
A generic model for pandemics in networks of communities and the role
of vaccination

Chris G. Antonopoulos,1, a) M. H. Akrami,2 Vasileios Basios,3 and Anouchah Latifi4
1)Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ,
UK
2)Department of Mathematics, Yazd University, Yazd 89195-741, Iran
3)Service de Physique des Systèmes Complexes et Mécanique Statistique & Interdisciplinary Center for
Nonlinear Phenomena and Complex Systems (CeNoLi), Université Libre de Bruxelles, Ixelles BE-1050,
Belgium
4)Department of Mechanics, Qom University of Technology, Qom 1519-37195, Iran

(Dated: 24 May 2022)

The slogan “nobody is safe until everybody is safe” is a dictum to raise awareness that in an interconnected world,
pandemics such as COVID-19, require a global approach. Motivated by the ongoing COVID-19 pandemic, we model
here the spread of a virus in interconnected communities and explore different vaccination scenarios, assuming that
the efficacy of the vaccination wanes over time. We start with susceptible populations and consider a susceptible-
vaccinated-infected-recovered model with unvaccinated (“Bronze”), moderately vaccinated (“Silver”) and very well
vaccinated (“Gold”) communities, connected through different types of networks via a diffusive linear coupling for
local spreading. We show that when considering interactions in “Bronze”-“Gold” and “Bronze”-“Silver” communities,
the “Bronze” community is driving an increase in infections in the “Silver” and “Gold” communities. This shows a
detrimental, unidirectional effect of non-vaccinated to vaccinated communities. Regarding the interactions between
“Gold”, “Silver” and “Bronze” communities in a network, we find that two factors play central role: the coupling
strength in the dynamics and network density. When considering the spread of a virus in Barabási-Albert networks,
infections in “Silver” and “Gold” communities are lower than in “Bronze” communities. We find that the “Gold”
communities are the best in keeping their infection levels low. However, a small number of “Bronze” communities are
enough to give rise to an increase in infections in moderately and well-vaccinated communities. When studying the
spread of a virus in a dense Erdős-Rényi, and sparse Watts-Strogatz and Barabási-Albert networks, the communities
reach the disease-free state in the dense Erdős-Rényi networks, but not in the sparse Watts-Strogatz and Barabási-Albert
networks. However, we also find that if all these networks are dense enough, all types of communities reach the disease-
free state. We conclude that the presence of a few unvaccinated or partially vaccinated communities in a network, can
increase significantly the rate of infected population in other communities. This reveals the necessity of a global effort
to facilitate access to vaccines for all communities.

Motivated by the ongoing COVID-19 pandemic and vac-
cination programs implemented worldwide, we model
here mathematically the spread of a virus in intercon-
nected communities, which can be for example coun-
tries, and study different vaccination scenarios, assum-
ing that the efficacy of vaccination wanes over time.
These scenarios result in different infection outcomes, de-
pending on how the communities are interconnected and
how strongly interconnected they are. We consider a
susceptible-vaccinated-infected-recovered model and ini-
tially susceptible populations in communities which can
be unvaccinated (“Bronze”), moderately vaccinated (“Sil-
ver”) or very well vaccinated (“Gold”). We connect
them through different types of networks, i.e., through
Erdős-Rényi, Watts-Strogatz and Barabási-Albert net-
works, via a diffusive linear coupling for local spreading.
We show for interactions between “Bronze” and “Gold"
and “Bronze” and “Silver" communities, the detrimen-
tal, one-way, effect of non-vaccinated communities to vac-
cinated ones. When considering the spread of a virus
in Barabási-Albert networks, moderately vaccinated “Sil-
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ver” and well-vaccinated “Gold” communities are able to
resist the spread only for some time as the vaccine effi-
cacy wanes over time. Our work shows that the “Gold”
communities are the best to keep their infection levels low,
however even a small number of unvaccinated “Bronze”
communities are enough to spiral up infections in moder-
ately and well-vaccinated communities. We find that even
a large number of “Gold” communities is unable to keep
infection levels low or halt the prevalence of the spread.
Interestingly, interconnected communities in dense Erdős-
Rényi random networks reach the disease-free state, but
not in sparse Watts-Strogatz and Barabási-Albert net-
works, where the infections spread to all communities in
the long term. Based on our results, we conclude that the
presence of unvaccinated or partially vaccinated commu-
nities in a network, can increase significantly the rate of
infected population in other communities. This reveals the
importance of maintaining vaccination campaigns glob-
ally to defend ourselves against the spread of infectious
diseases such as COVID-19.
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I. INTRODUCTION

The novel strand of Coronavirus (SARS-CoV-2) was iden-
tified in Wuhan, Hubei Province in China in December 2019
and it has spread since then everywhere in the world1–5. The
World Health Organization (WHO) declared it a pandemic on
11 March 2020. It is known that it causes a severe and poten-
tially fatal respiratory syndrome, i.e., COVID-19 which has4

impacted heavily on human health and on the socioeconomic
status in affected countries. Governments and local author-
ities imposed counter measures to mitigate its spread, such
as wearing face masks, sanitisation, hand-washing, social-
distancing, implementation of local and national lockdowns,
quarantines, etc. They have all proved quite successful in
slowing down the spread of the virus6, however, there are un-
met challenges7, for example when such measures are imple-
mented for long times or repeatedly. Vaccination programs
have started being implemented around the world8 and the so-
cial landscape in affected countries has changed due to the
virus and vaccines. Hence it is important to consider broader
mitigation measures to halt the spread of COVID-19, not
only within communities such as in countries but importantly,
among different interconnected communities. This is also be-
cause citizens can travel through transportation, flight or other
networks and mix with each other. The effect of vaccination
in interconnected communities is crucial in understanding the
spread of COVID-19 and the development of the pandemic in
a global scale.

Mathematical approaches to model and analyse the dynam-
ics of infectious diseases, including COVID-19, have been de-
veloped to forecast the trajectory of viruses or depict trends
and patterns. For example, the work in4,5,9–14 focuses on the
changes of susceptibility, infection rates, deaths and recov-
ered cases from COVID-19, which can help governments and
local authorities implement counter measures to reduce infec-
tion rates. If measures are not taken to mitigate the spread, the
number of infected cases grows exponentially fast with a cer-
tain rate of transmission13,14. Hence the necessity to explain
and forecast the trajectory of an infectious virus in intercon-
nected, vaccinated, communities becomes imperative as it can
help governments and authorities implement timely, counter
measures, prevention and control strategies and to allocate
wisely financial and medical resources.

One of the first mathematical models that was used to
study the spread of viruses in communities is the susceptible-
infected-removed (SIR) model. In particular, Kermack and
McKendrick15 presented in 1927 one of the first models to
forecast an epidemic. According to their model, a population
is divided into the susceptible population (S) whose individ-
uals can become infected, the infected population (I) and the
removed population (R) who are individuals who have either
recovered or have died due to the virus. The SIR model is
given by a system of three coupled, nonlinear, ordinary differ-
ential equations (ODEs) which describe the dynamics of the
disease in time as individuals move from one compartment to
another. Since then, the SIR model and modifications16–19

have been used20,21 to model the spread of COVID-19 in
communities13,14,22–27. The main goal is to predict the du-

ration of the pandemic and to find how interventions such as
social distancing, immunisation and vaccination could reduce
the number of infected individuals. Importantly, mathemati-
cal models can be used to evaluate the effectiveness of control
policies against the spreading of infectious diseases, such as
COVID-19.

One of the effective ways to immunise communities is
through vaccination. Epidemic models that include vaccina-
tion are divided into two categories. In the first, the models
assume vaccination as a treatment, whereby individuals are
moved from the infected to the recovered population28–31. In
the second category, the models consider the vaccinated in-
dividuals as members of a separate population32–35, which is
modelled by its own ODE. According to the models in the
first category, it is assumed that the population is vaccinated
at a constant rate. However, in reality, the vaccination and
control strategy is dynamic in time. Hence here we adopt the
approach in the second category and model vaccinated popu-
lations with a separate ordinary differential equation.

These approaches assume the communities (e.g., countries)
are isolated and hence do not interact with their external en-
vironment, i.e., with other communities. This means mixing
of individuals from different communities cannot occur, not
even when vaccination strategies are in place to increase herd
immunity in the communities. However, in reality, even when
national lockdowns, quarantines or other mitigation measures
are in place (e.g., vaccinations), there are still people travel-
ing from one place to another, mixing and coming in contact
with people from other communities, potentially spreading the
virus. This brings about the necessity to develop mathematical
models to study the spread of a virus in interconnected com-
munities in which the percentage of the vaccinated population
and vaccine efficacy vary.

Here, we propose a mathematical model to study the spread
of a virus in interconnected communities and the effects of
different levels of vaccination, employing ideas from complex
systems and complex networks36. As in reality, infected indi-
viduals or individuals that become infected during their trip,
can travel from one place to another and spread a virus, here
we focus on this case and allow only infected individuals to
travel through a network of interconnected communities. We
explain in the supplementary material why we have made this
choice. We model the interconnected communities as a net-
work where the communities (e.g., countries) are the nodes
and their interactions (i.e., travelling among communities) are
the connections, which are assumedly undirected for simplic-
ity. We consider different types of connectivity networks, such
as Erdős-Rényi (ER) random37, Watts-Strogatz (WS) small-
world38 and Barabási-Albert (BA) scale-free39 networks. On
each node of the network we consider an epidemic model with
vaccination strategy (SVIR) based on the classic SIR model15,
where nodes are connected to other nodes via the Laplacian
of the adjacency matrix of the network to model local, diffu-
sive, spreading. In this context, V stands for the vaccinated
population in the community and S, I and R are the suscep-
tible, infected and recovered populations in the community,
respectively. This results in a system of ODEs coupled via the
Laplacian matrix of the network. As we consider undirected
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connections only, the adjacency matrices are symmetric and
binary, whereby 0 means no connection and 1 a connection.

Our work is motivated by the work in40,41, where SVIR
epidemic models with vaccination strategies and a SVIR epi-
demic model with stochastic perturbations were studied, and
provides a mathematical approach to model the effect of dif-
ferent levels of vaccination in susceptible, infected and re-
moved populations in interconnected communities. A basic
version of our numerical code used in the paper is shared
on GitHub42 to help anyone interested to study the spread of
viruses in interconnected communities. The paper is also ac-
companied by a supplementary material, where we present
additional results on the spread of a virus on ER random,
WS small-world and BA scale-free networks and on network
properties. In particular, we present results for communities
sorted based on the node-degrees in a BA scale-free network,
results for the case where only susceptible populations can
travel through a network and at the end, we discuss some of
the spectral properties of the networks used herein.

The paper is organised as follows: Section II discusses our
approach in modelling mathematically the spread of a virus in
interconnected communities. In Sec. III we explore a number
of vaccination scenarios in interconnected communities, as-
suming that initially, all populations are susceptible. We dis-
cuss our main results in Sec. IV and in Sec. V, we conclude
our work, discussing the outcomes of our analysis in a broader
context, in view of the evidence that has been collected on the
spread of COVID-19 worldwide.

II. MODELLING THE SPREAD OF A VIRUS IN
INTERCONNECTED COMMUNITIES

A. From SIR to SVIR modelling of a virus

The modelling approach we are taking here to study the
spread of a virus (e.g., COVID-19) in interconnected commu-
nities is based upon the classic susceptible-infected-removed
(SIR) model43, which is a simple compartmental model to
study the spread of viruses in communities15,43,44. The in-
terconnected communities are modelled by a network of N
nodes, whereby each node is a community, resulting in N
communities connected through the Laplacian of the adja-
cency matrix of the network, for local, diffusive, spreading.
In the SIR model, each community is split into three com-
partments, i.e., into the susceptible S, infected I and removed
R populations that evolve in time t. In this context, the total
population M = S+ I +R is constant. In particular, M is split
into the:

1. Susceptible population, S: These are the individuals
who are not infected, but can become infected. A sus-
ceptible individual may become infected or remain sus-
ceptible. As the virus spreads from its source or new
sources spring up in the community, more individuals
become infected, thus the susceptible population de-
creases in time.

2. Infected population, I: These are the individuals who
have already been infected by the virus and can trans-
mit it to the susceptible individuals. An infected indi-
vidual may remain infected, and can be removed from
the infected population to recover or die.

3. Removed population, R: These are the individuals who
have either recovered from the virus and are assumed to
be immune or have died.

The dynamics of the classic SIR model43 is determined by
the system of ODEs

dS
dt

=−βSI,

dI
dt

= βSI −λ I, (1)

dR
dt

= λ I,

where β is the probability of infections per day, meaning that
each susceptible individual infects randomly β individuals ev-
ery day and λ , the fraction of infected individuals that are
transferred to the removed population. In this context, β and
λ are constants. The SIR model (1) is derived assuming that:
(a) the members of the susceptible and infected populations
are homogeneously distributed in space and time, (b) an indi-
vidual removed from the infected population has lifetime im-
munity, (c) the total population M is constant in time, (d) the
time-scale of the SIR model is short enough so that births and
deaths, other than deaths caused by the virus, can be neglected
and (e) the number of deaths from the virus is small compared
with the living population.

Even though the classic SIR model (1) is a simple, com-
partmental, model that can describe the spread of a virus in
a community, it does not account for a vaccinated population
and thus, cannot describe its influence on the dynamics of S,
I and R in the community. Here, we are interested in studying
the spread of a virus, e.g., COVID-19, and the effect of dif-
ferent levels of vaccination, in interconnected communities.
The authors in40 present the susceptible-vaccinated-infected-
removed (SVIR) model

dS
dt

= µ −βSI − (µ +φ)S,

dV
dt

= φS−ρβ IV −µV, (2)

dI
dt

= βSI +ρβ IV − (λ +µ)I,

dR
dt

= λ I −µR,

which is based on the classic SIR model (1). Model (2) de-
scribes the spread of a disease when a vaccination program is
in effect, assuming the vaccine does not lose its efficacy. Fur-
ther on, it supposes that in the unit of time, a fraction φ of
the susceptible population, S, is vaccinated. The vaccination
may reduce but not completely eliminate susceptibility to in-
fection, so the model includes a factor ρ , where 0 ≤ ρ ≤ 1,
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in the contact rate of vaccinated members, V , with ρ = 0 cor-
responding to the case where the vaccine has perfect efficacy
and ρ = 1 to the case where the vaccine has no effect at all.
The model also supposes that the immunity is permanent so
that a fraction λ of infected individuals, I, returns to the re-
moved population, R, that births occur with the same constant
rate µ of deaths and that all newborns enter in the suscepti-
ble population, S. Hence µ , λ , φ and β are all positive, real
numbers.

Motivated by the work in40,41, where SVIR epidemic mod-
els with vaccination strategies and SVIR epidemic model with
stochastic perturbations are studied, and driven by the timely
question of what is the effect of different levels of vaccina-
tion in interconnected communities and in their susceptible,
infected and removed populations, we introduce the follow-
ing system of coupled ODEs

dS
dt

=−βSI −φS+δR,

dV
dt

= φS−ρβ IV,

dI
dt

= βSI +ρβ IV −λ I, (3)

dR
dt

= λ I −δR,

for the spread of a virus in a single community. System (3)
is derived from system (2) for µ = 0, where we have also
added and subtracted the term (δR) in the first and from the
last equation, respectively. Setting µ = 0 assumes there are no
births and no deaths in the community, other than deaths due
to the virus, as in the classic SIR model (1). Parameter δ is
the constant rate for the loss of immunity and hence 1/δ , the
mean immune period45. In the special case where δ = 0, the
immunity is permanent and there is no return from the recov-
ered population, R, to the susceptible population, S, in which
case the resulting model is a SIR model. Clearly, in model
(3), S+V + I +R = M, so that the total population remains
constant in time. System (3) can also be derived from the clas-
sic SIR model (1), by adding the second equation of system
(3) for the vaccinated population and the terms (−φS+ δR),
(−δR) in the first and third equations in the classic SIR model
(1). Parameter λ is the rate of recovered individuals in the
community, β the transmission rate of susceptible to infected
individuals, φ the percentage of the vaccinated population in
the susceptible population S and 0 ≤ ρ ≤ 1, the efficacy of
vaccination in the community. In this context, ρ = 0 means
perfect vaccine efficacy, whereas ρ = 1 means the vaccine has
no effect at all. Thus, taking φ = ρ = 0 means the community
is not vaccinated at all.

The transfer or population-flux diagram in Fig. 1 shows
how the four populations in system (3) are influencing each
other within a community. As φ is the percentage of suscep-
tible individuals being vaccinated, they will obtain vaccine-
induced immunity during or after the vaccination process.
Model (3) does not distinguish between natural and vaccine-
induced immunity as the latter can also last for some time.
Furthermore, the model assumes that before obtaining immu-
nity, the vaccinated individuals still have the possibility of

infecting other individuals with a disease transmission rate
(ρβ ), while contacting with infected individuals. In this con-
text, ρβ < β as the vaccinated individuals may, for example,
have developed partial immunity or they may be able to min-
imise their exposure to infected individuals.

FIG. 1: The transfer or population-flux diagram of SVIR
model (3). The diagram shows how the susceptible S,

vaccinated V , infected I and removed R populations in a
single community are influencing each other. A

subpopulation of vaccinated individuals, V , is added to the
standard SIR model (1). Parameter φ is the rate at which
susceptible individuals enter the vaccination process. The

product (ρβ ) is the transmission rate for vaccinated
individuals to be infected before gaining immunity, δ the

constant rate for the loss of immunity, λ the rate of recovered
individuals in the community and β , the transmission rate of

susceptible to infected individuals. The arrows show the
direction of the flow of populations in the community and

their labels, the rates or percentages of the flow.

The equations of the classic SIR model (1) and systems
(2) and (3) define three systems of coupled nonlinear ODEs,
and thus finding analytical solutions in closed form, given by
known mathematical functions, is difficult46. Even though
one can derive the analytical solution in an implicit form for
system (1), the process to find it, is complicated and there
are limitations in practical applications47. Thus, a common
approach is to solve these systems numerically. In our simu-
lations throughout the paper, we have used the numerical inte-
grator ode45 in Matlab, which is a single-step solver, based on
an explicit Runge-Kutta (4,5) formula, the so-called Dormand
- Prince pair48. It uses a variable integration-time step, com-
paring methods of orders four and five to estimate the error.
In the following, we will assume that all quantities are dimen-
sionless and that we are interested in performing a qualitative
study.

Next we focus on the dynamics of the modified SVIR
model (3) and study the behaviour of its solutions in the neigh-
bourhood of its equilibrium points, performing an equilibrium
stability analysis.
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B. Equilibrium stability analysis of the SVIR and SIR models
with waning immunity

Here we shed light on the dynamics of systems (3) per-
forming an equilibrium stability analysis to study the stabil-
ity of its trajectories in the neighbourhood of its equilibrium
points. The system has the disease-free equilibrium point
(DFE) E0 = (S0,V0, I0,R0) = (0,V0,0,0) for any V0. As in
this model, the sum of the time-derivatives of S, V , I and R,
Ṡ + V̇ + İ + Ṙ = 0, we have that S +V + I +R = M, where
M is the constant total population. Hence the total population
remains constant in time. We suppose, without loss of gen-
erality, that M = 1, which results in E0 = (0,1,0,0), where
V0 = M = 1. The eigenvalues of the Jacobian of system (3)
at E0 are 0, −φ , −δ and ρβ − λ . Therefore, E0 is stable if
ρβ − λ < 0 as φ and δ are positive. Setting R0 = ρβ

λ
, if

R0 < 1, E0 is stable, whereas if R0 > 1, E0 is unstable as
there is one positive eigenvalue, i.e., ρβ −λ > 0. Hence, sys-
tem (3) has a stable DFE for R0 < 1 and an unstable one for
R0 > 1. In this framework, R0 is the basic reproduction num-
ber of system (3) and determines the stability of DFE.

Furthermore, when E0 is unstable, another equilibrium
point is obtained where

S∗ =
λ I∗

β I∗+φ
,

V ∗ =
λφ

ρβ (β I∗+φ)
,

R∗ =
λ I∗

δ
,

with I∗ being the positive root of the quadratic

A I2 +BI +C = 0, (4)

resulting from S∗+V ∗+ I∗+R∗ = M, where

A = ρβ
2(δ +λ ),

B = ρβφ(δ +λ )+ρβδ (λ −β ),

C = φδ (λ −ρβ ) = φδλ (1−R0).

In particular, since A > 0 as β , ρ , φ , λ and δ are all positive,
parabola (4) opens upward, having 0, 1 or 2 roots. In the case
of 2 roots, the quadratic equation (4) has one negative and one
positive root. We keep the positive root I = I∗ to use in S∗, V ∗

and R∗ as I is a population, so I(t)≥ 0 for all times t.

Next we investigate the dynamics of S, I and R populations
in the absence of vaccination where the mean immune period
is 1/δ 45, hence we remove the second ODE for vaccination
from system (3) and set φ = ρ = 0 to end up to the reduced
system

dS
dt

=−βSI +δR,

dI
dt

= βSI −λ I, (5)

dR
dt

= λ I −δR,

which is essentially the classic SIR model (1) with waning
immunity, assuming δ > 0. System (5) has the DFE P0 =
(S0, I0,R0) = (1,0,0) and its basic reproduction rate is R00 =
β

λ
. The eigenvalues of its Jacobian at P0 are 0, −δ , and β −λ .

Therefore, P0 is stable if β −λ < 0 or R00 < 1 and unstable if
R00 > 1. In the latter case, there is another equilibrium point
P∗ = (S∗, I∗,R∗) =

(
λ

δ
, δ (R00−1)

R00(δ+λ ) ,
λ (R00−1)
R00(δ+λ )

)
.

Next, we simulate numerically system (3) in Fig. 2 for
two sets of parameters that result in R0 < 1 (panel (a))
and R0 > 1 (panel (b)). First, we choose (β ,ρ,φ ,λ ,δ ) =
(0.02,0.3,80,0.01,0.0001) (what we call a “Gold” commu-
nity in Subec. III A), that results in R0 = 0.6 < 1 and
to trajectories approaching the stable DFE at (0,1,0,0) as
can be seen in panel (a). In the second case shown in
panel (b), we consider the parameter values (β ,ρ,φ ,λ ,δ ) =
(0.02,0.6,40,0.01,0.0001) (what we call a “Silver” commu-
nity in Subec. III A) that result in R0 = 1.2 > 1, in which
case E0 is unstable and the trajectories approach the equilib-
rium point

(S∗,V ∗, I∗,R∗)≈ (4.125 10−7,0.833,1.65 10−3,0.165). (6)

This equilibrium point is stable as the eigenvalues are approxi-
mately equal to −40,−5.99 10−5 +4.43 10−4i,−5.99 10−5 −
4.43 10−4i,0, where i is the imaginary unit in the complex
plane (i.e., i2 =−1). We note that the equilibrium point in Eq.
(6) is not a DFE, as I converges to I∗ ≈ 1.65 10−3, in contrast
to E0, where I0 = 0.

Returning to system (5), considering for example the set of
parameters (β ,λ ,δ ) = (0.02,0.01,0.0001) results in R00 =
2. In this case, the system has the unstable DFE P0 =
(S0, I0,R0) = (1,0,0) with the eigenvalues being approxi-
mately equal to 0,−0.0001,0.01 and the stable equilibrium

P∗ = (S∗, I∗,R∗) ≈ (0.5,4.95 10−3,0.495) with the eigenval-
ues being approximately equal to −0.005+0.0087i,−0.005−
0.0087i,0, where i is the imaginary unit in the complex plane
(i.e., i2 =−1).

C. A network approach for the spread of a virus in
interconnected communities

Building on the SVIR model (3), we consider here N inter-
connected communities, where each community i = 1, . . . ,N
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FIG. 2: Numerical solution to system (3) for two sets of parameters (see text) which result in R0 < 1 and R0 > 1 in panels (a)
and (b), respectively. In panel (a), the system converges to the stable DFE E0 = (S∗,V ∗, I∗,R∗) = (0,1,0,0) and in panel (b), to
the stable equilibrium point given in Eq. (6). Note that in panel (a), R0 = 0.6 and that in panel (b), R0 = 1.2. The black dashed

line corresponds to S+V + I +R = M = 1.

is divided into four compartments S, V , I and R, i.e., into the
susceptible, vaccinated, infected and recovered populations,
respectively. Since in reality, infected individuals or individu-
als that become infected during their trip, can travel from one
place to another and spread a virus, we will assume in our
model that only infected individuals can travel through a net-
work of interconnected communities. We explain more about
this in Sec. III in the supplementary material. The dynamics
of the communities then is described by the system of coupled
ODEs

dSi

dt
=−βiSiIi −φiSi +δiRi,

dVi

dt
= φiS−ρiβiIiVi,

dIi

dt
= βiSiIi +ρiβiIiVi −λiI +α

N

∑
j=1

LI
i jI j, (7)

dRi

dt
= λiIi −δiRi,

where LI is the Laplacian of the adjacency (or connectivity)
matrix AI that describes the connectivity of the communities.
Hence

LI = KI −AI , (8)

where KI is the node-degree matrix of AI . Equation (8) then
implies that

N

∑
j=1

LI
i j = 0, (9)

where i = 1, . . . ,N. Since Ii ∈ [0,1], the coupling term in the
third equation in system (7) gives rise to a constant popula-
tion M = ∑

N
i=1(Si +Vi + Ii +Ri) = N. In other words, the total

population in system (7) is constant in time, and in particu-
lar, it is equal to N, that is to the number of communities in

the network. The coupling term denotes the diffusive cou-
pling among the infected populations, whereby the connectiv-
ity strength is denoted by α ≥ 0.

The communities at the nodes of the network may be vac-
cinated, partially vaccinated or unvaccinated. First, we divide
each community i = 1, . . . ,N into the susceptible Si, vacci-
nated Vi, infected Ii and recovered Ri populations, which are
functions of time, t. The way populations Si, Vi, Ii and Ri in
community i are influencing each other is shown schemati-
cally in Fig. 1.

In our numerical approach, we assume that initially (i.e., at
t = 0) all individuals in a community, either that is a “Bronze”,
“Silver” or “Gold’ community (see Table I), are susceptible to
the virus and that there are no vaccinated, infected and recov-
ered individuals. This leads to the initial conditions Si(0) = 1,
Vi(0) = 0, Ii(0) = 0 and Ri(0) = 0 for all i, used throughout
the paper.

III. MODELLING VACCINATION SCENARIOS

In modelling the dynamics of infections in vaccinated, in-
terconnected communities using system (7), the coupling term
α models the easiness of travel through the network of the
N interconnected communities. For example, α = 0 corre-
sponds to N fully locked down (or disconnected) communi-
ties, whereby travelling from one to another is not possible.
Hence increasing positive values of α correspond to travel-
ling easier through the network.

Given that governments and local authorities impose partial
or full lockdowns or other measures to hinder or ban people
from travelling and mixing with other groups of people as a
means to control the spread, we will assume in our study that
α is small. Our results show that in sparse (i.e., very low net-
work density) WS small-world and BA scale-free networks,
large values of α lead eventually to a homogenisation of the
spread of infections in the communities (see Fig. 9), assum-
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ing initially the populations are susceptible. Our results also
show that for dense-enough ER random, WS small-world and
BA scale-free networks, the dynamics reach the disease-free
state (see Fig. 13). To model and study the effect of incom-
plete lockdowns in interconnected communities, we will start
by setting α = 10−8, to account for a small coupling term,
enough to give rise to interesting phenomena highlighting the
dramatic influence of non-vaccinated communities to other
communities.

A. Parameters

In the following, we will study the spread of an infectious
disease, e.g., COVID-19, for different vaccination scenarios
by splitting the N communities into three, not necessarily
equally-sized, groups of sub-communities, to model different
vaccination levels. We consider “Gold” communities with a
high percentage of vaccinated individuals and high vaccina-
tion efficacy, “Silver” with a moderate percentage of vacci-
nated individuals and vaccination efficacy and “Bronze” with
no vaccinated individuals at all. In the case of unvaccinated
“Bronze” communities, the efficacy of the vaccination does
not play actually any role as no one in the community is vac-
cinated, however for numerical reasons it is set equal to 0,
meaning that ρ = 0 for the “Bronze” communities. Our choice
of types of communities covers vaccination scenarios rang-
ing from excellent (“Gold”) to moderate (“Silver”) to poor
(“Bronze”) vaccination policies. We summarise the param-
eter values used throughout the paper for the three types of
communities in Table I.

Parameter values
Type of community β φ (%) ρ λ δ

“Bronze” 0.02 0 0∗ 0.01 0.0001
“Silver” 0.02 40 0.6 0.01 0.0001
“Gold” 0.02 80 0.3 0.01 0.0001

TABLE I: The parameters used in system (7) to model
“Bronze”, “Silver” and “Gold” communities throughout the
paper. We note that φ is expressed as the percentage of the
susceptible population that is vaccinated and that 0∗ means

that in the case of the unvaccinated “Bronze” community, the
efficacy of the vaccination does not play any role as no one in
the community is vaccinated, however for numerical reasons

it is set equal to 0.

Based on the values in Table I, the “Gold” communities are
considered the most well-vaccinated, the “Silver”, the second
best well-vaccinated and the “Bronze” the worst vaccinated.
In the latter case, we assume that vaccination is not available,
hence the choice φ = 0. Parameter ρ is the efficacy of vac-
cination in the communities and hence ρ = 0 means the vac-
cine is fully effective and ρ = 1 that the vaccine has no effect
at all. Thus, taking φ = ρ = 0 means the community is not
vaccinated. Here we consider that the “Gold” communities
are the best vaccinated with very high efficacy, i.e., ρ = 0.3

and the “Silver” communities the second-best well-vaccinated
communities using ρ = 0.6. For the “Bronze” communities,
we assume that they cannot roll out vaccination policies, and
hence set φ = ρ = 0 for these communities. Finally, we con-
sider that the rest of the parameters, i.e., β , λ and δ are the
same for all types of communities as reported in Table I.

B. Networks

In the following, we consider networks composed of ver-
tices or nodes and edges or links49. The vertices or nodes play
the role of communities and the edges, the role of links (or
interconnections) connecting the communities. For simplic-
ity, we assume that the links are undirected, meaning that if
community i is connected to community j, then community
j is connected to community i at the same time. We con-
sider three exemplar network topologies, i.e., ER random37,
WS small-world38 and BA scale-free39 networks of N = 60
interconnected communities (i.e., nodes). To compute the net-
works and corresponding adjacency (or connectivity) matrices
AI used in our study, we have employed the igraph package
in R. From these adjacency matrices AI , the corresponding
Laplacian matrices LI were computed using Eq. (8), which
were then fed into system (7). In particular, in Fig. 3 we
consider an example of an ER random network with rewiring
probability p = 0.3 (resulting in network density 0.3) in panel
(a), a WS small-world network with network density 0.07 in
panel (b) and a BA scale-free network with network density
0.033 in panel (c). In Fig. 13, we also consider WS small-
world and BA scale-free networks with density 0.3, the same
with the ER random network. The network density is given by
the ratio of actual connections to potential connections in the
network and ranges between 0 and 1. Hence, the ER random
network in panel (a) is denser than the other two networks.

In ER random networks, all graphs on a fixed vertex set
with a fixed number of edges are equally likely. A random net-
work consists of N nodes where each node pair is connected
with a predefined rewiring probability p. It is a very sim-
ple model where every possible edge is created with the same
rewiring probability p. A small-world network is a network
where the typical distance L between two randomly chosen
nodes (the number of steps required) grows proportionally to
the logarithm of the number of nodes N in the network. For
example, in a small-world network of people, any two peo-
ple in the network can reach each other through a short se-
quence of acquaintances. A common feature of real world
networks is the presence of hubs, that is of a few nodes that
are highly connected to other nodes in the network. Hubs re-
sult in long tails in the network degree distribution, indicating
the presence of nodes with a much higher degree than most
other nodes. The fact that in many real world networks a small
number of highly connected hubs exist has important conse-
quences for how, for example, information and diseases travel
through the network. This is relevant to epidemiology, pub-
lic relations, marketing, etc. Scale-free networks are a type
of network characterised by the presence of large hubs. A
scale-free network is one with a power-law degree distribu-
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tion. Several natural and human-made systems, including the
Internet, the world wide web, citation networks, and some so-
cial networks are thought to be approximately scale-free and
certainly contain few nodes with high degree as compared to
the other nodes in the network. The BA model39 is an algo-
rithm for generating random scale-free networks using a pref-
erential attachment mechanism. Many observed networks (at
least approximately) fall into the class of scale-free networks,
meaning that they have power-law (or scale-free) degree dis-
tributions, while ER random and WS small-world networks
do not exhibit power laws. The BA model incorporates two
important general concepts: growth and preferential attach-
ment. Both growth and preferential attachment exist widely
in real networks49.

We start in the next section studying the dynamics of an un-
connected “Bronze”’, “Silver” and “Gold” community, mean-
ing the case where N = 3 and α = 0 in system (7) with the
rest of the parameters given in Table I.

IV. MAIN RESULTS

A. Three unconnected “Bronze”, “Silver” and “Gold”
communities

Before considering the case of a big number of intercon-
nected communities and the spread of the virus in large-size
networks, we will examine the dynamics of the spread in in-
fections I(t) in system (7) for a trio of unconnected “Bronze”’,
“Silver” and “Gold” communities. This means we start by
studying the case where N = 3 and α = 0 in system (7) with
the rest of the parameters given in Table I.

Figure 4 shows the time-evolution of the, non-interacting
(i.e., α = 0), infected populations, Ii, i = 1,2,3, of system (7)
where i = 1 corresponds to the “Bronze” community, i = 2 to
the “Silver” community and i = 3 to the “Gold” community.
In particular, Fig. 4 is a spatiotemporal plot where the hori-
zontal axis denotes the community index and the vertical the
time t. The colour bar encodes the infections Ii in a logarith-
mic scale to depict small variations in infections near 0 as I
takes values in the interval [0,1]. As we can see, infections in
the “Bronze” community quickly soar and reach close to the
maximum at 1 as its population is unvaccinated and is not in
contact with another vaccinated population to influence it. It
starts in blue meaning it is a fully healthy community with al-
most no infections. However, since the community is not vac-
cinated, a rapid and intense first wave of infections at t ≈ 4000
occurs, followed by a second and third waves at t ≈ 15000 and
t ≈ 22000, respectively. As it is not vaccinated, a cascade of
secondary infection waves follow up leading to an alarming
number of infections after about t ≈ 15000, depicted by red in
the spatiotemporal plot. As the scale in the colour bar is loga-
rithmic, deep red at t ≈ 4000 signifies a tenfold increase in the
order of magnitude of infections in the “Bronze” community.

In contrast, the situation in infections in the “Silver” com-
munity is better as φ2 = 40% of the population is vaccinated
and the vaccination efficacy is ρ2 = 0.6 with 0 correspond-
ing to maximum efficacy (see Table I). Expectedly, the best

FIG. 3: Examples of an ER random network with rewiring
probability 0.3 (resulting in network density 0.3) in panel (a),

a WS small-world network in panel with network density
0.07 in panel (b) and a BA scale-free network with network
density 0.033 in panel (c). In all cases, N = 60 nodes. We
note that the BA network in panel (c) contains hub nodes

which is not the case with the networks in panels (a) and (b).

performing community in the sense of the smallest number
of infections is the “Gold” community with the highest per-
centage of vaccinated population (φ3 = 80%) and vaccination
efficacy (ρ3 = 0.3). In this case, I3 attains very small values
of infections around 10−16. It is evident in the spatiotempo-
ral plot of the “Bronze” community that the infections spiral
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up very quickly in time as the community is not vaccinated,
thus the virus prevails very quickly. In the case of the “Sil-
ver” community, the effect of vaccination does not hold for
ever (blue region) as the rate for the loss of immunity from
the vaccination δ is set to 0.0001 and the percentage of vacci-
nated individuals is φ2 = 40%. Hence immunity is being lost
in time (see Table I). The first, second and third waves can be
clearly seen at t ≈ 17000, t ≈ 34000 and t ≈ 50000, respec-
tively. As the scale of the colour bar is logarithmic, in the first
wave of infections depicted by red in the spatiotemporal plot,
a significant fraction of the population, between 1% and 10%,
has been infected. Similarly for the second and third peaks,
leaving the community at an infected status, which is however
lower than the “Bronze” community.

In the case of the “Gold” community, since the percentage
of the vaccinated population is very high (i.e., φ3 = 80%), the
population still remains well immune even after a very long
time compared with the infection levels in the “Bronze” and
“Silver” communities.

The results in Fig. 4 provide the baseline case for three un-
connected “Bronze”, “Silver” and “Gold” communities where
the study of interconnected communities influencing each
other will be based on in the following.

FIG. 4: Spatiotemporal plot of the evolution of infections, I,
for three unconnected “Bronze”, “Silver” and “Gold”

communities modelled by system (7), where α = 0. The
horizontal axis denotes the community index and the vertical
the time t. The colour bar encodes the infections Ii, i = 1,2,3
in a logarithmic scale to depict small variations in infections

near 0 as I takes values in the interval [0,1]. The vertical
white, dashed lines delineate the three communities.

B. Pair-wise interactions in “Bronze”-“Gold" and
“Bronze”-“Silver" communities

Next we consider the simplest case of pair-wise interac-
tions, studying the influence in infections in the pair of in-
terconnected “Bronze” and “Gold” and “Bronze” and “Sil-
ver” communities. We want to study the influence in infec-
tions of the unvaccinated “Bronze” community to the very-

well-vaccinated “Gold” community (“Bronze”-“Gold") and to
a community vaccinated to a lesser degree, i.e., to the “Silver”
community. We present the results of this analysis in Fig. 5,
where we have set α = 10−8 in system (7) to account for a
small coupling strength in the connectivity of the pair of com-
munities.

In particular, panel (a) shows the spatiotemporal plot of
infections for a pair of “Bronze” and “Gold” communi-
ties, whereas panel (b) the spatiotemporal plot for a pair of
“Bronze” and “Silver” communities. We observe that the
evolution of infections in the “Bronze” communities in both
panels is very similar and that first and subsequent infection
waves occur more or less at the same time. This means that
the dynamics of infections in the two “Bronze” communities
remains unaltered when they come in contact with a “Gold” or
“Silver” community and that moreover, the “Gold” and “Sil-
ver” communities cannot reduce the number of infections in
the “Bronze” community. To the contrary, the “Bronze” com-
munity, which is unvaccinated, is driving the increase in in-
fections in the “Gold” and “Silver” communities, even though
these are significantly more immune than the “Bronze” com-
munity. Hence the “Bronze” community does not get affected
when it comes in contact with the “Gold” and “Silver” com-
munities. Indeed, while an isolated “Gold” community is in a
steady healthy state as it can be seen in Fig. 4, once it comes in
contact with the unvaccinated “Bronze” community, encoun-
ters the same first and secondary waves as the “Bronze” com-
munity, with less though intensity.

The total number of populations S, V , I, and R of each com-
munity is an important feature of system (7). To understand if
individual communities or the system approaches an equilib-
rium point due to the continuous exchange between them, we
plot in panels (c), (e) in Fig. 5 for the pair of “Bronze” and
“Gold” communities and in panels (d), (f) of the same figure
for the pair of “Bronze” and “Silver” communities the evo-
lution of S, V , I and R in time. Since the coupling strength
here is very small, (i.e., α = 10−8), one reasonably expects
the equilibrium points of system (7) to be very close to those
of system (3) that we discuss in Subsec. II B. In the case of
the pair of “Bronze” and “Gold” communities, S, V , I, R of the
“Bronze” community approach 0.28, 0, 0.0004, 0.72, respec-
tively at the end of the integration, meaning that the “Bronze”
community does not converge to the stable (as ρβ − λ < 1)
disease-free equilibrium point E0, with the values showing
that most of the population becomes recovered, to a less ex-
tend susceptible and to some extend infected. However, the
“Gold” community approaches the stable disease-free equi-
librium point E0 as its S, V , I, R values approach 0, 1, 10−8,
2 10−6, respectively at the end of the integration. Comparing
the values of the infected populations for the “Bronze” and
“Gold” communities, we see that as expected from panel (a),
the infected population in the “Bronze” community is much
higher than in the “Gold” community at the end of the inte-
gration. Following a similar analysis for the pair of “Bronze”
and “Silver” communities in panels (e) and (f) in Fig. 5, we
have confirmed (running also longer simulations that are not
shown here) that the “Bronze” community behaves the same
way as in the case of the “Bronze” and “Gold” communities
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and that S, V , I, R of the “Silver” community for intermediate
times as in panels (b) and (f) approach the unstable disease-
free equilibrium E0 (see panel (f)), before they get attracted
for longer integration times by the stable equilibrium (6). Fi-
nally, comparing the values of the infected populations for the
“Bronze” and “Silver” communities, we see that as expected
from panel (b), the infected populations in the “Bronze” and
“Silver” communities are similar at the end of the integration.

Concluding, in these pairwise interactions, the unvacci-
nated “Bronze” community is driving the increase in infec-
tions in better vaccinated communities, such as the “Gold”
and “Silver” communities, which shows the detrimental one-
way effect of the “Bronze” to the “Gold” and “Silver” com-
munities.

Next, we move on studying the dynamics in infections in a
group of a “Gold”, “Silver” and “Bronze” communities.

C. Tripartite interactions in “Bronze”-“Silver”-“Gold”
communities

Here we study the dynamics of infections in a group of
interconnected “Bronze”, “Silver” and “Gold” communities.
This can be thought of as a minimal fully connected network
that contains all types of communities, as shown in panel (a)
in Fig. 6.

Figure 6(a) shows that the three types of communities are
connected in an all-to-all fashion. Comparing the spatiotem-
poral plot in Fig. 5(a) for a pair of connected “Bronze” and
“Gold” communities with the plot in Fig. 6(b) for the trio
of “Bronze”, “Silver” and “Gold” communities, we see that
the dynamics of infections in the “Gold” community does not
influence any of the infection dynamics of the “Bronze” and
“Silver” communities. Hence the influence of the “Bronze”
community to the infections in the “Gold” and “Silver” com-
munities is noticeable. Even though the “Silver” community
is better vaccinated than the “Bronze”, it is not able to stop
the “Bronze” community driving the rise in infections in the
“Gold” community. Where we had a reduction in the number
of infections in the “Gold” community in Fig. 5(a), depicted
as the blue strip between 5000 and 10000 time, we have an
increase in infection levels in Fig. 6(b). Actually, this com-
parison reveals that the successive waves are not only shifted
in time but also become intensified.

As in the case of the pairs of “Bronze”-“Gold" and
“Bronze”-“Silver" communities in Subec. IV B, the total
number of populations S, V , I, and R for each community is
an important feature of system (7). In particular, we want
to understand in the case of tripartite interactions between
“Bronze”, “Silver” and “Gold” communities, if individual
communities or the system approaches an equilibrium point
due to the continuous exchange between them. To this end,
we plot in panels (c), (d) and (e) in Fig. 6 the evolution of S,
V , I and R in time of the three interconnected communities.
We see that as in the case of “Bronze”-“Gold" and “Bronze”-
“Silver” community interactions in Subec. IV B, the “Bronze”
community does not converge to the disease-free equilibrium
point E0, but evolves around values that show that most of

the population becomes recovered, to a less extend suscepti-
ble and to some extend infected. The “Silver” community for
intermediate times as in panels (b) and (c), approach the un-
stable disease-free equilibrium E0 (see panel (d)), before they
get attracted for longer integration times by the stable equilib-
rium (6) (plot not shown here). The “Gold” community ap-
proaches the stable disease-free equilibrium point E0 in panel
(e), where almost the whole population becomes vaccinated
at the end of the integration. Finally, comparing the values
of the infected populations for the three communities, we see
that as expected from panel (b), the infected populations in the
“Bronze” and “Silver” communities are similar and those of
the “Gold” community music smaller at the end of the inte-
gration.

D. Spread of a virus in a BA scale-free network

We now move on to the study of the spread of a virus in a
larger-size network given by a BA scale-free graph. To this
end, we use the network of N = 60 nodes in panel (c) in Fig.
3 with network density 0.033. Here we study the spread of
a virus in heterogeneous (with regard to β ,ρ,φ ,λ ,δ ) com-
munities connected in a network with a few hubs. A com-
monly found feature in real world networks is the presence
of hubs, which are nodes that are highly connected to other
nodes in the network. This means that hubs are nodes with
a much higher node-degree than most other nodes in the net-
work. This has important consequences for how information,
viruses or diseases travel or spread in the network. Such net-
works are scale-free as they are characterised by a power-law
degree distribution. Several natural and human-made systems,
e.g., social networks can be approximated by scale-free net-
works as they contain few nodes with high degree as com-
pared to other nodes in the network. The BA model39 is an
algorithm for generating scale-free networks using a preferen-
tial attachment mechanism, meaning that the more connected
a node is, the more likely it is to receive new connections.
Many observed networks fall approximately into the class of
scale-free networks, meaning that they have power-law degree
distributions, while ER random and WS small-world networks
do not exhibit power laws. The BA network used here and its
adjacency or connectivity matrix AI was computed using the
igraph package in R. Then, the Laplacian matrix LI was com-
puted from AI , using Eq. (8), which was then fed into system
(7) to integrate it numerically.

In particular, we want to study the effect of unvaccinated
(i.e., “Bronze”) communities to the infection levels of moder-
ate (i.e., “Silver”) and well-vaccinated (i.e., “Gold”) commu-
nities in time for weak coupling, e.g. for α = 10−8. To this ex-
tend, we are studying four distinct cases of community config-
urations, namely (A) where the first community is “Bronze”,
the next 29 are “Silver” and the last 30 are “Gold”, (B) the
first 5 are “Bronze”, the next 25 are “Silver” and the last 30
are “Gold”, (C) the first 20 are “Bronze”, the next 20 “Silver”
and the last 20 “Gold” and (D) the first 40 are “Bronze”, the
next 19 “Silver” and the last one is “Gold”.

We report on the results of this analysis in Fig. 7, where
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FIG. 5: Spatiotemporal plots of the evolution of infections, I, and evolution of S, V , I and R in time for a pair of
“Bronze”-“Gold" and “Bronze”-“Silver" communities modelled by system (7), where α = 10−8. The horizontal axes in panels
(a) and (b) denote the community index and the vertical the time t. In all other panels, the horizontal axes are linear and denote

the time t and the vertical are logarithmic and denote S, V , I and R of the “Bronze”, “Silver” and “Gold” communities. The
colour bars encode the infections Ii, i = 1,2 in a logarithmic scale to depict small variations in infections near 0 as I takes

values in [0,1]. The vertical white, dashed lines in panels (a) and (b) delineate the two communities. Panels (a) and (b) are the
spatiotemporal plots of infections for the pairs of “Bronze”-“Gold" and “Bronze”-“Silver" communities, respectively. Panels
(c) and (e) show the evolution in time of S, V , I and R of the “Bronze” and “Gold" communities in panel (a). Similarly, panels

(d) and (f) show the evolution in time of S, V , I and R of the “Bronze” and “Silver" communities in panel (b). Note that the
subscript B, S and G in S, V , I and R denote “Bronze”, “Silver” and “Gold”, respectively.

panel (a) shows the trajectory of infections in case (A), where the first community is “Bronze”, the next 29 are “Silver” and
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FIG. 6: All-to-all connectivity, spatiotemporal plot for three interconnected “Bronze”, “Silver” and “Gold” communities and
evolution in time of S, V , I and R for the same three communities, modelled by system (7), where α = 10−8. Panel (a) shows
the three types of communities being connected in an all-to-all fashion and panel (b) the spatiotemporal plot of infections for

the same three communities. Panels (c), (d) and (e) show the time evolution of S, V , I and R of the “Bronze”, “Silver” and
“Gold” communities, respectively. The horizontal axes in panel (b) denote the community index and the vertical the time t. The
horizontal axes in panels (c), (d) and (e) are linear and denote the time t and the vertical logarithmic and denote S, V , I and R of

the “Bronze”, “Silver” and “Gold” communities. The colour bar in panel (b) encodes the infections Ii, i = 1,2,3 in a
logarithmic scale to depict small variations in infections near 0 as I takes values in [0,1]. In panel (b), the vertical white, dashed
lines delineate the three communities. Note that the subscript B, S and G in S, V , I and R denote “Bronze”, “Silver” and “Gold”,

respectively.

the last 30 are “Gold”. One can see that the trajectory of in- fections in the “Bronze” community is very similar to the in-
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fection trajectory in the “Bronze” community when it is not
connected to the “Silver” and “Gold” communities (see Fig.
4) and of the “Bronze” community in the trio of weakly con-
nected (i.e., α = 10−8) “Bronze”, “Silver” and “Gold” com-
munities in Fig. 6(b). Moreover, one also observes simi-
lar secondary waves of infections springing out in time even
though there are no infected individuals initially due to the in-
teractions of the unvaccinated “Bronze” community with the
“Silver and “Gold” communities. Since the “Bronze” com-
munity is not vaccinated, its infections reaches 1 after long
time depicted by red, meaning that almost all of the popu-
lation in the “Bronze” community becomes infected. Inter-
estingly, even though the “Bronze” community interacts with
the “Silver” and “Gold” communities, which are better vacci-
nated, the latter are not able to reduce the infection levels in
the “Bronze” community, as the “Bronze” community is un-
vaccinated. The fate of infections in the “Silver” and “Gold”
communities is similar again to those in Fig. 4) for the uncon-
nected trio of communities and to those in 6(b) for the weakly
connected trio of “Bronze”, “Silver” and “Gold” communi-
ties. Our analysis shows that the infections in the moderately
vaccinated “Silver” and well-vaccinated “Gold” communities
are much lower than those in the unvaccinated “Bronze” com-
munity, hence the latter are able to resist the spread of the
virus. When such types of equally-sized types of communities
interact weakly with each other, then the infections remain at
the same levels as when they are not interacting and the well-
vaccinated “Gold” communities are the best in keeping their
infection levels at bay.

This does not seem to change even when the number of
unvaccinated “Bronze” communities increases in panels (b),
(c) and (d) in Fig. 7 from 5 in (b) to 20 in (c) to 40 in (d).
Still the same conclusions can be drawn and the “Gold” com-
munities are the best in keeping the infections at bay, even
when they come into contact with less vaccinated (i.e., “Sil-
ver”) or unvaccinated (i.e., “Bronze”) communities. Another
important conclusion is that looking at panels (a), (b), (c) and
(d) in Fig. 7, only highly vaccinated communities are able
to resist the spread of the virus as evidently, the infections in
the moderately vaccinated “Silver” communities soar at the
same levels and share the same time-scales of the “Bronze”
communities when they interact. Even in the well-vaccinated
“Gold” communities, the infections increase by some orders
of magnitudes, they are however much lower than those in the
“Bronze” and “Silver” communities.

In Fig. 7(d) we study the interesting case where most of the
communities are “Gold” (i.e., very well-vaccinated) and the
effect they have to “Silver” and “Bronze” communities, which
are less or not vaccinated at all. It is evident that even though
the majority of the communities are “Gold”, they cannot help
reduce the infection levels in the “Bronze” and “Silver” com-
munities, where infections soar to similar levels as in panels
(a) to (d).

Concluding, even very few unvaccinated “Bronze” commu-
nities are enough to lead to increase in infection levels in mod-
erately and well-vaccinated weakly connected communities,
perturbing once and for all the very low levels of initial in-
fections in “Gold” and “Silver” communities. Even a large

number of “Gold” communities is not enough to revert the
levels of infections and help reduce them.

E. Statistical analysis of the spread of a virus in ER random,
WS small-world and BA scale-free networks

In the last section, we studied the spread of a virus in a
single, sparse, BA scale-free network for different numbers
of “Bronze”, “Silver” and “Gold” communities, running sin-
gle simulations of model (7) in each case. Here we expand
our study to ER random37, WS small-world38 and BA scale-
free39 networks of N = 60 communities, performing a statis-
tical analysis and reporting on results over a sample of 100
different ER random, WS small-world and BA scale-free net-
works. We focus on case (B) in Sec. IV D and consider that
the first 5 communities are “Bronze”, the next 25 are “Sil-
ver” and the last 30 are “Gold”. In the case of a single BA
scale-free network, we have found that even a small number
of unvaccinated “Bronze” communities is enough to lead to an
increase in infection levels in moderately and well-vaccinated
weakly connected (i.e., for α = 10−8) communities, perturb-
ing once and for all the very low levels of initial infections in
“Gold” and “Silver” communities. Here, we revisit the same
question and want to see if a small number of unvaccinated
“Bronze” communities can affect the spread of the virus in
moderately vaccinated “Silver” and well-vaccinated “Gold”
communities or whether well-vaccinated communities when
connected to moderately or non-vaccinated communities can
help reduce their infection levels in ER random, WS small-
world and BA scale-free networks. Again the ER random
networks we have used in this analysis have rewiring prob-
ability 0.3 (resulting in network densities 0.3), the WS small-
world networks network density 0.07 and the BA scale-free
networks densities around 0.033. We also want to find if the
results are robust when addressing the question for a sample of
such types of networks and if network topology plays a role in
the spread of the virus and in infection levels. In our analysis,
we have opted for 100 different ER random, WS small-world
and BA scale-free networks and report on average and stan-
dard deviations over the 100 networks. The idea behind using
these types of networks is that they share different structural
properties, found also in real-life networks49.

We summarise the results of our statistical analysis for
weakly connected communities (i.e., for α = 10−8) in Fig.
8 where we present the spatiotemporal plots of infection lev-
els over time for 100 ER random networks in panels (a) to
(c), for 100 WS small-world networks in panels (d) to (f) and
for 100 BA scale-free networks in panels (g) to (i). The pan-
els in the left column present the average infection levels over
the 100 networks, ⟨I⟩100, and the panels in the middle and
right columns, the average infection levels minus one stan-
dard deviation, ⟨I⟩100 −σI , and average infection levels over
the 100 networks plus one standard deviation over the 100 net-
works, ⟨I⟩100 +σI , respectively. Our results show that the in-
fection levels in WS small-world and BA scale-free networks
are a little bit lower to those in ER random networks but not
as big to make a difference, both in the short and long term.
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FIG. 7: Spatiotemporal plots of infections for the community configurations (A), (B), (C), (D) and (E) discussed in Subsec.
IV D, where α = 10−8. Panel (a) shows the spatiotemporal plot of infections in case (A) of 1 “Bronze”, 29 “Silver” and 30
“Gold” communities. Panel (b) is for case (B) of 5 “Bronze”, 25 “Silver” and 30 “Gold"" communities. Panel (c) shows the
spatiotemporal plot of infections for case (C) of 20 “Bronze”, 20 “Silver” and 20 “Gold” communities. Panel (d) shows the
spatiotemporal plot of infections for case (C) of 40 “Bronze”, 19 “Silver” and 1 “Gold” communities. Panel (e) shows the

spatiotemporal plot of infections for case (C) of 10 “Bronze”, 10 “Silver” and 40 “Gold” communities. The communities are
connected via the BA network of N = 60 nodes in Fig. 3(c). The horizontal axes denote the community index and the vertical
the time t. The colour bar encodes the infections Ii, i = 1, . . . ,60 in a logarithmic scale to depict small variations in infections
near 0 as I takes values in the interval [0,1]. The vertical white, dashed lines delineate the ranges of “Bronze”, “Silver” and

“Gold” communities.

However, for all types of networks, 5 unvaccinated “Bronze”
communities are enough to lead to an increase in infection
levels in moderately (“Silver”) and well-vaccinated (“Gold”)

weakly connected communities, increasing once and for all
the very low levels of initial infections in “Gold” and “Sil-
ver” communities. This is because the initial horizontal blue
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stripes (of very low infection levels) in all cases of networks
turn quickly to a series of yellow and red (emergence of sec-
ondary surges or waves) and eventually to red of very high
levels of infections in all types of networks. Another reason is
that our model (7) assumes there is a constant rate for the loss
of immunity δ = 0.0001 (with 1/δ being the mean immune
period45), in other words that the effect of the vaccine wanes
in time and that the vaccination has efficacy 0 ≤ ρ ≤ 1, differ-
ent for each type of community, given in Table I. This shows
that actually the trajectory of infection levels in interconnected
communities is not influenced by the network topology, but
by the unvaccinated “Bronze” communities, as these are re-
sponsible for the “Silver” and “Gold” communities to become
highly infected at the end. Even a small number of “Bronze”
communities is enough to drive the infection levels in moder-
ately and well-vaccinated communities to an increase, regard-
less of the type of network.

F. Spread of a virus in networks of different densities,
coupling strengths and inhomogeneous communities

Finally, here we address the question of the trajectory
of infection levels in ER random, WS small-world and BA
scale-free networks with different network densities, coupling
strengths and inhomogeneous communities. In the context
of model (7), strong connectivity could be interpreted as the
easiness with which infected individuals from “Bronze”, “Sil-
ver” and “Gold” communities travel among them spreading
the virus. This is modelling for example how easy it is for
infected individuals to travel from one country to another. To
this end, we study the same question in Subsec. IV D, focus-
ing again on the paradigmatic case (B), where in a network
of N = 60 communities, the first 5 are “Bronze”, the next
25 “Silver” and the last 30 “Gold”. In the previous sections,
we have found that a small number of unvaccinated “Bronze”
communities are enough to lead to increased infection lev-
els in moderately and well-vaccinated weakly connected (i.e.,
for α = 10−8) communities with the “Gold” ones being the
most successful in keeping the increase in infection levels at
bay as they are the best vaccinated with the best vaccine effi-
cacy. Here, we revisit the same question in Fig. 9 considering
the ER random, WS small-world and BA scale-free networks
shown in Fig. 3 with densities 0.3, 0.07 and 0.0033, respec-
tively and in Fig. 13 the same types of networks where they
all have the same network density 0.3. We also consider the
coupling strengths α = 0.01 in Fig. 9 and 10−8 and 0.01 in
Fig. 13. We want to see if a small number of unvaccinated
“Bronze” communities can affect the spread of the virus in
moderately vaccinated “Silver” and well-vaccinated “Gold”
communities. We also assume in the simulations that all pop-
ulations are initially susceptible.

Figure 9 shows the spatiotemporal plots of infections for 5
“Bronze”, 25 “Silver” and 30 “Gold” connected communities
by means of the ER random network in Fig. 3(a)), shown in
panel (a), the WS small-world network, seen in Fig. 3(b)), in
panel (b) and the BA scale-free network seen in Fig. 3(c)), in
panel (c), where α = 0.01 in system (7). The spatiotemporal

plot in panel (a) shows that, starting initially with all popula-
tions being susceptible, the virus does not spread in the ER
random network of connected communities as all Ii become
as small as 10−16 in time. In this case, the system reaches the
disease-free state. This is a striking result when compared to
the spatiotemporal plots for the sparser WS small-world and
BA scale-free networks in panels (b) and (c), respectively. In
the latter two cases, the virus spreads to all communities in
the long term, regardless of whether they are vaccinated or
not, or the percentage and efficacy of the vaccination. It is
worth mentioning comparing panels (b) with (c) that (A) it
takes more time for the virus to spread in a WS small-world
network (panel (b)) than in a BA scale-free network (panel
(c)), presumably due to the presence of hubs (which act as
mega-spreaders) in the latter network and that (B) the “Gold”
communities are not able to slow-down the spread of the virus
when they come in contact with the “Bronze” and “Silver”
communities. In the long term, all types of communities in
the WS small-world and BA scale-free networks will be in-
fected due to the efficacy, ρ which is not maximum and the
rate for the loss of immunity δ = 0.0001 for all communities
(i.e., the efficacy of the vaccination is waning over time). This
is reminiscent of the real-life situation whereby regardless of
whether a population is vaccinated or not, or the percentage
and efficacy of the vaccination, if it is not vaccinated period-
ically, it will become infected in the long term when coming
in contact with other infected populations.

In the following, we will elucidate the striking difference
between the disease-free state in panel (a) for the ER ran-
dom network and spread of the virus in panels (b) and (c) in
WS small-world and BA scale-free networks, assuming that
all populations are initially susceptible. To do so, we denote
the populations of the “Bronze”, “Silver” and “Gold” com-
munities by MB, MS and MG, respectively, whereby the total
constant population M = MB+MS+MG = N = 60. It is worth
it to mention that in this framework, MB, MS and MG are not
necessarily constant in time, but can vary. In Fig. 10, we are
showing the evolution of S, V , I, R, M, MB, MS and MG in time
for the configuration in panel (a) in Fig. 9 for the ER random
network, where α = 0.01 in system (7). Panel (a) shows S1,
V1, I1, R1 in time of the first “Bronze” community. Panel (b)
shows S6, V6, I6, R6 of the first “Silver” community in time
and panel (c) shows S31, V31, I31, R31 of the first “Gold” com-
munity in time. Panel (d) shows the evolution of M, MB, MS
and MG in time.

Panel (a) shows that in the ER random network, the first
“Bronze” community becomes susceptible and panels (b), (c)
that the first “Silver” and first “Gold” communities become
vaccinated in the long term, assuming starting initially with
susceptible populations. The same respective behaviours hap-
pen for all “Bronze”, “Silver” and “Gold” communities. In the
case of the “Bronze” communities, they become susceptible
as φi = ρi = 0, i = 1, . . . ,5, meaning that the second equation
for all “Bronze” communities in system (7) is identically 0 at
all times as the initial condition for Vi is 0 for all i = 1, . . . ,5.
Panels (a) to (c) reveal that the infected populations of the first
“Bronze”, first “Silver” and first “Gold” communities reduce
in time and become smaller than 10−20 at the end of the in-
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FIG. 8: Spatiotemporal plots of infection levels for 100 ER random, 100 WS small-world and 100 BA scale-free networks for
weak connectivity (i.e., for α = 10−8). Panels (a) to (c) show the spatiotemporal plot of infection levels averaged over 100 ER

random networks. Panels (d) to (f) similarly for 100 WS small-world networks. Panels (g) to (i) for 100 BA scale-free
networks. The panels in the left column present the average infection levels over the 100 networks, ⟨I⟩100, and the panels in the

middle and right columns the average infection levels minus one standard deviation, ⟨I⟩100 −σI , and average infection levels
over the 100 networks plus one standard deviation over the 100 networks, ⟨I⟩100 +σI , respectively. The horizontal axes denote

the community index and the vertical the time t. The scale of the colour bar is logarithmic to depict small variations in
infections near 0 as infections I take values in the interval [0,1]. The vertical white, dashed lines delineate the ranges of

“Bronze”, “Silver” and “Gold” communities.

tegration (i.e., at t = 5× 104). We have checked that this is
the case, respectively, for all “Bronze”, “Silver” and “Gold”
communities. This explains why the infected populations of
all three types of communities are practically zero in panel

(a) in Fig. 9. Panel (d) confirms that the populations of the
“Bronze” (MB), “Silver” (MS) and “Gold” (MG) communities
remain constant in time as the total population M. Hence in
the case of the ER random network, there are no subpopula-



17

tions moving from one type of community to another in time
and all communities become disease-free in the long term.

A similar analysis for the WS small-world network seen in
Fig. 11) and BA scale-free network in Fig. 12 shows that the
infected populations approach orders of magnitude higher val-
ues (i.e., about 10−3 or 10−4) compared to those in the case
of the ER random network in Fig. 10), which are smaller
than 10−20. Figures 11) and 12 also reveal that the vacci-
nated populations in the “Bronze” communities increase in
time and saturate to higher values than initially, however that
is not enough to keep at bay the infections, which see initially
a dramatic increase before saturating to much higher values in
the long term. Interestingly, panels (d) in Figs. 11) and 12 for
WS small-world and BA scale-free networks show that there
is an increase over time in the number of “Gold” communi-
ties (MG) and a decrease in the number of “Bronze” (MB) and
“Silver“ (MS) communities, keeping the total population con-
stant in time at N = 60 communities. This means that some
of the “Bronze” and “Silver” communities turn into “Gold”
communities, in contrast to the situation in ER random net-
works in Fig. 10, where that is not happening. The change in
the number of “Gold” communities might be explained by a
flow of populations moving from “Bronze” and “Silver” com-
munities to “Gold” communities.

The results in Table I in the supplementary material confirm
that the mean second smallest eigenvalue of the Laplacians
of the adjacency matrices of the 100 ER random networks is
bigger than the other types of networks used in Sec. IV E. This
is also corroborated by the fact that the ER random, WS small-
world and BA scale-free networks in Fig. 3 have network
densities 0.3, 0.07 and 0.0033, respectively. Next we have
run simulations for ER random, BA scale-free and WS small-
world networks with density 0.3 for coupling strengths α =
10−8 in panels (a), (c), (e) in Fig. 13 and α = 0.01 in panels
(b), (d), (f) in the same figure.

Our results in panels (a), (c), (e) show that for the small
coupling strength α = 10−8 and network density 0.3, the three
types of communities reach different levels of infections, but
most importantly they do not converge to the disease-free
state. The situation changes drastically for coupling strength
α = 0.01, as panels (b), (d), (f) show that all types of com-
munities in all types of networks reach the disease-free state.
These results are similar to those in Fig. 9(a) in the paper
for the ER network which has the same network density as
the networks in Fig. 13. We conclude that it is the inter-
play between network structure (network density) and cou-
pling strength that determine the dynamics and whether the
system will approach the disease-free state.

Our analysis for α = 0.01 shows that the virus does not
spread in densely-enough ER random, WS small-world and
BA scale-free networks of connected communities as the sys-
tem reaches the disease-free state. This is a striking result
when compared to the spatiotemporal plots for the sparser WS
small-world and BA scale-free networks for smaller coupling
strength α = 10−8, where the virus spreads to all communities
in the long term, regardless of vaccination level and percent-
age and efficacy of the vaccination. We have also found that
it takes more time for the virus to spread in a WS small-world

network than in a BA scale-free network, presumably due to
the presence of hubs (which act as mega-spreaders) in the lat-
ter network. Another aspect of our results is that the “Gold”
communities are not able to slow-down the spread of the virus
when they come in contact with the “Bronze” and “Silver”
communities as in the long term, all types of communities in
the WS small-world and BA scale-free networks become in-
fected to similar high levels.

V. DISCUSSION AND CONCLUSIONS

In this paper, motivated by the ongoing COVID-19 pan-
demic, we sought to model mathematically the spread of a
virus in interconnected communities (which can be for ex-
ample countries) and explored different vaccination scenar-
ios and their effect on the infection levels in the communities.
Crucially, the infection levels depend on how the communities
are interconnected.

We started assuming that all populations are initially sus-
ceptible and considered a susceptible-vaccinated-infected-re-
covered (SVIR) epidemiological model for each commu-
nity, assuming that the vaccine efficacy wanes over time.
We grouped the communities into unvaccinated (“Bronze”),
moderately vaccinated (“Silver”) and very well vaccinated
(“Gold”) and connected them via Erdős-Rényi random, Bara-
bási-Albert scale-free and Watts-Strogatz small-world net-
works via a diffusive linear coupling to emulate local spread-
ing. We showed that when considering pair-wise interactions
in “Bronze”-“Gold" and “Bronze”-“Silver" communities, the
“Bronze” community is driving an increase in infections in
the “Silver” and “Gold” communities, even though they are
vaccinated. This shows the detrimental, one-way, effect of
non-vaccinated communities to vaccinated ones when vaccine
efficacy wanes over time.

When considering the spread of a virus in larger-size net-
works characterised by hubs that act as mega-spreaders, i.e.,
in Barabási-Albert networks, infections in the moderately vac-
cinated “Silver” and well-vaccinated “Gold” communities are
much lower than those in the unvaccinated “Bronze” commu-
nities, leading to the latter being able to resist the spread of the
virus for some time as the vaccine efficacy wanes over time.
We find that the “Gold” communities are the best in keep-
ing their infection levels at bay due to being the best vacci-
nated communities. However, our analysis shows that a small
number of unvaccinated “Bronze” communities are enough
to provoke an increase in infection levels in moderately and
well-vaccinated communities. Even a large number of “Gold”
communities is unable to reduce the levels of infections or
halt the prevalence of the virus, driven by the non-vaccinated
“Bronze” communities.

When studying the spread of a virus in Erdős-Rényi, Bara-
bási-Albert and Watts-Strogatz networks of strongly con-
nected inhomogeneous communities with network densities
0.3, 0.07 and 0.033, respectively, the communities reach the
disease-free state in Erdős-Rényi networks, but not in the
other two types of networks, as the infections spread to all
communities in the long term. This might be possible because
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FIG. 9: Spatiotemporal plots of infections for 5 “Bronze”, 25 “Silver” and 30 “Gold” connected communities by means of ER
random, WS small-world and BA scale-free networks, where α = 0.01 in system (7). Panel (a) shows the spatiotemporal plot of
infections for an ER random network. Panel (b) is similar to panel (a) for a WS small-world network. Panel (c) is similar to the
other two panels for a BA scale-free network. The horizontal axes denote the community index and the vertical the time t. The
colour bar encodes the infections Ii, i = 1, . . . ,60 in a logarithmic scale to depict small variations in infections near 0 as I takes
values in the interval [0,1]. The vertical white, dashed lines delineate the ranges of “Bronze”, “Silver” and “Gold” communities.

FIG. 10: Evolution of S, V , I, R, M, MB, MS and MG in time for the configuration in panel (a) in Fig. 9 for the ER random
network, where α = 0.01 in system (7). Panel (a) shows S1, V1, I1, R1 in time of the first “Bronze” community. Panel (b) shows

S6, V6, I6, R6 of the first “Silver” community in time and panel (c) shows S31, V31, I31, R31 of the first “Gold” community in
time. Panel (d) shows the evolution of M, MB, MS and MG in time. The black lines in panel (d) correspond to the number of

“Bronze”, “Silver” and “Gold” communities and to the total population, which are 5, 25, 30 and 60, respectively.

of long-range connections in small-world networks and hubs in scale-free networks, which act as mega-spreaders. How-
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FIG. 11: Evolution of S, V , I, R, M, MB, MS and MG in time for the configuration in panel (b) in Fig. 9 for the WS small-world
network, where α = 0.01 in system (7). Panel (a) shows S1, V1, I1, R1 in time of the first “Bronze” community. Panel (b) shows

S6, V6, I6, R6 of the first “Silver” community in time and panel (c) shows S31, V31, I31, R31 of the first “Gold” community in
time. Panel (d) shows the evolution of M, MB, MS and MG in time. The black lines in panel (d) correspond to the number of

“Bronze”, “Silver” and “Gold” communities and to the total population, which are 5, 25, 30 and 60, respectively.

ever, when all types of networks have the same density, then
the dynamics in all three types of networks reach the disease-
free state.

Based on our results, we conclude that if a community is
not vaccinated periodically in time, due to the vaccination ef-
ficacy waning over time, it will become infected in the long
term when connected to other infected populations. This is
alarming and revealing at the same time of what is required of
countries at a global scale to defend their populations against
the spread of infectious diseases such as COVID-19. Im-
plementing vaccination programs globally and vaccinating as
many individuals as possible is the way to safeguard popula-
tions from the spread of a virus.

Our study contributes to the understanding of the spread of
viruses by proposing a generic mathematical model for the
evolution of pandemics in networks of interconnected com-
munities. The SVIR model used in this paper has been chosen
to showcase the role of vaccination, since it is an important
factor that can help reduce deaths due to the virus. Our work
brings together two areas of well-established research investi-
gations: (a) nonlinear models of epidemiology and (b) models
of complex network dynamics, hence its novelty lies in the in-

tegration of the two areas.
Our investigations show how a simple but generic mathe-

matical model such as model (7) can demonstrate the empir-
ically verified and well understood in terms of scientific and
medical reasoning, fact that “nobody is safe until everybody
is safe”. Our goal is not to propose a detailed and compli-
cated model with a plethora of variables and parameters. We
want to highlight the generic properties of the complex evolu-
tion of pandemics in an interconnected world of communities.
Adopting a modular approach whereby model (3) can be re-
placed by other relevant models and by sharing our numerical
code on GitHub42, we hope our work can be used to help un-
derstand the spread of viruses in interconnected communities,
at large.

Our work can be extended at the level of (a) modules:
variants of the main SVIR model can include dynamical as-
pects such as time delays, state-dependent control, incorpo-
ration of mutations of the infecting species, etc. that have
already been considered in the literature but also new ones,
(b) graph/network structure, as different networks, even real-
istic ones, can be used to couple the communities through the
Laplacian, (c) coupling as it can incorporate more realistic,
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FIG. 12: Evolution of S, V , I, R, M, MB, MS and MG in time for the configuration in panel (c) in Fig. 9 for the BA scale-free
network, where α = 0.01 in system (7). Panel (a) shows S1, V1, I1, R1 in time of the first “Bronze” community. Panel (b) shows

S6, V6, I6, R6 of the first “Silver” community in time and panel (c) shows S31, V31, I31, R31 of the first “Gold” community in
time. Panel (d) shows the evolution of M, MB, MS and MG in time. The black lines in panel (d) correspond to the number of

“Bronze”, “Silver” and “Gold” communities and to the total population, which are 5, 25, 30 and 60, respectively.

weighted sums, or state-depend control-types of coupling, re-
flecting choices of strategies for the containment of the spread
of a virus at a local level, mesoscopically or globally.

Model (7) for pandemics in networks of communities, pro-
posed in this work, highlights one of the simplest and generic
ways and the role of vaccination as the utmost key factors of
containing a pandemic.

Finally, it would be interesting to study in a future publica-
tion, the analytical solutions in the neighbourhood of the equi-
librium points of systems (1), (2), (3) by linearising them and
using matrix or power-series methods. A relevant approach is
discussed in50 and could be used to derive analytical condi-
tions for the convergence of the solutions to the equilibrium
points and the disease-free states.

SUPPLEMENTARY MATERIAL

In the supplementary material, we present additional results
on the spread of a virus in different types of networks, i.e.,
in Erdős-Rényi (ER) random37, Watts-Strogatz (WS) small-
world38 and Barabási-Albert (BA) scale-free39 networks and

on network properties that are not included in the paper. In
Sec. II, we present results for communities sorted based on
the node-degrees in a BA scale-free network, in Sec. III,
results for the case where only susceptible populations can
travel through a network and finally, in Sec. IV, we discuss
some of the spectral properties of networks used in the paper.
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