors.

Then, HARQ-RV model B is given in Eq. (E16):

RViin-1: = Bo + BaRVi—1 + Ba1 RV, * RQtlﬁ + BwRVi=s5:1-2 + BnRVi—22:4-6 + €,

(4.16)
where h corresponds to forecast horizon. I decompose the continuous and discontinuous
part of RV using Barndorff-Nielsen & Shephard (2004) methodology. Then, I can
employ extended HARQ models such as HARQ-RVJ model and HARQ-CJ model of
Andersen, Bollerslev & Diebold (2007) with the discontinuous jump variations. The
inclusion of jump parameters in the volatility forecasting regressions enable us to measure

the possible magnitude of daily jumps on the future volatility and its significant life span

9For simplicity, I report the general form of HARQ model, while the estimations are conducted using
realized volatility, RV'/2, in exchange for realized variance, RV.
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over the investment horizon.
I identify the significant jump series using jump ratio test of Huang & Tauchen

(2005)

J, = L5y, (RV, — BV))", 4.17)

where ¥, is the cumulative distribution function at @ confidence level. In this paper,
I choose @ = 0.999, which corresponds to a critical value of 3.0902. In addition
(RV; — BV;)* stands for max(0, RV; — BV;) and I, is the indicator function that takes
values of unity when there is a significant jump.

Then, the continuous part quadratic variation accounts for the significant jumps given

in Eq. (EIR).

C, =RV, - . (4.18)

I also compute weekly, C;,_s.;_», and monthly, C;,_»>.;_¢, continuous variation series,

C, similar to Eq. (B14) and Eq. (E19).

R 1S5
G542 = I Z G, 4.19)
t=t-5

10T provide more detailed information on jump identification in Chapter D.
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Cimio= > G (4.20)

Therefore, it becomes natural to extend the HAR-RV model to include the effect of
continuous and jump variation separately.

HARQ-RVJ model:

RViin-1:0 = Po + BaRVi-1 + Ba1RVi—1 * RQ:ﬁ + BuwRVi—si—2 + BuRVi-22:-6 + BjJi-1 + €.

(4.21)

HARQ-CJ model:

A 1 2 A A N
RVish-1:0 = Bo + BaCi-1 + Ba1Ci—1 * RQ,fl + BwCi-s:1-2 + BnCr-22:1-6 + BjJi-1 + €.

(4.22)
In the tables B3 to T4, I use following models that incorporates one-day lag of RV.

Encompassing model with yield curve factors (HARQ-RV-YC model):

4

4 4
RVt+h—l:t = ,80 + ZﬁliSdlevel,t—lli + ZﬁsiSdslope,t—lli + ZﬁciSdcurvature,t—lli
i=1 i=1 i=1

12
t—1

+BaRVi—1 + Ba1RV,—1 * RQ.'T + BwRV; 512 + BuRV;22.46 + &,

(4.23)
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Encompassing model with yield curve factors (HARQ-RVJ-YC model):

4
RVispn_1:=Bo +

4 4
IBIiSdlevel,t—IIi + Z ﬁsiSdslope,t—lli + Z ﬁciSdcurvature,t—lli
i=1

i=1 i=1

+BaRVi-1 + Ba1RV;-1 * RQ,I_/? + BuwRVi—si-2 + BuRVi-22:-6 + BjJi-1 + €,

(4.24)

Encompassing model with yield curve factors (HARQ-CJ-YC model):

4 4 4
RViih-14 = ﬁO + Z IBIiSdlevel,t—lli + Z ﬁsiSdslope,t—IIi + Z ﬁciSdcurvature,t—lli

i=1 i=1 i=1

+B4Ci-1 + Ba1Cro1 * RQ,IE + BuwCi=si—2 + BuCi-22:-6 + BjJi-1 + €,
(4.25)

where sdi, k = [l evel, slope, curvature] shows the volatility of intraday sovereign bond
yield curves. Also I is the indicator function showing bear flattener yield curve,Alevel >
0, Aslope < 0, I, is the indicator function showing bear steepener yield curve,Alevel >
0, Aslope > 0, I is the indicator function showing bull flattener yield curve,Alevel <
0, Aslope < 0, and I is the indicator function showing bull steepener yield curve,

Alevel < 0, Aslope > 0,.
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4.5 Empirical analysis

4.5.1 In Sample Results

Tables B3 to give the in-sample forecasting results that help us to test for the validity
of volatility transmission from bond markets to stock markets framework. In the tables
to BT4, T use following models that incorporates one-day lag of RV, ¢ — 1, while
In the Tables B13 to B78, I use following models that incorporates two-day lag of RV,
t — 2 instead of one-day lag of RV. Since the effect of bond market shape factors can be
captured by the daily lag of realized stock market volatility, two day lagged RV results
are also given.

According to the volatility incorporated dividend growth model, I expect that Sy,
to be the weakest positively significant or strongest negatively significant, while g;, to
be the strongest positively significant or weakest negatively significant coefficients for
k = [L,s,c]. Theresults verify my theory that the bear flattening is the better environment
for stock market volatility, while bull steepener is the worst plausible environment for
the equity market volatility. This result is quite striking since it indicates that decreasing
interest rates cause the stock market volatility to increase, and vice versa.

The empirical results are in line with the extended dividend growth model in Section
since the bear flattener moves contribution to the equity volatility is, generally,
negative and insignificant. In addition, the positive coefficient is observed when the

move is bull steepener.
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Moreover, the sample forecasting results show that the volatility in the curvature of
the yield curve helps stock market volatility to be tamed, especially when the yield curve
shifts in a bear flattener move. This relationship fades away as the forecasting horizon

increases.

4.5.2 Out of Sample Results

In this section, I provide the out-of-sample forecasting results of forecasting models. In
comparing the forecasts using different models, I use the Diebold & Mariand (T995)
test. I provide 200-day out-of-sample forecasting results for the models in 1-day, 5-day,
and 22-day forecasting horizons. The results indicate that the inclusion of yield curve
factors as explanatory variables for the HARQ models improves both in-sample and out-
of-sample forecasting power. While, the baseline HARQ models, models without yield
curve volatility indicators, bring better forecast to result in some cases, these findings

are limited.

4.6 Conclusion

In this study, I aim to test whether the inclusion of yield curve volatility improves the
stock market volatility forecasting. Using the foundations of the dividend growth model,
I extend the model in order to incorporate and relate the shape of the yield curve that

affects the transmission from bond markets to equity markets volatility. Strikingly, I
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show that the transmission of volatility from the bond to equity markets is the highest
when the yield curve moves in bull steepener and the transmission is limited as the curve
demonstrates a bear flattener move. I try to explain these results by separating the risk
premium and hedging premium following Cieslak & Pang (Z021) that is inherent in
the sovereign yield curves. In an extended HARQ framework, I empirically show the
inclusion of yield curve volatility to help to get more robust forecasts and I provide the
estimations that show the relationship is valid not only in theory but also in estimations.

To my knowledge, this is the first attempt to provide a theoretical background on the
transmission of bond market volatility to stock market volatility from the yield curve’s
shape perspective in a testable HAR framework. Also, this study is the first to assert
that while the bear flattener shift in the yield curve reduces the transmission and bull
steepener move magnifies the volatility transmission to the stock markets. Moreover,
the variation of latent yield curve factors has different effects on the equity market
volatility. In addition, the results indicate that the inclusion of the yield curve shape
factors’ volatility in the equity market volatility forecasting models improves both the
in-sample and out-of-sample forecasting power of the HAR-type models.

This study emphasizes the potency of risk premium and hedging premium in deter-
mining the transmission of volatility from bond markets to equity markets. The findings
of this paper have important policy implications for policymakers and portfolio man-

agers by uncovering the relationship between the shape of the yield curve and the equity
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market volatility.
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Chapter 5

Concluding Remarks

In this thesis, I combine three different studies using the information embedded in the
term structure of interest rates. Particularly, I provide analyses for the bond market
volatility forecasting, monetary policy impact on the bond market and the representative
capacity of bonds’ yield curve fitting parameters as latent monetary policy factors, and
the transmission channel of bond market volatility to equity market volatility conditional
on the term structural changes.

In Chapter [ of this thesis, I contribute to the literature from the volatility forecasting
perspective by proposing a robust forecasting structure and also by investigating the
bond market volatility reaction to the monetary policy. In this chapter, I examine the
European government bond markets, Germany, France, Switzerland, and the UK, in
the HAR (Corsi (2009)) model. I examine (1) whether the intraday jumps improve
the forecasting efficacy in the European bond markets; (2) the bond market volatility

jumps from the monetary policy perspective; and (3) whether the pre-announcement
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drift, widely known as pre-FOMC drift, is present in the volatility structure.

By investigating the European bond markets in the January 2005 and October 2019
period using intraday data in 10-minute intervals, I uncover the term structure of realized
volatility and jumps for a set of maturities. There exists a mass literature on HAR models
with different specifications using stock market and commodity market data (Bollerslev
ef_all (PZ01XR); Dueket (I997); RBollerslev_ef all (Z016); Bollerslev & Mikkelsen (T996);
and Cno”ef all (2027)), but the literature on the bond market volatility forecasting is
limited and there is no consensus on whether the inclusion of jump parameter improves
the forecasting ability of models (Andersen, Bollerslev & Diebold (2007); and Corsi
ef all (2010)). I verify that the intraday jumps are effective and improve the forecasting
power of HAR-type bond market volatility forecasting models. In addition, the effect
of macroeconomic and monetary policy announcements is associated with the jumps
as being one of the key drivers of volatility. In a similar fashion, I find the bond
markets exhibit significant intraday jumps in almost %50 of monetary policy meetings
on average. Furthermore, I investigate whether the pre-announcement drift is effective
in the bond market volatility structure. To test the hypothesis, I test for the presence of a
higher volatility transmission from 1-day lagged volatility to forecasting monetary policy
announcement day volatility in the HAR model, which has auto-regressive construction.
While Cucca & Moench (2015) find that there is no detectable drift of the markets in the

US treasury bonds in the 1-day period before the FOMC announcements, I find that the
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pre-announcement effect is present in the European government bond volatility. I proceed
with analysis by seeking the source of the drift and find that the pre-announcement drift
in bond market volatility is stemming from the diffusive, or continuous, part of volatility
and the jump variation. This phenomenon can be explained by the short memory of the
jump process.

In Chapter B, I try to quantify ECB’s monetary policy shocks using German gov-
ernment bond data between January 2005 and October 2019 period. Since the central
banks become more and more dependent on the unconventional policies due to zero
lower bound of policy rates, not only the information on the policy rates but also the
future path of interest rates for longer horizons and the information released on the se-
curity purchase programs gained great importance for the economic agents. Therefore,
the conveyance of communication and signals for the QE programs are necessary to
be measured by using alternative indicators. I assess (1) whether intraday yield curve
fitting factors or the latent shape factors provide sufficient information in representing
ECB policy dimensions; (2) whether the latent monetary policy factors impact asset
prices; and (3) the effectiveness of monetary policy tools within each other.

I extract the monetary policy surprises using German bonds in the announcement
windows of the ECB, which has a two-tier monetary policy announcement, the press
release, and the following press conference. This feature of ECB policy communication

paves the way for me to focus on the separate windows in estimating the policy sur-
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prises’ effect on asset prices. In this study, I find that the latent shape factors, which are
obtained by following the Nelson & Siegel (1T987) model for curve fitting in the intra-
day frequency, demonstrate higher variation around the policy announcement windows
during communication days than on other days. I call those latent factors: target rate,
forward guidance, and quantitative easing shocks. Also, the latent factors have a notable
effect on, government interest rate spreads, euro exchange rate, corporate credit costs,
and market-based inflation indicators. In addition, I find the QE shock has more power
in affecting yield spreads and inflation indicators than target rate and forward guidance
shocks.

In Chapter 8, I contribute to the literature by providing a framework that demonstrates
the dynamics between the volatility of equity markets and fixed income markets. Since
the changes in the term structure have the potential to reflect the current state and the
expectations regarding the economy, the interest rate volatility can be used as a crucial
input for asset pricing and volatility modeling. In this chapter, I use the high-frequency
data on European government bond markets and equity markets of corresponding coun-
tries in estimations. I prefer to use sovereign bonds as a representative of fixed income
markets since sovereign markets are direct recipients of the information flow concerning
the economy and the expectations of economic agents. In this context, I aim (1) to
demonstrate the theoretical relationship between equity and bond market volatility using

discounted cash flow model; (2) to test whether the shape of the sovereign bonds affects
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the interest rate volatility transmission to equity markets; and (3) to test whether the
information on the yield curve improves equity market volatility forecasting.

In this scope, I extend the discounted cash flow model in the intraday setting to extract
the volatility dynamics between interest rates and equity markets. The discounted cash
flow model asserts that the equity prices are affected by two major sources: expected cash
flow and the discount rate. Since the expected cash flow is a long-term parameter and
does not change between the intraday windows, the changes in the equity prices become
only dependent on the changes in the discount rates and the underlying factors that affect
the discount rates. Moreover, I show that the changes in the term structure of interest
rates can be attributed to the growth expectations and risk premium, in general. Then,
separating the risk premium into the (common) risk premium and hedging premium,
by following Cieslak & Pang (202T), led us to identify the changes in the shape of the
yield curve. I find that the magnitude of volatility transmission from the bond markets
to equity markets depends on the term structure of interest rates. The yield curve moves
in the bear flattener move the transmission is limited, while the bull steepener move
magnifies the transmission. Moreover, I find that the inclusion of yield curve volatility
with respect to the shape helps to improve the equity volatility forecasts in both in-sample
and out-of-sample.

The analyses in this thesis are subject to some limitations. First, the use of high-

frequency data in the analyses may cause the estimations to suffer from microstructure
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noise. I use intraday data with 10-minute intervals for the government bond markets and
S5-minute intervals for the equity markets. The sampling frequency selection is made
with respect to the availability of data and the market liquidity considerations. Although
I provide some robustness checks in Chapter [ and try to exploit the errors generated
from microstructure noise in Chapter 8, finding the optimal sampling frequency provides
an alternative solution to come with the noise. Second, in Chapters I and B, I provide
in-sample and out-of-sample forecasts for bond market volatility and equity market
volatility, respectively. In comparing the forecasting models with different specifica-
tions, I use the Diebold & Mariana (T995) test, which enables us to construct pairwise
comparison test statistics. Therefore, I prefer to compare the models with respect to the
selected baseline model and specific forecasting horizon, but I do not determine which
specification provides the best volatility forecasts for the markets. A multiple horizon
test (such as Quaedvlieg (2021))) can be employed to overcome this limitation. Third,
in Chapter B, I extract the monetary policy surprises using German sovereign bonds
from 1-year to 30-year maturities. Using these bond market data, I extract the intraday
surprises, target rate, forward guidance, and QE, on the monetary policy announcement
windows. The estimation results indicate the forward guidance to be the least effective
surprise on asset prices. This result may be the direct outcome of data limitations. Since
the monetary policy impact horizon is not effective on the distant maturity rates and the

impact of forward guidance might be reflected by the securities that have less than 1-year
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maturity. To overcome this problem, another dataset that includes short term securities
can be used, if available, as a robustness check,

My analyses provide valuable insights for the policymaker, especially from the mar-
ket surveillance perspective. Firstly, the monetary policy announcements are the major
determinant of bond market volatility, then the volatility of the pre-announcement days
can be closely monitored as a nearly warning indicator of rising volatility during an-
nouncements. Also, since the intraday volatility jumps can be associated with the policy
announcements, policymakers may scrutinize the communication frequency. Secondly,
the findings emphasize the significance of quantitative easing shocks in stimulating in-
flation and lowering bond spreads. Thirdly, a deeper understanding of the equity market
and bond market volatility sources can improve the monitoring ability of policymakers
in reaching the financial stability objective.

Although I provide a complete picture in this thesis, all chapters are subject to
development as future research. An immediate avenue for further research for Chapter
is to extend the analysis by considering the realized semivariances and signed jumps
of Patton & Sheppard (?015). The extension of pre-announcement volatility drift with
respect to the clustering of negative and positive returns has the potential to provide
valuable insights into the sources of the drift. In addition, Chapter B is suitable to be
developed by decomposing the monetary policy shocks into Odyssean versus Delphic

shocks following [Andrade & Ferroni (2021)). The decomposed monetary policy shocks

168



Chapter 5. Concluding Remarks

can unveil more information on the policy shocks’ impact on asset prices. Another
potential research can be produced by including the monetary policy decision in Chapter
@’s volatility dynamics. In this perspective, I can use monetary policy shocks in order to
quantify the magnitude of risk premium on the equity market volatility and decompose

the common risk premium and hedging premium following an event study approach.
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