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ABSTRACT

Human beings have an inherent capability to use linguistic information (LI) seamlessly even though it is
vague and imprecise. Computing with Words (CWW) was proposed to impart computing systems with
this capability of human beings. The interest in the field of CWW is evident from a number of publications
on various CWW methodologies. These methodologies use different ways to model the semantics of the
LI. However, to the best of our knowledge, the literature on these methodologies is mostly scattered and
does not give an interested researcher a comprehensive but gentle guide about the notion and utility of
these methodologies. Hence, to introduce the foundations and state-of-the-art CWW methodologies, we
provide a concise but a wide-ranging coverage of them in a simple and easy to understand manner. We
feel that the simplicity with which we give a high-quality review and introduction to the CWW method-
ologies is very useful for investigators or especially those embarking on the use of CWW for the first time.
We also provide future research directions to build upon for the interested and motivated researchers.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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1. Introduction

Computing with Words (CWW)' was conceptualized and put
forth in the research community for the first time by Prof. Zadeh
[1]. The motivation behind the CWW was that if computing systems
be built on the principles of CWW, they can think, reason, make deci-
sions and solve problems using a “concepts” driven analytical frame-
work that resembles human symbolic cognition. Human cognition
has a remarkable capability to process and reason using semantic
uncertainty, which is inevitable in a number of day to day life situ-
ations. These situations require decision making using the variables
which tend to take qualitative values, naturally and hence the infor-
mation pertaining to the situation is vague, imprecise and semanti-
cally uncertain.”> An example of such a situation can be deciding

* Corresponding author.
! For readers’ convenience, all the abbreviations are listed in Table 1
2 Semantic uncertainty arises due to subjectivity.

https://doi.org/10.1016/j.neucom.2022.05.097
0925-2312/© 2022 The Authors. Published by Elsevier B.V.

whom to befriend when meeting people at a gathering. Here, the
decision is based on the perception about the nature or behavior
of a person. The variable of interest viz., nature or behavior of a per-
son, used here naturally tends to assume qualitative description and
is thus vague, imprecise and contains semantic uncertainty. Another
scenario can be the vagueness or imprecision in the semantic under-
standing of the knowledge provided by experts or decision-makers.

It is a common observation that the classical theory tends the
use probabilistic treatment of qualitative concepts and thus tries
to quantify the semantic uncertainty by allocating a precise num-
ber. Such concepts cannot be defined by boxing them on the basis
of their odds of occurring. More often than not, in such situations,
the uncertainty is of non-probabilistic nature based on its degree of
truth. Thus, there was a need to search for soft information struc-
tures to describe these scenarios. This suitable information repre-
sentation structure was the use of linguistic descriptors for the
scenario.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Abbreviations and Their Full Forms.

Abbreviation Full-Form

AEPCM Augmented Extension Principle based CWW methodology
CWW Computing with Words

EPCM Extension Principle based CWW methodology

FOU Footprint of Uncertainty

FS Fuzzy Sets

GT2 General Type-2

GFSCM General Type-2 Fuzzy Sets based CWW methodology

IFS Intuitionistic Fuzzy Sets

IFSCM Intuitionistic Fuzzy Sets based CWW methodology

IT2 Interval Type-2

LGT2 Linear General Type-2

LFSCM Linear General Type-2 Fuzzy Sets based CWW methodology
LMF Lower Membership Function

MF Membership Fucntion

RSCM Rough Sets based CWW methodology

SMCM Symbolic Method based CWW methodology

T1 Type-1

2TPCM 2-tuple based CWW methodology

UMF Upper Membership Function

Human beings have a highly superior capability (with respect to
animals) to effortlessly understand, process and operate using lin-
guistic descriptors or ‘words’. Words make up the sentences in the
natural language.> They are vague because people have different
understanding and interpretations of the same ‘word’ [3].* Hence,
CWW uses words as the units of computation.

Over the years, massive literature has been proposed which
presents the views of researchers on the CWW. Prof. Zadeh’s other
remarkable work in the CWW is [4]. Here, the importance of lin-
guistic information over precise numeric measurements has been
advocated by drawing a comparison between perception based
information and the numeric measurements. The former is quite
closely related to everyday human capabilities to do a number of
tasks seamlessly in day to day life. Prof. Yager was of the opinion
that Prof. Zadeh’s CWW had a very specific way of using the words
and hence gave a CWW Model [2], which is made up of three steps
(Please see Fig. 1). In the first step, called translation, a mapping or
conversion of the linguistic information to its numeric counterpart
is performed. The importance of this step is that a computing
machine understands only numbers and hence cannot directly
operate on the linguistic data. In the next step viz., manipulation,
the mapped numeric information is aggregated. This emphasises
that numeric information may come from various sources or one
source may provide numeric information multiple times and thus
aggregation is important for decision making. Finally, in the last
step, called retranslation, the aggregated numeric information is
mapped to linguistic form, as human beings attach comparatively
more relevance to the linguistic information.

Recently there has been a surge in the area of CWW methodolo-
gies, which is evident from numerous literary works being con-
tributed in this direction. The popular CWW methodologies
proposed in the literature (as per our knowledge so far) are: Exten-
sion Principle based CWW methodology (EPCM) [5], Augmented
Extension Principle based CWW methodology (AEPCM) [5], Intu-
itionistic Fuzzy Sets (IFS) based CWW methodology (IFSCM) [5],
Symbolic Method based CWW methodology (SMCM) [5], Rough
Sets based CWW methodology (RSCM) [5], 2-tuple based CWW
methodology (2TPCM) [6,7], Perceptual Computing [3], Linear Gen-
eral Type-2 (LGT2) Fuzzy Sets based CWW methodology (LFSCM)

3 By natural language is meant the language used by human beings for commu-
nication in day to day life.

4 According to Prof. Mendel, this can be specified in a sentence ‘words mean
different things to different people’.
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[8], and General Type-2 (GT2) Fuzzy Sets based CWW methodology
(GFSCM®) [9]. These CWW methodologies use different units of
uncertainty for modeling the word semantics. The EPCM, AEPCM
and IFSCM, use the type-1 (T1) fuzzy sets (FSs). The SMCM and
RSCM, use the ordinal term sets. The 2TPCM performs information
representation and computation using a combination of T1 FSs and
ordinal term sets. The Perceptual Computing makes use of interval
type-2 (IT2) FSs. The LFSCM and GFSCM use the GT2 FSs, however,
in the former, the secondary membership function (MF) is a linear
function whereas it can be any arbitrary mathematical function in
the latter. A categorisation of these CWW methodologies is shown
in the form of a mindmap in the Fig. 2.

Table 2 depicts the comparison of these CWW methodologies
based on various criteria. It can be seen from the table that the cri-
teria chosen for differentiating the CWW methodologies is primar-
ily the instrument used to model the semantics of linguistic terms
(LTs) and linguistic weights (LWs). The instrument are T1 FSs (for
the EPCM, AEPCM and IFSCM), ordinal term sets (for SMCM and
RSCM), combination of T1 FSs as well as ordinal sets (for 2TPCM),
IT2 FSs (for perceptual computing) and GT2 FSs (for LFSCM and
GFSCM). Further to differentiate the CWW methodologies from
each other within respective instrument, division is extended on
the basis of how respective CWW methodology achieves CWW in
respective three steps: translation, manipulation and retranslation,
of Prof. Yager's CWW (please see Fig. 1). For example, within T1 FSs
based CWW methodologies, there are three prominent placehold-
ers: EPCM, AEPCM and IFSCM. EPCM converts T1 MFs of LTs in
translation to tri-tuples. These are aggregated in manipulation
and converted back to linguistic form using linguistic approxima-
tion in last step. AEPCM on the other hand, approximate the T1
MFs of LTs and LWs using tri-tuples in translation, followed by
weighted aggregation in manipulation and conversion back to lin-
guistic form using linguistic approximation in retranslation. IFSCM
resorts to tri-tuple representation of membership and non-
membership for both LTs and LWs in translation. This is followed
by weighted aggregation and linguistic approximation in manipu-
lation and retranslation, respectively. Further details about other
CWW methodologies will be discussed in detail along with math-
ematical equations in Sections 3-6.

An important fact needs mention here. We chose these criteria
because it enables the reader to see the CWW methodologies in
holistic as well as detailed manner. To exemplify, one can see that
using T1 FSs as the semantic modeling instrument, three CWW
methodologies have been developed viz., EPCM, AEPCM and IFSCM,
giving a holistic view of the T1 FSs based CWW methodologies.
Each of these CWW methodologies have different internal working
for processing the LI (please see Section 2 for details), thus giving a
detailed peek into the internal working of the T1 FSs based CWW
methodologies. Similar argument applies for other CWW method-
ologies listed in Table 2. For the convenience of the readers, we
have developed a taxonomy of these CWW methodologies, to high-
light these differences amongst these methodologies. Please see
Fig. 3.

There have been various applications and theoretical research
works on these CWW methodologies. EPCM has been used in clin-
ical decision making [10] and multi-criteria decision making [11].
SMCM has been used for multi-person decision making [12] and
group decision making [13]. An overview of the application of
2TPCM in decision making can be found in [14], decision support
system in [15], risk assessment [16] and decision analysis in [17].
Theoretical works related to 2TPCM have been the proposition of

5 It is mentioned here that in the work [5], the EPCM, AEPCM, IFSCM, SMCM and
RSCM have been shown to process linguistic information just like the Yager's CWW
model of Fig. 1. 2TPCM, Perceptual Computing, LFSCM and GFSM call these respective
steps by different names.
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Fig. 1. Prof. Yager's CWW Model [2].
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Fig. 2. Mindmap of CWW Methodologies.

a new 2-tuple model for CWW in [18], extended 2-tuple to deal
with unbalanced term sets [19], etc. Perceptual computing has
been applied for the design of social judgement advisor [20], hier-
archical decision making [21], investment judgement analysis [22],

Table 2
Comparison of CWW Methodologies.

journal publication decision making [23], love selection [24], etc.
Theoretical works on perceptual computing are [25-35]. The
LFSCM has been applied for cooking recipe recommendations in
Ambient Intelligent Environments [8,36,37]. Other research works
on the LFSCM are [38-42].

These works provide some interesting conclusions. It can be
seen that the literature on these CWW methodologies is scattered
which makes it difficult to grasp an idea of the field, especially for
anyone starting the work on CWW methodologies. The works [7]
and [43] tried to provide an overview of 2-tuple methodology
and perceptual computer, respectively. They are a good start, how-
ever, they have quite limited focuses. Hence, we found no single
work which attempted to compile the literature on CWW method-
ologies and provide the interested readers with a holistic but easily
comprehensible view. We feel strongly that absence of such liter-
ature will hinder the interested readers to realize the utilities of
these methodologies, understand their subtle differences as well
as develop a sense of their strengths-limitations.

All these have motivated us to put forth a succinct but wide-
ranging coverage of these methodologies, in a simple and easy to
understand manner. We feel that the simplicity with which we
give a high-quality review and introduction to the CWW method-
ologies, is very useful for investigators or especially for those
embarking on the use of CWW for the first time. We also provide
future research directions to build upon for the interested and
motivated researchers.

The major contributions of this manuscript are as follows:

e Provide a comprehensive guide and survey that introduces the
most relevant state-of-the-art for CWW methodologies, which
can always act as a manual for the interested readers.

e Serve as starting point reference to develop an understanding of
the differentiating criteria, strengths and limitations of the
CWW methodologies.

cww

Criteria

MS**
Methodology™*

LN**

A**

NL**

EPCM LTs: using T1 MFs
AEPCM LTs and LWs: using T1 MFs
IFSCM Membership and non-membership
of LTs and LWs: using T1 MFs
SMCM LTs: using ordinal term sets
RSCM LTs: using ordinal term sets
2TPCM LTs: using T1 MFs
and Ordinal term sets
Perceptual IT2 FSs
Computing
LFSCM T2 FSs; Secondary MF is a
linear function for Shoulder FOUs
GFSCM Finite automata

Tri-tuples of T1 MFs
Tri-tuples of T1 MFs
Tri-tuples of T1 MFs

Indices of ordinal terms

Indices of ordinal terms

Combination of T1 MFs
and ordinal term sets
IT2 FS word models

Sensory mapping

State space

Arithmetic mean
Weighted Average
Weighted Average

Recursion
Recursion
Weighted Average and
Ordered Weighted Average
Interval weighted average,
fuzzy weighted average and
linguistic weighted average
Conversion to IF-THEN
rules and aggregation
Transition function

Linguistic approximation
Linguistic approximation
Linguistic approximation

Ordinal term set
Ordinal term set
Symbolic translation

Similarity, ranking,
and subsethood

Mapping and display
to the user by GUI
Accepting state

*For full forms, please see Table 1

**MS = Methodology used for modelling semantics of linguistic terms (LTs) and/ or linguistic weights (LWs)

**LN = Linguistic to numeric mapping, **A = Aggregation, **NL = Numeric to linguistic mapping
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CWW Methodologies

| l |

T1 FSs Ordinal T1 FSs IT2 FSs T1FS
| Sets + Ordinal extensions
sets
EPCM**  AEPCM** IFSCM**  SMCM**  RSCM** 2TPCM** Perceptual LFSCM** CGFSCM**
(*LTs: T1  (*LTs and(*LTs and LWs: (*LWs: computing  (Linear  (non linear
MFs) LWs: T1 T1 MFs and based on secondary  secondary
MFs) Non-MFs) Equivalence MF) MF)
classes)

Fig. 3. Taxonomy of CWW Methodologies *LTs = Linguistic terms, LWs = Linguistic Weights, **For full forms, please see Table 1.

e Put forth substantial helpers and tables that compare the utili-
ties and properties of the CWW methodologies, in order to real-
ize the potential of the field.

The remainder of this literary work follows the following orga-
nization: Section 2 discusses EPCM, AEPCM and IFSCM; Section 3
gives details on SMCM and RSCM; Section 4 and Section 5 dis-
cusses the 2TPCM and Perceptual Computing, respectively. Sec-
tion 6 gives the details of CWW methodologies based on T2 FSs
or extensions of T1 FSs, Section 7 gives the important discussions,
based on this research survey, and finally, Section 8 concludes this
article and puts forth its future scope. For the convenience of the
text readers, we list down all the symbols used for describing the
CWW methodologies in Table 3.

2. CWW based on T1 FSs

This section discusses the details of the CWW methodologies
that model the word semantics using the T1 FSs. These include
the EPCM, AEPCM and IFSCM. These methodologies achieve
CWW in the same three steps as in Yager's CWW Model (Please
see Fig. 1).

2.1. EPCM

Let’s assume that users are required to provide their linguistic
preferences in a decision making scenario. These preferences come
from a linguistic term set containing g + 1 distinct linguistic labels.
Examples of such labels can be ‘very low’, ‘low’, ‘medium’, etc.
Mathematically, if we denote the term set as T and the linguistic
labels or terms as ty, t, ...t, then in the set notation form, the term
set can be denoted as:

T={to,...,t;} (1)

As stated earlier, the EPCM models the linguistic terms using
the T1 FSs. However, these T1 FSs are generally in the form of uni-
formly shaped and distributed T1 triangular MFs on a bounded
information representation scale. Let’s assume an information rep-
resentation scale whose ends are limited by p and q.° Thus, the
individual linguistic labels of the term set T can be represented as
shown in Fig. 4.

Let’s say i number of human subjects choose to elicit their pref-
erences using the linguistic labels from the term set T of (1). Hence,
a set called the user preference vector, containing the user feed-
back can be given as:

6 It is a common observation that frequently used values of p and g, are respectively
0 and 10. However, any value can be used for them.
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Table 3
Symbols used in CWW methodologies and Their meanings.
Symbol  Meaning
T Linguistic term set containing linguistic terms associated to
EPCM, AEPCM, IFSCM, SMCM
UPgp Collective preference vector containing feedbacks of the users for
EPCM, AEPCM, IFSCM, SMCM
UPTgp UPgp in tri-tuple form for EPCM
C Collective Preference Vector obtained in Manipulation phase of
EPCM, AEPCM, IFSCM
d(ty,C)  Distance between linguistic term tq and the preference vector C
w Weight Vector Corresponding to weights of linguistic terms for
AEPCM, IFSCM, SMCM, RSCM
UPT, UPgp in tri-tuple form for AEPCM
UWT, W in tri-tuple form for AEPCM
Lc®Wi  product of k™ linguistic preference and its associated weight in
AEPCM
UPT s UPgp in tri-tuple form for [FSCM
UWTs W in tri-tuple form for IFSCM
d’([q‘ C) Distance between linguistic term t, and the preference vector C for
non-membership in [IFSCM
UPSsy UPgp in sorted from according to indices for SMCM
AG! Recursive function for combining terms from UPSsy and W in
SMCM
AG? Boundary condition of AG
UPSgs UPgp in sorted from according to indices for RSCM
AG! Recursive function for combining terms from UPSgs and W in RSCM
AG? Boundary condition of AG"
UP1p UPgp converted to 2-tuple form for 2TPCM
Worp W converted to 2-tuple form for 2TPCM
Bawp Aggregation result of UP,7p and Wopp in 2TPCM
% Symbolic translation corresponding to f,,
Yiwa Aggregation result obtained in Perceptual Computing
C;(X) Decoded centroid in Perceptual Computing
Q Set of states used in GFSCM
> Set of symbols used in GFSCM
) Type-2 fuzzy transition function used in GFSCM
qo Initial state used in GFSCM
F GT2 FS of final states used in GFSCM
UPgp = {t1,...t;} (2)

where UPg stands for user preferences in EPCM and each

ty € T:k=1 to i. This means that each k" index of the linguistic
term in (2) equals any one j = 0 to g, in (1). The following subsec-
tions outline how EPCM processes these user feedbacks in three
steps.

2.1.1. Step-1: Translation

In the first step, the linguistic terms constituting the user pref-
erence vector, given in (2), are mapped to numeric form. EPCM
makes use of the T1 triangular MFs (for semantic representation
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Fig. 4. T1 FS based semantic representation of the terms in term set T [5].

p

of the linguistic terms) to perform this mapping, which is shown in
Fig. 4. The numeric mappings of the linguistic labels given in (2) are
provided in the tri-tuple forms like: (I, my,1¢);k = 1 to i. Here, my
corresponds to the mid point of the triangular T1 MF where the MF
achieves its highest value, whereas [, and r, correspond to the two
ends of the T1 MF where it rests on the x-axis. The tri-tuples are
shown in Fig. 4. Therefore, the modified user preference vector
becomes:

UPTgp = {(ly,my,11),... (L, my, 1)} (3)

where UPTgp represents the set containing user preferences in tri-
tuple form.

2.1.2. Step-2: Manipulation

In the second step, the mapped numeric representations of the
users preferences, given in (3), are aggregated. This is accom-
plished by averaging the respective I;’s, m;’s and r;’s, to obtain
the collective preference vector C as:

i i i
I my r
C=(l,mere) = (21;:1 72/2:1 ‘7215:1 ),

Li+h+.. 4l
lc =1 21- 5 Me =

14T+t
i

My Myt My
1 L

2.1.3. Step-3: Retranslation

In the final step, the numeric collective preference vector, given
in (4), is mapped again to the linguistic form. This is useful for
understanding by a human subject. As the linguistic terms, corre-
sponding to the decision making scenario at hand, are contained
in the linguistic term in T of (1), therefore, the linguistic output
from this step should also be a linguistic label from this term set.

In order to map the collective preference vector of (4) to a lin-
guistic label given in T of (1), we calculate the Euclidean distance
of the respective three defining points viz., I, m.,r. of the prefer-
ence vector from those of each linguistic term in T of (1).” The com-
putations are shown in (5):

d(tq,C) = \/P1 (5 — 1) + Py (m; — m)? + P (1 — 1) 5)

where t; = (I, m;,1;),j =0 to g, is the tri-tuple representation of
each linguistic terms in T of (1), C = (I, m, 1), is the collective pref-
erence vector of (4), and P; = P; = 0.2 and P, = 0.6 are the weights.
These P;,i = 1,2,3 values are taken from [6], however, no restriction
exists on the use of a different set of values for respective P;’s. Thus,
the desired linguistic term, t; € T, is recommended on the basis of

7 Euclidean distance is used as a measure of similarity in [5,6]. However, one is free
to choose other measures such as support or cardinality.

925

Neurocomputing 500 (2022) 921-937

maximum similarity which is essentially equal to minimum Eucli-
dean  distance, which can be formally stated as
d(t,j,C) < d(tj,C),th eT.

2.2. AEPCM

AEPCM was proposed in [5], as an improvement of EPCM (dis-
cussed in Section 2.1). The AEPCM can be utilized for achieving
CWW in scenarios the users’ linguistic preferences carry different
importance and hence can be assigned different weights. The next
subsections discuss the working of AEPCM.

2.2.1. Step-1: Translation

Translation involves mapping the linguistic information to
numeric form. Consider again the vector holding the containing i
users’ linguistic feedback as given in (2). Let’s say that each of these
users’ feedback is assigned a linguistic weight, which can be similar
or distinct from other weights. Hence, the vector containing the
respective weights of the linguistic user preferences can be written
as:

W= {W],...,Wi} (6)

where w,,p = 1,...,i is the associated linguistic weight of the p
user’s linguistic preference. It is mentioned here that the AEPCM
chooses to model the semantics of each w,,p =1,...,i using uni-
formly shaped triangular T1 FS (similar to Fig. 4). Now, just like
EPCM, the numeric mapping of each of these linguistic weights is
a tri-tuple {I,m,r}, where m corresponds to the MF point of highest
membership values, whereas [ and r are the points where the mem-
bership value is zero and triangular T1 MF touches the x-axis
(please see (3)). Thus, the users’ preference vector (given in (2)),
and the associated linguistic weights (given in (6)), when repre-
sented in the tri-tuple form are given respectively in (7) and (8):

UPTA :{(llvml’rl)v"'(livmiari)} (7)

UMA:{(lW17mW17rW1)7"'(lWi7mWi’rWi)} ®

where UPT, and UWT, stand for user preferences and associated
weights, respectively in tri-tuple form for AEPCM. Each
(s My, 1), k=1, ...;i and (ly,, Mw,,Tw,),k =1,...,i are three defining
points of the triangular T1 MF for the user preferences and the
respective linguistic weights.

2.2.2. Step-2: Manipulation

In this step, the mapped linguistic information from previous
step is combined by performing the weighted aggregation, using
the concept of o-cuts given in [5]. If the tri-tuple of a randomly
selected linguistic user preference from (7) and its associated
weight from (8) are given respectively as
Ly = (l, my, i), k=1, ...,1 and Wy = (Ly,,Mw,,1w,),.k=1,...,i, then
their product is given as:

L @ Wy = {lle, mmy, e} = {Ie X Ly, My X My, T X T},

k=1,2,...,i 9)

These products are obtained for each linguistic user preference
as its associated weight. Hence, the collective preference vector, as
an obtained by averaging the respective ll,’s,mm,’s, and rr1}’s is
given as:

i i i
Z”k mek Zﬂ"k
k=1 k=1 k=1

b

C=(le,me,1c) = ; . ’l. (10)
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2.2.3. Step-3: Retranslation

In the final step, we map the numeric collective preference vec-
tor of (10) to linguistic form, for the usefulness of end user. We per-
form the Euclidean distance based similarity computation as that
of EPCM.

2.3. IFSCM

In this section, we discuss the working of IFSCM. For basics on
IFS, please see A.

2.3.1. Step-1: Translation

The first step viz., translation, will provide a linguistic to
numeric mapping. Consider again the vector holding the linguistic
feedbacks of i number of users given in (2) and the associated lin-
guistic weights from (6) of these linguistic feedbacks. As every ele-
ment in an IFS has an associated degree of membership and non-
membership (as shown in A), therefore in IFSCM, each linguistic
user preference and the associated weight is represented by a T1
MF. However, each preference and its respective weight has an
associated membership and the non-membership degree. The
membership degree value follows directly as the three defining
points of the tri-tuples (as seen in Fig. 4). In contrast, the non-
membership degree values are taken as the average of the tri-
tuples of all linguistic terms except the one corresponding to the
user linguistic preference (or weight).

For the purpose of elaboration, let’s take up as an example the
feedback of the first user from the term set of (2) and its associated
weight from (6). The user’s linguistic preference and its associated
weight in the tri-tuple form can be written: t; = (I;,m;,r;) and
wy = (lwl,mw],rw]).8 The degree of non-membership for the user
linguistic preference t; (respective linguistic weight w;) is obtained
by averaging respectively the three defining points I, my,r, of tri-
tuples of all linguistic terms from T except that of ¢, (t;), which is
mathematically given as:

D ol Dok ™ D ios”
k=0k=p k=0k=p K k=0,k=p K
bl bl

g g g

(11)

(lll’mllvr/l):

m), .1,

Wy wy

(12)

g g g
Zlczo.k#plk Zk:o,k#pmk Zk:o,k#prk
bl b

g

(IWI’ ) n g g

In this manner, the membership degrees and non-membership
degrees can be computed for all the linguistic preferences in (2)
and their associated weights in (6). Hence, the vector depicting
the collection of tri-tuples for the memberships degrees and non-
membership degrees for linguistic preferences (associated
weights) is given in (13) ((14)) as:

UPT s = [(117"11;”1)7 (l;?m/prﬁ)}w--,

Vs [ ) (Bt )|

Here, my(my, ),k = 1,...,iis the point where the degree of mem-
bership for linguistic user preference (associated linguistic weight)
achieves its maximum value, where as I, 7 ((lw,, Tw,)), k=1,....i
are two points where the degree of membership for linguistic user
preference (associated linguistic weight) has a null value and rests

[(l;,my, 1), (I, mi,1})] (13)

UWT s = [(lwﬂmwl,TW, ) (l,/,vl.m,’,vl,r’

w1

(14)

8 It's mentioned here that we have assumed that t;,w; € T, T being given in (1).
Therefore, 3t, € T,p =0,...,g, such that t; =t,. Also 3t; € T,q=0,...,g, such that
= tq. Further, t, can be equal or unequal to t;.
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!
Wy ? ka

on x-axis. The [, m;, rk<(l Wk)) are the corresponding val-

ues for the degree on non-membership for linguistic user prefer-
ence (associated respective linguistic weight).

2.3.2. Step-2: Manipulation

The next step is to perform the aggregation of the weighted lin-
guistic preferences and the respective associated linguistic
weights. However, as each one is represented in the form of T1
MFs, hence we need to use the a-cuts (similar to Section 2.2). Fur-
ther, an added processing in IFS comes from performing these com-
putations on the degree of memberships and non-memberships,
separately for each user preference. Once this is done, next we
aggregate the degrees of memberships (non-memberships) by
averaging the three defining points of the weighted user prefer-
ences to get the collective preference vector as:

C= {(lumarc) (l mmrc)}

Zk 1k Zk 1M Zk

(l mC7rC -

Zkl"Zklkal

(I,m.,r) =

Here, (I;,m., 1) corresponds to the membership and (l’c,m’c, r.)
corresponds to the non-membership.

2.3.3. Step-3: Retranslation

Now we map the aggregated numeric data from the manipula-
tion step into the linguistic form, using the Euclidean distance as a
similarity measure as done for EPCM and AEPCM. The difference
lies in the fact that the mapping is performed for each of the mem-
bership and non-membership values in the collective preference of
(15), which is given as:

\/Pl c

)= Pi -1 )P (- 1)’

where the P;,i = 1,2, 3 are the weights, with values 0.2,0.6 and 0.2
respectively.

Finally, there are two recommended linguistic terms viz., t; € T
and t; €T, corresponding respectively to the membership and
non-membership.

d(ty, C) )2+ Py (m; —me)* + Ps(1; — 1) (16)

tq7 +P2 (mj (17)

3. CWW based on Ordinal term sets

In this section, we discuss the CWW methodologies which use
the ordinal term sets for achieving the CWW. These are the SMCM
and the RSCM. It is mentioned here that both SMCM and RSCM can
process the differentially weighted linguistic user preferences.
Also, both these methodologies achieve CWW in three steps viz.,
translation, manipulation and retranslation.

3.1. SMCM

Let’s now discuss the working of the SMCM, where the user
preferences, as well as the associated respective weights, are rep-
resented through their indices in the term sets.

3.1.1. Step-1: Translation

The starting point of the symbolic method based linguistic com-
putational model is a linguistic preference vector that includes the
user preferences. Consider the linguistic preference set from (2).
Each of these linguistic preferences may have an associated weight,
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given in the form of a weight vector given in (6). An additional con-
dition that SMCM imposes on this weight vector is that all the
weights must add to 1. This is stated as
vw, € W,w, € [0,1];p =1 to i, is the weight associated to the p
user linguistic preference in the term set given in (2).

3.1.2. Step-2: Manipulation

In the second step, the linguistic user preferences from (2) are
sorted in descending order according to the indices of the linguistic
terms drawn from T of (1). After ordering, the user linguistic pref-
erences may be given as:

UPSsy = {T1,...T;} (18)

where UPSgy stands for user preferences in sorted order for the
SMCM, Ty eT,k=1,..,i. The linguistic preference vector from
(18) is then order weighted aggregated using the recursive function

(AGi), given as:
AG{wp,Ir,,p=1,2,...,ii > 2,ie Z}

={wom}e{(1-w)oAC oI, h=2..i}  (19)
where Ir,,p =1,...,i,Ir,,h = 2,....i are the indices of the linguistic

terms given in (18) and 6, = —+—:;h = 2,3, ...,i. As the aggregation

Zt—zw’
function given in (19), is a recursive function, therefore, we need a
base condition when the recursion bottoms out. This is achieved,
when the number of terms to be aggregated is reached at two.
Hence, upon reaching the boundary condition, the aggregation
function becomes as shown in (20):

AGZ{{Wf—17Wi}7 {IT1—1 71Ti}7 li= 2} = {Wf—l QITI—I} @ {Wf © ITi}

(20)

where I, | and Ir, are the respective indices of the remaining terms
from the preference vector (18), with respective weights w;_; and
w;. Hence, the linguistic term is recommended in the next step.

3.1.3. Step-3: Retranslation

In this step, a linguistic term is recommended in the output. As
a starting point for the same, for the (20), a numeric index value is
recommended using the computations shown in (21) as:

(I - IT,.)) }

here round() is the round function,
round(x) = [x+0.5],x € R, || being the floor function®

Now, starting from (19), the recursive function AG' is called
AG™!, which in turn calls for AG™2 and so on until AG? is reached,
where the recursion bottoms out. The recommended numeric
index I, using (21) for AG? is then fed to AG®, which again recom-
mends a linguistic term. Thus, backtracking i — 2 intermediate
recursive equations in this manner, we reach the original recursive
function AG' and recommend a numeric index for it too.'°

Finally, the recommended numeric index for the recursive func-
tion AG' can be matched to one of the terms from (1), to generate a
linguistic recommendation in the output.

Wi —w;+1

5 (21)

I, = min{i, I, + round(

given as

9 A special case of (21) can arise when w;_; = w and w; = 1 — w, for a random value
of the weight w. Hence, rewriting the indices Ir, | =I; and Ir, = I, (20) and (21) get
modified to (22) and (23), respectively as:

AGP{{w, 1 —w} {I.I}} = {wol} e {(1-w)ol}
I = min{i, I + round (w.(I, - 1)) }

(22)
23)

10 For detailed computations, please see [5]
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3.2. RSCM

The RSCM is based on the rough sets [44-48], which are
obtained from crisp sets by drawing a lower and upper approxima-
tions. The RSCM uses the indiscernibility property of rough sets
and the concepts of SMCM. For details on indiscernibility, please
see B.

3.2.1. Step-1: Translation

For the purpose of illustrating the working of linguistic to
numeric mapping in RSCM, let’s take the starting point as the lin-
guistic feedbacks of i users in the vector given in (2). RSCM pro-
ceeds by dividing these user feedbacks into equivalence classes
using the indiscernibility property. Hence, the vector containing
users’ feedbacks takes the form of a vector of equivalence classes
and is given in (24) as:

{C1,Cy,...Co} (24)

where each C;,i = 1,...,n or an equivalence class is a set containing
same linguistic preferences grouped together and defined as
Ci=(t1,t2,...ty), where each t; e T;q=1top,ty =t, =...=1t,,T
being taken from (1). As each C; is a set, therefore we define the
class cardinality or |Cj|,i = 1, ...,n, as the number of linguistic pref-
erences constituting the class.

From Section 3.1 it follows that the summation of the respective
associated weights of the corresponding linguistic preferences
yields 1. As there are n equivalence classes in (24), therefore, each
class receives a weight of 1/n. Further, since the class cardinality is
|Gi|,i=1,...,n, so every linguistic term within a class can be allo-
cated a weight of 1/(n x |C;]). Consequently, each linguistic prefer-
ences given in (2) is allocated a weight and the new weight vector
can be given in (25) as:

W= {w,..w} (25)

here eachw;, € [0, 1];p = 1 to i is the respective associated weight of
the user feedback taken from (2). Also, it follows trivially that

W, = 1.

3.2.2. Step-2: Manipulation

The aggregation in RSCM is performed similarly to that of
SMCM discussed in Section 3.1, using the recursive function. Ini-
tially, the linguistic preferences are sorted according to their
indices, and therefore the new vector depicting the user prefer-
ences becomes:

UPSgs = {T1,T>,...Ti} (26)

where T, € T,k =1,...,i. It is mentioned here that each of the T,
may or may not be equal to respective t,. RSCM uses a recursive
function (AG") for aggregation similar to SMCM and is given in
(27) as:

={wioh o {(1-w) oA ol h=2, . i}}

Ac’i{w;er-,p =1.2,...,ili> 2, GZ}

(27)
where Ir,,p=1,...,i,Ir,,h =2, ...,i are the indices of the linguistic
W

7
,
12"

terms given in (26) and 6, = ;h=2,3,...,i. The recursive func-

tion (AG’i) reaches a boundary condition when the number of terms
to be aggregated is two, when the recursive function looks like as
shown in (28):

AG/Z{{W;'—NW;'}? {ITi—l 7171'}7 li= 2}

= {W;—l © ITi—] } & {VV; © ITi} (28)
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where Ir,_, and Iy, are the indices of the remaining terms from the
user linguistic preference vector (26), and w; ; and w; are their
respective associated weights.

3.2.3. Step-3: Retranslation
Now we generate a numeric index for the aggregated user pref-
erences from the previous step. This numeric value is mapped into
an output linguistic recommendation. The numeric index of the
term for (28) is I, given as:
'(ITH - IT;’)) }

where round() is the round function'’

Thus, similar to SMCM, we started the aggregation process with
the recursive function AG" in (27), which calls the function AG"',
which will in turn call function AG™ and so on till we reach AG"
which in the boundary step case calls AG? in (28), thus in all we
pass through i — 2 intermediate recursion calls. The recommended
index for AG? is calculated using (29). From here, we back track
and will use this value as input to AG®. Hence, backtracking
through a series of i —2 calls, the final recommended numeric
index for AG" can be found. This recommended index is matched
to terms in (1) to generate a linguistic recommendation.

Wi, —wi+1

I = min{i, Ir, + round( e (29)

4. CWW based on 2TPCM

CWW can be achieved by a novel methodology called the
2TPCM, which uses a combination of T1 FSs and ordinal term sets.
T1 FSs are used to model the semantics of the linguistic terms,
whereas the processing involves using the indices of these terms
in the term set. In the term set, these terms are represented using
the ordinal term sets. The 2TPCM achieves CWW in three steps viz.,
information gathering phase, aggregation phase and exploitation
phase.

4.1. Step-1: Information gathering Phase

In the 2TPCM, every piece of the linguistic preference is repre-
sented as twin valued viz., the linguistic term and its translation
or distance from the nearest linguistic term (called symbolic trans-
lation) in the term set. Simply for the purpose of illustration, con-
sider a term set as: {so:VL,s1:L,s, : M,s5: H,s4 : VH}, where VL
stands for VeryLow, identified by the index s, or 0. The L,M,H
and VH stand respectively for Low, Medium, High and VeryHigh,
with respective indices being s; (1), s> (2), s3 (3) and s4 (4). Thus,
a piece of numeric information, say 3.2 is represented as
(s3,40.2) or (H,+0.2) viz,, it is at a distance of +0.2 from the lin-
guistic term H. Further, a numeric information with a value 3.8 is
represented as (ss,—0.2) or (VH,—0.2) viz, it is at a distance of
—0.2 from the linguistic term VH.

Consider again the user preferences given in (2) and their asso-
ciated linguistic weights in (6). The user preferences and the
respective associated weights are represented as: (ty, o), ty € T,T
being the term set given in (1), and «, called the symbolic transla-
tion is given as o € [—0.5,0.5). Thus, the two sets are given as:

" A special case of (29) is possible when w}_; =wand w; = 1 —w, for any weight w.
Hence, denoting Iy, , =1, and Iy, = I, the boundary condition and the recommended

term index equations can be given as:

AG*{{w,1 —w}, {I,I}} = {wol}e {(1-w) ol)} (30)

I, = min{i, 1, + round(w.(I; — 1))} (31)
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UPyrp = {(t1,041), .-, (t;,

Wor = {(w1, o1),

As each of t, € T and wy, € T,k = 1 to i, therefore all the o, = 0.

%)} (32)

(33)

4.2. Step-2: Aggregation Phase

The users’ feedbacks and their associated weights from (32) and
(33) respectively, are aggregated using the weighted arithmetic
mean to compute the aggregation value f,,, as:

(W] Xltl)+...+(wl‘><1ti)

= 34
Bth W1+--~+W1’ ( )
where I,k = 1,...,iare the indices of the linguistic terms are given
in (32).

4.3. Step-3: Exploitation Phase

In this step, the f,,,, obtained by aggregation in (34), needs to be
converted back to the linguistic form. For this purpose, the sym-
bolic translation oy, for the $,,, in (34) is given as:

Oatp = Parp — Tound(Byy), —0.5 < 0lap < 0.5 (35)

Finally, the linguistic term output from the exploitation phase
is:
Erecommended = (tround(lizfp)’aﬂp) (36)
The linguistic value of the recommended linguistic term is
obtained by matching t ) to the terms of T, of (1).

round( Bawp

5. CWW based on Perceptual Computing

Perceptual Computing is a novel CWW methodology that mod-
els the word semantics using IT2 FSs. Perceptual computing also
achieves CWW in three steps similar to that of Yager's CWW
framework as shown in Fig. 1. However, the three steps are called
encoder, CWW engine and decoder. The three steps are bound in a
framework called the perceptual computer or Per-C, which is
shown in Fig. 5. We now discuss the internal working of the Per-
C in detail.

5.1. Encoder

The encoder converts the words into their nine point IT2 FS
models, which form the numeric representations for the linguistic
information. The words and their IT2 FS word models are stored
together in a codebook. First of all, a vocabulary of problem-
specific words is decided. Following this, the generating of the
respective IT2 FS word model for a word involves the collection
of endpoint data intervals from a group of subjects generally
through a survey. The subjects are asked to provide their opinions
about the locations of endpoints. They are asked a question,
“Assume that the endpoints of the word can be located on a scale
of 0 to 10. Where do you think the endpoints of the word lie?”.

Scenarios may arise where the subjects are unavailable or the
system needs to be designed to generate personalized recommen-
dations. By personalized recommendations, we mean that the
requirements of an individual user play a greater role in the system
design than the group of users. For such cases, a novel approach of
Person Footprint of Uncertainty (FOU) was proposed in [49]. The
Person FOU approach proceeds by taking an interval for each of
the left and right endpoints of every word in the vocabulary by a
single user, instead of a group of subjects. Then a uniform distribu-
tion is assumed to exist for both these data intervals and fifty ran-
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Perceptual Computer, the Per-C

Words

Fig. 5. The Perceptual Computer (Per-C).

dom numbers are produced in each of the left and right intervals,
denoted as (Ly, ..., Lso) and (R, ..., Rso), respectively. Following this,
pairs of the form (L;,R;),i =1 to 50, are constructed by picking a
value from each of the left and right intervals, so that now each

data pair becomes an interval provided by i (virtual) subject.

The data intervals, collected in the case of perceptual comput-
ing or constructed in the case of Person FOU can be processed by
the age-old Interval Approach (IA) [25]. However, IA was later on
identified to have some limitations and therefore, the improved
Enhanced Interval approach (EIA) [26] was proposed, which in turn
was improved into the Hao-Mendel Approach (HMA) [27]. The IA,
EIA or HMA accomplishes the data processing using the data part
and the FS part. We will describe in detail each of the IA, EIA as well
HMA, starting from IA. All the Equations used in the data and FS
part of IA are given in Table 4.

5.1.1. IA: Data Part

The data part is broadly divided into data pre-processing of the
data intervals collected from a group of subjects (or constructed as
in Person FOU) and statistics computation for the remaining data
intervals from pre-processing. The pre-processing involves sub-
jecting the data intervals to bad data processing, removal of the
outliers, low confidence interval removal by tolerance limit pro-
cessing, and reasonable-interval processing. We assume that the
number of subjects are n (there are 50 virtual subjects in Person
FOU), and the endpoint data intervals for a word as

[a“),b(”] d=1,2,...,n.

Step-1: Removing bad data Bad data is synonymous with the
data intervals that either lie outside the assumed information scale
of 0 to 10 or where lower endpoint value of the interval is greater
than (or equal to) the right endpoint value. All such data intervals
are considered unsuitable for further processing and hence
dropped from the set of useful data intervals by performing the
comparisons given in (37). Hence, some of the data intervals may
be dropped, thereby reducing the number of data intervals to
nnx=n.

Step-2: Outliers removal This is the next step within data pre-
processing. The outliers are identified in the n’ remaining data
intervals through Box and whisker test. These computations are

shown in (38), where Q“(0.25), Q°(0.25), and Q*(0.25) are the first
quartiles for the interval left endpoints, right endpoints and
lengths, respectively. Q%(0.75),Q"(0.75), and Q*(0.75) are the cor-
responding third quartiles, whereas the IQR”JQRb, and IQR! are the
corresponding words, interquartile ranges. The data intervals
appearing as outliers in the test are filtered out, thereby reducing
the number of data intervals to m’,n’ > m'.

Step-3: Removing low confidence data intervals using toler-
ance limit calculation Tolerance factor k provides 100(1 — )%
confidence that an interval contains at least the proportion
(1 — )% of data values. The tolerance limit calculation is shown
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in (39), where m?, mb and m! are the mean values for interval left
endpoints, right endpoints and lengths, respectively. In contrast,
s sb and s' are the respective standard deviation values. Thus,
out of the m’ surviving data intervals from the previous step, the
ones not satisfying (39) are dropped from further processing,
thereby giving rise to a reduced set of data intervals totalling
m’',m = m".

Step-4: Reasonable interval processing For the m” surviving
data intervals from the previous step, computations are performed
as given in (40), using an optimal value of a threshold ¢*. In (41), m*
and m® are the mean of the interval left and right endpoints,
respectively, whereas s® and s” are the corresponding standard
deviation values, for surviving m” data intervals of tolerance limit
processing. The intervals satisfying (40) have a high overlap with
other intervals and hence are retained, and others are possibly
dropped thereby attracting a trimming in the numbers of data
intervals to m,m” > m.

Step-5: Statistics computation for data intervals In this step,
mean and standard deviation are computed for all the m remaining
data intervals from the previous step, assuming a probability dis-
tribution. The computations for this step are given in (42) and
(43), assuming uniform probability distribution.

5.1.2. IA: FS Part

The possible remaining n data intervals obtained from the data
part are processed using the FS part in various steps, as discussed
now.

Step-6: Selecting T1 FS models In this step, the T1 MFs are clas-
sified into either left-shoulder, interior or right shoulder based on
the mean and standard deviation values computed in (42) and (43).

Step-7: Determining FS uncertainty measures After identify-
ing the T1 MFs to belong to one of the three types viz., interior, left
shoulder and right shoulder, the two FS uncertainty measures:
mean and standard deviation, are established for all the T1 MFs.

Step-8: Computing the uncertainty measures for T1 FS mod-
els Now, the mean and standard deviation FS uncertainty measures
are computed for T1 FS models as shown in (44)-(46). In these
equations, ayr and by are the points on x-axis where the ends of
T1 MF rest.

Step-9: General formulae for T1 FS model parameters In this
step, the FS uncertainty measure values of the T1 MFs (42) and (43)
are equated to the corresponding values from (44)-(46). This is
done in order to compute the general formulae for parameters
defining the T1 FS models, which are given in (47)-(49).

Step-10: Establishing the type of FOU Now, it is established
that the FOU belongs to which one of the interior or shoulder FOUs
by using the t-test on the mean and standard deviation values
computed in (47)-(49).

Step-11: Computing the embedded T1 FSs In this step, the T1
FSs, called the embedded T1 FSs, are obtained for the m data inter-
vals (after deciding on whether the FSs are interior or shoulder
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Table 4
Equations of 1A
Name Equation
Step 1: Bad Data Processing 0<a® <b? <10,i=1,. (37)
Step 2: Outlier processing a®  €[Q%0.25)-1. 251QR" Q“(0.75) + 1.5IQR"]
p® [Qb(o 25) — 1.25IQR?, Q%(0.75) + 1 51QR"] i=1. .1 (38)
Lo [ (0.25) — 1.25IQR", Q4(0.75) + 1.5[QRL]
Step 3: Tolerance limit processing a® e [(m® — ks®, m® + ks® ]
b“’ € {mb ks, mb +l<s] i=1,..,m (39)
c {mL kst mt + ks }
Step 4: Reasonable interval ad < g <bPi=1,..m (40)
rocessin 3
p ng (m"(s")z—m"(s")z)is”s" [(m"—m”)2+2((s“)z—(s”)z) ln%]2
& = i ) (41)
(5 ~(s)
Step 5: Computing the statistics S = (mg),s@).i: 1,..m (42)
for surviving data intervals m{f) _ (b‘”;a‘”) As‘((,-) _ (b‘«‘\l/%m) i=1,..m (43)
Step 6: Computing the IMF! : my = Buetawe) g, (bmgi;%w] (44)
uncertainty measures for T1 3
y LMF! TMyr = 7(bw+2aw) ,SMF = [% [(aMF + bMF)Z + Zaﬁ/”_-] - mﬁ/”_-]z (45)
F 1 3
S models RMF' : iy = e 20ue) g [% [(a/MF +biye)? + Za/ﬁ,F] - m/,ZV,F}2 (46)

arr = M — byg, biye = M — ayrandmryg = M — mye

Step 7: Computing general IMF' :af). =1 [(a@ T bm) - \/i(bm - a“>)} b =1 [(a“) + b(i") + \/f(b(i) - a(“)] (47)
formulae for parameters of T1 LMF! :al\ilF _ (a\’)/ébu ) (b“\/gu,) >b1(\£1)p _ (améb\l,) . \fG(b‘; at) (48)
FS models RMFI . a;&)’: M- (ar'”;b“’") _ \/(vi(b/‘gfar'”) b;‘;’)’__ M- (a/"’/;br"") " (b,m\;éﬂ,m) (49)
a® =M — b b = M — g
Step 8: Calculating the embedded T1 FSs (a(""«, bu‘)) (a% b;&} ),i “12....m (50)

Step 9: Deleting the inadmissible T1 FSs all > Oandb;j,F <10,i=1, (51)
Step 10: Computing an IT2 FS
P puting W — U wo (52)
i=1
Step 11: Computing the ayr = min;_; {a;‘;‘;F} GyF = MaxX: - {a;j’)F (53)

mathematical model for FOU

C(l)

byr = min;_4

+b)

— ”Mr

ME

mm{C;w’F},CMF = max{CfSF}

{bMF} by = max;_;

,Cuvr =

I MF =
IR MF = Right Shoulder Membership Function

FOUs), by using the computations shown in (50). The embedded
FSs are denoted as W i=1,...m."?

Step-12: Deleting the inadmissible T1 FSs This step involves
the removal of inadmissible intervals, which fail to satisfy the
(51). This may be followed by reducing in the number of data inter-
vals from m to m*, m > m*.

Step-13: Computing an IT2 FS word models Here, the wavy
slice representation theorem comes into play for the computation
of the IT2 FS word model using the embedded T1 FSs from the pre-
vious step. The computation for the IT2 FS word model is shown in
(52).

Step-14: Computing the mathematical model for FOU In this
final step, the mathematical model of the FOU viz., FOU(V~V> is

computed as shown in (53). Once this mathematical model is com-
puted, the parameters for the Upper MF and the Lower MF are
computed for all the IT2 FS models, which are denoted as

UMF ( ) and LMF ( )) respectively.

In this manner, the IT2 FS word models are generated for every
word of the vocabulary, using the data part and FS part. The IT2 FS
word models belong to one of three categories viz., left shoulder,
interior or right shoulder FOU as shown in Fig. 6. The obtained
IT2 FS word models are defined using the nine point parameters:

12 The m number of data intervals were obtained at the end of Data part.

Interior Membership Function, L MF = Left Shoulder Membership Function,
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four for the UMF and five for the LMF, which are collectively called
the FOU data. The FOU data along with corresponding words are
stored in the form of a codebook.

5.1.3. EIA & HMA: Data Part

EIA was proposed to improve the data processing in the data
part of the IA, to ensure the better acquisition of the targeted data
intervals. Hence, the EIA differs in the data pre-processing of data
part, though EIA also consists of the data part and the FS part. So,
we will discuss the differences only here. Again, let’s assume that
our data collection set involves data intervals provided by n sub-
jects (there are 50 virtual subjects in Person FOU) and their data

intervals are in the form [a(f),b(i)],i: 1,2,...,n. When these data

intervals are subjected to the data pre-processing, we proceed as
follows.

Step-1'°: Bad data processing In this step, the IA ensures that
the endpoints of the interval lie within the scale of 0 to 10 as well
as the left endpoint of the interval is less than the right one. The
EIA imposes these constraints on the interval length also. These com-
putations are shown in (37). Thus, the intervals satisfying these com-
putations are accepted, which may trim the number of data intervals
to n’ from n.

13 replace the same step in IA
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Left shoulder FOU
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Interior FOUs
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Right shoulder FOU

N

Fig. 6. The IT2 FS word models obtained with IA.

0<a? <b” <10,b" —a? <10,i=1,..,n (37)

Step-2]: Outlier processing The EIA initially identifies the out-
liers within the surviving n’ interval endpoints using Box and whis-
ker test, thereby leading to a possible reduced set of data intervals
totalling n”,n’ > n”. The computations are given as:

a® ¢ [Q°(0.25) — 1.25IQR", Q"(0.75) + 151QR"] | /
b < [@%(0.25) ~ 1.251QR",Q"(0.75) + 1.5IQR'] i=1..n
(38)

Here, Q%(0.25),Q%(0.75) and IQR" are respectively the first quar-
tiles, third quartiles and interquartile range for the interval left
endpoints. The Q°(0.25),Q"(0.75) and IQR" are the corresponding
values for the interval right endpoints.

Following this, the outliers are identified for the interval lengths
of the n” surviving data intervals, using again the Box and whisker
test. These computations are given as:

e [QL(0.25) —1.25IQR", Q*(0.75) + 1.51QRL} i
=1,2,....n" (39)

Here, Q"(0.25),Q"(0.75) and IQR" are respectively the first quar-
tile, third quartile and interquartile range. Thus, after performing
an additional Box and Whisker test sequentially on the interval
endpoints and on the interval lengths, there is a possibility of trim-
ming the number of data intervals to m’,m’ < m'.

Step-3]: Tolerance limit processing In EIA, the tolerance limit
processing also enables us to identify high confidence intervals.
Likewise the previous step, the tolerance limit processing is
applied on the interval endpoints, using a confidence factor k,
shown as:

a € [m®— ks, m® + ks“]

bY e {mb — ks, mb + ksb] i

1,..,m (40)

Here, m? and s® are the mean and standard deviation, respec-
tively of the interval left endpoints. m” and s’ are the correspond-
ing values for interval right endpoints. The computations in (40)
may lead to a reduction in the number of data intervals from m’
to m*. Following this, the computations are performed on interval
lengths of the surviving m* data intervals, using a confidence factor
K as:

LY ¢ [mt —Kst,mt + Kst],i=1,..,m* (41)
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where m! is the mean of the interval length and s is the standard
deviation. k' in (41) is given as:

K = min(k, ky, ks) (42)

The value of k; enables that one can state with 95% confidence
that the interval [m" — k;s*, m" + k;s'] contains at least the propor-
tion 95% of data values. The values k, and ks are given as:

(10— mt)
sL

L
m
k2 :S—L,k3 =

(43)

The computations in (43) are performed to retain only the not
too small or not too large intervals. Hence, at the end of the toler-
ance limit processing step, the number of data intervals may be
reduced to m’”.

Step-4]: Reasonable interval processing Reasonable interval
processing accepts those intervals that have a high amount of over-
lap with other intervals. These intervals are identified using the
computations shown in (44):

a <& < bV 2mo — g <a® bV <o2mb — g i=1,.m" (44)

here m? and s® are the mean and standard deviation, respectively of
the left endpoints. The m® and s’ are the corresponding values for
the right endpoints. Further, ¢* is the optimal value of the threshold
which is computed as shown in (41). Finally, at the end of reason-
able interval processing, the set of data intervals may be trimmed
to a length of m.

5.1.4. EIA: FS part

The EIA FS part performs all the computations in the same nine
steps as that in IA, except in the last step viz., calculating the mathe-
matical model of FOU, where the LMF height of interior FOUs is calcu-
lated in such a manner that it avoids completely filled and flat FOUs.

Hence, EIA also generates the IT2 FS word models for all the
vocabulary words and stores them in a codebook. It is mentioned
here that EIA FOUs are also either interior or shoulder, as shown
in Fig. 6.

5.1.5. HMA: FS part

HMA improves the FS part IA/EIA in order to extract more infor-
mation from the data intervals. Upon receiving the m surviving
data intervals from the data part, they are processed for overlap
computation in the FS part. Then the IT2 FS word models are then
computed using a smaller set of remaining data intervals that do
not contain the overlap. Let’s discuss the working of the various
steps in the FS part in detail. It is mentioned here that only the
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steps in the FS part of HMA which differ from that of EIA are dis-
cussed here.

Step-6]: Establishing the nature of FOU To establish whether a
data interval may be associated to an interior or a shoulder FOU,
one-sided tolerance limits are calculated for the m remaining data
intervals of the data part. This is given in (45) as:

a =ty — k(m)3q, b = i, — k(m)s, (45)

where m, and §, are respectively the sample mean and standard
deviation for m data intervals’ left endpoints. The m, and §, are
the corresponding values for the right endpoints. k(m) is the one-
sided tolerance factor (and a function of m). Given the value of
the one-sided tolerance factor, it can be stated with 95% confidence
that the given limit contains greater than or equal to 95% data.

After computing these one sided tolerance limits, the word
model (W) is classified into the interior or one of the shoulder FOUs
based on these comparisons:

if a < 0 : Left Shoulder FOU

if b > 10 : Right Shoulder FOU
Otherwise : Interior FOU

(46)

Step-7]: Computing the interval overlap Here, the computa-
tions for the overlap intervals |04, 05] are performed for the interior
as well as the shoulder FOUSs as:

{0, m_inb(i)} ,i=1,...,m: Left Shoulder FOU

[04,05] = {maxa“h 10} ,i=1,...,m: Right Shoulder FOU  (47)
1

maxa®, mjnb(i)} ,i=1,...,m: Interior FOU
1 1

Step-8]: Removing the interval overlap The purpose of calcu-
lating the overlap intervals [0,,05] in the previous step was to
remove them from all the m data intervals to arrive at a smaller
sets of data intervals for the interior and the shoulder FOUs by per-
forming the computations as:

{ob = minb(i), b(i)} ,i=1,...,m: Left Shoulder FOU

{a@,oa = maxa“')} ,i=1,...,m: Right shoulder FOU
1
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Step-9]: Mapping the data intervals into FOU parameters
Once the smaller set of intervals is obtained using the computa-
tions in (48), the quantities in the equation are mapped into the
FOU parameters of the interior or shoulder FOUs. For left shoulder
FOU the parameters [b;, b,] are mapped to the respective interval
values from (47). The same action follows for the parameters
la;,a;] of the right shoulder FOU. The interior FOU mapping is

slightly different, and looks like: [a®,0, = maxa®| to [a;,a,], and
1

0, = minb” b | to [b;, b/].

Based on these parameter values, the obtained FOU plots with
the HMA look similar to the ones shown in Fig. 7. By visual inspec-
tion, one can make out the difference between the 1A/ EIA FOU
plots shown in Fig. 6 and HMA FOU plots shown in Fig. 7. In the
IA/ EIA IT2 FS word models, the UMF has a height of 1. The LMF
may have a height of 1 for the shoulder IT2 FS word models and
generally not for the interior ones. The HMA IT2 FS word models,
on the other hand, plot a height of 1 for both the UMF and the LMF.

5.2. CWW Engine

CWW engine performs the task of aggregating the user feedback
in the form of IT2 FS word models for the codebook words. When-
ever multiple stakeholders provide their inputs, at the encoder, in
the form of words, these words are converted to IT2 FS word models
as outlined above in Section 5.1. Their nine point data about the IT2
FS word models are extracted from the codebook and given as input
to the CWW engine. CWW engine can use different types of aggre-
gation operators like interval weighted average (IWA), fuzzy
weighted average (FWA), linguistic weighted average (LWA), etc.
The differentiating factor for the use of these operators is the nature
of the data to be aggregated. IWA is used when the data and the
weights are no more than the intervals. FWA is used when at least
one piece of information from the data or the weights are T1 FSs but
not IT2 FSs, whereas the LWA is used when at least one piece of
information from the data or the weights are IT2 FSs.

The computations for aggregating the IT2 FS word models for
the words and their associated weights using the LWA are accom-
plished as:

S KW
i=1

{a“),oa = maxam} & {ob = minb(i),b(i)|,i = 1,...m : Interior FOU Yiwa = - (49)
1 1 ZW'
(48) P
Left Shoulder FOU Interior FOU Right Shoulder FOU
b, b, a a, b, b, a, a,

Fig. 7. FOU plots obtained with HMA.
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Here X; is the IT2 FS models of the words to be aggregated and
W; are those of the corresponding weights.

5.3. Decoder

The output of the CWW engine viz., 17LWA, is also an IT2 FS and is
generally not an exact match to any of the IT2 FS word models in
the codebook. Hence, the decoder section performs the task of gen-
erating linguistic recommendations by performing various compu-
tations. The linguistic recommendation or the ‘word’ is generated
using Jaccard’s similarity measure.

The decoder is also capable of generating ‘ranking’ and ‘class’ as
recommendations. The most commonly used ranking method is
the centroid ranking, where the centroid of an IT2 FS is given by
the union of the centroids of all its embedded T1 FESs, c(A.), as
shown in (50):

= Je(A) = [a,¢/] (50)
VAe
The values of ¢; and ¢, in (50) are given as:
L B N
fou;(x,-) + i;]x,-g;(x,)
=1L (51)
S h) + 3 0
i=1 i=L+1
N
Zx 1(x) + > X (%)
¢ = 1:1:’+1 (52)
ZHN Xi) Z ,u"(xl)
i=R+1
In (51)-(52), L and R are called switch points at which the

aggregation switches between the UMF and LMF. They can be com-
puted using EIASC algorithm, Karnik Mendel (KM) algorithm and
Enhanced Karnik Mendel (EKM) algorithm (Fig. 8).

The mean, c( ) of ¢; and ¢, is used in the centroid ranking
method and computed as:

c(f\) _(ata)

: (53)

6. CWW based on T1 FS extensions

In this section, we discuss the details of the CWW methodolo-
gies that model the semantics of the linguistic terms using the
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T2 FSs, and hence called the CWW methodologies based on the
extension of T1 FSs. These are: LFSCM and the GFSCM. In the
LFSCM, the secondary MF of the shoulder FOUs is a linear function.
On the other hand, in GFSCM, the MF of the interior, as well as
shoulder FOUs, need not necessarily be a linear function.

6.1. LFSCM

LFSCM models the word semantics using the T2 FSs, where the
secondary MF is a linear function, and hence these FSs are called
the LGT2 FSs [8]. The LFSCM uses a CWW architecture, as shown
in Fig. 9. The LFSCM consists of mainly two parts viz., granulation
and causation-organization (with each part consisting of several
other interacting components). Granulation works on the principle
of decomposing a whole unit into parts, whereas causation associ-
ates the causes with effects. The organization works opposite to
the granulation by integrating parts into a whole. Inside the LFSCM,
a sub-component exists commonly referred to as the ‘neural archi-
tecture for perceptual decision-making’, which contains four mod-
ules viz., Sensory Evidence or NA1 (responsible for accumulation
and comparison of sensory evidence), Uncertainty or NA2 (has
the task of perceptual uncertainty detection), Decision Variables
or NA3 (decision variables are represented) and User Feedback/
Performance Monitoring or NA4 (monitors the performance by
detecting errors and adjustment of decision strategies). Further,
the system requires Memory for data accumulation and hence it
is also one of the components. In the terminology of the neural
architecture, it is commonly referred to as the Experience.

6.1.1. Step-1: Granulation

The operation of the LFSCM is triggered by the problem specific
input ‘words’, to the granulation segment. Here, these words are
mapped into their numerical representations, based on the sensory
evidence. The sensory evidence acts as a solution descriptor relates
to decision variables in human reasoning.

6.1.2. Step-2: Causation-Organization

In the next segment, viz., causation-organization, these numer-
ical representations are associated with the appropriate fuzzy IF-
THEN rules (fuzzy IF-THEN rules deal with the uncertainty of the
human reasoning). The output of these IF-THEN rules is aggregated
and converted back to the linguistic form, for communication to
the user. The words are displayed to the user through a Graphical
User Interface (GUI). The user is asked to evaluate the output of the
system and provide his/ her feedback. Thus, based on the user feed-
back, the IF-THEN rules can be modified to incorporate the user
preferences. Further, it is pertinent to mention that for the first
time, the system output is generated based on the default rule con-

Fig. 8. Switch Points for Centroid Calculation in IT2 FS.
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Fig. 9. Architecture for LFSCM [8].

figuration. Subsequent user interaction enables the populating of
IF-THEN rule base with user preference based rules and hence
more user acceptable output words can be obtained from the
system.

6.2. GFSCM

A GFSCM using various types of fuzzy automata was proposed
in [9], of which we discuss here the one based on universally
GT2 fuzzy finite automata. According to the definition given in
[9], the universally GT2 fuzzy finite automata for CWW is a quin
tuple given as: M = (Q,3', 3, qo, F). Here, the meanings of each of
the quantities in the quin tuple are given as:

e Q =1{qy,qq, -, qy} is the finite set of states.

e The Y is the finite set of symbols, so-called the underlying
input alphabet. It is mentioned that 7' is the type-2 fuzzy sub-
set of GT2F(}"), where Y is the finite input alphabet.

e is the type-2 fuzzy transition function defined as:
3:Q x Y — GT2F(Q). Thus, for any g; € Q and a € >, 5(g;, a)
may be considered as a possibility distribution of the states that
the automata in state g; can enter given the input alphabet a.
This can be written more generally as 6(g;,a)(q;),q; being the
state to enter from g; with the given input alphabet a.

e g, € Q is the initial state.

e Fis the GT2 fuzzy subset of Q, called the GT2 FS of final states.
More generally, F(q;), Vq; € Q, denotes the degree to which g; is
the final state.

In particular, when >’ = GT2F(3}"), then the universal GT2 auto-
mata is the fuzzy automata for CWW (for all words).

7. Discussions

We now discuss some important views related to the work pre-
sented here.

A remarkable work [5], has reasoned the supremacy of AEPCM
and IFSCM over the EPCM as well as RSCM over the SMCM. Further,
there has been a number of works in the literature where the IT2 FS
based Perceptual Computing has been shown to possess much bet-
ter performance than the EPCM, SMCM and 2TPCM. The details can
be found here [50]. However, no comparison has been made so far
amongst perceptual computing and AEPCM, IFSCM and RSCM. This
remains an area worth exploring.
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In [8], the LFSCM is shown to give almost 50% better perfor-
mance than the perceptual computing. Thus, it is safe to conclude
that as we use the higher level FSs to model the ‘word’ semantics,
the model accuracy increases. However, all this comes at the
expense of a higher computational cost.

It is quite evident that a lot of research work has been done in
Perceptual computing. However, there has not been much research
on the other CWW methodologies. Further, a recent novel work
[51], gives a thorough literature review on various types of FSs.
Out of these, there are various types of FSs on which CWW
methodologies have not been proposed so far. Interested research-
ers can work on this line of research.

The CWW methodology perceptual computing [3] models the
word semantics using the IT2 FSs, the words come from human
perception. However, the basis for perception [52,53] is informa-
tion acquisition through the senses as well as making something
useful out of it. The process of how human beings perceive through
the senses and acquire information has a lot of complex psycholog-
ical processes acting underlying it. It is in itself a very broad
research area. On the contrary, in all these works on perceptual
computing, the basis for information acquisition is the data col-
lected about the location of the endpoints of a word, on a scale
of 0 to 10, which a human subject thinks. There is no such process
involved in the perceiving of any information through the senses. It
is just how a human subject has an opinion about the location of
word endpoints. So, in our opinion, the word “perception” is
slightly misleading.

A research article that attempted to put forth the idea of achiev-
ing the CWW using Machine learning, was [54]. In this article, the
author used the scenario of medical diagnostics as a bedrock and
highlighted the use of linguistic information for expressing a physi-
cian’s knowledge. The author uses the concept of fuzzy random
variable based probability theory to model the linguistic seman-
tics. Also, in [55], the authors used the concept of Choquet integral
for achieving the CWW. However, in [7,14], it has been advocated
that more often than not, the uncertainty in real-life observations
is non-probabilistic in nature. It stems from the semantic uncer-
tainty of linguistic information. Hence, the CWW methodologies
[54,55] are not close to human cognition in processing linguistic
information.

It has been stated in [56] that CWW should make use of fuzzy
logic. FSs do a great job at modeling the intra and inter uncertainty
in the semantics of linguistic terms in a manner close to human
beings. However, they also suffer from some shortcomings.
According to us, major amongst those is the MF generation for
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modeling the semantics of linguistic terms in CWW. The T1 FSs
based CWW methodologies divide the information representation
scale uniformly amongst the T1 fuzzy MFs and the ordinal term
sets based CWW methodologies assume the complete information
to be modeled in terms of ordered locations of linguistic terms on
the information representation scale. The 2TPCM uses a combina-
tion of both T1 MFs and the ordinal terms. Hence, all these three
category of CWW methodologies have a reduced capability to
model word semantics compared to IT2 FSs based perceptual com-
puting of the CWW methodologies based on T1 FS extensions. The
IT2 FSs based perceptual computing, on the other hand, generate
MFs by collecting data from group of people. This has its limita-
tions, like being time consuming, etc. and T1 extension based
CWW methodologies are computationally intensive. Therefore, to
overcome the limitation of IT2 FS based CWW methodology, a
work is being done in this direction [57]. The challenge is to auto-
mate the MF generation as well as simultaneously modeling the
word semantics in best possible way.

Recently there has been a surge in the area of symbolic learning
[58]. It represents concepts using symbols and then relationships
are defined amongst them. Further, they are increasingly being
used in conjunction with sub-symbolic systems for various pur-
poses. CWW is often considered synonymous to the symbolic
learning. However, there are some subtle differences. CWW
attempts to model the semantic uncertainty of the linguistic terms
so as to bring it close to the human cognitive process. This is
required so that if a computing system be developed using the
CWW principles, it should be able to process the linguistic infor-
mation in a manner similar to the human beings. To ensure this,
it is paramount that the system handles the semantics uncertainty
in a manner as close as possible to the human cognition. Further, as
can be seen from Fig. 1, there is no learning involved in any CWW
methodology. Its emphasis lies on mapping the linguistic informa-
tion to numeric (step 1: translation) by using the instrument that
can capture and model the linguistic uncertainty in best possible
way. This is followed by aggregation (step 2: manipulation) and
finally generating linguistic recommendation back (step 3:
retranslation).

8. Conclusions and Future Scope

Computing with Words (CWW) was proposed by Prof. Zadeh, as
a novel approach that aims to impart computing machines with
the capability to process linguistic information like human beings.
There have been numerous notable works in the CWW, both
application-based and theoretical. It has been successfully applied
in various application areas like risk assessment, decision analysis,
decision support systems, etc.

On the theoretical side, an important line of work has been the
development of various CWW methodologies, which has resulted
in various diverse research works. These include research works
on the EPCM, AEPCM, IFSCM, SMCM, RSCM, 2TPCM, Perceptual
computing, LFSCM and GFSCM. However, to the best of our knowl-
edge, the literature on these methodologies is mostly scattered and
does not give an interested researcher a comprehensive overview
of the notion and utility of these methodologies. Hence, we have
addressed this issue in this work and given the readers a succinct
but wide survey of the CWW methodologies.

We have also highlighted the future research directions to build
upon for the interested and motivated researchers. These include
the performance comparisons between the various CWP method-
ologies (wherever non-existent), dealing with the trade-off
between methodology accuracy and computational cost, and a
direction for developing more CWP methodologies based on differ-
ent types of FSs.
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Appendix A. Basics of IFS

We give here a brief introduction to the IFSs [59-62]. [FSs general-
ize the concept of T1 FSs. The T1 FS represents the uncertainty
about each set element through its membership value. The IFS
extend the notion of this uncertainty by an added quantity to each
set element viz., the degree of non-membership. Mathematically,
an IFS (A) is defined on a universe X as:

A= {(x, 1y(x), va(x)|x € X}

where p,(x) and v4(x) is the degree of membership and degree of
non-membership, respectively (Graphically are shown in Fig. 10),
both satisfying the condition: 0 < p,(x),va(x) <1, and
Ha(x) +va(x) < 1. An IFS differs from a T1 FS as in the latter,
va(x) =1 — p,(x) and law of excluded middle hold.

(A1)

Appendix B. Indiscernibility of Rough Sets

Indiscernibility is an important property of rough sets and
forms a basis of various operations. To illustrate the concept, con-
sider a system for modeling the information I. Let’s assume that
there is a universe of discourse U and a non-empty finite attribute
set A defined on it. Let’s say there exists an attribute a € A and
there is defined a set V,, such that a can take values from V,. Then
I is a mapping defined in the following manner: [ : U — V,.

Let’s say there is a mapping mechanism to assign a value a(x)
from V, to each attribute a and object x in the universe U. Then,
P-indiscernibility, IND(P), of a rough set defined mathematically as:
IND(P) = {(x,y) € U*Va e P,a(x) = a(y)} (B.1)
where P C A, forms an associated equivalence relation. The U can be
divided into a set of equivalence classes IND(P) denoted by
U/IND(P) or U/P.

va(x)

v

pa(x)

p

Fig. 10. IFS: Representation.
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