
Science of the Total Environment 819 (2022) 153040

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Anaerobes and methanogens dominate the microbial communities in water
harvesting ponds used by Kenyan rural smallholder farmers
Benjamin H. Gregson a, Alessia Bani a, Laurel Steinfield b, Diane Holt c, Corinne Whitby a,⁎

a School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
b Department of Marketing, Bentley University, Waltham, MA 02452, USA
c Center for Enterprise and Entrepreneurship, Leeds University Business School, Leeds LS2 9JT, UK
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Amplicon sequencing determined the mi-
crobial community in water harvesting
ponds.

• Anaerobes (e.g. Spirochaeta and Opitutus)
dominated the bacterial community.

• Woesearchaeota and methanogens domi-
nated the archaeal community.

• A potentially pathogenic Mycobacterium
spp. was also detected.

• Highlights need to reduce anaerobic con-
ditions and screen for potential patho-
gens.
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Many rural smallholder farmers in Kenya use water-harvesting ponds, to collect rainwater, as sustainable sources of
water for domestic and agricultural purposes. There is currently limited information regarding the microbial ecology
in these ponds. Here, we usedHigh Throughput Sequencing (HTS) to characterize themicroorganisms present (includ-
ing potential pathogens and indicator species) alongside ion chromatography to measure water chemistry (anion and
cation concentration). Fluoride and magnesium concentration were the strongest predictor variables of the microbial
community. Obligately or facultatively anaerobic bacterial genera (e.g. Spirochaeta and Opitutus) were abundant
within the bacterial community, whilst Woesearchaeota and methanogens dominated the archaeal community. This
suggests the water in the ponds is hypoxic or anoxic, and if used for irrigation, may potentially impact crop yield
and viability. In addition, the opportunistic pathogen non-tuberculous mycobacteria (NTM), Mycobacterium fortuitum
was found, comprising >1% of the bacterial community, suggesting a potential human health risk. Here we suggest
low-cost changes to pond management, to improve or ameliorate pond anoxia and remove pathogens to benefit the
livelihoods and welfare of these farms. This study also shows the applicability of HTS to broadly screen the microbial
communities, assess water quality, and identify potentially pathogenic groups.
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1. Introduction

Themajority of rural smallholders in sub-Saharan Africa, currently have
no access to surface water or groundwater (Rockstrom, 2000). In addition,
climate change is adversely affecting the availability of water in countries,
such as Kenya, through increased temperatures, erratic rainfall, and
drought (Boelee et al., 2013). Therefore, ex-situ rainwater-harvesting sys-
tems, especially the use of on-farm water storage structures, represents
the sole alternative for accessing sustainable quantities of water for domes-
tic and agricultural purposes (Pachpute et al., 2009). These systems can be
divided into two categories, a roof harvesting system (RHS) or pond har-
vesting system (PHS) (Zabidi et al., 2020). A typical RHS consists of a
sloped catchment system (a roof) which drains via a gutter and attached
pipe into a storage container (cistern or tank) (Hamilton et al., 2019). A
PHS consists of small runoff storage structures ranging from small manually
dug ponds to large community earth and sand dams, that directly collect
rainwater, used mainly for irrigation of kitchen gardens, and sometimes
for domestic and livestock water supply (Biazin et al., 2012). Although
RHSs are more widely utilised around the world (Cook et al., 2013;
Despins et al., 2009; Farreny et al., 2011; Hafizi Md Lani et al., 2018),
PHSs offer several advantages including: (i) the capacity to store larger vol-
umes of water (Wu et al., 2018); (ii) simplicity in terms of construction and
maintenance, meaning an overall lower capital cost to the farmer, leading
to greater benefit-cost ratio (Berhane, 2018). Despite these advantages,
these ponds are openly exposed, with potential risk to human health
where they may act as reservoirs for both human, animal and plant patho-
gens (Brodie et al., 2007; dos Santos and de Farias, 2017). If the water is to
be used for potable purposes and/or crop irrigation (especially if the pro-
duce is consumed fresh) (Jongman and Korsten, 2016), then water quality
needs to be assessed and ensure it meets the minimum drinking water
guidelines (World Health Organisation, 2017) prior to use.

Historically, the microbial quality of water has been evaluated on
culture-based enumeration of pathogens and the monitoring of faecal indi-
cator bacteria (FIB), such as E. coli and total coliforms (Ahmed et al., 2010,
2011; Hamilton et al., 2019). Culture-dependent methods for pathogen de-
tection are impractical as (i) each pathogenic group requires its own unique
isolation technique (Acharya et al., 2019); (ii) <1% of microorganisms are
culturable (Hugenholtz et al., 1998); (iii) you can only detect the presence
of a fewmicrobial groups at a timewith limited taxonomic resolution (Chan
et al., 2019). The reliability of using FIB to assess water quality has also
been questioned due to poor correlations with the occurrence of pathogens,
especially non-faecal pathogens (Ahmed et al., 2010; Wu et al., 2011). This
may be due to ecological or environmental interactions that compromise
their predictive power as proxies for pathogens (Tan et al., 2015).

Molecular techniques, such as qPCR, have been used as an alternative to
these culture-dependent methods, for quantification of microbial load and
direct detection of pathogens in harvested rainwater (Ahmed et al.,
2014). High Throughput Sequencing (HTS) provides one approach for
elucidating the fine-scale taxonomic composition of microbial communi-
ties, including the identification of potential pathogenic groups (Tan
et al., 2015; Vierheilig et al., 2015). Indeed, HTS has been successfully
used to detect potential pathogenic groups in RHS systems (Ahmed et al.,
2017; Chidamba and Korsten, 2015; Strauss et al., 2019; Zhang et al.,
2020); with some of the most prevalent potential pathogenic genera
detected including: Acinetobacter, Burkholderia, Chromobacterium, Clostrid-
ium, Legionella, Mycobacterium, Nocardia, Serratia, and Yersinia. Although
Archaea and Fungi play an important role in human/plant pathogenicity
(Bell et al., 2006; Hageskal et al., 2009), and in the biogeochemical cycling
of nutrients (Offre et al., 2013), these microorganisms are often overlooked
in HTS studies. Consequently, there is limited information regarding the
microbial ecology, across all microbial domains in PHS.

The main aim of this study was to apply HTS to characterize the micro-
bial communities present in 16 ponds in Kenya, that are used for kitchen
garden crop production. Specifically, this study aims to better understand
the relative abundance of microorganisms across taxonomic domains, in re-
lation to the physico-chemical drivers of the communities. This study
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therefore provides a thorough assessment of harvested rainwater quality in-
cluding both the presence of potential pathogens and indicator species, and
water chemistry (anion and cation concentrations), which may have poten-
tial implications for long-term human health and sustainability.

2. Materials and methods

2.1. Sample collection

We conducted field surveys at 40 smallholder farms in the County of
Laikipia, in Kenya to determine if they had working water harvesting
ponds. Of these 40 farms, working ponds were found at 16 sites (mapped
in Fig. 1). GPS coordinates are available for each pond but are not listed
here for farm anonymity. Triplicate surface water (50 ml) was collected
from each pond on the same day. All water samples were filtered through
sterile 0.2 μmpore-size syringe filters (Minisart NML, Sartorius). Replicates
from each site were filtered using different filters. The volume of water fil-
tered ranged from6.54 to 15.3ml. Thefiltrates were stored at−20 °C prior
to chemical analysis and filters stored in their plastic casing at−80 °C prior
to DNA extraction.

2.2. Chemical analysis

The filtrate was diluted in MilliQ® water and filtered through a
Whatman® GF/F filter by vacuum. Anion and cation concentration was
analysed using a Dionex ICS-3000 (Thermo Scientific) against a set of stan-
dards ranging from 0 to 500 μM (cations) or 0 to 200 μM (anions). For cat-
ion analysis, the eluent was 20 nMmethyl sulphonic acid run at a flow rate
of 1 ml min−1 for 30 min on a Dionex Ionpac 4 mm column (Column temp
30 °C). The eluted cationswere detectedwith a CSRS300, 4mmSuppressor
onto a conductivity cell detector. For the anion analysis, the eluent was
MilliQ®water and 100mMKOH. Potassium hydroxide was run on a gradi-
ent with a flow of 0.25 ml min−1. This was run through an Ionpac AS 18,
2 mm column onto a conductivity cell detector. The water chemistry was
assessed by comparison to local and international guidelines on irrigation
and drinking water standards (Ayers and Westcot, 1994; National
Environment Management Agency, 2006; Kenya Bureau of Standards,
2015; World Health Organisation, 2017).

2.3. DNA extraction

Filters were removed from their plastic casing using a sterile scalpel and
sterile tweezers, cut into small pieces using sterile scissors and added to
PowerBead Tubes (Qiagen) containing 750 μl of PowerBead Solution and
0.7 mm garnet beads. Filters were subsequently homogenised using a
Precellys Evolution Homogenizer (Bertin Technologies) fitted with a 2 ml
tube holder and white blocking plate (two 30 s cycles at 10,000 rpm).
DNA was extracted from homogenised filters using with a DNeasy
PowerSoil Kit (Qiagen) according to the manufacturer's instructions and
stored at−80 °C until use.

2.4. qPCR analysis of phylogenetic marker genes

qPCR of archaeal and bacterial 16S rRNA genes and the fungal internal
transcribed spacer (ITS) region was performed using the following primer
pairs: Archaea, 344f–ACGGGGYGCAGCAGGCGCGA and 915r–GTGCTC
CCCCGCCAATTCCT (Raskin et al., 1994; Stahl and Amann, 1991); Bacte-
ria, 341f–CCTACGGGNGGCWGCAG and 785r–GACTACHVGGGTATCTA
ATCC (Klindworth et al., 2013); Fungi, P5-giTS7–GTGARTCATCGAATCT
TTG and P7-ITS4–TCCTCCGCTTATTGATATGC (Ihrmark et al., 2012).
These primers have previously been used to quantify bacterial and archaeal
16S rRNA genes (Clark et al., 2020; Huby et al., 2021) and fungal ITS region
(Zhang et al., 2018) in environmental samples. qPCR standards of known
quantity were created using DNA previously extracted from sediment sam-
ples (obtained from the University of Essex). Standards were generated by
PCR amplification of the target genes in 50 μl reactions using 25 μl



Fig. 1.Map of smallholder farms in the County of Laikipia, Kenya, which had working Pond Harvesting Systems (PHS).
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REDTaq® ReadyMix™ (Sigma-Aldrich), 2 μl of each (10 μM) primer, 20 μl
of PCRwater (Bioline Reagents Ltd) and 1 μl of DNA template. PCR thermal
cycling conditions are summarised in the Table 1:

DNA standards were purified using a GenElute PCR Clean-Up Kit
(Sigma-Aldrich), prior to quantification using PicoGreen® dsDNA quantifi-
cation assays (Thermo Fisher Scientific) on a Nanodrop ND-1000 spectro-
photometer (Thermo Fisher Scientific). The target gene abundance for
DNA standards were calculated assuming a molecular mass of 660 Da for
double-stranded DNA using the following formula: Target abundance =
6.023× 1023 (copies mol−1)× standard concentration (g μl−1) / molecu-
lar weight (g/mol−1) (McKew and Smith, 2015; Tatti et al., 2016). Stan-
dard curves for each gene were created using ten-fold dilution series
ranging from 102 to 107 gene copies per μl. For each of the genes, the
DNA standards, triplicate samples and three no template controls were am-
plified in triplicate technical replicates on a CFX 96 Real Time System (Bio-
Rad) using SensiFast SYBR No-ROX Kit (Bioline) in 20 μl reactions (10 μl of
2 × mastermix, 0.4 of forward and reverse primers (10 μM), 8.2 μl PCR
grade water (Bioline) and 1 μl of template DNA) using a 2-step cycle pro-
gramme (initial denaturation/polymerase activation for 3 min at 95 °C,
followed by 40 cycles of denaturation at 95 °C for 15 s and combined an-
nealing and extension at 60 °C for 30 s). A dissociation curve was run at
the end of each assay to verify that only the expected amplification product
was generated in addition to confirming by agarose gel electrophoresis.
Gene abundances were quantified against their respective standard curves
Table 1
Summary of PCR conditions used to generate DNA standards.

Target Gene Cycling conditions Reference

Archaea 16S rRNA Initial denaturation: 95 °C 5 min
Followed by 35 cycles of:
95 °C 30 s; 60 °C 30 s; 72 °C 45 s
Final extension: 72 °C 5 min

(Raskin et al., 1994;
Stahl and Amann, 1991)

Bacteria 16S rRNA Initial denaturation: 95 °C 5 min
Followed by 30 cycles of:
95 °C 30 s; 55 °C 30 s; 72 °C 30 s
Final extension: 72 °C 5 min

(Klindworth et al., 2013)

Fungi ITS Initial denaturation: 95 °C 5 min
Followed by 35 cycles of:
95 °C 30 s; 57 °C 30 s; 72 °C 45 s
Final extension: 72 °C 10 min

(Ihrmark et al., 2012)
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with CFX Manager software (Bio-Rad) using automatic analysis settings
for the Cq values and baseline settings. The limit of detection (LOD) for
all genes was set at 3.3 cycles lower than the Cq value of the no-template
controls (McKew and Smith, 2015; Tatti et al., 2016). Analysis of the stan-
dard curves from all qPCR assays showed high efficiency (efficiency
>91.5%, R2 > 0.99) (Table S1).

2.5. Amplicon library preparation and sequencing

Amplicon libraries were prepared and sequenced using the methods
previously described (Thomas et al., 2020, 2021). Amplicons were gener-
ated by a 25-cycle (Bacteria) and 31-cycle (Archaea and Fungi) PCR. The
additional cycles were performed to account for lower abundances of Ar-
chaea and Fungi. The 16S rRNA genes and ITS region were amplified
using the same primers previously described for qPCR, modified to contain
Illumina-specific overhang adapters. Amplification occurred in 25 μl reac-
tions using 12.5 μl REDTaq® ReadyMix™ (Sigma-Aldrich), 10.5 μl of PCR
grade water (Bioline), 0.5 μl of each (10 μM) primer and 1 μl of DNA tem-
plate. Thermal cycling consisted of an initial DNA denaturation step of
3 min at 95 °C followed by 25 or 31 cycles each of 30 s at 95 °C, 30 s at
55 °C and 30 s at 72 °C with a final extension step of 5 min at 72 °C, on
an Applied Biosystems Veriti 96-well thermal cycler. The resulting PCR
products were purified using Agencourt AMPure XP PCR Purification
beads (Beckman Coulter), following the manufacturer's instructions. 5 μl
of purified PCR product was used in a short secondary PCR, to attach
Nextera XT indices, in the presence of 5 μl of Nextera i5 and i7 index,
25 μl REDTaq® ReadyMix™ (Sigma-Aldrich) and 10 μl of PCR water
(Bioline Reagents Ltd). Thermal cycling conditions consisted of an initial
denaturation step of 3 min at 95 °C followed by 8 cycles each of 30 s at
95 °C, 30 s at 55 °C and 30 s at 72 °C followed by a final extension step of
5 min at 72 °C. PCR products were purified using Agencourt AMPure XP
PCR Purification beads and quantified using PicoGreen® dsDNA quantifi-
cation assays (Thermo Fisher Scientific), on a POLAR star Omega (BMG
Labtech) plate reader. Nextera XT amplicons were then pooled in equimo-
lar concentration. The length of amplicons was verified on SYBR® Safe
DNA stain 2% (w/v) agarose E-gels (Invitrogen). Final quantification of
the pooled amplicon library was determined with the NEBNext® Library
Quant Kit for Illumina® (New England BioLabs) prior to sequencing on
the Illumina MiSeq® platform, using a Miseq® 600 cycle v3 reagent kit.
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Sequences have been submitted to the NCBI SRA archive under the acces-
sion number PRJNA699859.

2.6. Bioinformatic analysis

Sequence reads were processed as detailed in Dumbrell et al. (2016).
First quality filtering was carried out with Sickle (Joshi and Fass, 2011)
with trimming when the average Q score dropped under Q20 across a
sliding window of 35 base pairs. Error correction was carried out in SPAdes
(Bankevich et al., 2012) which corrects misidentified bases during the
sequencing process by implementing the BayesHammer algorithm
(Nikolenko et al., 2013). Paired-end reads were merged into single contigs
in PANDAseq (Masella et al., 2012) using the PEAR algorithm (Zhang et al.,
2014). Further quality filtering was carried out in MOTHUR (Schloss et al.,
2009) to remove homopolymer inserts longer than 8. VSEARCH was used
to dereplicate sequences, remove singleton sequences, sort by abundance
and cluster sequences around centroids at a 97% similarity threshold
(Rognes et al., 2016). Chimeric sequences were removed with UCHIME
(Edgar et al., 2011) using both de novo and reference-based chimera detec-
tion against the 16S rRNA RDP Release 11.5 sequences. Taxonomy was
assigned to the OTU centroids using the RDP Classifier (Wang et al.,
2007) for bacteria/archaea and the UNITE database for fungi (Kõljalg
et al., 2013) (OTU tables are available in Tables S2, S3, S4). To identify po-
tential pathogenic groups, we used the methods previously described
(Ferguson et al., 2021). We compared the OTUs generated to a list of
knownhuman pathogens (Kembel et al., 2012).We obtained representative
16S rRNA sequences for each pathogen from the NCBI reference sequence
database (RefSeq) and search the representative sequence for each OTU
against this database with the Basic Local Alignment Search Tool (BLAST)
(Altschul et al., 1990). We defined a pathogenic group as any OTU that
shared >99% sequence identity with a strain in the human pathogen refer-
ence database.

2.7. Statistical analysis

All statistical analyses were carried out in R Studio version 4.0.2. Allfig-
ures were generated using the ‘ggplot2’ (Wickham, 2016) and ‘cowplot’
(Wilke, 2020) packages. Data were first tested for normality using a
Shapiro-Wilks test (Shapiro and Wilk, 1965). Normally distributed data
were tested for significance using ANOVAs, with p-values adjusted for mul-
tiple comparisons using the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995), followed by a Tukey's HSD post hoc test (Tukey, 1953)
within the ‘agricolae’ package (DeMendiburu, 2020). Non-normally distrib-
uted data were tested for significance using a Kruskal-Wallis test, with p-
values adjusted for multiple comparisons using Bonferroni correction
Table 2
Anion concentrations (μmol/l; means ± SE; n = 3) of water collected from ponds used
letter (a, b, c) are not significantly different between ponds (P < 0.05; Kruskal-Wallis tes
ride; C2H3O− - Acetate; HCO2

− - Formate; Cl− - Chloride; NO3
− - Nitrate; SO4

2− - Sulpha

Pond
identity

F−

(μmol/l)
C2H3O−

(μmol/l)
HCO2

−

(μmol/l)
Cl−

(μmol/l)

1 3.89 ± 0.17 (ab) 1.48 ± 0.15 (a) 0.19 ± 0.01 (a) 49.54 ± 0.29 (ab)
2 28.57 ± 1.25 (abc) 2.34 ± 0.23 (a) 0.50 ± 0.06 (a) 600.35 ± 35.99 (b)
3 9.47 ± 0.16 (abc) 1.92 ± 0.23 (a) 0.26 ± 0.16 (a) 64.56 ± 7.02 (ab)
4 4.55 ± 0.33 (abc) 4.19 ± 1.13 (a) 0.50 ± 0.43 (a) 71.49 ± 2.11 (ab)
5 21.16 ± 1.36 (abc) 2.13 ± 0.43 (a) 0.16 ± 0.08 (a) 234.65 ± 26.95 (ab)
6 32.16 ± 0.24 (abc) 4.02 ± 0.11 (a) 0.37 ± 0.03 (a) 87.64 ± 4.98 (ab)
7 21.31 ± 0.06 (abc) 3.40 ± 0.25 (a) 0.21 ± 0.07 (a) 37.56 ± 1.46 (ab)
8 22.14 ± 0.34 (abc) 3.65 ± 0.11 (a) 0.42 ± 0.06 (a) 166.76 ± 2.14 (ab)
9 8.67 ± 0.08 (abc) 2.74 ± 0.37 (a) 0.07 ± 0.05 (a) 67.79 ± 1.32 (ab)
10 20.40 ± 0.46 (abc) 4.00 ± 1.26 (a) 0.35 ± 0.27 (a) 54.45 ± 3.36 (ab)
11 10.53 ± 0.23 (abc) 3.28 ± 0.25 (a) 0.11 ± 0.06 (a) 39.30 ± 0.71 (ab)
12 6.28 ± 0.53 (abc) 6.83 ± 1.96 (a) 0.12 ± 0.08 (a) 58.74 ± 8.12 (ab)
13 34.05 ± 0.25 (ac) 3.89 ± 1.54 (a) 0.18 ± 0.09 (a) 44.36 ± 0.85 (ab)
14 8.75 ± 0.82 (abc) * (a) 0.15 ± 0.09 (a) 20.76 ± 1.58 (a)
15 3.08 ± 0.06 (b) 0.81 ± 0.21 (a) 0.14 ± 0.02 (a) 37.39 ± 1.87 (ab)
16 60.33 ± 6.84 (c) * (a) 0.11 ± 0.07 (a) 477.68 ± 77.99 (b)
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(Bonferroni, 1936), followed by a Dunn's post hoc test (Dunn, 1964) within
the ‘FSA’ package (Ogle et al., 2020).

The ‘Phyloseq’ package (McMurdie and Holmes, 2013) was used to rar-
efy OTUs, transform counts into relative abundances, analyse the taxo-
nomic composition of communities and calculate beta diversity. Only
abundant taxa (>1% phyla and >10% genera relative abundance) were
used to generate bubble plots. Linear discriminant analysis effect size
(LEfSe; LDA score > 2; P-value < 0.05) (Segata et al., 2011) was used to
identify OTUs that were differentially abundant between sampling sites.

To evaluate the alpha diversity, Hill numbers (Hill, 1973) were calcu-
lated using the ‘PhenoFlow’ package (Props et al., 2016). Hill numbers are
a unified family of diversity indices that compensate for the disproportion-
ate impact of rare taxa by weighting them based on abundance, making
them appropriate for analysis of large datasets produced by amplicon se-
quencing (Vidal-Durà et al., 2018). The degree of weighting is controlled
by the order of diversity, q, where increasing q places more weight on the
high abundance species and discounts rare species (Chao et al., 2014).
Beta diversity was calculated using Bray-Curtis dissimilarity (Bray and
Curtis, 1957). The resulting dissimilarity scores were visualised using
non-metric multidimensional scaling (NMDS) to observe overall patterns
in microbial community structure among the different ponds. Differences
in community structure were further tested by analysis of similarities
(ANOSIM) (Clarke, 1993) and permutational multivariate analysis of vari-
ance (PERMANOVA) (Anderson, 2001), using the ‘anosim’ and ‘adonis’
functions in the ‘vegan’ package (Oksanen et al., 2020), respectively.

Variance Inflation Factor (VIF) values for the chemical variables were
calculated in the ‘usdm’ package (Naimi, 2017). Continuous variables
with VIF values greater than 10, and those that were above the multicollin-
earity threshold of 0.7, were removed. Canonical correspondence analysis
(CCA) between community structure and chemical variables was per-
formed in the ‘vegan’ package (Oksanen et al., 2020). The significance of
the CCA model, axes and terms were assessed by a Monte Carlo permuta-
tion test (Legendre et al., 2011), using 999 permutations.

3. Results

3.1. Nutrient analysis

Anion and cation concentrations are summarised in Tables 2 and 3, re-
spectively. Generally, Pond 2 had higher concentrations of anions in com-
parison to the other ponds, whereas Pond 16 had higher concentrations
of cations. Sources of nitrogen (e.g. ammonium and nitrate) were either un-
detectable or low (<1 μmol/l) in Ponds 1 and 9 indicating they may be se-
verely nutrient limited, which will impact microbial growth. No anion or
cation concentration exceeded the maximum permissible concentration
by Kenyan rural smallholder farmers. Values of concentration that share the same
t). * indicates concentration below the limit of detection. Anions include: F− - Fluo-
te; PO4

3− - Phosphate; CO3
2− - Carbonate.

NO3
−

(μmol/l)
SO4

2−

(μmol/l)
PO4

3−

(μmol/l)
CO3

2−

(μmol/l)

0.12 ± 0.06 (ab) 0.12 ± 0.06 (ab) 0.52 ± 0.03 (a) 83.07 ± 9.57 (ab)
422.59 ± 24.94 (b) 86.49 ± 3.48 (c) 1.37 ± 0.08 (a) 245.51 ± 21.72 (ab)
1.19 ± 0.29 (ab) 36.58 ± 5.29 (abc) 15.13 ± 13.78 (a) 345.97 ± 68.39 (ab)
0.64 ± 0.23 (ab) 37.14 ± 3.93 (abc) 1.67 ± 0.16 (a) 339.65 ± 6.76 (ab)
1.51 ± 0.72 (ab) 36.45 ± 10.00 (abc) 1.71 ± 0.37 (a) 331.42 ± 61.17 (ab)
1.14 ± 0.15 (ab) 45.93 ± 1.44 (abc) 8.49 ± 6.01 (a) 330.48 ± 9.25 (ab)
3.80 ± 2.48 (ab) 47.40 ± 3.15 (abc) 2.19 ± 0.23 (a) 298.46 ± 8.44 (ab)
1.65 ± 0.60 (ab) 53.52 ± 1.70 (bc) 5.55 ± 2.20 (a) 429.57 ± 3.95 (b)
0.28 ± 0.15 (ab) 19.89 ± 2.09 (abc) 0.57 ± 0.57 (a) 356.44 ± 33.18 (ab)
0.94 ± 0.10 (ab) 15.88 ± 1.86 (abc) 2.27 ± 0.17 (a) 323.94 ± 9.16 (ab)
1.93 ± 1.42 (ab) 18.81 ± 1.95 (abc) 2.14 ± 0.12 (a) 266.30 ± 10.55 (ab)
0.13 ± 0.13 (ab) 29.80 ± 5.65 (abc) 0.83 ± 0.83 (a) 78.66 ± 78.66 (ab)
* (a) 34.31 ± 5.81 (abc) * (a) * (a)
1.03 ± 0.18 (ab) 8.28 ± 3.14 (ab) * (a) 28.10 ± 28.10 (a)
* (a) 16.89 ± 3.74 (abc) * (a) 161.18 ± 29.82 (ab)
1.16 ± 0.23 (ab) 29.25 ± 4.84 (abc) * (a) 306.57 ± 20.06 (ab)



Table 3
Cation concentrations (μmol/l; means ± SE; n = 3) of water collected from ponds used by Kenyan rural smallholder farmers. Values of concentration that share the same
letter (a,b,c) are not significantly different between ponds (P < 0.05; Kruskal-Wallis test). * indicates concentration below the limit of detection. Cations include: Li+ - Lith-
ium; Na+ - Sodium; NH4

+ - Ammonium; K+ - Potassium; Mg2+ - Magnesium; Mn2+ - Manganese; Ca2+ - Calcium.

Pond identity Li+

(μmol/l)
Na+

(μmol/l)
NH4

+

(μmol/l)
K+

(μmol/l)
Mg2+

(μmol/l)
Mn2+

(μmol/l)
Ca2+

(μmol/l)

1 * (a) 201.35 ± 4.83 (a) * (a) 84.32 ± 1.81 (abc) 46.27 ± 1.60 (abc) 0.17 ± 0.17 (ab) 112.00 ± 0.17 (ab)
2 * (a) 1678.17 ± 85.04 (b) 13.95 ± 1.65 (a) 108.87 ± 4.21 (abc) 67.25 ± 7.39 (abc) * (b) 173.03 ± 9.80 (abc)
3 * (a) 248.46 ± 3.44 (ab) 4.05 ± 0.37 (a) 90.09 ± 5.95 (abc) 57.54 ± 2.49 (abc) * (b) 194.04 ± 2.82 (abc)
4 * (a) 259.33 ± 13.20 (ab) 5.05 ± 3.61 (a) 122.82 ± 3.85 (abc) 92.70 ± 2.45 (abc) * (b) 266.61 ± 7.55 (abc)
5 * (a) 343.84 ± 18.96 (ab) 8.13 ± 3.92 (a) 289.67 ± 13.34 (bc) 197.59 ± 12.40 (bc) * (b) 565.48 ± 20.87 (bc)
6 * (a) 426.57 (ab) 7.41 ± 7.41 (a) 62.41 ± 3.68 (abc) 58.46 ± 2.34 (abc) * (b) 214.66 ± 8.98 (abc)
7 * (a) 258.17 ± 16.01 (ab) 3.30 ± 0.17 (a) 40.35 ± 2.59 (abc) 53.51 ± 3.83 (abc) * (b) 179.57 ± 8.78 (abc)
8 * (a) 295.08 ± 37.55 (ab) 5.09 ± 2.55 (a) 181.31 ± 19.18 (abc) 105.17 ± 11.95 (abc) * (b) 369.68 ± 35.85 (abc)
9 * (a) 416.23 ± 8.79 (ab) 1.30 ± 1.30 (a) 62.32 ± 1.54 (abc) 43.54 ± 3.13 (abc) * (b) 117.47 ± 2.58 (abc)
10 * (a) 249.29 ± 15.80 (ab) 3.05 ± 1.67 (a) 78.31 ± 6.04 (abc) 71.55 ± 4.69 (abc) 1.13 ± 0.32 (a) 272.54 ± 8.68 (abc)
11 * (a) 188.13 ± 11.07 (a) 2.08 ± 1.08 (a) 20.50 ± 0.92 (ab) 28.40 ± 1.66 (a) 0.04 ± 0.04 (ab) 82.00 ± 4.81 (a)
12 * (a) 197.99 ± 7.62 (a) 4.08 ± 2.15 (a) 75.80 ± 1.89 (abc) 47.57 ± 0.76 (abc) * (b) 154.18 ± 3.32 (abc)
13 * (a) 390.01 ± 10.13 (ab) 8.36 ± 5.02 (a) 67.54 ± 0.52 (abc) 108.23 ± 1.25 (abc) * (b) 364.77 ± 18.62 (abc)
14 * (a) 370.86 ± 7.09 (ab) 5.91 ± 1.25 (a) 19.15 ± 1.47 (a) 38.48 ± 1.09 (ab) * (b) 140.26 ± 3.04 (abc)
15 * (a) 233.94 ± 4.86 (ab) 4.08 ± 0.31 (a) 92.97 ± 0.76 (abc) 55.52 ± 1.63 (abc) * (b) 162.04 ± 4.58 (abc)
16 * (a) 1419.63 ± 50.07 (ab) 6.51 ± 3.27 (a) 331.28 ± 6.20 (c) 218.82 ± 4.79 (c) * (b) 834.30 ± 30.00 (c)
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(MPC) set for drinking water quality, based on local (Kenya Bureau of Stan-
dards, 2015) or international (World HealthOrganisation, 2017) standards.
In terms of irrigationwater quality, thirteen of the ponds exceeded theMPC
for potassium (51.15 μmol/l) and Pond 16 exceeded the MPC for fluoride
(52.65 μmol/l), based on international standards (Ayers and Westcot,
1994). All ponds exceeded the MPC for chloride (0.28 μmol/l), based on
local guidelines (National Environment Management Authority, 2006) for
irrigation water quality. However, this value is much lower than the inter-
nationally accepted standard (9872.23 μmol/l), which no ponds exceed.

A Shapiro-Wilk test determined that the chemical datawas not normally
distributed. With the exception of ammonium, formate and lithium (lith-
ium concentrations below the limit of detection) there were significant dif-
ferences in ion concentration between ponds (Kruskal-Wallis test,
P < 0.05). However, no significant differences between ponds were de-
tected for acetate and phosphate after a post-hoc Dunn's test with
Bonferroni adjustment for multiple comparisons. Pond 2 had the highest
concentration of chloride (600.35 ± 35.99 μmol/l), nitrate (422.59 ±
24.94 μmol/l), sodium (1678.17 ± 85.04 μmol/l) and sulphate
(86.49 ± 3.48 μmol/l). Nitrate concentration had the most variability
(coefficient of variation = 385%) driven by the higher concentrations
Fig. 2. 16S rRNA gene and fungal internal transcribed spacer (ITS) region abundance (m
Kenyan rural smallholder farmers, as determined by qPCR analysis. Different letters (a, b)
each pond (P < 0.05, ANOVA followed by a Tukey's HSD post hoc test).
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found in Pond 2, which was at least 111-fold greater than any other
pond. Pond 8 had the highest concentration of carbonate (429.57 ±
3.95 μmol/l). Pond 16 had the highest concentration of calcium
(834.40 ± 30.00 μmol/l), fluoride (60.33 ± 6.84 μmol/l), magnesium
(218.82 ± 4.79 μmol/l) and potassium (331.28 ± 6.20 μmol/l). Manga-
nese concentration was very low (<1.13 μmol/l) and was only detected in
ponds 1, 10, 11. Lithium was not detected in any of the ponds tested.
3.2. Microbial community analysis of PHS

The mean bacterial 16S rRNA gene abundance ranged from 9.48× 105

copies ml−1 (Pond 6) to 1.28 × 107 copies ml−1 (Pond 16) (Fig. 2). Over-
all, archaeal 16S rRNA gene copies (1.46×104 to 1.17×106 copiesml−1)
were around two to three-fold lower than the bacterial gene copy abun-
dance (with the exception of Pond 7 where archaeal and bacterial 16S
rRNA gene abundance were almost equal 1.14 × 106 and 1.15 × 106 cop-
ies ml−1, respectively). Fungal ITS gene copies were consistently lower
than that for bacterial 16S rRNA genes, typically by two to three orders of
magnitude (7.79 × 103 to 1.30 × 105 copies ml−1).
eans ± SE; n=3) in water collected from Pond Harvesting Systems (PHS) used by
indicate a significant difference in gene copy number between the genes targeted in
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From the 48 water samples (16 sites in triplicate), in which PCR prod-
ucts were successfully obtained, we recovered 1,111,140 archaeal se-
quences (~23,000 per sample), 4,433,155 bacterial sequences (~92,000
per sample) and 404,705 fungal sequences (~8400 per sample). After strin-
gent quality filtering and pair-end alignment there was a reduction to
789,851 archaeal sequences (~16,000 per sample), 3,936,285 bacterial se-
quences (~82,000 per sample) and 357,114 fungal sequences (7400 per
sample). Following rarefaction, the number of unique OTUs obtained
were 4640 bacterial OTUs, which consisted of 33 phyla, and 779 genera;
627 archaeal OTUs, made up of 8 phyla and 47 genera; and 740 fungal
OTUs, across 6 phyla and 248 genera (Tables S2, S3, S4). Irrespective of
pond location, Proteobacteria were dominant across ponds (44.2 ±
1.7%) followed by Bacteroidetes (12.8 ± 1.2%), Spirochaetes (12.6 ±
1.9%), Verrucomicrobia (10.3 ± 1.8%), Actinobacteria (9.4 ± 1.3%) and
Planctomycetes (4.6 ± 0.7%), which were also present in all sites
(Fig. 3). Nitrospirae (1.5%) and Chlamydiae (1.4%) were only detected in
Pond 2.

At the genus level several of the most abundant taxa (>5% relative
abundance) were obligately or facultatively anaerobic including:
Spirochaeta (14.1 ± 1.9%), Opitutus (10.5 ± 1.8%), Mycobacterium
(7.6%), Thermogutta (7.3%), Rhodoferax (7.2%) and Salinispira (6.7 ±
1.3%) (Fig. 4). These anaerobic genera dominated half the sites with
Spirochaeta exhibiting the highest relative abundance in five ponds (Pond
5, 9, 13, 14, 16) and Opitutus in three (Pond 1, 11, 12). In addition, both
of these genera were prevalent (>10% relative abundance) in 12 out of
the 16 ponds. The remainder of the predominant taxa included strictly aer-
obic genera: Chryseolinea (10.9 ± 3.9%), Asticcacaulis (10.9 ± 1.1%),
Polynucleobacter (8.5 ± 0.9%), Terracoccus (7.6 ± 0.5%), Cellvibrio
(7.6 ± 1.5%), Haliscomenobacter (7.5 ± 1.6%), Ornithinibacter (7.4%),
Gemmata (6.4%), Lacibacter (6.2%), Chlorophyta (5.1%) and Curvibacter
(5.1%) (Fig. 4). None of these bacterial genera were present in all sites.

At the OTU level fourteen bacterial OTUs had a match of >99% nucleo-
tide identity with a strain in a human pathogen database and were
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Fig. 3. Bubble plot showing the relative abundance (depicted by size) of the most abund
fungal communities. Only phyla which account for >1% (0.01) of the relative abundan
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identified as potential pathogens (Table 4). Although overall, potential bac-
terial pathogens were not abundant, one notable OTU (OTU97) shared
99.5% identity with the rapidly growing non-tuberculous mycobacteria
(NTM) Mycobacterium fortuitum and had a significantly higher relative
abundance in Pond 1 (LEfSe, LDA = 3.73, P = 3.28 × 10−3) equating to
>1% of the total community.

The most abundant Archaea present in all ponds, belonged to the phyla
Woesearchaeota (42.5 ± 6.7%), a member of the DPANN (Diapherotrites,
Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota)
superphylum, and Euryarcheaota (33.8 ± 5.8%) (Fig. 3). At the genus
level, taxonomic assignments are incertae sedis within the phyla
Woesearchaeota and have been grouped together (Fig. 4). The relative
abundance was highly variable between ponds ranging from 8.3% up to
97.3% of the archaeal community. Genera within Euryarchaeota mainly
consisted of strictly anaerobic methanogenic archaea which produce meth-
ane as a metabolic by-product in hypoxic conditions (Fig. 4). These include
Methanospirillum (14.6%), Methanothrix (14.6 ± 2.7%), Methanocella
(14.4 ± 9.1%), Methanobacterium (11.7 ± 4.8%), Methanoregula (11.4 ±
2.6%), Methanopyrus (9.7 ± 2.4%), Methanosarcina (9.0 ± 2.0%),
Methanomassiliicoccus (7.0 ± 0.6%) and Methanimicrococcus (6.9 ±
0.1%). In addition, Halonotius an extremely halophilic haloarchaeal genera
was highly abundant in Pond 13 and 16, both ofwhich aremore saline than
the other ponds as it has the highest concentrations of sodium (Table 3).

Within the fungi, Ascomycota (72.6 ± 4.4%) dominated across all
ponds with the exception of Pond 9 and Pond 12, in which Zygomycota
(12.4 ± 4.4%) and Basidiomycota (13.1 ± 2.4%) had the highest relative
abundance, respectively (Fig. 3). The majority of Zygomycota in Pond 9
consisted of the genusMortierella (71.3%),whereas for Pond 12 Scleroderma
(17.9%) made up most of the detected Basidiomycota (Fig. 4). Candidawas
the most prevalent genus and showed the highest relative abundance in 12
out of 16 ponds. None of the Candida affiliated OTUs shared >99%
sequence identity with pathogenic species in a human pathogen database,
such as C. albicans, C. glabrata, C. parapilosis and C. tropicalis. No human
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fungal pathogens were detected in our database. However, a number of
genera, whose species include major plant pathogens, were abundant,
such as Botryosphaeria (28.7%), Rhizophydium (20.7%), Claviceps (17.9 ±
3.3%), Phoma (15.3 ± 2.1%), Didymella (12.8%), Podosphaera (12.8%),
Alternaria (12.6%) and Phyllosticta (10.1%).

3.3. Differences in microbial community structure between ponds

Within sample/alpha diversity was expressed using Hill numbers
with the parameter order of diversity (q) from 0 to 2. For the bacterial
Table 4
Operational taxonomic units (OTUs) detected in ponds which share >99% nucleotide id

OTU Matching pathogen Accession number

OTU97 Mycobacterium fortuitum NR_042912.1
OTU1226 Pseudomonas stutzeri NR_118798.1
OTU2770 Staphylococcus epidermidis NR_113957.1
OTU23248 Cutibacterium acnes NR_040847.1
OTU39346 Mycobacterium simiae NR_117227.1
OTU51780 Neisseria elongata NR_025893.1
OTU58114 Bartonella quintana NR_044748.1
OTU104409 Acinetobacter calcoaceticus NR_042387.1
OTU111570 Escherichia coli J01859.1
OTU193369 Aeromonas bivalvium NR_043885.1
OTU92953 Klebsiella oxytoca AJ871855.1
OTU93931 Streptococcus mutans NR_114726.1
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communities significant differences were observed for all orders of di-
versity; q = 0 (OTU richness/S) (ANOVA, F(15,30) = 14.38, P =
1.50 × 10−9), q = 1 (exponential of Shannon entropy/Exp(H′))
(ANOVA, F(15,30) = 5.851, P = 2.05 × 10−5) and q = 2 (inverse
Simpson index/1/D) (ANOVA, F(15,30) = 3.657, P = 0.001) (Fig. 5).
The average richness was 726 ± 18 OTUs. Post hoc comparisons with
Tukey's HSD showed the differences for q = 0 were driven by a higher
richness in Pond 16 (925 ± 67 OTUs) and a lower richness in Pond 5
(530 ± 25 OTUs) and Pond 15 (488 ± 1 OTUs). However, q = 0 does
not take into account relative abundance of OTUs. The diversity in
entity with a human pathogen's 16S rRNA sequence.

Nucleotide identity (%) Potential diseases

99.51 Osteomyelitis, Skin and Joint Infections
100 Endocarditis. Arthritis
100 Wound Infections, Bacteraemia
100 Blepharitis, Endophthalmitis
100 Pulmonary Disease
100 Endocarditis, Osteomyelitis
100 Trench Fever
100 Ophthalmic Infection, Chronic Synovitis
99.77 Urinary and Gastrointestinal Infections,
99.30 Gastroenteritis, Muscle infections
99.06 Colitis, Sepsis
99.53 Tooth Decay, Cardiovascular Disease
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Fig. 5. Alpha diversity at each Pond Harvesting System (PHS) measured with Hill numbers (means ± SE; n = 3) of different orders of diversity (q = 0, 1 and 2). These
represent operational taxonomic unit (OTU) richness (S), exponential of Shannon entropy (Exp(H′)) and inverse Simpson index (1/D), respectively. As q increases, rare
OTUs are given less weight and therefore contribute less toward “effective number of OTUs”. Hill numbers are shown for the bacterial, archaeal and fungal communities.
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Wallis test followed by Dunn's post hoc test).
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Pond 5 was also significantly lower at the orders q = 1 and q = 2 when
we are considering OTUs that are common (66 ± 12 OTUs) and
dominant (15± 3 OTUs), respectively. This indicates the bacterial com-
munity in that pond is not very diverse, being made up of, and domi-
nated, by very few members. A similar pattern was also seen for the
archaeal community where there differences in diversity between
ponds at all orders; q = 0 (ANOVA, F(15, 24) = 7.595, P =
7.67 × 10−6), q = 1 (ANOVA, F(15, 24) = 11.37, P = 1.76 × 10−7)
and q = 2 (Kruskal-Wallis, χ2 = 34.621, P = 2.78 × 10−3) (Fig. 5).
These differences were mainly driven by Pond 3 which had significantly
lower Hill numbers at all orders.

For the fungal communities there was also a difference, but only at
the order of q = 0 (ANOVA, F(15, 28) = 3.74, P = 1.27 × 10−3).
These differences were between the two ponds with the highest OTU
8

richness, Pond 12 (81 ± 6 OTUs) and Pond 16 (76 ± 11 OTUs), and
the three ponds with the lowest, Pond 9 (36 ± 1 OTUs), Pond 13
(45 ± 5 OTUs) and Pond 15 (41 ± 4 OTUs). At the orders of q = 1
or q = 2, which place increasing weight on common and dominant
OTUs, there was no significant difference between ponds (Fig. 5).

Non-metric multidimensional scaling (NMDS) of Bray-Curtis dissimilar-
ities showed the microbial communities were clearly separated by site with
the separation of bacterial communities being the most distinguishable
(Fig. 6). ANOSIM confirmed significant separation of the bacterial (R =
0.9981, P < 0.001), archaeal (R = 0.936, P < 0.001) and fungal (R =
0.7732, P < 0.001) communities by site. PERMANOVA also demonstrated
bacterial (R2 = 0.058, P = 0.001), archaeal (R2 = 0.049, P = 0.006)
and fungal communities (R2=0.058, P= 0.009) were significantly differ-
entiated by site.
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Canonical correspondence analysis (CCA) was also performed to discern
the possible relationship between community structure in each pond and nu-
trient concentrations (Fig. 7). Eight environmental variables were included in
the CCAbiplot, as their variance inflation factorswere below10, and they did
not exceed the multicollinearity threshold of 0.7. Acetate, ammonium, car-
bonate,fluoride, formate,magnesium, phosphate and sulphate concentration
were included. The models were significant between bacterial (Monte
Carlo test, P= 0.001, 999 permutations), archaeal (P= 0.008) and fun-
gal (P = 0.001) community structures and the chemical variables. For
the bacterial community these chemical variables explain 28% of vari-
ance and the strongest predictor variables were fluoride andmagnesium
concentration (P = 0.001). Other significant variables include acetate
(P = 0.014), carbonate (P = 0.022) and sulphate (P = 0.040). All
9

significant variables, with the exception of acetate, appear to strongly
influence the bacterial community in Pond 16. Acetate influenced the
bacterial community in Pond 11. Only 24% of archaeal community var-
iations could be explained by the eight environmental variables. The
amount of variability explained by the chemical variables is only signif-
icant for the first canonical axis (P= 0.02) and three chemical variables
including fluoride (P = 0.008), magnesium (P = 0.001) and sulphate
(P = 0.017). The chemical variables explained 25% of fungal commu-
nity structure variations. As with the bacterial community, fluoride con-
centration was the strongest predictor variable (P = 0.001), and
strongly influenced Pond 16, which has the highest fluoride concentra-
tion (60.33± 6.84 μmol/l; Table 2). All other variables were significant
with the exception of ammonium and formate.
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4. Discussion

4.1. Microbial community trends

The composition of the bacterial and archaeal communities in the ponds
suggest they are either hypoxic or anoxic environments, supporting the
growth of anaerobicmicroorganisms. For example, in the bacterial commu-
nity OTUs affiliated with the genera Spirochaeta and Opitutus dominated.
Members of the genus Spirochaeta are obligate or facultative anaerobes fre-
quently isolated and detected in diverse anoxic environments including
anchialine sinkholes (Davis and Garey, 2018), soda lakes (Vavourakis
et al., 2018), microbial mats (Spring et al., 2015), marine intertidal muds
(Harwood and Canale-Parola, 1983) and marine sediments (Miyazaki
et al., 2014). In these anoxic environments Spirochaeta spp. are the trophic
10
intermediate between hydrolytic bacteria and secondary anaerobes, as the
main compounds produced by spirochetes are acetate, H2 and CO2, which
are normally consumed by methanogens (Berlanga et al., 2008; Blazejak
et al., 2005). The genusOpitutus currently only consists of one cultured rep-
resentative, Opitutus terrae, an obligatory anaerobic member of the phylum
Verrucomicrobia (van Passel et al., 2011). Whilst this strain was originally
isolated in anoxic rice paddy soil, Opitutus spp. have also been detected in
aquatic habitats (Arnds et al., 2010; Bai et al., 2019). The metabolism of
Opitutus spp. is suited for growth on plant-derived polysaccharides and for
interaction with methanogens with its metabolic by-products (Chin and
Janssen, 2002; Janssen, 1998).

With regard to archaeal communities, representatives of the phylum
Woesearchaeota and methanogens were dominant. Woesearchaeota mainly
grow anaerobically as they lack a complete electron transport chain, a
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complete TCA cycle and continuous glycolysis, which may explain their eco-
logical distribution pattern of being found in primarily inland anoxic environ-
ments (Castelle et al., 2015; Liu et al., 2018).Methanogens are strict anaerobes
and most methanogenic niches are in oxygen-free aqueous systems that pro-
vide a supply of organic matter (Hoehler et al., 2010). These include aquatic
sediments, wetlands, agricultural or natural soils subject to inundation, sew-
age digesters and anoxic portions of animal digestive tracts (Chaban et al.,
2006; Liu and Whitman, 2008). Lineage abundance distribution and co-
occurrence network analyses across diverse biotopes confirmed metabolic
complementation and revealed a potential syntrophic relationship between
Woesearchaeota and methanogens, indicating Woesearchaeota may also im-
pactmethanogenesis in inland ecosystems (Liu et al., 2018). This relationship,
along with support of growth provided by the dominant anaerobic bacteria,
may explain the prevalence and dominance of methanogens in our study.

Fluoride andmagnesiumwere found to be strong predictor variables for
the microbial communities. The occurrence of fluoride in these ponds are
likely due to natural processes, such as weathering and dissolution of min-
erals (García and Borgnino, 2015). Fluoride has been shown to have a
strong inhibitory effect on the growth of anaerobic microorganisms (Ji
et al., 2016; Ochoa-Herrera et al., 2009). In addition, magnesium can inter-
act with fluoride, forming metal complexes, which also impacts bacterial
growth and metabolic activity by inhibiting phosphate transfer enzymes
(Baxter et al., 2008). Given that anaerobes are prevalent in this study, dis-
tinct communities between ponds could form due to the differences in fluo-
ride and magnesium fluoride complex concentrations.

4.2. Prevention of anaerobic conditions in ponds

As the PHSs are openly exposed, large amounts of organic matter can
get into them. Decomposition of organic matter exerts an oxygen demand,
and accumulation of excess organic matter may lead to dissolved oxygen
depletion, promoting anaerobic growth conditions (Dai et al., 2018).
Oxygen is an important irrigationwater quality parameter that can be the lim-
iting factor in some agricultural systems (Bhattarai et al., 2004, 2005). Lowox-
ygen in irrigation water can lead to root oxygen deficiency, which in turn
causes agronomic problems such as crop stress, slow plant growth and low
yields (Bhattarai et al., 2008; Maestre-Valero and Martínez-Alvarez, 2010).
Therefore, to overcome this impact on water quality, adjustments can be
made to the pond's design preventing oxygen being depleted and hypoxic/an-
oxic conditions developing. The amount of organicmatter going into the pond
must be minimised in order to reduce oxygen consumption. Ensure that
prior to the pond's construction a location is chosen that reduces this
risk. For example, position the pond away from trees to stop leaves fall-
ing in, and fence animals to prevent them from defecating in it. A low
wall could also be constructed to protect the pond from surface run-
off. Once the pond is built, a filtration system could be used to keep de-
bris from entering the pond. The pond could be covered with some form
of netting, mesh, silt trap or strainer, positioned either directly on top of
or beside it. If material does enter the water, a pond skimmer or fishing
net could also be used to remove it.

Another method would be to regularly oxygenate the water. Water aer-
ation is commonly used to increase oxygen concentration in lakes and rivers
and increases water quality (Alp and Melching, 2011; Mahmud et al.,
2020). There are many different types of aerators that could be used in
the pond, such as fine pore aerators (Shammas, 2007), or surface aerators
(Rosso et al., 2008). However, venturi aeration may be a simpler and
more cost-effective solution for farmers. When a minimal amount of pres-
sure exists between the inlet and outlet sides of a venturi tube, a vacuumoc-
curs. Air that is entrained into the water is instantly forced downstream in
the form of small air bubbles and so increases the oxygen levels in the water
(Baylar et al., 2010; Baylar and Ozkan, 2006). The reduced cost of purchase
andmaintenance of venturi aerators compared to othersmaymake themvi-
able alternatives, in low resource areas, such as Africa (Mahmud et al.,
2020; Therrien et al., 2019). The use of venturi aeration has successfully
been applied to irrigation water for agriculture production and increased
yields of the crops (Bagatur, 2014; Dahrazma et al., 2019). Alternatively,
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if the sole purpose of the water is for irrigation of crops, hydrogen peroxide
can be added to the water. Hydrogen peroxide should decompose into
water and molecular oxygen within a few hours in natural waters (Spoof
et al., 2020). The addition of hydrogen peroxide to irrigation water has
been shown to be an effective method to increase oxygen concentration
and improve plant parameters in Africa, and other parts of the world
(Abd Elhady et al., 2021; Bhattarai et al., 2004). However, if too high con-
centrations of hydrogen peroxide is used this can lead to oxidative stress on
the plants (Ben-Noah and Friedman, 2016; Gil M et al., 2009), which will
reduce overall yield, and may pose a health risk to the farmers. Addition-
ally, the use of water plants that are native to the area could be introduced
into the pond to supply oxygen via photosynthesis such as water hyacinths.

4.3. Removal of human pathogens in PHS

Although the relative abundance of potential bacterial human health
pathogens was low in the ponds, our data indicates a potential human
health risk. Specifically, the non-tuberculous mycobacteria (NTM),
Mycobacterium fortuitum, was found to be present in one of the ponds, com-
prising >1% of the bacterial community. In terms of absolute abundance,
our results suggest over 36,000 pathogenicMycobacterium 16S rRNA copies
perml of water. Non-tuberculosismycobacteria (NTM) are ubiquitous envi-
ronmental organisms increasingly recognised as important human patho-
gens (Kasperbauer and De Groote, 2015; Sfeir et al., 2018). M. fortuitum is
considered rapidly growing and is distinguished from other NTM by their
ability to form colonies in less than one week and their in vitro resistance
to antimycobacterials (Daley and Griffith, 2002; Park et al., 2008). It can
cause skin disease, osteomyelitis, joint infections, infections of the eye,
and pulmonary infections (Griffith et al., 2007; Okamori et al., 2018).
Harvested rainwater can be used for many household purposes, such as,
drinking, swimming and bathing (Domènech and Saurí, 2011; Hofman-
Caris et al., 2019). It is these activities where humans are likely to be ex-
posed to waterborne NTM (Thomson et al., 2013). Furthermore, aerosols
generated during these activities can be inhaled potentially resulting in dis-
ease (Falkinham, 2003; Lever et al., 2000). Given low doses of Mycobacte-
rium are required to establish an infection (Johnson et al., 2007; Saini
et al., 2012) this suggests usage of the harvested water may be a human
health risk. Furthermore, NTM are extremely resistant to many chemical
disinfectants used to treat water, such as chlorine, chlorine dioxide,
monochloramine and ozone (Taylor et al., 2000). Given this resistance to
chemical disinfection, propensity to form biofilms (Faria et al., 2015) and
ability to survive in low carbon environments (Falkinham, 2003), complete
removal of all pathogenic NTM fromharvestedwater will be difficult. Phys-
ical methods of water disinfection, such as Pall filtration and UV-C disinfec-
tion have proved effective in significantly reducing the viable NTM
population in drinking water (Norton et al., 2020). There are a number of
commercially available water purification systems which uses these
methods and could provide a simple way for individuals to minimise their
exposure to waterborne NTM. However, due to the low incomes of the
rural smallholder farmers these options may not be feasible without finan-
cial support of non-governmental or charitable organisations.

4.4. Limitations of the study

A limitation of this study to evaluate potential human health risks is the
taxonomic resolution achieved through amplicon sequencing, which can
only give identification to the genus level. Furthermore, with amplicon se-
quencing it remains challenging to differentiate between viable/metaboli-
cally active, and non-viable microorganisms (Emerson et al., 2017; Wang
et al., 2021). Indeed in this study, although opportunistic pathogenic
groups were detected, information is lacking on their viability. However,
amplicon sequencing represents the most efficient and cost-effective solu-
tion to provide a taxonomic overview and screen for potentially pathogenic
groups, compared to PCR-based identification on a pathogen-by-pathogen
basis, which would be time-consuming and requires prior knowledge of
which groups to target.
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Shotgun metagenomic sequencing could be an alternative approach,
allowing for strain-level identification of pathogens as well as associa-
tions between phylogeny and function (Quince et al., 2017). However,
shotgun metagenomics has much higher input DNA requirements com-
pared to amplicon sequencing (Sui et al., 2020), which may be difficult
to achieve with the filtered harvested rainwater samples used in this
study. A further limitation of metagenomics for pathogen detection is
that abundant taxa get most of the coverage, meaning rare pathogens
could be missed or not sequenced with enough depth for identification
(Ferguson et al., 2021).

To fully validate our results, it would be necessary to use a combination
of amplicon sequencing, to provide a broad identification of taxa, shotgun
metagenomics, to identify strains and virulence genes, and PCR-based
methods for specific confirmation of pathogen presence. Once the presence
of a pathogen has been confirmed using molecular methods, viability can
be determined using for example culture-dependent methods (e.g. plate
counts), or alternative techniques such as flow cytometry, or viability
dyes coupled with qPCR. This would provide an effective method to fully
assess potential human health risks.

5. Conclusions

In conclusion, this study characterised the microbial ecology of PHSs
across taxonomic domains. We identified the presence of potential path-
ogens, notably, Mycobacterium fortuitum in one of the ponds, which is a
human health concern as mycobacteria are rarely targeted in screening
of microbial water quality with standard techniques (e.g. heterotrophic
plate counts) and would be missed. This study highlights the need for a
broader screening of microbial community composition through HTS, to
identify all potential pathogens, followed by a more sensitive molecular
method (e.g qPCR) to confirm their presence and abundance. The abun-
dance of anaerobes and methanogens, which are driven by fluoride and
magnesium concentrations, indicates poor water quality of supplies
being used to irrigate crops, which in turn could reduce crop yield and
viability. Here we suggest changes to PHS management (e.g. pond
design, aeration) to ameliorate hypoxic or anoxic conditions and allow
the transport of aerated water to roots, promoting plant water uptake
and maximising crop yield. We also suggest physical methods of water
disinfection, such as Pall filtration and UV-C disinfection, to mitigate
pathogen contamination in the ponds. Overall, this will be beneficial
to the livelihoods and welfare of the rural smallholders in Kenya.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.153040.
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