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Abstract

Topologically associated domains (TADs) are highly compacted regions of DNA that

are suggested to be involved in proper gene regulation and cellular functioning. TADs

maintain long-range interactions between distal enhancers and target genes, as well as

restrict enhancers contacting genes that are not their target and, consequently, block

their inappropriate regulation by these enhancers. The widely used TAD calling tools

either restrict TAD borders to be allocated in a “head-to-tail” manner or allow hierarchi-

cal TAD folding to be detected. We propose a R-based TAD calling tool that detects

start and end TAD border positions separately, so the partial overlapping of TADs as

well as large gaps between TADs are also allowed. Using the ratio between the aver-

age upstream and downstream Hi-C interaction frequencies, our method detects where

the difference between inside-TAD and outside TAD area within the Hi-C matrix is most

significant. The novel TAD allocation combined with various genomics data reveals the

interplay between architectural proteins and active transcription in the establishment

of the TAD border insulation strength and insulation imbalances between neighbouring

TADs.
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Chapter 1 Introduction

Chapter 1. Introduction

1.1. General view on chromatin folding

A cell is a fundamental unit of biological organisation. There are two main forms:

prokaryotic cells that are found in bacteria and archaea and eukaryotic cells that are

found in all other living organisms. Eukaryotic cells differ by the presences of a nucleus

with DNA stored inside while in prokaryotic cells DNA is found free in the cytoplasm.

DNA encodes many small regions called genes that act as an instruction for coding

proteins. In the human genome, genes represent only 1% of the genome. The non-

coding genome contains regulatory regions that provide binding sites for transcription

factors which control gene activation and/or repression. The list of such regulatory re-

gions mostly includes promoters, enhancers, silencers and insulators. Promoters are

typically allocated ahead of genes and carries binding sites for transcription machin-

ery attachment. Enhancers participate in gene activation: proper physical contacts

between transcription factors binding enhancers and transcription machinery binding

promoters are essential for transcription initiation (Bjorkegen and Baranello 2018). In

contrast with enhancers, silencers are involved in transcription repression: contact with

a silencer can block the transcription machinery and stop the transcription of DNA se-

quencing into RNA. Enhancers and silencers can be distal and the main role of the DNA

conformation is to bring them into spatial proximity with their target genes (Cremer and

Cremer 2001; Lieberman-Aiden et al. 2009). At the same time, the contacts between

enhancers/silencers with non-target genes can result in undesired gene upregulation

or downregulation. To do so, insulator regions carries binding sites of proteins that can

create barriers to separate improper enhancer-promoter contacts (enhancer-blocking

activity), as well as separate repressive chromatin and maintain a sufficient level of ac-

cessibility for protein complexes involved in replication or transcription processes (Dali

and Blanchette 2017; Zabet and Adryan 2015).

While the diameter of a nucleus is scaled in micrometers, stretched DNA, for exam-

ple in human, is up to several meters long, which means that DNA is compactly packed

inside the nucleus. On the top level of spatial organisation, DNA wraps twice around
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proteins called histones and forms structural units called nucleosomes (Bentley et al.

1984; Luger et al. 1997). At the next level, the chromatin (complex of DNA and sur-

rounding proteins) is packed into 30-nm fiber, which is characterised by nucleosome

interactions.

1.2. Hi-C is a powerful tool to explore the chromatin architecture

1.2.1. First revelations on chromatin topology were microscopy-based

Historically, the first insights on three-dimensional chromatin organisation, chromo-

some positioning and DNA-DNA interactions were based on a variety of microscopy

techniques (Fraser et al. 2015). The most commonly used microscopy-based method

was fluorescent in situ hybridisation (FISH) (Langer-Safer et al. 1982). FISH allowed

the extraction of basic features of chromatin topography from a limited number of pre-

determined loci in individual cells. Based on FISH, some fundamental discoveries of

chromatin conformation such as the existence of chromosome territories have been

found, e.g. particular chromosomes tend to occupy individual territories within a nu-

cleus with minimal overlapping (Cremer and Cremer 2001).

A great advantage of microscopy-based methods is that they are very powerful:

the proximity of DNA segments could be studied with a high level of spatial resolution.

However, there are some limitations. For example, for FISH, the analysis is limited to

a few loci of interest and does not provide a clear understanding of a genome-wide

architecture (Fraser et al. 2015; Bonev and Cavalli 2016). Another recent microscopy-

based method called Hi-M overcame this limitation: it allowed to analyse 3D chromatin

organisation simultaneously with RNA expression at single nuclei level (Cardozo Gizzi

et al. 2019). In addition, high-resolution analysis of both spatial organisation and

transcription could become a power source for understanding the connection between

the chromatin topology and transcription.

An alternative way to detect chromatin interactions, and study three-dimensional

chromatin folding, is to appeal to chromosome conformation capture techniques. Ba-

sic 3C experiment quantifies the interactions happening between a single pair of DNA
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fragments within the population of cells, so, can be simply characterised as an experi-

ment aimed to detect “one-vs-one” interactions (Dekker et al. 2002). 4C allows to de-

tect the pairwise contacts of single DNA locus with all other loci, reflecting “one-vs-all”

manner of interactions (Simonis et al. 2006). 5C detects all pair-wise interactions hap-

pening within a given genomic regions, in other words, “many-vs-many” interactions

(Dostie et al. 2006). Hi-C (a high-throughput derivation of 3C) quantifies “all-vs-all”

pairwise interactions - any two fragments within the studied population of cells that are

allocated close to each other in space are detected and counted (Lieberman-Aiden

et al. 2009). All 3C-based experimental approaches rely on the same starting steps:

cells of interest are exposed to formaldehyde and then DNA fragments in close spatial

proximity are cross-linked. Apart from the downstream differences in protocols, the

basic idea is common - if the pair of loci cross-linked more often than by chance, it

can possibly sustain some particular chromatin architecture that participate in proper

cellular functioning.

So, in contrast with FISH, recently developed 3C-based techniques, including Hi-

C, allow collecting chromatin contact frequencies at regional, whole chromosome and

genome-wide levels. But at the same time, contact frequency in 3C is produced in a

bulk manner and, as a consequence, represents the overlap of individual chromatin

architecture profiles in a population of cells (Giorgetti and Heard 2016; Fudenberg

and Imakaev 2017). Chromatin architecture was found to undergo constant dynamic

changes though cell development, so the studied cell population is required to go

through similar phasing to display stable organisation with 3C and Hi-C. As an example,

in (Gibcus et al. 2017) transition from interphase to late prophase was accompanied

by recognisable loss of spatial patterns, as well as in (Nagano et al. 2018) during

replication DNA was found to be accompanied with loss of insulation between spatially

segregated chromatin domains. As DNA was found to be the highly dynamic structure,

3C and, in particular, Hi-C techniques are limited to represent chromatin organisation

of each single cell within the population (Nagano et al. 2013). In addition, despite being

powerful source of information of chromatin conformation, 3C-based techniques were
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not powerful enough to be conducted in rare cell types due to a lack of biological mate-

rial: downstream sequencing of interacting fragments required a large amount of DNA.

For example, while the zygotic genome activation in flies was using Hi-C, the oocyte-to-

zygotes transition in mice required the development of a single-cell Hi-C protocol (Hug

et al. 2017; Flyamer et al. 2017; Ing-Simmons et al. 2021).

As expected, a comparison of single-cell and population average-styled Hi-C, as

well as other bulk-style experiments capturing genome-wide chromatin architecture

like GAM (genome architecture mapping) (Beagrie et al 2017) and SPRITE (split-pool

recognition of interactions by tag extension) (Quinodoz et al 2018), demonstrated that

chromatin architectural patterns do not always coincide and some frequent single-cell

contacts occur across bulk TAD borders (Flyamer et al. 2017; Nagano et al. 2013).

Along with the DNA dynamic as a possible source for inconsistency, single cell ex-

periments are characterised by low coverage, which is also expected to lead to large

sparcity of contacts.

1.2.2. Understanding the sources of technical biases in Hi-C is important for

further processing steps

DNA and proteins are compactly packed inside the nucleus, thereby creating the con-

ditions for intensive DNA-DNA, DNA-protein and protein-protein interactions. Hi-C is a

powerful technology that is widely used to address currently challenging questions in

the field of chromatin organisation and gene regulation. However, as an experiment-

based method Hi-C is sensitive to technical biases that provide imprecise information

on chromatin interactions (Yaffe and Tanay 2011; Imakaev et al. 2012; Hu et al. 2012;

Servant et al. 2015). The initial Hi-C pipeline was modified in order to increase the con-

tact map resolution, to lessen the effect of biases or to make it simpler and cheaper.

Therefore, we focus on biases associated with the general stages of the experiment:

cross-linking, cutting with enzyme, ligation, purification and sequencing.

Most 3C-based techniques begin the same way: cells are cross-linked with formalde-

hyde that creates covalent bonds with macromolecules such as proteins and DNA,
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“freezing” the protein-DNA, protein-protein and DNA-DNA interactions. Cross-linking

is followed by a fragmentation stage when a restriction enzyme recognise a specific

sequence to bind and cut the whole chromatin into short fragments. Original protocols

involve HindIII and Ncol restriction enzymes that spot sequences of six nucleobases

AAGCTT and CCATGG, respectively (Lieberman-Aiden et al. 2009; Belton et al. 2012).

The recently used DpnII (Rao et al. 2014) searches for only four bases sequence

GATC, thereby slicing DNA into shorter pieces: the average fragment length for the

human genome decreases from 4 Kb to less than 500 bp by switching the HindIII to

DpnII enzyme (Belaghzal et al. 2017).

At the further stages, Hi-C is slightly different from other 3C methods. In Hi-C,

restriction fragment ends are labeled with biotinylated nucleotide and ligated, creat-

ing covalent bonds between proximal ends. Ligated biotin-containing fragments are

pulled down, isolating them from non-ligated fragments. At the last step, the generated

molecules are sequenced. As each DNA-DNA interaction event is expected to be fol-

lowed by the ligation event, the generated library of ligated fragments constitutes the

collection of pairwise DNA contacts.

Hi-C is a complex and multi-stage technique involving variety of components that

need to be understood as sources for technical errors that can reside at all stages

(Figure 1.1.A). The ability to distinguish the proper DNA interaction behavior from the

spurious one provides a basis for data trimming tools that allow the production of trust-

ful Hi-C contact maps (Yaffe and Tanay 2011; Hu et al. 2012).

Formaldehyde cross-linking. The chromatin architecture is regulated and/or ex-

ploited by different protein complexes. Examples include transcription factors that ini-

tiate and control transcription or histones and architectural proteins that mediate con-

densation or relaxation of chromatin fiber (Van Bortle et al. 2014; Stadler et al. 2017;

Nora et al. 2017; Nora et al. 2020). Therefore, proteins act as a mediator in DNA-DNA

interactions involved in cellular processes. During cross-linking, formaldehyde is re-

acted with all macromolecules inside the nucleus creating “bridges” between proximal

ones (Hoffman et al. 2015). In case of indirect DNA-DNA interaction, the chromatin is
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linked through the protein-mediator.

Recent studies showed that formaldehyde cross-linking favors reactions with ly-

sine - the structural unit that makes up proteins (Lu et al. 2010). It results in the

covalent bonds that are formed between lysine side chain of a protein and proxi-

mal DNA fragment first, leading to the relatively lower cross-linking power in protein-

protein interactions (Zeng et al. 2006). Thus, the contacts between DNA fragments

via bridges made by the complex of proteins are either rare events or lost due to in-

efficient cross-linking (Gavrilov et al. 2015). On the other hand, the high density of

macromolecules in the presence of formaldehyde can result in the formation of the

complex networks between the nuclear elements that do not interact (Gavrilov et al.

2015). The indirect protein binding that brings DNA fragments into spatial proximity

may be either over-represented due to artificial formaldehyde cross-linking of proxi-

mal non-interacting complexes or under-represented due to low cross-linking power for

indirect protein binding.

Restriction enzyme. The Hi-C method detects only pairwise contacts between

DNA fragments in each cell from the population, it does not detect higher order struc-

tures with three and more loci to be involved simultaneously. Cutting sequences recog-

nised by the selected restriction enzyme affects the fragment size. Longer sequences

generate on average longer fragments that have a higher chance to be involved in

interactions of more than two fragments.

Biases arising because of inefficient detection of higher order chromatin structures

could not be eliminated using standard Hi-C data processing and require improve-

ments of the protocol. Switching to restriction enzymes with shorter binding sequence

improves the resolution and decreases the chance to catch complex interactions. An

alternative solution is to use methods to study the genome architecture that are not

limited by pairwise interactions like GAM (Beagrie et al. 2017), SPRITE (Quinodoz et

al. 2018) and Pore-C (Ulahannan et al. 2019).

Despite the fact that interaction of three and more fragments are not detected in

general Hi-C, using the methods of polymer physics and pairwise contacts collected
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from population of cells we can predict the position of fragments forming simultane-

ous multi-interaction complexes (Liu et al. 2021). We have to keep in mind that as

chromatin is a dynamic structure, we cannot distinguish between such interactions be-

ing credible for single cell or being spurious because of the overlap of a large number

of cells. However, based on the Hi-C contact map we can select several loci that

we suspect are in multi-fragment interactions and check them with microscopy-based

techniques.

Ligation. In theory, the number of ligated fragments appearing in a Hi-C library

corresponds to the number of interaction events between chromatin fragments in a

cell population. However, regions that are not previously cross-linked could also be

ligated. These ligation artefacts can include self-ligations when two ends of the same

fragment are ligated to each other, or random ligations when ligated fragments belong

to different cross-linked pairs (Mifsud et al. 2017). Only intra-molecular ligation when

two cross-linked fragments are ligated represents the real chromatin interaction. Also,

the length of the restricted fragments itself was found to have different ligation efficiency

(Yeffe and Tanay 2011). Several recently developed experiments are ligation-free, so

the data produced in accordance with protocols is unaffected by ligation biases. Such

tools include GAM (Beagrie et al 2017) and SPRITE (Quinodoz et al. 2018).

GC-content. The restricted fragments are defined as blunt-ended or sticky-ended

(Pray 2008). Sticky-ends are characterised by the DNA single-strand overhang while

blunt-ends have no unpaired nucleotides. The length and the nucleobase composition

of sticky-end overhang may vary depending on the choice of the restriction enzyme,

thereby affecting the ligation efficiency. It was previously shown that the sticky-ends

that are highly enriched with GC are associated more often, so have higher chance to

be ligated (Gao et al. 2015).

PCR amplification. The amount of DNA is required for high-throughput sequencing

exceeds the amount of DNA obtained from a cell population. The amplification by PCR

allows to produce duplicates of ligated fragments to complete the outstanding amount

of DNA required for efficient downstream sequencing. However, introduced duplicates
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may skew the interaction profiles, especially in the case of rare cell types (Yeffe and

Tanay 2011). Recently developed methods as SAFE Hi-C (Niu et al. 2019) avoid the

PCR amplification, so avoid the possibility of skewness arising from the duplicates.

Sequencing and alignment. Ligated fragments are sequenced and referred to

as reads - short linear strings of nucleotide bases. The unique sequence of base

pairs of a read correspond to its position within the DNA molecule in the reference

genome. Alongside the development of next-generation sequencing techniques, which

allow to process massive sequence input with low costs, it was shown that depending

on methods and platforms used we can face some sequencing errors (Fox et al. 2014).

Error rates were found to be relatively low, however, differences between reads and

reference genome can produce incorrect alignments. Moreover, even if the fragment is

correctly sequenced, it can be removed from the downstream analysis if it cannot be

uniquely mapped. Thus, short DNA loci combined from just several nucleotides can

be placed in several positions within the genome, so they have a higher chance to be

incorrectly aligned. We can avoid this situation by restricting the length of the mapping

reads.

Another source of incorrect alignment is transposable elements. Transposable ele-

ments (TEs) are the genome fragments that are able to change their position within the

genome (McClintock 1940). These regions either can be copied and then integrated

elsewhere in the genome in the case of retrotransposons (Boeke et al. 1985), or can

move from one location to another in the case of DNA transposons (Greenblatt et al.

1963). In mammals, transposable elements makes up half of the genome (Platt et al.

2018), so the sequenced reads coming from TEs face a danger to be non-uniquely

allocated and require specific parameters and/or algorithm to be considered. Interest-

ingly, several recent studies were focused on the functional role of TEs in chromatin

architecture (Schmidt et al. 2012; Zhang et al. 2019; Diehl et al. 2020). Thus, architec-

tural protein CTCF, which was suggested to participate in loop extrusion and maintain

specific DNA topology in mammalian systems (Racko et al. 2018), obtained many of

its binding sites and associated novel chromatin loops from transposons throughout
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evolution (Bourque et al. 2008; Schmidt et al., 2012).

1.2.3. Correction and normalisation algorithms reduce read-level biases and

possible interaction skewness

The presence of the technical biases makes the extraction of biologically meaningful

information from Hi-C data a challenging task. Ligation artefacts and PCR duplicates

increase the Hi-C library while they are not coming from the real interactions between

DNA fragments. In contrast, complex architectural structures or low mapping quality

of reads reduce the set of Hi-C interactions for downstream analysis. Following the

mapping to the genome, noise and expected imbalances in Hi-C data require read-level

filtering and matrix balancing to be considered. However, all tools and computational

methods have their own drawbacks and limitations such as bias trimming efficiency,

computational complexity, memory or time consumption. Also, we expect that we did

not cover all possible technical errors arising during the experiment as they could vary

depending on the protocol modifications or external conditions. However, the correction

step is able to correct the general data skewness arising from the combinations of

systematic errors.

Balancing algorithms can rely on explicit sources of technical biases: reads are

characterised by their length, GC-content and mappability to the genome, which are

known and quantified, so can be used as an explanatory factor in statistical model-

ing. The probabilistic approach proposed by (Yaffe and Tanay 2011) and HiCNorm (Hu

et al. 2012) considered three listed sources of systematic biases to model the con-

tact frequency through standard density functions as Bernoulli, Poisson or Negative

Binomial. Although the significant technical biases are considered, if we want to test

other biases, we face general problems of statistical modeling including the need of

quantitative measure for the aimed error source or multicollinearity problem.

In contrast, implicit approaches do not distinguish bias sources and assume that

each bin simply accumulates the effect of several biases coming from the experiment

conditions, sequencing and mapping. Most widely used methods here are SCN (se-
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Chromatin Loop Extrusion
cell 1

cut

crosslinking ligation sequencing

artefacts

cell 2 cell 3

Hi-C PipelineA B

Figure 1.1. Schematic representation of Hi-C pipeline and TAD formation from loop extrusion.

A. Main steps of basic Hi-C pipeline: pairwise interactions between DNA fragments in popula-

tion of cells are cross-linked, cut with restriction enzyme, ligated and sequenced. Ligation can

generate artefacts including self-ligation event and random ligations which do not represent

real loci contacts. The scheme is based on visualisation of Hi-C experiment in (Lieberman-

Aiden et al. 2009). B. Chromatin loop extrusion model: During transcription, RNA polymerase

(RNAP) generates torsional stress, which pushes the supercoiled chromatin through Cohesin

rings until Cohesin and CTCF meet. As divergently oriented CTCF does not allow further Co-

hesin sliding, the anchors of the loop are expected to be in close contact which is visualised

on Hi-C interaction map as TAD with peak point. Type 1 (Top 1) and Type 2 (Top 2) topoiso-

merases bind DNA to drain supercoiling. The scheme is based on visualisation of the model

in (Racko et al. 2018).
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quential component normalisation) (Cournac et al. 2012), ICE (iterative correction and

eigenvector decomposition) (Imakaev et al. 2012), KR (Knight-Ruiz) balancing (Knight

and Ruiz 2013) and chromoR (Shavit et al. 2014). Hi-C processing and visualisation

tools like Fit-Hi-C (Ay et al. 2014), HiCExplorer (Ramirez et al. 2018) or Fan-C (Kruze

et al. 2020) rely on most widely used ICE and KR balancing methods either as a cor-

rection step in Hi-C processing or as a source of bias estimation for Hi-C interaction

modelling. In particular, matrix-balancing approaches became favoured due to simplic-

ity and being parameter-free. So, they rely on the assumption that all DNA fragments

have equal chances to be detected, however the previously shown significance of GC-

content or restriction length did not support this assumption (Yeffe and Tanay 2011).

Despite this, algorithms that do not require the exact knowledge of the errors origin are

more robust against developments in Hi-C and against some variants, such as capture

Hi-C (Mifsud et al. 2015). In addition, some recent approaches like GOTHiC (Mifsut

et al. 2017) takes intermediate position between explicit and implicit approaches: sys-

tematic biased are split into two parts where one part is biases coming from known

sources and second part is biases of unknown origin.

1.3. Hi-C revealed the hierarchical folding of chromatin

1.3.1. Chromatin is spatially segregated into compartments depending on tran-

scriptional state

The development of the Hi-C methods allowed a closer look at the genome-wide DNA

organisation. The first implementations of Hi-C have been constructed at megabase

scale (Lieberman-Aiden et al. 2009) and, despite the resolution that can be consid-

ered relatively low today, Hi-C demonstrated results that were consistent with earlier

investigations of chromosome territories and other known patterns of inside nuclear po-

sitioning in mammals with 3C and FISH (Cremer and Cremer 2001). Thus, distal loci

belonging to the same chromosome tended to be near to each other in space as well

as specific chromosome pairs showed certain preferences to be close to each other.

Further in-depth analysis provided insights on the next level of hierarchy in chro-
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matin folding. Each chromosome inside the nucleus was found to be spatially divided

into two minimally intermingling parts with rare cases of DNA contacts between them

(Lieberman-Aiden et al. 2009; Rao et al. 2014). These parts named as A and B

compartments showed different packing behaviour: A compartment was packed less

densely, which marked more accessible DNA for binding of functional elements and, as

a consequence, was associated with the active part of chromatin; B compartment was

less accessible and marked as an inactive part of the chromatin. High resolution maps

recently achieved in lymphoblastoid cells showed the enrichment of active enhancers

and promoters: distal enhancers formed the islands of A compartment chromatin sur-

rounded by inactive B compartment chromatin; A compartment was also enriched with

gene TSSs (transcription start sites) while the gene body including TTSs (transcription

termination sites) belonged mostly to B compartment (Gu et al. 2021). A/B compart-

ments were also found not only in mammalian systems but in other organisms, for

example, Drosophila melanogaster fly (Rowley et al. 2017) or even in prokaryotic cells

in Sulfolobus archaea (Takemata and Bell 2020).

The transcriptional status of chromatin, and as a consequence, the affiliation to A or

B compartments could differ between cell types as well as during developmental stages

(Lieberman-Aiden et al. 2009; Dixon et al. 2015). Despite being tissue-specific and

dynamic, A/B compartments showed notable robustness to experimental interference

aimed to affect the chromatin architecture, like the depletion of architectural proteins

(Kaushal et al. 2021). Besides, A/B compartments were found to be mostly consistent

between tumor and normal cells (Johnstone et al. 2020; Adeel et al. 2021). Still, a

closer look at the compartmentalisation strength in (Johnstone et al. 2020) revealed

the noncanonical regions characterised by intense self-interactions and contacts with

both compartments. These regions proposed to reflect the intermediate compartment

state and show distinct features between tumor and normal cells.
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1.3.2. Topologically associated domains are the next level of chromatin organi-

sation

Later improvements of the Hi-C methods allowed higher levels of resolution and have

shed light on the next unit of organisation called topologically associated domains or

TADs (Dixon et al. 2012; Nora et al. 2012; Sexton et al. 2012). TADs are characterised

by the intense interactions between DNA fragments belonging to the same TAD and

less probable contacts between fragments allocated in different TADs. Visually, on Hi-C

maps TADs are represented in a form of squares which are continuously spread along

the diagonal. TADs were found to be widely conserved across species (Vietri Rudam

et al. 2015) as well as during different developmental stages (Ghavi-Helm et al. 2014;

Dixon et al 2015), suggesting that they maintain proper cellular functioning and gene

regulation. At the same time, some reports showed that TADs can demonstrate cell

line-specific allocation within the same organism. For example, in (Chathoth and Za-

bet 2019) only some of the TAD borders were conserved between embryonic (Kc167)

and neuronal (BG3) cell types in Drosophila melanogaster. Note, that conserved TAD

borders reflected similar binding patterns of architectural proteins. Summing up, topo-

logically associated domains can be defined as a fundamental unit of spatial chromatin

organisation.

1.3.3. TAD reorganisation has an ambiguous effect on gene expression

TAD borders have been shown to be enriched in housekeeping genes (Li et al. 2015),

developmental enhancers (Cubenas-Potts et al. 2017) and boundaries of highly con-

served genomic regulatory blocks (Harmston et al. 2017), which suggested strong

association between 3D organisation of DNA and gene regulation. A strong connec-

tion between TADs and elements of transcription machinery including enhancer, pro-

moters and various transcription factors suggested that the functional role of TADs

is to bring distal regulatory elements closer in space to maintain a physical contact

(Rocha et al. 2015). At the same time, a high level of insulation between neighbouring

TADs could separate DNA elements from undesired contact and prevent non-target
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genes from uncontrolled over-expression. A previously reported presence of architec-

tural proteins and insulators at TAD borders (Van Bortle et at. 2014; Stadler et al.

2017) also supported the insulating function of TADs. Thus, the stability of TAD bound-

aries is proposed to be essential for establishment of proper cellular development and

functioning, hence defective chromatin architecture can bring a possibility of diseases,

developmental defects, disorders and/or cancer (Lupianez et al. 2015; Taberlay et al.

2016; Kragesteen et al. 2018). Structural variations in chromatin such as deletions,

duplications, inversions and translocations can affect the chromatin topology including

the number and sizes of existing domains. For example, in (Lupianez et al. 2015)

re-engineered structural variations in mouse near Epha4 gene, which were consid-

ered as a major cause for human limb malformation, led to domain disruptions, Epha4

misexpression and subsequent developmental defects in limbs.

Any particular domain could unite with neighbouring ones (TAD aggregation), be

divided into several small domains (TAD disruption), as well as exhibit complex re-

compositions. When TADs are aggregated, loci that were outside the domain have a

higher chance to interact with loci that were inside the domain. In that way, the loss

of insulation drives an enhancer and a non-target promoter to interact, which results

in the activation of genes that should be silenced in normal cells. Such defected gene

expression during embryonic development could cause irreversible developmental dis-

orders. In (Helmbacher et al. 2000) and (Kragesteen et al. 2018), re-engineered

domain disruptions in mice resulted in rare limb malformation followed by the contact

between previously insulated DNA fragments and subsequent gene misregulation. In

(Nora et al. 2017), TAD border loss due to depletion of protein-insulator CTCF led

to clear upregulation of genes which also demonstrated a tendency of colocalisation

within the same aggregated TAD. Furthermore, the evidence of aberant gene activa-

tion correlated with topology reorganisation was found in cancer cells, for example, in

glioma (Flavahan et al. 2015; Flavahan et al. 2016).

Illustrative results were obtained by (Owens et al. 2021) studying the transcription

factor RUNX1 which downregulation can cause leukemia. A megabase scale TAD,
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where Runx1 producing gene resided, was formed prior to transcription, supporting

the idea of topology-driven gene regulation. However, during differentiation it was

found to be separated into two smaller sub-structures which were induced by active

transcription of two promoters controlling the gene production. Interestingly, the sep-

aration between sub-structures were consistent with enrichment of protein-insulator

CTCF, which induced depletion affected the chromatin conformation and declined the

production of RUNX1, while the enhancer-promoter contacts were mainly unaffected.

In contrast, induction if gene misregulation upon hypoxic treatment in (Nakayama et al.

2021) was accompanied by radial position alterations as well as relative reallocation to

each other, however neither strength nor direction of the gene activity violation had a

clear relationship with spatial reposition.

However, in some recent reports it was shown that changes in TADs did not always

correlate with the changes in gene expression. Thus, in (Ghavi-Helm et al. 2019)

rearrangements introduced in Drosophila balancer chromosomes were not coupled

with the transcriptional changes. Still, only a few TADs were affected possibly due to

the small number of rearrangements induced, so it is the high chance that when more

TAD borders are lost, shifted or gained would allow the observation the changes in

gene expression. The analysis conducted in (Ing-Simmons et al. 2021) on Drosophila

embryos entirely consisting of ectoderm, neuroectoderm and mesoderm, which were

obtained in the result of maternal mutations, also did not show significant differences in

TAD organisation in the presence of transcription alterations. However, required sorting

of the embryos which resulted in low input Hi-C in addition to strict selection procedure

allowing most trustful TAD borders for downstream analysis made viable only strong

and massive reorganisations to be detected.

Although we have enough evidence that the 3D organisation of the DNA and gene

regulation are related, we still have no clear vision about what exactly drives in this rela-

tionship: the chromatin architecture defines the proper gene expression or, conversely,

the contacts between regulatory elements establishes the 3D chromatin folding.
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1.3.4. TAD formation and maintenance are proposed to be loop extrusion medi-

ated

The way in which domains are formed is still unclear. The correlation between TAD

boundaries and anchors of chromatin loops was proposed to shed light on the TAD

establishment and maintenance (Rao et al. 2014). DNA loops have been suggested

to either mediate contacts between enhancers enriched with transcription factors and

target genes to regulate transcription (Pennacchio et al. 2013), or to maintain contacts

between insulator elements and isolate chromatin domains to avoid undesired contacts

(Phillips and Corces 2009). Recent studies suggested that transcription-based super-

coiling could be used as a driving force in a TAD formation mechanism (Bjorkegren

and Baranello 2018; Racko et al. 2018; Ruskova and Racko 2021). In general words,

the process could be described as follows (Figure 1.1.B). It starts when transcription

factors bind enhancer or promoter region and recruit RNA polymerase to transcription

start site. At the initiation step, RNA polymerase relaxes double helix strands and ini-

tiates synthesis of RNA. Moving along DNA, it continues to unwind DNA strands and

elongate RNA chain, then, after polymerase passing, DNA is rewinded into a double

helix again. Polymerase does not rotate itself, so when it relaxes DNA helix, it increases

torsional stress in chromatin at both sides of the molecule which is drained by Type 1

(Top 1) and Type 2 (Top 2) topoisomerases to allow transcriptional elongation (Pommier

et al. 2016). Thus, blocking of topoisomerase activity led to transcription inhibition and

chromatin compaction (Neguenbor et al. 2021). At the same time, prolonged stabili-

sation of Top 1-DNA complexes could generate DNA strand breaks causing cell cycle

arrest and cell death - this mechanism was proposed as a treatment of cancer (Gilber

et al. 2012).

Torsional stress draining could be incomplete, which facilitates and maintains chro-

matin supercoiling (Bjorkegren and Baranello 2018). Recent works of (Camela et al.

2019; Gothe et al. 2019) supperted the hypothesis, as loop anchors and TAD bound-

aries are found to be enriched with topoisomerase. The formation and stabilisation of

domains from stressed chromatin is supported by architectural proteins Cohesin and
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CTCF. Cohesin is presented in a form of two joint rings that could attach to chromatin

- Cohesin binds to part of the DNA that is under torsional stress, supercoiling pushes

chromatin through Cohesin rings and forms a loop. Interestingly, transcription inhibition

followed by RNA polymerase depletion resulted in DNA compaction with a decrease in

colocolisation of Cohesin supporting the idea that Cohesin binding and TAD segrega-

tion can be transcription-driven (Neguembor et al. 2021).

The loop growth continues until when Cohesin reaches CTCF that do not allow

Cohesin rings to pass through them. In (Nora et al. 2021), depletion of N-tirminus

of CTCF affected the TAD boundaries insulation and diminished Cohesin accumula-

tion: chromatin insulated with modified CTCF was proposed to be either completely

released of a loop or less insulated due to the incapacity of CTCF to stop loop ex-

trusion. In (Flavahan et al. 2016), hypermethylation found in human glioma blocked

the binding of methylation-sensitive CTCF and Cohesin which, as a consequences,

reduced the domain insulation and facilitated undesired activation of the glioma onco-

gene. A similar model was suggested in C. elegance with Condensin-mediated loop

extrusion (Rowley et al. 2020; Jaminez et al. 2021).

TADs that are formed in accordance with the the loop extrusion models are ex-

pected to demonstrate the intense contact between anchor fragments (Racko et al.

2018). However, in the human genome, less than 39% of TADs were accompanied by

loop anchor contacts (Rao et al. 2014). Moreover, the depletion of CTCF has as an

unpredicted effect in different organisms, cell types or developmental stages. Looking

particularly on Drosophila associated studies, the absence of CTCF following knockout

of CTCF-producing gene at zygotic state can be compensated by protein and mRNA

coming from the maternal germline that ensures survival (Gambetta et al. 2021). How-

ever, the depletion of maternal material led to death at pupal stage (Kaushal et al.

2021). The same study showed that rescued CTCF transcription avoided lethality and

allowed further developmental transition but only in neuronal cells and not in muscle

cells. Similar knockout-based research in mammalian systems to study the interplay

between TAD reorganisations and gene regulation were difficult to perform due to mas-
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sive perturbations and low chances of cells to survive. In general, long-term loss of

CTCF led to massive cell death (Yao et al. 2017; Hyle et al 2019; Xu et al. 2021)

limiting the time when cells could be treated and studied.

Intriguingly, zebrafish (Franke et al. 2021) was able to survive and progress devel-

opmentally through knockout due to fast development similar to flies and it was shown

that both transcription and chromatin segregation were enormously affected. Also,

recently published the whole transcriptome analysis revealed significant amount of dif-

ferentially expressed genes in CTCF-deplted cells (Hyle et al 2019). Drosophila CTCF

knockout also resulted in massive gene trancription changes in neuronal cells (Kaushal

el al. 2021). In contrast, partial knockdown of CTCF protein did not reveal a clear effect

on transcription in (Bartkuhn et al 2009; Bortle et al. 2012; Schwartz et al. 2012). The

low sensitivity of chromatin topology in flies can be explained by lack of CTCF binding

at TAD borders - no more than 10% of borders were found to colocolise with CTCF

peak (Kaushal et al. 2021). So, some TADs are expected to be associated with forma-

tion factors which are different from the transcriptional supercoiling and CTCF binding.

Thus, TAD boundaries in Drosophila melanogaster genome were found to be enriched

with other insulator proteins including BEAF-32, Cp190 and Chro (Van Bortle et al.

2014; Ramirez et al. 2018; Wang et al. 2018; Chathoth and Zabet 2019) reflecting the

possible existence of other maintenance mechanisms.

1.4. TAD calling is sensitive to assumptions and model selections

1.4.1. TAD border finders are sensitive to predefined assumptions

Several TAD calling algorithms have been developed allowing extraction of TAD border

positions from Hi-C generated data. However, it is still possible that re-constructed

domains do not reflect a real chromatin interaction profile. Border allocation, which

represents the chromatin packing that does not reflect visually clear TAD geometry on

Hi-C interaction matrix or does not have strong connection with any expected epige-

netic marks, could result in systematic biases affecting Hi-C data as well as several

technical reasons. They include the unrealistic and over-simplified assumptions, sta-
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tistical model choice that poorly reflects the observed data or parameter adjustment.

1.4.2. Insulation-based algorithms produce TADs in consecutive manner

The area between two neighbouring TADs is characterised by significant depletion of

interactions in comparison with the highly contact enriched areas inside the neighbor-

ing TADs. So, under this assumption we technically deal with the goal of detecting

the genomic region that demonstrates the insulation of neighbouring downstream and

upstream regions from each other.

In (Dixon et al. 2012), a term “topological domain” was initially introduced: topolog-

ical domains were detected based on a directionality index (DI) approach. According

to it, for the particular Hi-C bin we measure the number of downstream and upstream

pairwise contacts with several adjacent fragments. When the bin demonstrates biases

towards upstream interactions (negative DI), this bin is most probably allocated at the

end of the TAD. And vice versa, when the bin is biased towards upstream interactions

(positive DI), it probably belongs to the start of the TAD. (Dixon et al. 2012) used a Hid-

den Markov Model (HMM) to infer the statistically significance of short genomic region

to demonstrate the DI local minimum right before and the DI local maximum immedi-

ately after it. When the region is short it was classified as domain boundary region and

represented the region between end of one domain and start of the next one. When the

region is relatively long, it was classified as unorganised chromatin. The DI approach

was used then in (Pope et al. 2014; Dileep et al. 2015) to study the TAD organisation

in mouse and human cells.

Another set of approaches that rely on computation of insulation score overcomes

the required parameter tuning and computational complexity of DI as well as other sta-

tistical based methods. Insulation score (IS) at the particular Hi-C bin quantifies the

average interaction intensity between pairs allocated in the proximity to this bin (Crane

et al. 2015). When a bin is between two neighbouring TADs, this bin is expected to

show the IS drop as the interaction frequency should be significantly lower compar-

ing to inside the TAD region. The TAD finding procedure then counts on the IS local
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minimum detection. The IS calling method was adapted and implemented as a part of

TopDom (Shin et al. 2015), HiCExplorer (Ramirez et al. 2015; Ramirez et al. 2018),

Fan-C (Kruze et al. 2020) tools.

1.4.3. Recent investigations on hierarchical TAD folding require alternative tech-

niques to be considered

Hierarchical packing of chromatin into compartments and then into megabase scale

TADs suggested the subsequent partitioning of substructures at sub-megabase scale

which plays a critical role in the establishment of cellular functioning (Yu et al. 2017;

Norton et al. 2018). Based on the higher resolution 5C data, (Phillips-Cremins et al.

2013) demonstrated the presence of sub-topologies within TADs which were previously

annotated in Hi-C. Sub-TADs were hypothesised to facilitate cell and tissue specific

enhancer-promoter contacts while large-scale TADs establish distal contacts which

are more developmentally conserved. Also, low resolution Hi-C in mouse and human

found TADs tended to organise TAD-TAD interactions forming large-scale metaTADs

that were characterised by enhanced enrichment of epigenetic features as CTCF, RNA

polymerase 2, promoter marks, TFs previously found to be important in TAD border

insulation and maintainance (Faser et al. 2015).

Visual inspection of TADs called in Hi-C using consecutive square blocks represen-

tation also suggested the possibility of alternative domain allocations (Filippova et al.

2014). It shows the need for calling algorithms to capture not only the visual differ-

ences, but the hierarchical folding of TADs as well. Arrowhead algorithm (Rao et al.

2014) that was further implemented as a part of Juicer tool (Durand et al. 2016) is

one of the first algorithms that produced the nested TAD organisation based on the

detection of corner point of domain and sub-domain squares. TADtree (Weinreb and

Raphael 2016) is another well-known tool which allocates TAD forest : the collection of

TADs with further segmentation on multilevel nested sub-TADs depending on a unique

functional relationship of contact enrichment versus the distance between interacting

pairs. Despite being able to catch nested TAD organisation, Arrowhead and TADtree
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demonstrated dramatic difference in number of TADs called with the same datasets:

TADtree produced significantly more TADs for any number of reads retained by the

filtering (Forcato et al. 2017). TADtree also was found to be more robust to sequenc-

ing depth and resolution, however its computational complexity makes the processing

extremely slow and memory heavy (Dali and Blanchette 2017).

1.5. Open research questions in TAD calling provided the basis for the thesis

The high usability made the insulation score based approaches the most popular in the

field of TAD research. However, the common part of the various IS-based methods is

the consecutive manner of produced TADs. Local minima of the insulation score indi-

cate the genomic positions where the insulation between upstream and downstream

interactions is significant and it is the most probable position of a TAD border. Accord-

ing to this definition, the end position of one TAD coincides with the start position of the

next one. Some SI-based approaches allow the detection of TAD boundaries instead of

a single genomic position, so the neighboring TADs can be separated by short genomic

region of several bins. Although, first insights on chromatin segregation into topological

domains in mouse ESCs published by (Dixon et al. 2012) based on the DI calling algo-

rithm revealed that approximately 90% of DNA were occupied by TADs, so remaining

10% were split between TAD boundaries and unorganised chromatin. Even the share

of outside TAD chromatin is relatively low, the “head-to-tail” TAD allocation assumed in

IS-based methods makes the detection of unorganised chromatin questionable.

Recent studies focused on the relationship between spatial chromatin organisation

and gene regulation did not provide clear vision on TAD formation mechanics. Ob-

served TAD reorganisations between different experimental conditions, cell types and

organisms can be caused by systematic errors like spurious DNA-DNA contact subject

to ligation artefacts or loss of significant interactions in case of low mappability of inter-

acting fragments. However, the latest improvements in protocols and developments of

alternative genome-wide studies allowed to trace TAD reestablishments with high level

of confidence, as well as to look on inner TAD hierarchy. The presence of nested sub-
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TADs can be a key factor in understanding and predicting the effect of the short-range

perturbations on gene expression and vise versa.

A high level of inconsistency and scarcity of TAD finders recognising nested folding

and unorganised territories between TADs makes the validation of complex multilevel

chromatin topology a nontrivial task. Moreover, many existing tools are computationally

complicated and time/memory consuming to be widely spread to conduct research on

various organisms, cells types and experimental conditions. Desired algorithms should

ideally be user friendly with simple and intuitive parameter selection, also fast and do

not take a lot of memory.

Nested TAD organisation and presence of TAD-free chromatin can be treated as

part of the assumptions allowing any kind of domain square positioning within the Hi-C

map: squares enclosed one inside another (nested TADs), breaks between squares

(TAD-free regions), as well as partial overlap between neighbouring squares. Partially

overlapping TADs are geometrically feasible, however we did not face any confirmation

about their presence or functional role - they can appear as an artefacts of bulk manner

of the Hi-C experiment and as chromatin being dynamic structure, but also can detect

the complex architecture representing partial interference between neighbouring chro-

matin domains.

In this thesis, we aimed to gain deeper understanding on TAD architecture and the

validity of its hierarchical folding to regulate and sustain proper cellular functioning.

In Chapter 2, we explore the changes in chromatin architecture on the basis of

Drosophila melanogaster BG3 neuronal cell associated with the depletion of proteins

BEAF-32, Cp190, Chro and Dref, which were previously reported as functionally rel-

evant in flies. We explore changes on TAD level using widely used tools in the field

of Hi-C analysis, in particular, we use insulation score-based TAD finder HiCExplorer

(Ramirez et al. 2015). We analysed the differences in TAD allocation called in canon-

ical consecutive manner and revealed the connection between chromatin state and

ability of domain boundaries to maintain insulation in absence of studied proteins.

A closer look at various genomic regions showing DNA architectural reorganisations
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revealed the limited power of HiCExplorer to detect single-sided or imbalanced insula-

tion scenarios. Visual inspection demonstrated the presence of TADs that are allocated

in a non-consecutive manner including a sequence of start borders placed one after

another without end borders between them (possibly nested or partially overlapping

TADs) or interacting fragments that cannot be faithfully placed in a single TAD (possi-

bly partial overlap of break between neighbouring TADs). Some of the TAD boundaries

also demonstrated different insulation strength where interactions within the upstream

TAD are significantly different from interactions within the downstream TAD. To address

the functional diversity of observed insulation patterns, in Chapter 3, a COrTADo ap-

proach is introduced. COrTADo (Complex Organisation of Topologically Associated

Domains) is a non-parametric TAD calling algorithm, which allow detection of start and

end chromatin domain positions separately as a basis for complex TAD reorganisation

reconstruction. As starts and ends are separated, based on COrTADo we can asses

the downstream and upstream insulation strength of candidate genomic positions to

analyse the functional difference between balanced and imbalanced TAD boundary in-

sulation. In Chapter 4, we analysed the epigenetic differences of TADs in BG3 wild-type

cells observed with HiCExplorer and COrTADo.
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Chapter 2. 3D chromatin organisation of flies

2.1. Background and motivation

Accumulation of insulator proteins and other epigenetic signatures at topologically as-

sociated domain (TAD) borders are proposed to be related to TAD formation and main-

tenance mechanism. In mammalian systems, the interplay between CTCF and Co-

hesin is suggested to promote loop extrusion following TAD formation (Bjorkegren and

Baranello 2018; Racko et al. 2018; Mirny et al. 2019). So, CTCF and Cohesin have

been reported to accumulate at borders and their depletion affects chromatin architec-

ture and TAD disruption (Nora et al. 2017; Nora et al. 2021). However, in Drosophila

melanogaster the majority of TADs did not show strong contacts between border re-

gions, suggesting the prevalence of compartment domains rather than domains formed

by loop extrusion (Matthews and White 2019; Rowley et al. 2019). In addition, Cohesin

did not tend to colocolise with CTCF (Bartkuhn et al. 2009).

In flies, other architectural proteins including BEAF-32, Cp190 and Chro demon-

strated strong enrichment at TAD borders (Van Bortle and Corces 2012; Van Bortle

et al. 2014; Ramirez et al. 2018; Wang et al. 2018; Chathoth and Zabet 2019).

Interestingly, CTCF, Cp190 and, to a greater extent, BEAF-32 were found near the

gene transcription start sites suggesting their role in regulation of specific proximal

genes (Bushey et al. 2009). In the same study, only a few binding sites of another

Drosophila-specific insulator protein Su(Hw) (Maeda and Karch 2007) did not show

any specific preference towards gene locations which signaled of distinct role of this

protein in chromatin organisation.

Despite the reported strong colocalisation of BEAF-32 at TAD borders, surprisingly,

the knockdown of BEAF-32 in embryonic Kc167 cells did not dramatically affect 3D

chromatin architecture (Ramirez et al. 2018). The maintenance of TAD borders during

BEAF-32 depletion can possible be explained by the fact that BEAF-32 and another

architectural protein called Dref (Mathelier et al. 2014) display the same binding motif

and Dref can potentially replace BEAF-32 at TAD borders when BEAF-32 is lost.

The other two proteins, Cp190 and Chro, cannot bind DNA directly but they can
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be recruited by BEAF-32 and can be involved in insulation of some chromatin regions

(Cubenas-Potts et al. 2017; Wang et al. 2018). In previous research, up to 90% of

TAD borders analyzed in another embryonic cell line S2 demonstrated the presence of

BEAF-32 with either Cp190 or Chro (Wang et al. 2018). Cp190 and Chro were shown

to be recruited by other proteins as well. Thus, the complex formed by the interaction

of Chro and JIL-1 was found during interphase to colocolise at polytene chromosome

interband regions, and were suggested to be involved in the maintaining of polytine

chromosome structures (Rath et al. 2006). Cp190, Su(Hw) and mod(mdg4) are three

components of gypsy insulator - a fragment of gypsy retrotransposon which is known to

regulate gene expression through blocking the activity of nearby enhancers or repres-

sors (Wei et al. 2001; Capelson and Corces 2004; She et al. 2010). During interphase

all three proteins separate into bands (inactive condensed chromatin) and interbands

(active open chromatin), which can possibly define chromatin domains (Labrador and

Corces 2002). However, Cp190 was present together with Su(Hw) and mod(mdg4) in

just a few cases (Pai et al. 2004), otherwise Cp190 was found to be recruited by CTCF

(Gerasimova et al. 2007; Kaushal et al. 2021).

In this Chapter, we aim to look closer at chromatin topology based on Drosophila

melanogaster Hi-C data generated on BG3 (neuronal) cells. Also, to take us closer to

understanding the connection between spatial chromatin organisation, insulator pro-

teins binding and gene regulation, we analysed the architectural changes resulted in

the depletion of BEAF-32, Cp190, Chro and Dref. Note that we based our hypoth-

esis and conclusions by comparing the distribution of genome-wide interactions, A/B

compartmentalisation and, especially, TADs which we called in a canonical head-to-tail

manner using the insulation score-based tool HiCExplorer (Ramirez et al. 2018).

2.2. Hi-C data validation and processing

2.2.1. Protein knockdowns and their efficiency

We analyzed the effect of BEAF-32 single knockdown and Cp190 and Chro double

knockdown in BG3 cells followed by in situ Hi-C. As Dref can potentially replace the
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BEAF-32 due to a similar binding motif, we also investigated the effect of combinatorial

knockdown of BEAF-32 and Dref. We used the Hi-C datasets generated by (Chathoth

and Zabet 2019; Chathoth et al. 2022).

During the effective RNAi knockdown, the expression of selected proteins signifi-

cantly reduce. As a consequence, when the knockdown is efficient we expect to ob-

serve the reduced level of messenger RNA (mRNA) - mRNA is a molecule that carries

the “instruction” for protein synthesis, so when less mRNA is present the less protein

can be produced. All three generated mutants demonstrated the reduction of at least

60% of mRNA of depleted proteins (BEAF-32, Cp190, Chro and Dref) in comparison

with wild-type (Chathoth et al. 2022). The efficiency of knockdown achieved here is

similar to the ones reported by other studies in Drosophila cells (Schwartz et al. 2012;

Ramirez et al. 2018; Zenk et al. 2021).

Also note, that the DNA topology is expected to undergo dramatic structural meta-

morphoses every cell cycle. Whether the knockdown demonstrated the cell cycle ar-

rest, we faced the danger of observing differences that are not explained by the protein

depletion directly. The distribution of cells in each phase of the cycle in (Chathoth et al.

2022) revealed no effect of knockdowns on cell growth or cell cycle arrest.

2.2.2. Creation and correction of Hi-C matrices using HiCExplorer

We used HiCExplorer to build and correct the contact matrices. HiCExplorer is a widely

used tool in the field of 3D chromatin organisation as it addresses the wide range

of tasks associated with Hi-C data analysis including the processing, normalisation,

data format transformation, TAD calling and visualisation (Ramirez et al. 2018). We

performed the following steps before starting the analysis: first, we map the reads to

the reference genome; second, we create a contact matrix and then we perform the

correction to remove biases and filter bins with poor read coverage.

Reads were aligned to the Drosophila melanogaster (dm6) genome (Adams et al.

2000; dos Santos et al. 2015) using BWA-mem (Li and Durbin 2010) with options -t20

-A1 -B4 -E50 -L0. The parameters were selected as recommended in the example
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Library size Total reads Mappable reads Pair used

BG3 wild-type (GSE122603)

Replicate 1 100% 151,493,083 101,206,098 42,160,814

Replicate 1 80% 121,195,638 81,045,523 34,528,646

Replicate 2 100% 147,730,225 95,703,042 42,999,219

Replicate 2 80% 118,173,473 76,656,728 35,462,491

BG3 BEAF-32 KD (GSE147057)

Replicate 1 100% 172,597,536 69,859,110 32,240,219

Replicate 1 80% 138,073,566 55,898,357 26,805,854

Replicate 2 100% 156,655,569 81,740,811 41,458,552

Replicate 2 80% 125,326,239 65,443,211 33,860,610

BG3 Cp190 Chro KD (GSE147057)

Replicate 1 100% 214,736,070 146,124,131 65,278,295

Replicate 1 80% 171,799,624 117,064,857 53,376,413

Replicate 2 100% 167,983,753 104,046,976 45,830,412

Replicate 2 80% 134,385,744 83,338,488 37,245,423

BG3 BEAF-32 Dref KD (GSE147057)

Replicate 1 100% 197,221,569 107,472,262 37,738,037

Replicate 1 80% 157,771,608 86,029,067 31,775,241

Replicate 2 100% 190,654,840 53,234,566 18,645,676

Replicate 2 80% 152,530,267 42,612,149 15,651,046

Table 2.1. Metrics from analysis of Hi-C library sequencing.

usage in HiCExplorer documentation (Ramirez et al. 2018).

Next, we build matrices using DpnII restriction sites with minimum allowed distance

between sites of 150 bp and maximum distance of 1000 bp. So, we obtained matrices

with 217638 bins with median width of 529 bp. We worked with two biological repli-

cates in wild-type and in all three mutants. The biological replicates were corrected

separately and then merged. Biological replicates can be processed, normalised, and

then passed to TAD calling algorithm independently. Then, TADs which are present

only in both replicates can be selected for downstream analysis as the most confident

ones. However, the TAD calling algorithms and, in particular, HiCExplorer are sensi-
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tive to library sizes – when the library size is low, the difference between intra-TAD

and inter-TAD contact frequencies is less pronounced, so the algorithm requires less

strict thresholds for TAD detection. In addition, TAD border is not punctuated posi-

tion, it is allocated within the short window – TAD boundary. When the differences

between inter-TAD and intra-TAD interactions are not significant, the TAD boundary

can be wider as there is no strict separation between neighbouring TADs. In this case,

we face a danger that less TAD borders would have exact coincidence. In the cur-

rent analysis, both replicates and merged matrices after correction step displayed high

similarities for contacts-vs-genomic distance relationships, so we can continue for the

downstream analysis with merged matrices which are larger in library size then both

replicates (Figure 2.1.A). For merged matrices, we filtered the bins which demonstrated

unexpectedly low/high counts (Figure 2.1.B and Table 2.2). Note that HiCExplorer per-

forms the correction based on the ICE method (Imakaev et al. 2012) which requires

pre-filtering. Bins with extremely low coverage tend to contain repetitive regions, as

well as bins with extremely high coverage tend to contain copy number variations, so

they should be removed before the matrix is proceeded to correction. The latest ver-

sions of HiCExplorer allow KR balancing (Knight and Ruiz 2013) as well - this method

does not require filtering.

Note that the number of reads obtained in the result of the processing were consis-

tent with data sets used in previous research in Drosophila (Cubenas-Potts et al. 2017;

Ramirez et al. 2018; Chathoth and Zabet 2019).

2.3. TAD reorganisation analysis

2.3.1. TAD calling with HiCExplorer

We aim to investigate whether the protein knockdowns lead to the changes in TADs.

We used the corrected contact matrices to detect TADs using HiCExplorer (Ramirez

et al. 2018). We selected the parameters to ensure that we recover a similar num-

ber of TADs as previously reported (Cubenas-Potts et al. 2017; Ramirez et al. 2018;

Chathoth and Zabet 2019): minimum TAD width at 5 Kb, P-value threshold at 0.01 with
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Dpn II 10 Kb

100% 80% 100% 80%

BG3 wild-type

Replicate 1 [-1.4; 5] [-1.4; 5]

Replicate 2 [-1.4; 5] [-1.4; 5]

Merged [-1.4; 5] [-1.4; 5] [-1.4; 5]

BG3 BEAF-32

Replicate 1 [-1.0; 5] [-0.8; 5]

Replicate 2 [-1.2; 5] [-1.4; 5]

Merged [-1.2; 5] [-1.2; 5] [-1.4; 5]

BG3 Cp190 Chro KD

Replicate 1 [-1.2; 5] [-1.4; 5]

Replicate 2 [-1.2; 5] [-1.4; 5]

Merged [-1.2; 5] [-1.2; 5] [-1.4; 5]

BG3 BEAF-32 Dref KD

Replicate 1 [-1.2; 5] [-1.4; 5]

Replicate 2 [-1.2; 5] [-1.4; 5]

Merged [-1.2; 5] [-1.4; 5] [-1.4; 5]

Table 2.2. Filtering parameters of Hi-C matrices correction with HiCExplorer.

FDR correction for multiple testing and a minimum threshold of the difference between

the TAD separation score of 0.04. TAD separation score, in simple, represents the av-

erage interaction frequency between each locus and its nearby DNA fragments. Within

the TAD, the contact frequency is average higher than the frequency at the TAD bor-

der (between two neighbouring TAD). The difference between TAD separation score

at the locus and neighbouring regions should be more than pre-selected threshold to

be selected as a candidate position for TAD border. The Mann-Whitney U test then

performed to estimate the significance of this difference and as multiple tests are per-

formed, the multiple-testing correction Is required. FDR correction is not as strict as,

for example, Bonferroni correction, but it is helpful when we require more exploratory

analysis rather than extremely strict results. Under selected thresholds, we identified
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between 1417 and 2260 TADs (Figure 2.2.A).

HiCExplorer as any computational method is sensitive to parameter selection. This

raises the difficulties for downstream analysis. When the weak set of parameters are

selected we face a danger of detecting TADs that are real and can be further analysed,

as well as spurious TADs that are detected due to experimental and processing biases.

So, selection of stricter parameters helps us to retrieve more reliable TADs and remove

TADs that are probably spurious ones. Given this motivation, we also called strong

borders using a stringent value of the threshold of the difference between the TAD

separation score of 0.08. This value ensures that we retrieved the strongest borders -

we identified between 1136 and 441 strong TADs (Figure 2.2.B).

Differences in library sizes can also introduce uncertainty in comparative analysis of

TAD organisation between wild-type and mutants. Thus, lower number of reads would

make the differences between interaction frequencies within inter- and intra-TAD areas

to be less pronounced and, as a result, the insulation strength between chromatin

domains would be less significant. In the current study, to investigate the robustness

of detected TAD borders to difference in the size of Hi-C libraries, we downsampled all

Hi-C libraries by 20% and repeated the analysis (Table 2.1)

TAD borders identified with downsampled Hi-C libraries exhibited reassuring over-

lap with TAD borders detected in the full data set for both weak and strong calling pa-

rameters (Figure 2.2). After downsampling, we recovered not less than 69% of weak

and 66% of strong borders - these borders we defined as robust meaning they are

recovered in both full and downsampled datasets.

2.3.2. Differential gene expression and TAD reorganisation

TADs were found to correlate with gene expression and proposed to establish con-

tacts between distal enhancers/silencers and target genes, as well as insulate the

undesired connection which can lead to gene misregulation. Previous studies either

induced the structural variations altering chromatin topology or depleted architectural

proteins enriched at TAD boundaries to decrease the insulation between chromatin do-

Page 30



Chapter 2 3D chromatin organisation of flies

A

0.01

0.10

1.00

10.00

100.00

Counts vs distance (BG3WT replicates)

genomic distance

C
or
re
ct
ed

H
i−
C
co
un
ts

replicate 1
replicate 2
merged

10
Kb

10
0
Kb

1
M
b

10
M
b

0.01

0.10

1.00

10.00

100.00

Counts vs distance ( BG3Cp190− Chro− replicates)

genomic distance

C
or
re
ct
ed

H
i−
C
co
un
ts

replicate 1
replicate 2
merged

10
Kb

10
0
Kb

1
M
b

10
M
b

0.01

0.10

1.00

10.00

100.00

Counts vs distance ( BG3BEAF−32 − replicates)

genomic distance

C
or
re
ct
ed

H
i−
C
co
un
ts

replicate 1
replicate 2
merged

10
Kb

10
0
Kb

1
M
b

10
M
b

0.01

0.10

1.00

10.00

100.00

Counts vs distance ( BG3BEAF−32 − Dref− replicates)

genomic distance

C
or
re
ct
ed

H
i−
C
co
un
ts

replicate 1
replicate 2
merged

10
Kb

10
0
Kb

1
M
b

10
M
b

BG3Cp190− Chro−

BG3BEAF-32 −

BG3BEAF-32−Dref−

B

Figure 2.1. Hi-C processing and visualisation. A. Hi-C contacts versus distance plots for two

replicates and merged datasets on BG3 wild-type, BEAF-32 single knockdown, Cp190 Chro

double knockdown and BEAF-32 Dref double knockdown. B. Diagnostic histograms for Hi-C

corrections in BEAF-32 single knockdown, Cp190 Chro double knockdown and BEAF-32 Dref

double knockdown. The vertical black line represents the lower threshold for removing low

read bins.
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Figure 2.2. Robustness of TAD borders. We defined as robust the borders which were de-

tected on both the full dataset and a downsampled dataset where we randomly removed 20%

of the reads. We consider the case of all (B) and strong (A) borders separately for Hi-C

datasets in wild-type and BEAF-32 single knockdown, Chro and Cp190 double knockdown

and BEAF-32 and Dref double knockdown.

mains (Lupianez et al. 2015; Kragesteen et al. 2018; Owens et al. 2021). Here, we

perturbed a large number of TADs by knocking down architectural proteins and inves-

tigated whether that leads to changes in gene expression. We grouped possible rear-

rangements depending on relative position of genes at wild-type and mutant TADs: TAD

border loss, gain or shift can, theoretically, happen within a gene body (Figure 2.3.A),

or gene can fully reside within both wild-type and knockdown TADs (Figure 2.3.B). Ac-

cording to the second scenario, TAD borders can stay absolutely conserved or fuzzy

conserved (less than 2 Kb shifts of both borders) which possibly reflects the pertur-

bation of inside-TAD contacts (possibly indicating the existence of sub-structures), as

well as distal within-TAD contacts while the TAD still stays insulated from neighbouring

chromatin (possibly indicating the existence of higher-order TAD network). The second

scenario also include massive rearrangements that possibly disrupt old or organise

new contacts with the gene.

Genes guide the protein production: they store the information that is transcribed

into RNA and then translated into proteins (Crick 1958; Crick 1970). The alterations
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Figure 2.3. The effects of TAD reorganisation on transcription. A. Scenarios for relative po-

sition of genes, wild-type and mutant TADs when gene spans over TAD borders. B. Same as

A, but gene is within the both wilt-type and mutant TADs. C. Distribution of differentially ex-

pressed genes (DEGs, top panel) and non-differentially expressed genes (non-DEGs, bottom

panel) between (A) and (B) scenarios. D. Histogram represents the number of TADs contain-

ing specified number of DEGs (x-axis). E. Volcano plots for the RNA-seq analysis (orange

represents downregulated genes, blue upregulated and grey non-DEG) in BEAF-32 knock-

down, Cp190 Chro double knockdown and BEAF-32 Dref double knockdown. F. Distribution

of downregulated and upregulated genes between scenarios in (A): orange – both TAD bor-

ders are conserved, blue – only one of the TAD border is conserved, green – none of the TAD

border is conserved and yellow – TAD borders are shifted within 2 Kb.
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in gene expression result in overproduction or underproduction of RNA molecules in

comparison with the normal state (control). RNA sequencing (RNA-seq) is a high-

throughput sequencing method which, in simple words, quantifies the amount of RNA

present in a population of cells. It allows to spot any relative changes in the RNA

expression level when comparing data generated in two conditions, for example, in

wild-type cells and in protein knockdown. We used the RNA-seq data produced by

(Chathoth et al. 2022) (GSE147059) to identify transcriptional changes upon BEAF-

32, Cp190, Chro and Dref knockdown. There were three replicates for each condition:

wild-type, BEAF-32 KD, Cp190 Chro KD and BEAF-32 Dref KD. We processed RNA-

seq as in (Chathoth et al. 2022). We trimmed reads using Trimmomatic v0.39 (Bolger

et al. 2014), then aligned to the Drosophila melanogaster (dm6) genome (Adams et

al. 2000; dos Santos et al. 2015) using TopHat v2.1.2 (Kim et al. 2013) with Bowtie2

v2.3.4.1 (Langmead and Salzberg 2012) and finally removed duplicated reads with

the Picard tool (http://broadinstitute.github.io/picard/). We counted reads using HTseq

(Andres et al. 2015) and calculated the significance of the difference in expression

between wild-type and knockdowns using the DESeq2 algorithm (Love et al. 2014) for

genes with at least 10 reads aligned. A gene was defined as differentially expressed

when the adjusted p-value generated in DESeq2 was less than the threshold of 0.05

and the absolute value of normalised log2 fold change between reads of knockdown

over wild-type exceed the threshold at 2.0 (at least 4 times increase/decrease in reads

during knockdown comparatively to the wild-type).

We found significant changes in gene expression with 598, 688 and 814 differen-

tially expressed genes (DEG) in BEAF-32 KD, Cp190 Chro KD and BEAF-32 Dref KD,

respectively. None of the DEGs spanned the robust TAD borders in either wild-type or

knockdowns (Figure 2.3.C) and several TADs contained more than one DEG (Figure

2.3.D). A larger number of genes were upregulated in knockdowns compared to WT

with most of them associated with significant architectural changes as single border

shift or knockdown specific reorganisations (Figure 2.3.F). Very few DEGs belonged

to TADs that had both borders conserved or fuzzy conserved in the knockdowns. In-
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Figure 2.4. Association between architectural rearrangement and ratio between differentially

and non-differentially expressed genes. A. Count and proportion of DEG and non-DEG in

the three knockdowns BEAF-32 knockdown, Cp190 Chro double knockdown and BEAF-32

Dref double knockdown within reorganised TADs which are fully conserved, lose one or both

borders or have slightly shifted borders in the knockdowns. B. We applied permutation test

to investigate whether DEGs overlap with any of the class of architectural changes more than

expected by chance. Different combinations of TAD rearrangements were checked: blue and

yellow colors identify the subgroups compared. Scatter plot represents corresponding -log10

p-values at each combination.

terestingly, some of non-differentially expressed genes can span robust TAD border

(Figure 2.3.C). If TAD border is allocated within gene body, it can potentially prevent,

for example, the contact between the promoter which belong to upstream TAD from

enhancer which belong to the downstream TAD. Note that the amount of such genes

is not significant in comparison to the genes which were found within TADs.

Despite the fact that we observed the gene alterations mostly associated with dra-

matic domain reorganisations, we also detected many genes that were not affected by

the same architectural changes (Figure 2.4.A). The proportion of genes which altered

their expression patterns in result of knockdowns were about 10% in each reorgani-

sation scenario. Given these findings, we suggest that TADs do not follow a simple

scenario where the boundary disruption or reduction of insulation between domains

lead to dramatic gene activation.
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We also decided to perform a permutation test to check whether the ratio of differ-

entially and non-differentially expressed genes was significantly different in some spe-

cific group of architectural rearrangements than anywhere within the genome (Figure

2.4.B). For the permutation test, we applied regionR package with 1000 permutations

(Gel et al. 2016). The whole genome in wild type was split on short genomic regions

where each region was classified as one of four proposed architectural rearrange-

ments. Then, we tested whether there any significant association between differentially

expressed genes and regions belonging to pre-selected architectural changes (Figure

2.4.B, classes defined with blue colour versus classes defined with yellow colour). We

found that the proportion of DEG was higher than expected in comparison with the

genome-wide distribution in two cases: either when a single TAD border was con-

served or when the TAD borders were dramatically reallocated (“knockdown specific

border” group). This tendency, however, was BEAF-32 KD and BEAF-32 Dref KD

specific - double knockdown of Cp190 and Chro did not show noticeable changes in

differential expression associated with specific topological changes.

In (Nora et al. 2017) domain reorganisations caused by the depletion of the archi-

tectural protein CTCF also resulted in misregulation of genes which promoters were

found to be allocated too close to disrupted borders. We also wanted to look at the

allocation of DEGs to spot any preference of altered genes (Figure 2.5). As we know

that genes fully lie within TADs, we introduce the start and end ratios: the start ratio is

computed as distance between TAD start to gene start (if gene is on positive strand;

when gene is on negative strand, it is the gene end) over the half TAD distance; sim-

ilarly we compute the end ratio but at the end half of the TAD. When the start ratio is

larger than 1, it means that the gene is allocated closer to the end of the TAD, when

the end ratio is larger than 1, the gene is allocated closer to the start of the TAD. When

both start and end ratios are less than 1, the gene spans the centre of the TAD (Fig-

ure 2.5, top panel). Note, that ratios are computed with respect to the gene allocation

within wild-type TADs. Just a few DEGs were found to cross the TAD centre, with the

majority of genes randomly distributed inside TADs with no specific localisation near or
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away from TAD border for all reorganisation scenarios in all three mutants.

Depletion of architectural proteins caused the large perturbations in genome-wide

chromatin conformation along with changes in gene expression. Genes which changed

their expression demonstrated upregulation possibly indicating the roles of TADs in

maintaining of repressing state of that genes. We suggest that massive rearrange-

ments happened mostly within heterochromatin while the borders within euchromatin

were less sensitive to the protein depletion. In case of BEAF-32 single knockdown and

BEAF-32 and Dref double knockdown, significantly more genes altered their expres-

sion pattern when were allocated within either TADs that lost one border or both borders

demonstrated dramatic shift - more than 2 Kb away from their WT position. However,

depletion of Cp190 and Chro did not significant statistical association between DEGs

and any TAD reorganisation pattern. The difference can possibly be explained by the

direct (BEAF-32 and Dref) and indirect (Cp190 and Chro) binding of the depleted pro-

teins to the DNA. Cp190 and Chro can be recruited by other proteins which were not

significantly involved in TAD organisation, so we did not observe significant association

between gene expressional patterns and chromatin architecture.

2.3.3. Comparative analysis of wild-type versus mutants

We detected more robust TAD borders, both weak and strong, with BEAF-32 KD (Fig-

ure 2.6.A). Cp190 and Chro double knockdown did not bring a significant difference in

the number of TADs. So, the depletion of BEAF-32, Cp190 and Chro was suggested

to affect not only the number of TAD borders but their allocation as well. We com-

pared robust TAD border positions between WT and mutants and defined 10 classed

of changes:

1. strong → strong: border in WT had exactly the same position in mutant and

annotated as strong in both WT and mutant.

2. weak → weak: border in WT had exactly the same position in mutant and annotated

as weak in both WT and mutant.

3. strong → weak: strong border in WT had exactly the same position in mutant but
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Chapter 2 3D chromatin organisation of flies

Figure 2.5. The allocation of differentially expressed genes within robust TADs in BEAF-32

knockdown, Cp190 and Chro double knockdown, BEAF-32 Dref double knockdown. The start

ratio is defined as a distance from the left border of the TAD to the start position of the gene

divided by the half of TAD size, where a start ratio bigger than 1 means that the gene is

allocated on the right side of the TAD (green square). The end ratio is defined as a distance

from the right border of the TAD to the end position of the gene divided by the half of TAD size,

where an end ratio bigger than 1 indicates the gene allocated on the left side of the TAD (red

square). Genes having both start and end ratio less than 1 are allocated within TAD centre

(yellow square). The majority of differentially expressed genes occupy less than half of the

TAD. Only couple of genes are allocated within TAD centre – they are very close to point (1,1)

indicating relatively short genes. Majority of genes are allocated either on the left or the right

half of the TAD with no strong bias towards TAD borders.

became weak.

4. weak → strong: weak border in WT had exactly the same position in mutant but

became strong.

5. strong → fuzzy: strong border in WT was found within 2 Kb window in mutant.

6. weak → fuzzy: weak border in WT was found within 2 Kb window in mutant.

7. strong → no: strong border in WT was not found within 2 Kb window in mutant.

8. weak → no: weak border in WT was not found within 2 Kb window in mutant.

9. no → strong: strong border in mutant was not found within 2 Kb window in WT.

10. no → weak: weak border in mutant was not found within 2 Kb window in WT.

Note that for weak borders we considered only unique weak borders that were the

ones that did not belong to the set of strong borders. Also, the 2 Kb window to define

fuzzy borders was selected based on minimum width parameter: we treated the shift

in TAD borders between WT and mutant being less than half of minimum TAD width

as a product of negligible matrix differences rather than a consequence of the proteins

depletion.

In Figure 2.6.B, we represented the distribution of TAD border changes based on

the classification above. The largest number of rearrangements in wild-type could

be described as loosing or gaining of weak borders. It was not surprising, as small
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Figure 2.6. TAD border reorganisations in the knockdowns. A. Number of robust TAD borders

in wild-type cells, BEAF-32 knockdown, Cp190 Chro double knockdown and BEAF-32 Dref

double knockdown. We split each class of TAD border into strong borders and weak borders,

depending on whether the TAD borders can still be detected when increasing the stringency

of the TAD calling algorithm. B. Classification of TAD border based on classes and positions

as described in the main text. We focus our attention on lost, maintained and new borders. C.

Distribution of new TAD borders in the knockdowns between gained, which appear inside the

wild-type TAD, and moved, which correspond to relocation dramatic reallocation of wild-type

TAD border. D-E. Examples of a borders classified as lost and maintained in BEAF-32 knock-

down (C) and Cp190 Chro double knockdown (D). From top to bottom we plot the insulation

score, TAD borders in full dataset (grey are strong and yellow are weak), TAD borders recov-

ered both in full and downsampled dataset (black are strong and yellow are weak) and contact

map in wild-type cell and then mirror plots in the knockdowns. Darker colours on heat maps

indicate more contacts retrieved by Hi-C. Green arrows indicate maintained borders and red

arrows lost borders. We also plot log2fold change between wild-type and knockdowns in 5 Kb

bins build with diffHiC (Lun and Smyth 2015) and edgeR (Robinson et al. 2010) packages.

shifts in TAD separation score could affect whether the border could not be detected or

detected as weak. The changes associated with strong borders were of the greatest

interest to us as they have a high chance to reflect real and pronounced changes in

chromatin architecture. We detected significant amount of borders that we classified

as lost (“strong → no” class), maintained (“strong → strong” class) and new (“no →

strong” class) borders.

While the maintenance and loss of TAD borders in absence of proteins-insulators

are expected, the noticeable amount of new strong borders was quite interesting. We

found new borders formation ranging from 200 to 300 strong borders (Figure 2.6.C). To

be classified as a new, a mutant TAD border should be allocated more than 2 Kb away

from the nearest TAD border in WT. So, this definition covers both actual new borders

which were organised by splitting the original TAD in several separate sub-structures

or borders which appeared due to a move from WT border by more than 2 Kb. We

detected new borders which were organised by both splitting and movement with the
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slightly larger preference towards new borders organised by movement (Figure 2.6.C).

Both gained new borders and new borders resulted in shift of the wild-type ones can

probably be explained by the reallocation of remaining proteins after the knockdown.

Also, other insulation proteins can replace the role of BEAF-32, Dref, Cp190 and Chro

and maintain the insulation at the position of new borders in knockdowns. However, as

there is no publicly available ChIP data on various architectural proteins in knockdowns,

we don’t have enough evidence to support this hypothesis. The alternative explanation

could be related to the differences in Hi-C libraries between wild-type and knockdowns:

if the border does not pass the downsampling in wild-type but passes in knockdown,

it will be defined as new. Also, TAD border is not a strict punctuated position, it is

allocated within the window (TAD boundary), so the fluctuations in the position of TAD

border are possible. When two neighboring TADs are not strictly segregated from each

other, the TAD boundary can be large enough to show differences in the same TAD

border position between wild-type and mutant. However, in absence of ChIP data we

cannot properly access whether these differences are the downstream results of Hi-C

and robustness analysis or related to protein binding.

The difference between maintained and lost borders can shed light on the interplay

between BEAF-32, Cp190, Chro and Dref with other epigenetic machineries in the es-

tablishment of specific chromatin architecture. Technically, a strong TAD border could

be lost due to two reasons. First, the border could be completely lost in mutant due

to aggregation of neighbouring TADs or due to dramatic shift at more than 2 Kb which

signaled a weakening of insulation between neighbouring genomic regions as well.

Second, the strong TAD border in mutant lost or shifted during downsampling, while

the same TAD border in wild-type survived the downsampling. So, again we faced a

significant difference in insulation strength between wild-type and mutant occurring due

to proteins knockdown.

The second scenario was represented in Figure 2.6.D and E. The red arrow indi-

cated the lost border that was in wild-type classified as strong both before and after

the downsampling (panels above the heat map), while in mutant the same genomic
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position was detected as a weak border before downsampling only (panels below the

heat map). Here, this genomic position represented the case where we observe dra-

matic weakening of insulation between neighbouring TADs and TAD border disruption.

To confirm the difference in Hi-C interactions brought by the proteins depletion at the

selected region, we computed log2 fold change between wild-type and knockdown Hi-

C map following the steps and parameters recommended in diffHiC package (Lun and

Smyth 2015). Briefly, we considered individual replicates and used edgeR package

(Robinson et al. 2010) to compute the log2 fold change between maps using 5 Kb

bins. The difference heat map (Figure 2.6.D and E, bottom panel) confirmed the loss

of interactions in wild-type within the region of lost TAD border indicating the loss of

insulation.

Note that we did not use the statistical testing for detecting differential TADs. As

an insulation score-based approach, HiCExplorer defines the genomic region to be,

most probably, a TAD border when it demonstrates significantly different interaction

frequency in comparison with neighbouring upstream and downstream regions. The

threshold of the difference between the TAD separation score of 0.04 and 0.08 (see

Section 2.3.1) sets how significant this difference should be for the TAD border to pro-

ceed further in the analysis. However, depending on experimental set up and library

sizes, the TAD separation score as well as the differences in it can vary between dif-

ferent data sets. The statistical tests which compare the TAD separation scores and

how dramatic it changes at TAD border, can give us a clear understanding how signif-

icant are the differences in insulation strength of TAD borders between wild-type and

knockdowns. Also, tests can provide more information about the borders that were lost

during the downsampling. For example, when the changes in TAD separation scores

were not dramatic initially, then the TAD borders would be more sensitive to the re-

duction of the library size during the downsampling and the borders which should be

considered in the analysis would be lost, which, in turn, generates spurious lost and

new borders. So, skipping the statistical testing for differential TAD borders affect the

number of maintained, lost and new borders which we considered for further analysis
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of protein occupancy and biological functioning.

2.3.4. Separation of direct and indirect effect

Depletion of proteins induced a significant rearrangement of TAD organisation. How-

ever, some of the topological changes could resulted from downstream effects, so TAD

border rearrangements, especially gain and loss of insulation between domains, could

be indirect targets of protein depletion which made the observed effects unclear. To

distinguish between the direct and indirect targets, we are interested in borders that in

wild-type cells were colocolised with BEAF-32, Cp190, Chro and Dref, so were directly

affected by protein depletion.

The protein binding that happens more often than by chance potentially plays a

functional role in the maintenance of chromatin architecture and cellular functioning.

The chromatin immunoprecipitation (ChIP) technology enables the quantification of

protein-DNA interactions of a specific protein or associated factor. We used ChIP-chip

datasets, in particular, ChIP peaks called by modENCODE Consortium. To dissect

the direct effect of protein knockdowns, we were interested in occupancy of BEAF-32

(GSE32775, GSE20811), Chro (GSE20761) and Cp190 (GSE32776, GSE20814) in

Drosophila BG3 cells. Unfortunately, there was no Dref data generated in the required

cell type, so the mechanics of changes in TADs in BEAF-32 Dref KD was not as clear as

in other two mutants. Based on this, we made a decision to continue the downstream

analysis based on BEAF-32 KD and Cp190 Chro KD only.

Compared to wild-type cells, out of all 706 strong borders, 188 borders were main-

tained and 149 were lost in both BEAF-32 KD and Cp190 Chro KD (Figure 2.7.A),

the rest of strong borders either maintained/lost uniquely in specified mutants, defined

as fuzzy or moderately weakening. Note that new borders, in contrast, were mostly

knockdown-unique. The majority of common maintained borders (94%) are direct tar-

gets of at least one of three proteins depleted during knockdown (Figure 2.7.B and

C). We also observed that at maintained borders Chro and Cp190 almost everywhere

colocolises with BEAF-32. However, at borders where BEAF-32 was not found, we

Page 44



Chapter 2 3D chromatin organisation of flies

detect some of Cp190 together with CTCF. Note that CTCF ChIP-chip peaks were also

generated and processed by modENCODE Consortium (GSE20767 and GSE32783).

In contrast, only 47% of lost borders were direct targets of protein loss suggesting that

the other half of lost borders were affected by downstream perturbations. Interestingly,

borders that were organised after protein depletion in both mutants were also enriched

with BEAF-32, Cp190 and Chro in wild-type. However, a particular border can be

defined as new in the case when it was completely undetected in wild-type after the

downsampling and it was detected as strong in mutant. So, it was still possible that the

border was detected in the full set.

Here, we called TADs on Hi-C data generated in (Chathoth and Zabet 2019; Chathoth

et al. 2022) while comparing it with ChIP protein enrichment data generated by mod-

ENCODE Consortium, so we can face some inconsistencies due to different experi-

mental conditions. Also, we know that the proteins were significantly depleted, but not

in full and in absence of ChIP data generated on knockdown cells we are restricted in

how we can properly check it. However, BEAF-32 and Cp190 single RNAi (GSE32773,

GSE32774, GSE32816) knockdowns were generated in BG3 cells in (Schwartz et al.

2012), so analysing these data we found that the majority of maintained TAD borders

(70%) retain BEAF-32 or Cp190 upon knockdown while most of the lost borders (70%)

lose binding of these architectural proteins after knockdown (Figure 2.7.D-E). Despite

the fact that the Hi-C and ChIP data were generated on different samples and in dif-

ferent experimental conditions, we still obtained the strong difference, which supports,

that the borders that are lost are true direct targets of the architectural proteins.

Interestingly, we observed 79 (53%) of lost borders which were lost without direct

binding of architectural proteins (Figure 2.7.C). From the technical point of view, the

indirect lost borders can result in the robust analysis, when in the knockout the border

did not pass the downsampling when in the wild-type it did. However, the lost borders

were defined as common lost borders in two mutants (BEAF-32 knockdown and Cp190

and Chro double knockdown) which can happen if the insulation score of TAD borders

in both mutants was generally lower than in wild-type. From the biological point of
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view, the indirect lost borders were possibly in contact with direct lost borders forming

the complex architectural structures. In that case, the direct lost border can cause

further perturbations in nearby chromatin topology.

The detection of TAD borders and further comparative analysis of TAD border allo-

cation was based on insulation score-based approach implemented as a part of HiC-

Explorer tool. A comparison of insulation scores between different conditions, from

a technical point of view, can give an unclear picture on the seriousness of architec-

tural changes. The insulation score measures the average Hi-C interactions around a

selected genomic position. While the relative contact intensity between neighbouring

regions under the same Hi-C map can shed a light on differences between inside-TAD

and outside-TAD interactions, the absolute insulation score reflects such characteris-

tics as library size, so the comparison of insulation strength between wild-type and

mutant can be questionable. So, the detection of the maintained and lost TAD borders

was performed following a robust analysis using five filtering steps. First, we used two

threshold values to distinguish between strong and weak TAD border insulation. Sec-

ond, to account the differences in Hi-C libraries, we performed the downsampling of

the libraries by 20% and repeated the TAD calling procedure. We select the borders

that were retained upon the downsampling as robust borders. Third, we defined as

maintained and lost only such borders that demonstrated the most pronounced switch

in insulation strength while their position stays the same. Fourth, for the downstream

analysis we left only borders that were common between BEAF-32 single and Cp190

and Chro double knockdowns. Fifth, the only direct targets of protein depletion were

retained. Overall, after so many trimming steps we still observed strong difference

between maintained and lost epigenetic signatures. Altogether, this analysis supports

that the observed result are robust.

2.3.5. Adjusting the ChIP profiles for further comparative analysis

ChIP data generated and processed by modENCODE Consortium include a variety of

epigenetic factors like architectural proteins, transcription, replication and accessibility
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Figure 2.7. Direct and indirect TAD borders. A. Overlap of lost, maintained and new robust

borders which are common in BEAF-32 KD and Cp190 Chro KD. B. Heatmaps represent the

distance of the closest ChIP peak from a maintained, lost and new border which are common

in both mutants. ChIP peaks obtained for BEAF-32 (wild-type and BEAF-32 knockdown),

Chro (wild-type), Cp190 (wild-type and Cp190 knockdown), CTCF (wild-type). Green bar on

the side of each heatmap marks the direct borders (borders that show binding of BEAF-32,

Chro or Cp190 in wild-type cells), while purple indirect borders (all other borders). C. Number

and percentage of maintained, lost and new borders that have direct binding of BEAF-32,

Cp190 or Chro. D-E. Number and percentage of TAD borders that have BEAF-32 or Cp190

ChIP peak in wild-type cells and lose or maintain those peaks in BEAF-32 and Cp190 single

knockdowns. We performed a Fisher’s exact test and the corresponding p-value is displayed

inside the plots.
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related complexes. We obtained most of the available modENCODE Consortium and

(Pherson et al. 2019) data (M-values smoothed over 500 bp) on BG3 cells to deter-

mine the key differences in occupancy profiles between common maintained and lost

borders in BEAF-32 KD and Cp190 Chrom KD. The full list of datasets used is provided

in Appendix 2.1.

During ChIP, the fragments enriched of specific binging sites are isolated from DNA

using appropriate protein-specific antibody (IP samples). The number of fragments

obtained in IP samples are generally compared to the input control samples where the

DNA fragments are either (1) cross-linked and sonicated under the consistent condi-

tions as the IP samples, or (2) selected using IgG antibody that picks fragments without

specific preference. For IP samples, it is expected that the fragments enriched with

specific protein are detected more often than the non-enriched fragments. For input

control samples, the detection is expected to be approximately flat for both enriched

and non-enriched fragments. The log2 ratio values (M-values) computed between the

intensity of fragments obtained from IP and input control samples are generally used

to indicate the enrichment: the positive values indicate fragments detected more in

IP than in input control samples (factor enrichment) while the negative values indicate

fragments detected more in input control than in IP samples (factor depletion).

A comparative analysis of maintained and lost borders for each selected epigenetic

factor is relatively straightforward as we compare profiles within the same biological

sample. However, when comparing ChIP profiles within the same class of borders

but produced for different proteins enriched, additional pre-processing schemes are

required as signal-to-noise ratio varies between samples. We proposed the following

algorithm which includes the profile extraction, cleaning and normalisation in order to

further make trustful conclusions about protein enrichment differences.

1. We start with the extraction of M-values within 5 Kb window binned at 100 bp around

selected wild-type TAD borders. A TAD border is represented as a single position when

it is more like a boundary, so functionally relevant protein or factor can bind border

within the region.
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2. Negative values indicate non-enrichment independently on the exacted value. One

of the possibilities is to replace all negative signals with zero for further analysis simpli-

fication. However, we decided to include negative values into processing as we want

to use them for further clustering.

3. As M-values are computed based on log2 ratio, the large difference in IP signal in-

tensity and input control signal intensity may produce outliers. Some regions cannot be

uniquely mapped to the genome, for example, because of short length or association

with transposable elements. These regions may be considered to be less functional

and some researchers exclude them from the analysis. Instead of ignoring regions

that produce outliers, we prefer to winsorise them. We select the cut-off points for

positive and for negative signals separately: we define 5%-quantile of negative signals

as down cut-off point and 95%-quantile of positive signals as up cut-off point. There

is the possibility that enrichment signals are distributed around zero, so cut-off points

will be selected to be 0 or very close to zero (lies within the -1 to 1 interval). For such

ChIP profiles, we replace the up and down cut-off points with maximum and minimum,

respectively.

4. Positive signals are scaled by the reciprocal of the up cut-off point and negative

signals by the reciprocal of the down cut-off point. The signals of the resulting datasets

belong to the -1 to 1 interval. Thus, the distribution within the profiles can shed light on

occupancy strength: when a large amount of signals within the window are allocated

next to 1 it means that the factor is strongly enriched; when large amount of signals

within the window are allocated next to 0 and below it means that factor is strongly

depleted.

2.3.6. Clustering plots visualise comparisons between enrichment profiles

We obtained occupancy profiles for maintained and lost borders at 50 epigenetics fac-

tors (Figure 2.9, 2.13, 2.14 and 2.15). As the number of profiles is huge and com-

plicated to analyse simultaneously, we introduced an intuitive and simple clustering

procedure that assigns the ChIP enrichment to the one of six groups: no, extra low,
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low, medium, high and extra high enrichment (Figure 2.8.A). We extract ChIP signals

summarized over 5 Kb window for each selected TAD border across all profiles and

define 50%-quantile of positive summarized signals as positive cut-off value that dis-

tinguishes enrichment level from medium and high. The set of rules to annotate the

enrichment class to the profile is the following:

1. no enrichment: both median and 3rd quartile are less than zero.

2. extra low: median is less than zero while 3rd quartile is greater than zero (3rd

quartile may be greater than positive cut-off as well).

3. low: median and 3rd quartile are between zero and positive cut-off (1st quartile may

be as negative as positive).

4. medium: 3rd quartile is greater than positive cut-off while the median is between 0

and positive cut-off (1st quartile may be as negative as well as positive).

5. high: median is greater than a positive cut-off while the 1st quartile is less than a

positive cut-off (1st quartile may be less than 0 as well).

6. extra high: 1st quartile is greater than positive cut-off.

We provided the example of clustering algorithm performance for some selected

histone modifications (Figure 2.8.B). We can notice that clustering plot (heat map)

efficiently reflects the significant differences in box plot distributions. Corresponding

cluster plots are also added to (Figure 2.9, 2.13, 2.14 and 2.15) in order to simplify

the comparative analysis of epigenetic factors enrichment at maintained and lost TAD

borders.

2.3.7. Enrichment patterns are distinct for maintained and lost TAD borders

Architectural proteins. We considered maintained and lost TAD borders that were

present in both BEAF-32 knockdown and Cp190 and Chro double knockdown mutants.

Selected borders demonstrated enrichment of at least one of the insulation proteins

BEAF-32, Cp190 and Chro in accordance with our expectations as we left only direct

targets (Figure 2.9). BEAF-32 was found at half of the maintained borders while Cp190

and Chro were present in approximately all borders. This finding supports the idea of
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Figure 2.8. ChiP occupancy clustering algorithm. A. Schematic representation of relative

allocation of average ChIP occupancy signal within 5 Kb window extracted at each TAD border

in different enrichment clusters as described in the main text. B. Boxplots of average ChIP

occupancy signal of selected histone modifications extracted within 5 Kb window at maintained

and lost TAD borders. Heatmap represents the clustering plot produced by algorithm. Darker

color indicate higher ChIP enrichment. We performed the Mann-Whitney U test. We denoted

p-values as: n.s. ≥ 0.05, * p-value < 0.05, ** < 0.01 and *** < 0.001.

Page 51



Chapter 2 3D chromatin organisation of flies

A B

D

C

E

F

m
ai
nt
ai
ne

d
bo

rd
er
s
(1
77

)
lo
st
bo

rd
er
s
(7
0)

m
ai
nt
ai
ne

d
bo

rd
er
s
(1
77

)
lo
st
bo

rd
er
s
(7
0)

BEAF−32

CTCF

Cp190Chro JIL-1 Su(Hw) mod(mdg4)

Rad21 ZW5Fs(1)hSASmc1Nipped-B

0.0

0.5

1.0

ma
int
ain
ed los

t

mod(mdg4)
Su(Hw)

BEAF−32
CTCF
JIL−1

Chro
Cp190

SA
ZW5
Smc1
Rad21
Fs(1)h
NippedB

Figure 2.9. Architectural proteins enriched at TAD borders. A-E. Profiles of architectural pro-

teins around direct maintained and lost TAD borders that were common in BEAF-32 knock-

down and Cp190 Chro double knockdown. Profiles represent 5 Kb region around selected
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another recruiter protein for Cp190 and/or Chro to maintain chromatin topology. We

did not observe connection between Cp190 and JIL-1 binding the same way as they

colocolise at interbands regions during interphase (Rath et al. 2006), however, JIL-1

showed the depletion strictly at maintained TAD borders while it was present within the

5 Kb window. In (Wang et al. 2001), it was proposed that JIL-1 activity establish more

open chromatin to facilitate gene transcription (Figure 2.9.B). Cp190 also did not show

the strong colocolisation with Su(Hw) and mod(mdg4) as in gypsy insulator complex

- only a weak connection between Cp190 and mod(mdg4) at the maintained borders

depleted of BEAF-32 (Figure 2.9.C). At the same time, protein mod(mdg4) can directly

bind DNA, recruit Su(Hw) and mask its repression activity (Melnikova et al. 2003). So,

absence of Su(Hw) and presence of JIL-1 indicate about the possible association be-

tween active chromatin state and maintenance of the borders when BEAF-32, Cp190

and/or Chro are removed. Within the lost borders, BEAF-32, Cp190 and Chro were

also enriched in wild-type cells but did not show strong colocalisation at TAD borders

and were allocated around the borders. Also, we did not observe significant enrichment

of JIL-1, Su(Hw) or mod(mdg4).

We observe the high CTCF enrichment at some of the maintained borders (approx-

imately half of them) while Cohesin subunits Rad21, Nipped-B and Smc1 are highly

enriched at the majority of maintained borders (Figure 2.9.D). It possibly reflects the

situation when Cohesin is loaded on chromatin which is stressed due to active tran-

scription, but, in absence of CTCF that stops the loop extrusion, Cohesin dissociates

and the loop anchor fragments would break the contact. As a result, the amount of

peaked TADs are expected to be less than non-peaked ones, in consistent with pre-

viously published reports (Matthews and White 2019; Rowley et al. 2019). However,

we are limited in making a proper conclusion on this hypothesis as we require the ori-

entation of CTCF to understand whether Cohesin stops at maintained borders or not.

Interestingly, another Cohesin subunit SA also shows a high level of enrichment within

5Kb window but the signal is not centered as for other subunits. Regions where we

observe the enrichment of SA seems to be enriched with Rad21, Nipped-B and Smc1
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as well. The difference in patterns possibly can be explained by the presence of active

promoters and enhancers at maintained borders: it has been previously shown that

SA does not occupy most of the active promoters, in contrast with Rad21, Nipped-B

and Smc1, but tends to occupy enhancers together with them (Pherson et al. 2019).

It is also supported by the enrichment of Fs(1)h which facilitates Nipped-B and Rad21

association with enhancers (Pherson et al. 2019). In addition, the enrichment pro-

file of insulator protein ZW5 does not reveal any specific patters (Figure 2.9.E). ZW5

was previously shown to interact with BEAF-32 (Blanton et al, 2003) and colocolise

with Cohesin (Zolotarev et al, 2016). As for BEAF-32, Cp190 and Chro, lost borders

are enriched with other architectural proteins from low to high level but without proper

colocalisation at the centre (Figure 2.9.F).

At maintained borders, we observed the intensive colocalisation of proteins which

form the Cohesin complex (Rad21, Nipped-B, Smc1, SA) along with Fs(1)h which fa-

cilitates the loading of Cohesin sub-units to enhancer regions. Strong association with

enhancers indicated the role of enhancer-promoter contacts and chromatin looping in

TAD formation.

Transcription and replication. Chromatin supercoiling caused by torsional stress

accompanying Pol-II transcription activity is a potential driver for loop extrusion and

TAD formation. Maintained borders have a high enrichment of Pol-II indicating the as-

sociation with active state (Figure 2.10.A). As well, MED1 and MED30 show strong

colocalisation at the centre of the profiles for maintained borders which also indicates

active transcription initiation. In addition, Orc2, which is essential for the initiation of

DNA replication, seems to occupy the centre of the profiles as well, but the difference

in occupancy strength is not significantly different from the lost borders. We also ob-

serve enrichment of Topo-II that surrounds TAD border regions but does not bind them

(Figure 2.10.A). Topo-II is a Type 2 topoisomerase that relaxes torsional stress allow-

ing intersegmental chromatin passages. In HeLa cells, it was shown that Type 2 Beta

topoisomerase interacts with CTCF and Cohesin at TAD borders (Uuskula-Reimand et

al. 2016) and we observe the same pattern here. These results indicates the potential
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role of supercoiling and active transcription at maintained borders.

We also notice moderate binding of GAF which is not strictly centered (Figure

2.10.B). GAF (also known as GAGA factor) is a pioneer sequence-specific binding fac-

tor that recognise (GA) repeated elements, binds introns and participate in transcrip-

tion elongation (van Steensel et al. 2003). In addition, GAF can recruit components

of chromatin-remodeling complexes such as NURF and ISWI to drive DNA opening

(Chetverina et al. 2021), however, not necessarily, as shown by (Tang et al. 2021)

on live Drosophila hemocytes. Note that in our case, binding of NURF301 and ISWI

seems stronger in both maintained and lost borders in comparison with GAF (Figure

2.12.A). Interestingly, joint binding of GAF and Pol-II can indicate the presence of Pol-II

pausing (Chetverina et al. 2021). Thus, mutations in GAF sequencing studied in (Lee

et al. 1992) led to a reduction in Pol-II pausing. However, the Pol-II pausing index

computed at maintained, lost and new borders confirmed only negligible differences in

Pol-II pausing (Chathoth et al. 2022).

The low level of enrichment of histones (H1, H2Av, H3 and H4) at maintained bor-

ders indicates the highly accessible DNA while slightly higher signal at lost borders

indicates less accessible DNA (Figure 2.10.B). Surprisingly, H2Av shows the moderate

presence around maintained borders without binding them. The histone H2A variant

was shown to be involved in euchromatic silencing and formation of heterochromatin

(Swaminathan et al. 2005). All together, the histones allocation around TAD borders

indicates open chromatin at the maintained borders which is surrounded by dense

chromatin.

The normalised RNA-seq signal around both maintained and lost borders did not

demonstrate noticeable changes in two knockdowns (Figure 2.10.C). In case of main-

tained borders this result was expected as we did not observe significant changes in

gene expression associated with conserved borders (Figure 2.3 and 2.6). In case of

lost borders, we might expect to notice some changes. However, as differentially ex-

pressed genes did not demonstrate specific preference in position within reorganised

TADs (Figure 2.5), loss of TAD border can correlate with changes in gene expression
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Figure 2.10. Transcription and replication associated factors enriched at TAD borders. A-

C. Profiles of architectural proteins around direct maintained and lost TAD borders that were

common in BEAF-32 knockdown and Cp190 Chro double knockdown. Profiles represent 5 Kb

region around selected borders. D. Clustering of the signal at direct maintained and lost TAD

borders as described in the main text. E. The nascent RNA profiles. The signal represent the

log10 of average signal retrieved from positive over negative strand. The red color represents

the transcription occured mostly on positive strand, the blue color represents the transcription

occured mostly on negative strand. F. The distribution of directionality scores computed as de-

scribed in the main text. Orange color represents the scores extracted at maintained borders,

blue color represents the score extracted at lost border. We performed a Mann-Whitney U

test to confirm the difference in distributions. G. The distribution of bidirectional, unidirectional

borders and borders with no transcription. H. The proportion of unidirectional and bidirectional

borders excluding the borders with no transcription indicated. We performed a Fisher’s exact

test and corresponding p-value is specified.

at a larger distance from this border.

Depending on where the nascent RNA is found - either on the positive or negative

strand - we can conclude whether we detect bidirectional transcription or unidirectional

one. In the case of bidirectional transcription, transcription machinery binds the ge-

nomic region but it can go downstream or upstream, while in unidirectional transcription

the machinery moves in single direction. We analysed the distribution of sifnals com-

puted as log10 of amount of nascent RNA retrieved from positive over negative strand.

Visually, the maintained borders seem to associate mostly with divergent transcription

while lost borders are more unidirectional (Figure 2.10.E). The line plots representing

the averaged signal within maintained and lost borders also confirms the association of

upstream and downstream regions from the maintained TAD borders with transcription

on positive and negative strands, respectively.

We also computed the directionality scores (Figure 2.10.F). We computed the mean

nascent RNA levels considering 500 bp window that were 500 bp downstream away

on the positive strand and 500 bp upstream away on the negative strand. Then, we

computed the directionality score as log10 ratio of mean nascent RNA on the posi-
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tive over negative strand. Borders with directionality score being lower than 0.47 were

classified as bidirectional (Chathoth and Zabet 2019). The value of 0.47 represents

slightly less than three times more transcription on positive strand than on negative

strand. Large share of lost borders did not show presence of any transcription, this

share was slightly less for maintained borders (Figure 2.10.G). However, the propor-

tion of bidirectional borders seems slightly higher than share of unidirectional ones

with no significant difference between maintained and lost borders (a Fisher’s exact

test p-value > 0.05)(Figure 2.10.H). The inconsistency between visual inspection and

statistical test can be associated with the relatively small amount of lost borders - we

detected only 24 out of 70 lost borders being unidirectional.

Active transcription seems to be a key player in the maintenance and formation of

TADs (Ulianov et al. 2016; Li et al. 2015; Rowley et al. 2017). In consistence with the

past research, we noticed that borders that survived BEAF-32, Cp190 and Chro deple-

tion were closely accompanied by the binding of other insulator proteins, transcription

factors, as well as open chromatin, while lost borders either were depleted with the

analysed factors or were from low to moderately enriched but not strongly colocolised

at the centre of the 5 Kb window (Figure 2.9 and 2.13). Given these observations, we

suspect that active chromatin state can possibly maintain the chromatin topology after

removal of important insulator proteins. In contrast, the lost borders did not have the

same association with transcription, so depletion of insulators can reduce the segrega-

tion strength between kilobase-scale chromatin domains.

Histone modifications. We can get a better understanding of the functional differ-

ence between maintained and lost borders looking at the presence or absence of spe-

cific histone modifications (Figure 2.11). According to the clustering (Figure 2.11.D), we

have modifications that demonstrate: (1) high enrichment in both maintained and lost

borders (H4K8ac, H3K18ac, H3K27me1, H3K79me2, H3K4me2, H3K27ac, H3K4me1);

(2) high enrichment at maintained but significantly reduced enrichment at lost borders

(H3K79me3, H3K4me3, H3K79me1, H2Bubi, H3K36me3); (3) moderate and low en-

richment at both maintained and lost borders (H3K36me1, H4K16ac, H4K20me1); (4)
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low or full depletion at maintained borders while the lost ones start to demonstrate low

enrichment (H3K23ac, H3K27me2, H3K9me2, H3K9me3); (5) both maintained and

lost borders are depleted with H3K27me3. However, histone modifications are not

found exactly at TAD borders and they occupy the surrounding regions.

The histone modification within the first three groups are mostly associated with

active chromatin state, so indicating the euchromatic regions. Histone modifications

H4K8ac, H3K18ac, H3K4me3, H3K27ac mark transcription start sites, so can be clas-

sified as promoter marks (Wang et al. 2008; Yang et al. 2012; Dong et al. 2012;

Taberley et al. 2016). Histone modification H3K4me2 marks active enhancers. Actu-

ally, histone H3 lysine K4 methylation (H3K4me1, H3K4me2, H3K4me3) is generally

associated with euchromatin and ongoing gene expression (Pekowska et al. 2011).

Then, H3K27ac can mark different states of enhancer regions depending on colocali-

sation with H3K4me1: when both modifications are present, we observe a signal from

active enhancer; when H3K4me1 is present but H3K27ac is not we observe a signal

from primed enhancer (inactive enhancer that is primed for future activation) (Calo and

Wysocka 2013). Another two modifications, H3K79me1 and H3K79me2, did not show

any specific preference for either active or silent genes so possibly indicating its biva-

lent function depending on presence or absence of specific factors (Steger et al. 2008).

Interestingly, the modification H3K18ac which were found to be enriched at enhancers

(Wolfe et al. 2021) seem to show moderate enrichment at both maintained and lost

borders.

In contrast, histone modifications mostly depleted in maintained borders are asso-

ciated with inactive, heterochromatic regions. H3K27me2 was involved in enhancer

silencing which prevents its transcriptional activity (Ferrari et al. 2014; Lee et al. 2015).

Enrichment of H3K27me2 together with H3K9me2 and H3K9me3 at lost borders indi-

cates the association with inactive heterochromatin. We also notice that H3K27me3

was approximatley everywhere depleted. H3K27me3 is a Polycomb mark: it allows

the loading of Polycomb repressive complex PRC1 which includes Pc and dRING pro-

teins, so leading to chromatin compaction and transcription pausing (Min et al. 2003;
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Figure 2.11. Histone modifications enriched at TAD borders. A-E. Profiles of architectural pro-

teins around direct maintained and lost TAD borders that were common in BEAF-32 knock-

down and Cp190 Chro double knockdown. Profiles represent 5 Kb region around selected

borders. F. Clustering of the signal at direct maintained and lost TAD borders as described in

the main text.
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Figure 2.12. Remodelling, heterochromatin and Polycomb-associated factors enriched at TAD

borders. A-E. Profiles of architectural proteins around direct maintained and lost TAD borders

that were common in BEAF-32 knockdown and Cp190 Chro double knockdown. Profiles

represent 5 Kb region around selected borders. F. Clustering of the signal at direct maintained

and lost TAD borders as described in the main text.
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Lehmann et al. 2012). We do not observe enrichment of H3K27me3 as well as Pc and

dRING at both maintained and lost borders.

Lost borders are highly enriched with repressive histone modifications as well as

they are enriched with histones. Altogether, they are signature of silent chromatin:

transcription there is stopped by either dense heterochromatin which does not allow

transcription factors to bind and initiate the transcription, or by silencing of enhancers

which also blocks the transcriptional activity. As heterochromatin prevents the tran-

scription, in absence of architectural proteins without the support of transcriptional ma-

chinery the chromatin loses its conformation and TAD borders are lost. Histones are

also found not at maintained TAD borders, but they are enriched around, forming dense

chromatin around open and actively transcribed euchromatin “islands”. Absence of hi-

stones at maintained borders specifically is suggested to allow the transcription factors

to bind and initiate transcription there, supporting TAD formation through the enhancer-

associated contacts.

Remodelling, heterochromatin and Polycomb. To further support the connection

of lost borders with heterochromatin, we looked at some nucleosome remodelling fac-

tors, heterochromatic and Polycomb marks (Figure 2.12). Lost borders were found to

be slightly enriched with heterochromatic marks HP2 and Su(vaw)3-9, however, we do

not obseve any noticable presence of Polycomb marks like Pc and dRING which form

Polycomb repression complex (Figure 2.12.B). Note that the protein Su(var)3-9 was

previously reported to have a role in maintenance of TADs allocated at heterochro-

matin (Saha et al. 2020).

Summing up, maintained TAD borders demonstrated strong correlation with factors

which were found to actively participate in transcription, so showing allocation within

euchromatic chromatin. Lost borders did not demonstrate the same tendency, either

showing the presence of active marks randomly allocated within 5 Kb window around

borders, or showing presence of heterochromatin marks which are slightly/moderately

higher than at maintained borders. The existence of two classes of TAD borders in

Drosophila, active and repressed borders, display different mechanisms of their main-
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tenance. A similar classification into active and repressed domains in Drosophila has

been previously proposed (Ogiyama et al. 2018; Ramirez et al. 2018; Szabo et al.

2018). On the other hand, there were some research reported association of TADs

mainly with euchromatin (Sexton et al. 2012; Ulianov et al. 2016; Hug et al. 2017).

Possible reason why we observe heterochromatic lost borders and not euchromatic

borders is that we used 5 Kb window around the borders instead of single genomic

position. The BG3 chromatin state analysis, which was performed in (Chathoth et al.

2022) on single genomic positions where maintianed, lost and new TAD borders were

allocated, confirmed the enrichment of borders in enhancer and active TSS states,

as well as the depletion in heterochromatin. In contrast, assuming 5 Kb window in-

stead of single position, we observe the enrichment of Polycomb and heterochromatin

in euchromatin state at lost TAD borders, consistent with ChIP occupancy analysis.

Given these findings, the borders that were lost in both BEAF-32 KD and Cp190 Chro

KD can be defined as the ones allocated in euchromatic islands surrounded by hete-

rochromatin.

2.4. Summary and discussion

The colocolisation of architectural proteins at borders of topologically associated do-

mains (TADs) raises the question of whether they have a functional role in establish-

ment and maintenance of chromatin topology. For example, the loop extrusion coupled

with Cohesin-CTCF interplay was proposed to conduct the TAD formation in mam-

malian systems (Zuin et al. 2014; Racko et al. 2018; Nora et al. 2017). In Drosophila,

there are several architectural proteins which previously showed the accumulation at

TAD borders. These proteins include BEAF-32, Cp190 and Chro. In this Chapter, we

access the TAD reorganisations caused by the knockdowns of these proteins plus Dref

which shares similar binding motif with BEAF-32, so can potentially replace it at TAD

borders.

We identified between 600 and 800 genes which altered their expression in the

result of the knockdowns. The majority of those genes were located within TADs
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which have significantly shifted the position of one or both borders. The differen-

tially expressed genes were associated with these rearrangements more often than

by chance which indicates the that strong TAD reorganisations are coupled with sig-

nificant changes in gene expression. However, this association was not detected at

Cp190 and Chro double knockdown. Cp190 and Chro are the proteins that cannot

bind DNA independently and they are recruited by other proteins. If proteins are not

involved in TAD border organisation, the depletion of Cp190 and/or Chro would not af-

fect the gene expression through TAD reorganisation, so the association of DEGs and

changes in TAD allocation would be reduced.

The protein depletion resulted in perturbation of TAD borders. We found that bor-

ders that were lost during the knockdown were mostly associated with silenced regions

of the genome: they displayed the moderate enrichment of heterochromatin and the

depletion of active histone modifications. The borders that were maintained upon the

knockdowns, in opposite, were mostly associated with euchromatin and active tran-

scription. These borders were also enriched in Cohesin, CTCF, Mediator complexes

and Trithorax-group (Fs(1)h, NURF301, ISWI, mod(mdg4), ASH-1, GAF). So, these

proteins were possibly able to compensate the loss of BEAF-32, Cp190 and Chro to

maintain the TAD topology. On the other hand, the knockdown removed the signifi-

cant share of proteins but not in full. Therefore, we observed that maintained borders

retained the some binding of these architectural proteins upon the depletion.

Depletion of BEAF-32, Cp190 and Chro seems to affect both genome-wide chro-

matin architecture and gene expression patterns. Genomic regions which maintained

the chromatin topology even if they were direct targets of the depletion of proteins-

insulators demonstrated the association with enhancers, promoters, active transcrip-

tion, and open chromatin. The regions which were lost in the knockdowns, in oppo-

site, were found to be associated with heterochromatin, so were not supported by the

transcription machinery and were not able to maintain the topology in absence of the

BEAF-32, Cp190 or Chro. We can suggest that, based on this finding, the chromatin

conformation is established by the binding of architectural proteins and transcription,
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which further can maintain the TADs even in absence of proteins. However, without the

transcription in place, the TAD borders cannot be maintained in absence of the proteins.

To have more support for this hypothesis, we can be interested to look at occupancy

of the proteins and transcription factors in the knockdowns as it would shed the light

whether the transcription is a necessary factor to maintain the TAD borders or there is

a complex interactions between BEAF-32, Cp190, Chro and other proteins which can

takes place. Moreover, even if we observe the interplay between insulator proteins and

transcription at the maintained TAD borders, it is not clear whether these proteins form

the chromatin architecture which functions as a “guide”for transcription and ensures

the proper gene regulation, which, in turn, can maintain the topology even if the pro-

teins are depleted. The dynamical changes in the topology and protein occupancy can

provide enough support or, in opposite, contradict with the described hypothesis, but

would shed the light on the important and the widely discussed question in the field of

chromatin architecture – whether the transcription maintains the chromatin topology or

chromatin topology ensures the proper gene regulation.

While the depletion of the proteins affected the TAD organisation, the A/B compart-

mentalisation seemed mostly unaffected (Chathoth et al. 2022). Approximately half

of the chromatin was affiliated to the A compartment and the remaining half belonged

to the B compartment for all datasets. Knockdowns did not lead to dramatic switches

between compartments: only 4-5% of active chromatin were silenced and only 4-5% of

inactive chromatin were activated. However, we found that most of the maintained bor-

ders are localised in A compartments (acive chromatin) while the lost and new borders

are localised in B compartment (inactive chromatin). This finding is consistent with the

result of the ChIP occupancy analysis in a way that the most of the lost borders were

found in silent chromatin while the maintained borders were found in active chromatin.

In addition, we noticed slightly enhanced A-A interactions in wild-type that possibly in-

dicated more intense interactions between active regions and these interactions were

slightly diminished in knockdowns. However, the ratio of homotypic A-A and B-B inter-

actions to heterotypic A-B and B-A interactions were similar with only a small decrease
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for BEAF-32 KD. Altogether, our results indicated that BEAF-32, Cp190, Chro and Dref

had little effect on the organisation of compartments in Drosophila.
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Chapter 3. Statistical framework for complex chromatin organisa-

tion analysis

3.1. Introduction

Recent studies on the 3D chromatin organisation relied on the computational methods

that called topologically associated domains (TADs) in a “head-to-tail”, non-hierarchical

manner (Dixon et al. 2012, Crane et al. 2015, Ramirez et al. 2015, Kruze et al. 2020).

Researchers started to overcome the limitations of widely used TAD callers, so TADs

were demonstrated to have more complex, hierarchical folding, i.e. large TADs were

combined from nested sub-TADs organisation. It was also previously shown that many

TADs did not display a sharp separation, so we observe a more like smooth transition

from one TAD to the neighbouring one. (Chang et al. 2020) (Figure 3.1). However,

the exact mechanism is unclear. For example, in mouse embryonic stem cells the

absence of punctuated TAD boundaries was associated with clusters of CTCF binding

peaks within fuzzy TAD boundaries which additively contribute to the domain insulation

strength (Chang et al. 2021).

Overall, we face two possible scenarios for these “transition zones”. On the one

hand, we observe just the artefacts of the cell-to-cell variations, dynamic architectural

reorganisations, experimental noise or low sequencing depth. On the other hand, “tran-

sition zones” can reflects the chromatin regions that either belong to both TADs (partial

overlap) or do not belong to TADs at all (TAD breaks) (Figure 3.1). These suggestions

leads us to the idea that we possibly can face more complex topology and we need

new TAD detection methods.

In previous Chapters, we discussed the background and previous research associ-

ated with 3D chromatin organisation. We also analysed the Drosophila Hi-C data and

revealed the functional roles of specific architectural proteins found in flies. Drosophila

is the one of the commonly used model organisms and the relatively small size of the

genome makes it possible to study the chromatin organisation with high resolution Hi-C

maps. For the 3D chromatin conformation analysis, we looked at the consequences
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associated with the depletion of the named proteins on TADs level. For TAD analy-

sis we used the HiCExplorer tool that considers the insulation score for finding TADs.

However, visual inspection of some example genomic regions reveal the presence of

complex chromatin pattern which were not detected by the tool.

In this Chapter, we provide the statistical framework that leads us to the new TAD

calling algorithm named COrTADo (Complex Organisation of Topologically Associated

Domains). Using COrTADo, we can call start and end TAD border positions separately

that can serve as a basis for further reconstruction of complex chromatin architecture.

3.2. Materials and methods

Data. We used the Hi-C dataset generated by (Chathoth and Zabet 2019) in Drosophila

melanogaster wild-type BG3 cells at DpnII resolution. We used the matrix without the

21.8
chr3L:

punctuated boundary punctuated boundary

punctuated boundary

partial overlap

TAD breaks

21.88 21.97 22.06 22.15 22.26 22.33 22.42 22.5 22.6

−1

0

1

insulation
score

BG3 Hi-C
normalised0

2
4
6

Figure 3.1. Examples of smooth transition between neighbouring TADs (left, color with or-

ange) and visually clear punctuated TAD boundary (right, color with green). Top panel rep-

resents the heat map of the Drosophila BG3 cells at the genomic region chr3L: 21.8 - 22.6

Mb (Chathoth and Zabet 2019). The line plot represents the insulation score computed using

HiCExplorer (Ramirez et al. 2018), the local minima indicate the regions with high insulation

between neighbouring genomic regions and most probably allocation of TAD borders. For

fuzzy boundary (orange), the TAD borders can be placed either as a single position, partial

overlap or separated by the break.
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correction method which is usually recommended before TAD calling (see Chapter 1 for

more details). We decided to work with raw Hi-C interaction matrix while exploring the

statistical framework to call complex architectural structures as we aim to compare the

performance of the method on raw and corrected Hi-C dataset further in the Chapter.

HiCExplorer. We called TADs using HiCExplorer with parameters similar to (Chathoth

et al. 2021) using minimum width at 5 Kb, FDR correction for multiple testing, p-value

threshold of 0.01 and minimum threshold of the difference between insulation score

of 0.04 with the only difference being that we used the raw matrix instead of being

corrected with KR balancing method. We used these TAD borders for checking the hy-

potheses which we propose and explore in this Chapter. We suggest that HiCExplorer

as any other TAD calling tool has its limitations that do not allow to catch all visual

architectural patterns or suggested complex chromatin structures like breaks between

TADs, nested TADs or partially overlapping TADs. However, together with previously

published research we demonstrated that HiCExplorer is able to call structures that cor-

relate with chromatin epigenetic mechanisms, so can be called trustful for hypotheses

testing.

3.3. Statistical framework

3.3.1. Hi-C interaction frequency significantly changes when crossing TAD edge

In Hi-C, we generate the matrix where each matrix entry X(i,j) represents the number of

interactions between the DNA locus i and DNA locus j. Suppose, we focus on a single

row locus i. All entries before the diagonal with index numbers 1, 2, ..., i� 1 represent

loci allocated upstream from locus i. All entries after the diagonal with index numbers

i+1, i+2, ..., n� 1, n represent loci allocated downstream from locus i (Figure 3.2.A).

During Hi-C experiment, the fixed locus i can be cross-linked and ligated only once

with other locus j. However, the diploid genomes, like Drosophila, mouse or human,

have two copies of the DNA. It means that within the population of T cells, locus i can

participate in up to 2T pair-wise interactions (Figure 3.2.B).

Topologically associated domains (TADs) are visually detectable regions in Hi-C
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contact map. They are represented in the form of consecutive squares allocated along

the Hi-C diagonal where intra-TAD interactions happen more frequently than inter-TAD

interactions. When loci i and j are allocated within the same TAD, they interact more

frequently than in case when i and j belong to different TADs. Formally, if we have

loci i and j from the same TAD and any locus j⇤ outside this TAD, we expect that

E
�
X(i,j)

�
> E

�
X(i,j⇤)

�
. Suppose that any locus j starting from the position js up to the

position je belongs to the same TAD with locus i (ks and ke represent start and end of

the TAD, respectively). Then, for 8i 2 [ks; ke] , 8j 2 [ks; ke] and 8j⇤ /2 [ks; ke], we expect

E
�
X(i,j)

�
> E

�
X(i,j⇤)

�
. The positions ks and ke are the same for all pairs of loci within

the same TAD. For Hi-C interaction map, inside-TAD interactions form the square with

corners at (ks; ks) (top left corner), (ks; ke) (bottom left corner), (ke; ke) (bottom right

corner), (ke; ks) (top right corner) (Figure 3.2.A). Visually, inside-TAD area separated

from outside-TAD area by four square edges. In particular, the column positions of the

left and right edges represent the TAD start position ks and end position ke, respectively.

For the aim of the analysis, at this and further Sections we focus on left TAD edge (TAD

start) and, as the Hi-C matrix is symmetric, only on the lower triangle of the matrix.

Next, we formally introduce the term left (start) TAD edge k:

For any locus i, the start TAD edge is a locus k  i � 1 such that for 8j 2 [k; i� 1] and

8j⇤  k � 1, we have E
�
X(i,j)

�
> E

�
X(i,j⇤)

�
.

Formally, TAD edge definition and canonical TAD border definition are the same

– it is the genomic position that separates the intra-TAD interacting DNA fragments

from the fragments which do not belong to the same TAD. We introduced the different

definition to show that we aim to detect the genomic position that is the same for all

neighbouring Hi-C rows belonging to the same TAD, technically, detecting a line seg-

ment on the Hi-C contact map which separated the inside-TAD interaction frequencies

from outside-TAD ones and not a single coordinate that separates two neighbouring

TADs. Also note, that further in the method development, we introduce the procedure

to estimate the TAD edge length which measures the number of consecutive loci i
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which has the start TAD edge at the same locus k. Technically, we aim to measure the

length of the line segment of the Hi-C contact map which represents the edge of the

TAD. So, more geometrically related term “TAD edge” suits the algorithm better than

the term “TAD border”.

We do not rely on genomic distances in this definition, only on the coordinates (i, j)

of the Hi-C matrix entries. So, we base all derivations only on the position of locus j rel-

ative to locus i, independently on the Hi-C resolution. It reflects the situation when Hi-C

experiment and further pre-processing generates loci with the same genomic lengths.

It is common situation for large genomes like human or mouse. For organisms like

Drosophila we can work efficiently (in terms of computational memory and time) with

high resolution maps, for example, generated with DpnII restriction enzyme. However,

the DNA fragments then would have non-homogeneous bin sizes.

According to the definition of the TAD, loci within the same TAD on average interact

more frequently than loci that do not belong to the same TAD. Then, the selected locus

i is expected to interact less frequently with fragments that are allocated upstream

from the left TAD edge, i.e. with fragments j = 1, ..., k � 1, than with fragments that

are allocated downstream from the left TAD edge, i.e. with fragments j = k, ..., i � 1

(Figure 3.2.A). If the expected number of interactions between locus i and locus j is

µ(i,j) then we have:

(µ(i,1), µ(i,2), ..., µ(i,k�1)) < (µ(i,k), µ(i,k+1), ..., µ(i,i�1))

The mean is expected to be low before reaching the left TAD edge and is expected

to be high after crossing the left TAD edge. Any position k within the Hi-C row i, that

demonstrates all mean estimates on the left-hand side, i.e. (µ(i,1), ..., µ(i,k�1)) being

less that all mean estimates on the right-hand side, i.e. (µ(i,k), ..., µ(i,i�1)), is a candi-

date for being a left TAD edge position. For Hi-C data, the DNA fragments that are

allocated close to each other on chromatin strand should interact more frequently than

distal DNA fragments. So, whether TADs are present or not, the intensive interactions

happen when the Hi-C matrix entry is close to diagonal. Technically, within the Hi-

C row, mean estimates smoothly increase when we move closer to the diagonal, so,
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all of the left-hand side means automatically are less than all of the right-hand side

means. Then, we need to slightly modify the criteria for TAD edge candidate search:

the change from µ(i,k�1) to µ(i,k) should be sufficiently larger than any other change

between neighbouring means if k is a candidate to be a left TAD edge position.

The proposed criteria relies on the estimation of the mean parameters. The main

limitation here is the sample size: we work with a single row i of Hi-C matrix from the

column j = 1 up to the diagonal excluding the diagonal element, i.e. j = i � 1. The

natural choice for the mean estimation under the described conditions can be a Moving

Average (MA): we create a series of subsets of fixed size and compute averages within

them. Mathematically speaking, if we have a dataset (x(i,1), x(i,2), ..., x(i,i�1)), the mean

over the first MA with window size w is defined as

MA(i,1) =
1
w (x(i,1) + x(i,2) + ...+ x(i,w))

When calculating the next mean MA2 the range from 2 to (w + 1) is considered:

MA(i,2) =
1
w (x(i,2) + x(i,3) + ...+ x(i,w+1))

We continue to slide the MA window while we can create subset of size w. The last

mean MA(i�w) for the given dataset can be defined as:

MA(i,i�w) =
1
w (x(i,i�w) + x(i,i�w+1) + ...+ x(i,i�1))

We have to keep in mind, that the MA algorithm is sensitive to the window size w.

The wider the window the smoother the result: the mean becomes less responsive

to the dramatic changes in observations. The shorter windows, in opposite, allow

the detection of sharp increases/decreases quicker, but, at the same time, the mean

becomes highly disperse for noisy data which is the case for Hi-C experiment (Yaffe

and Tanay 2011, Imakaev et al. 2012). For the preliminary analysis, we can motivate

MA window size selection by the minimum TAD that can be detected.

We continue to slide the MA window until we reach the last element (i � 1) of the

given dataset. It means that the last mean that we are able to estimate is based on

the observations from the range [(i � w); (i � 1)]. As we cannot compute mean when

j > (i�w), we cannot access changes between µ(i,j�1) to µ(i,j), and, as a consequence,

we cannot place TAD edge candidate when j > (i� w). Summing up, if the TAD edge
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position is allocated within the range [(i � w + 1); (i � 1)], it cannot be detected. So,

there is the connection between maximum MA window size w and the minimum TAD

size that we are able to detect.

The minimum TAD size can be introduced through the minimum TAD width - the

length between TAD borders, or, geometrically, the diagonal of the TAD square (Figure

3.2.A). Then, applying the Pythagoras Theorem, the minimum edge length is

edge =
p
2
2 width

This formula is a good edge estimation when we work with genomic distances. If the

minimum TAD width is given in bins, then the minimum edge length is exactly the same

as minimum width

edge = width

The minimum MA window w should be less than the edge length in order to detect the

TAD edge. It is important to note here, that selecting w to be the same as minimum

edge length allows only the matrix row at the TAD bottom edge to be detected. The

reason is that for all above rows belonging to the same TAD, the distance between left

TAD edge and diagonal element is shorter than the MA window. As a consequence,

for these rows the left TAD edge cannot be detected (Figure 3.2.A).

We aim to formalise the criteria of TAD edge detection. We start from checking

whether the stated criteria is consistent with TADs allocated by widely used TAD call-

ing tool in the field of Hi-C analysis - HiCExplorer (Ramirez et al. 2018). The details of

the data used and parameters selected to call TADs with HiCExplorer are described in

the Section 3.2. Methods and Materials. Note that the allocation of TADs can vary de-

pending on parameters and TAD calling algorithms used. We use here HiCExplorer as

a standard for TAD allocation at the selected Hi-C dataset because earlier we demon-

strated the connection between HiCExplorer TAD borders and their epigenetic features

(see Chapter 2 for more details). We believe that HiCExplorer and other widely used

tools have limitations that do not allow to catch complex topological structured that we

can visually reveal and we aim to explore. However, we start with genomic positions

that we can call TAD borders with high level of confidence.
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Min TAD width Min TAD edge

Kb Bins Kb Bins

Genome-wide 9.366 3 6.623 3

chr3R: 21.3 - 21.7 Mb 28.263 38 19.985 38

Table 3.1. Minimum values of TAD geometry based on TADs called by HiCExporer genome-

wide and on test region.

The Drosophila BG3 (neuronal cells) line) matrix was built using the DpnII restriction

sites, so we obtained the matrix bins with the median width of 575 bp. When we called

TADs using HiCExplorer tool, we set the minimum TAD width to be 5 Kb (in order to

remove small TADs that can appear because of the noise) that is, in average, 8.7 or,

roughly, 9 bins. In fact, the minimum HiCExplorer detected TAD was larger in width

than 5 Kb but significantly shorter than 9 bins (Table 3.1). So, we can mark the first

limitation - the TAD edge detection algorithm that we are formalising in this Chapter

cannot call relatively small TADs that possibly can be called by the alternative TAD

calling tools, for example, HiCExplorer. Note that this limitation remains unaddressed

in the Thesis.

The genomic region chr3R: 21.3 - 21.7 Mb, that we selected for the testing, contains

8 relatively large TADs (Figure 3.2.F, top panel). As a consequence, the recommended

MA window size w can be any number below 38 bins. For simplicity, we can select

w = 10 when analysing the testing region (multiple of 10, which is below 38 and close

to 9 bins). However, for the genome-wide analysis more accurate selection procedure

is required, otherwise we face a danger to exclude small TADs which can be relevant

for downstream analysis.

We expect to observe the significant increase in estimated mean when we cross

the left TAD edge as the interactions are expected to happen more frequently inside a

TAD than outside a TAD. Suppose that we want to visually detect this dramatic change

looking on the line plot MA(i,j) versus window j of a single Hi-C row i. Unfortunately,

due to the large number of NAs and high level of noise in the data, we expect the mean

Page 74



Chapter 3 Statistical framework for complex chromatin organisation analysis

estimates to be significantly disperse. So, the visually observed dramatic change in

mean value cannot be distinguished between real change and spurious change that

arises because of fluctuations.

As we already mentioned above, we use the highly reliable TAD border positions

(and corresponding TAD edges positions) called using HiCExplorer tool. Within a single

Hi-C row, known TAD edge position k can be treated as a zero point (Figure 3.2.C).

First, we compute MAs moving to the right-hand side from the position k, i.e.

MA(i,1) =
1
w (x(i,k+1) + x(i,k+2) + ...+ x(i,k+w))

MA(i,2) =
1
w (x(i,k+2) + x(i,k+3) + ...+ x(i,k+w+1))

MA(i,3) =
1
w (x(i,k+3) + x(i,k+4) + ...+ x(i,k+w+2))

and so on. Second, we define MAs moving to the left-hand side from the position k,

i.e.

MA(i,�1) =
1
w (x(i,k�1) + x(i,k�2) + ...+ x(i,k�w))

MA(i,�2) =
1
w (x(i,k�2) + x(i,k�3) + ...+ x(i,k�w�1))

MA(i,�3) =
1
w (x(i,k�3) + x(i,k�4) + ...+ x(i,k�w�2))

and so on. Then, visualising all MAs using the line plot for all Hi-C rows we observe the

dramatic shift in estimated mean when we cross zero position that corresponds to the

TAD edge positions (Figure 3.2.C). This pattern is not noticeable if we select another

position to be the zero point. For example, if we start to compute MAs moving to the

right-hand side and to the left-hand side from the Hi-C diagonal positions instead of

TAD edge positions, there is no significant “jumps” in mean estimates (Figure 3.2.D).

There are several interesting features to note about the mean. The first observation

is that, when we center the mean signal at Hi-C diagonal, there is a smooth increase in

mean on the left-hand side from the diagonal and more noisy but still smooth decrease

on the right-hand side from the diagonal (Figure 3.2.F). This finding is consistent with

the expected change in mean that is related to the change in genomic distance be-

tween interacting fragments - close fragments tend to interact more frequently.

The second observation is, when we center the mean signal at TAD edge positions,

the mean estimates on the right-hand side, i.e. interactions inside TAD, are more scat-
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tered than mean estimates on the left-hand side, i.e. interactions before crossing TAD

edge (Figure 3.2.C). This observation can be critical in case if we want to make an

assumption about the Hi-C interaction distribution. In simple words, we deal here with

change-point detection problem: within the Hi-C row we search for the column posi-

tion where the interaction mean dramatically changes, which indicates the TAD edge

position. As the first choice, we can suggest widely used sequential change detection

algorithm, in particular, cumulative sum (CUSUM) method developed by (Page 1954).

In short, the main idea of the algorithm is as follows. Under the null hypothesis we as-

sume no change happens and assume some distribution (probability density function)

for the signal that relies on the mean parameter. Under the alternative hypothesis there

is one change happens at some specific moment of time and the mean parameter is

shifted. Observations are ordered in time and at each observation we accumulate log-

likelihood ratios - the measure that evaluates how good the observation fits the null

hypothesis versus the alternative hypothesis. When the accumulated sum beats the

pre-selected threshold, we detect the point where the mean parameter is shifted. The

critical step here is the probability density function selection. In Hi-C, in addition to

the mean changing, we observe also changes in the variance. So, we either need

to modify the CUSUM algorithm to deal with shift in two parameters, or introduce the

functional relationship between mean and variance that fits the observed Hi-C data.

For more details about CUSUM algorithm and its adaptation to TAD detection problem,

see Appendix 3.1.

We propose the non-parametric solution that relies on log mean ratio computa-

tion. The dramatic change happening between neighbouring MAs is suggested to be

a unique feature of the mean estimates allocated close by the TAD edge position. So,

within the single Hi-C row the pairs of neighbouring MAs that do not demonstrate the

significant change from one to another are expected to belong both to the area outside

TAD or to the area inside TAD. Speaking formally, for any position j = 1, ..., i � 1 we

define single MA(i,j+1) on the right-hand side from j as

MA(i,j+1) =
1
w (x(i,j+1) + x(i,j+2) + ...+ x(i,j+w)) (3.1)
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and we define single MAj�1 on the left-hand side from j as

MA(i,j�1) =
1
w (x(i,j�1) + x(i,j�2) + ...+ x(i,j�w)) (3.2)

Then, the log2(MA(i,j+1)/MA(i,j�1)) ratio reaches its local maximum only when the po-

sition j is a candidate to be a left TAD edge position. Given that there are several Hi-C

rows that belong to the same TAD and cross the TAD edge at exactly the same posi-

tion, the line plot of log2 mean ratio versus locus j position should demonstrate several

local peaks coinciding at the same locus j position that are TAD edge candidates. It

is not a big surprise that for the selected testing Hi-C region, the TAD edge positions

called by HiCExplorer tool nearly coincide with local peaks of log2(MA(i,j+1)/MA(i,j�1))

ratio (Figure 3.2.F). As the local maximum positions perfectly mimics the reliable TAD

edge positions, it provides us enough evidence to move to the next step in this study -

to adapt the described criteria to become MA-based TAD edge calling tool.

Log2mean seems quite similar with the directionality index (DI) introduced in (Dixon

et al. 2012). First, we estimate the average interaction frequency in the vicinity of the

DNA fragment upstream and downstream, then we compute the DI which measures

the bias towards the downstream or upstream interactions. On the TAD border, when

locus belongs to the upstream TAD, it tends to demonstrate bias towards upstream

interactions; when locus belongs to the downstream TAD, it tends to demonstrate bias

towards downstream interactions. So, at the end of one TAD, DI demonstrates local

minimum, and, at the beginning of the next TAD, DI demonstrates local maximum. The

same as for DI, log2mean ratio requires the computation of average interaction fre-

quencies in the vicinity of the DNA fragment. However, in log2mean ratio is computed

not per single locus but for each pair of loci i and j. In particular, we compute the aver-

age interaction frequencies between locus i and loci which are allocated in the vicinity

of locus j in downstream and upstream directions. At the start of the TAD, when loci i

and j belongs to the same TAD, log2mean ratio demonstrates the preference towards

downstream interactions. At the end of the TAD, when loci i and j belongs to the same

TAD, log2mean ratio demonstrates the preference towards upstream interactions. To

sum up, even if the decision rules about the end and start of the TAD detection are

Page 77



Chapter 3 Statistical framework for complex chromatin organisation analysis

similar for log2mean ratio and DI, DI is one-dimensional measure while log2mean ratio

is two-dimensional measure. So, the local minimum/maximum detection for log2mean

ratio requires that the local extrema should be allocated at the same j locus for sev-

eral neighbouring i loci which all belong to the same TAD. Also note, DI considers only

interactions which happen in the vicinity of the selected locus while log2mean ratio

considers all pairs of i and j which can be both distal and proximal.

The amount of positive and close to zero log2 mean ratios is prevailing (Figure

3.2.G). However, we also observe a significant amount of negative log2 mean ratios.

The negative signal at the position j means that the left-hand side mean estimate

MA(i,j�1) is higher than right-hand side mean estimate MA(i,j+1), indicating the “drops”

in interaction intensity when we move within Hi-C row in the direction of the diagonal.

The values of negative signals are not so high in absolute terms and they do not cross

the value of -1: it means that the interaction mean does not fall by more than half of the

mean computed one window before. Positive signals, in opposite, reach higher values

that is expected in presence of TADs.

Topologically associated domains can be defined as consecutive squares along

the diagonal of Hi-C contact map enriched with interactions inside. Consecutive here

means that TADs are allocated “head to tail”: the end of the one TAD has the same

position as the start of the next one. This definition eliminates the existence of breaks

and complex structures such as nested or partially overlapping TADs.

The existence of consecutive TADs only implies the presence of single left TAD

edge position for each Hi-C row. As a consequence, it should result in the global max-

imum of log2(MA(i,j+1)/MA(i,j�1)) ratio at the TAD edge candidate position rather than

local maximum. In fact, we observe several clear peaks between the HiCExplorer TAD

edge positions (Figure 3.2.F). Based on the criteria introduced above we can suggest

that these peaks are either noise, or real signals that reveal the presence of edges ap-

peared because of nested or partially overlapping TADs. More evidence for the second

explanation comes from the heat map that represents the log2(MA(i,j+1)/MA(i,j�1)) sig-

nals within the Hi-C matrix (Figure 3.2.H). The local maxima mentioned above are not
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randomly allocated within the matrix, they are organised in visibly clear stripes meaning

that several neighbouring Hi-C rows show the same TAD edge candidate position.

To sum up, the MA-based TAD edge calling method potentially allows us to detect

more complex architectural structures such as nested or partially overlapping TADs.

This weakening of the consecutive TAD assumption creates the opportunity to explore

the chromatin architectural hierarchy that is one of the critical topics in the field of TAD

calling tools.

3.3.2. TAD edges are visualised as highly intensive stripes at log2 mean ratio

heat map

Log2 mean ratio is proposed to reach its local maxima at the positions that are most

probable candidates to become the left TAD edge positions. All neighbouring Hi-C rows

that demonstrate the same left TAD edge position are expected to belong to the same

TAD and the last such row is a candidate to become the bottom TAD edge position

(limiting the length of left TAD edge). These two criteria seem to be quite simple, but

the realisation is not so clear - due to the data noise we expect that candidate position

can highly vary within Hi-C rows belonging to the same TAD.

In the previous Section S3.3.1. we stated that the log2(MA(i,j+1)/MA(i,j�1)) ratio

reaches its local maximum only when the position j is a candidate to be a left TAD

edge position, where MA(i,j+1) and MA(i,j�1) are defined according to Formula (3.1)

and (3.2), respectively. In addition, when we use the “local maximum” instead of “global

maximum”, we allow several left TAD edge positions to exist within single Hi-C row,

meaning that we want to detect complex architectural structures such as nested or

partially overlapping TADs.

Finding the local maxima is not a trivial exercise. When working with noisy data

like Hi-C, we would prefer to smooth signal or fit the data to a high degree polynomial

function. The problem here is the computational efficiency - each Hi-C row should

be processed separately that requires time and memory. In addition, the smoothing

should be done in a way to have local peaks of log2 mean ratio coinciding at the same
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Figure 3.2. The TAD edge definition and detection criteria. A. Selecting the particular locus i,

the 3D architecture (top panel) is represented in form of the matrix (bottom panel) produced

by Hi-C. Interactions between locus i and other loci are written within matrix row, upstream

loci are allocated before the diagonal, downstream loci are allocated after the diagonal; diag-

onal element is a self-interaction event (orange), it is removed from the analysis. Dark grey

colour represents the intra-TAD interactions, light grey colour represents the inter-TAD inter-

actions. Dark blue represents the intra-TAD interactions with locus i, light blue represents the

inter-TAD interactions with locus i. The left (j = ks) and right edges (j = ke) are the elements

of intra-TAD interactions, which separate the intra-TAD and inter-TAD area Width in the size

parameter of the TAD. B. For selected locus i, single cell experiment detects a single pairwise

interaction. The interaction frequency generated by Hi-C (row i in matrix), represents the sum

of all single pairwise interactions in the population of cells. C. MA mean estimates centred at

the TAD borders called with HiCExplorer. Figure key explains the computation window and

x-coordinates for each MA mean estimates. On the positive side of x-axis there are windows

calculated on the right-hand side from the selected center point (coloured with orange), on

the negative side of x-axis there are windows calculated on the left-hand side from the se-

lected center point (coloured with blue). Each Hi-C row is represented by individual line with

individual colour: from the purple line corresponding to the row 1 and to the yellow line corre-

sponding to the row 620. D. The same as C, but MA estimates are centred at the diagonal.

E. Explanatory figure on log2 mean computation within single Hi-C row i (right panel) and its

3D representation (left panel). Within window B the interactions with locus i are expected to

be higher than within window A, so log2 mean ratio is expected to have a peak at ks which is

a TAD edge coordinate. F. Top panel represents the heat map of the genomic region chr3R:

21.3 - 21.7 Mb selected for testing the TAD edge criteria. Dark blue colours indicate intense

pair-wise contacts retrieved by Hi-C. Black lines indicate the TADs called using HiCExplorer.

Bottom panel represents the distribution of log2 ratio of one MA window on the right-hand side

from the column position j to one MA window on the left-hand side from the column position

j. White lines indicate the TAD edge positions called with HiCExplorer. G. The histogram of

log2 ratios from F. H. Lower triangle represents the allocation of log2 ratios of one MA window

on the right-hand side from the position j to one MA window on the left-hand side from the

position j within Hi-C matrix. Upper triangle represents the Hi-C interaction frequency. Black

lines indicate the TADs called using HiCExplorer.
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position within neighbouring Hi-C rows belonging to the TAD. So, before exploring the

statistical framework to detect local peaks we can start with naive and simple approach

to allocate left TAD edges in order to understand possible limitations and specific details

that we should keep in mind when calling local maxima of log2 mean ratio.

The naive threshold-based method can be described as following. Before the algo-

rithm starts, a user selects a particular threshold value that defines the minimum log2

mean ratio. During the algorithm processing, when log2 mean ratio exceeds the given

threshold at some column position we define it as the potential left TAD edge position.

When the threshold is selected to be relatively low, we expect to detect several con-

secutive locations to be the potential TAD edge. So, in this case we deal with more like

a window rather than the exact position - the TAD edge can be allocated somewhere

within the detected window. From a biological point of view, the window makes sense

- the chromatin is a dynamic structure, so the interactions detected on TAD border in

some cells can be not detected in other cells, and, as a result, TAD border position can

vary within several bins. When the threshold is selected to be relatively high, a smaller

amount of TAD edges is expected to be found.

When the log2 mean ratio exceeds the threshold, several column positions could

be:

• consecutive, meaning that we can identify the window where the possible TAD

edge is allocated,

• single peaks separated from each other by large gaps, meaning that, most prob-

able, we detect jumps in signal because of noise,

• the mix of consecutive regions, gaps and peaks.

In addition, the consecutive region observed in one Hi-C row possibly does not fully

coincide with consecutive region observed in neighbouring Hi-C row, meaning that

these two rows do not have the same TAD edge position. Also, the relatively short

gaps between long consecutive regions are possibly produced by noise in the data

and, thus, could be combined. Overall, we require the introduction of a set of rules

that will guide us when gaps and consecutive regions should be aggregated in order to

detect stripes of intense log2 mean ratios signal. The whole threshold-based TAD edge
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calling algorithm with required set of rules is completely formalised in the Appendix 3.2,

in this Section we focus on the results.

In Figure 3.3, we demonstrate how log2 mean stripes are detected under the dif-

ferent threshold values: the rectangle areas on Hi-C maps surround the bright stripes

(Figure 3.3.A-D). As expected, the areas of polygons are expected to decrease when

the threshold value increases: there is the lower chance for log2 mean ratio to beat

the higher threshold values, so the fewer column and row candidate positions to be

included. For some extreme values of threshold, the majority of polygons completely

disappears and only small areas are left (Figure 3.3.A-D, bottom panel).

We allocated these polygons as a technical feature that allow to make a decision

about the performance of the proposed algorithm: polygons should cover log2 mean

ratio stripes that are visible on Hi-C heat map and overlap with reliable TADs called by

the HiCExplorer tool. Based on these two criteria, the TAD edge squares are perform-

ing well for threshold values being around 1.00 - 1.20 (Figure 3.3.E-G).

The main limitation of the method is the set of rules for gaps and consecutive re-

gions aggregation. They do not take into account the specific features of the data, for

example, the variation in the log2 mean ratios, for example, when signal is more dis-

perse we would expect to have larger gaps between consecutive regions. However, the

threshold-based TAD edge detection procedure revealed several key features. First,

the TAD edge is not a single position conserved within several neighbouring rows but

more like a genomic region with intense log2 mean ratio signal. Second, within log2

mean stripe the signal is not homogeneous: the signal is more intense in the centre

of the stripe and the signal is blurry on the edges of the stripe. Third, stripe loses its

intensity when the signal is far from the diagonal. It means that the TAD edge is more

clear when it is closer to the diagonal and it starts to disappear when it is far from the

diagonal. It is consistent with the fact that even if the DNA fragments belong to the

same TAD, they interact more frequently when they are closer to each other on the

chromatin. In addition, as log2 mean ratio signal disappears away from the diagonal,

with a threshold-based approach we get low detection of the end of the TAD. It leads
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us to the idea that the log2 mean stripe length can be a good feature to allocate to the

TAD end position, but it is not sufficient.

3.3.3. TAD edge positioning is based on identification of log2 mean ratio local

extrema and its statistical validation

For the selected pair of DNA fragments (i, j), we compute the log2 mean ratio accord-

ing to the formula log2(MA(i,j+1)/MA(i,j�1)) where MA(i,j+1) and MA(i,j�1) are com-

puted based on the pre-defined window size w according to Formula (3.1) and (3.2),

respectively.

Assume that we select a single Hi-C row i and start to compute log2 mean ratios,

moving from the left Hi-C matrix edge (from the column position j = w + 1) towards

the Hi-C matrix diagonal (to the column position j = i � 1 � w) (Figure 3.4.A). When

we are outside TAD, we expect to observe the interactions with the same intensity in

average. Even if we assume that we have genomic distance versus interaction intensity

functional relationship in addition to the presence of TADs, we can make an assumption

that moving average mean MA(i,j+1) computed on the right-hand-side from the position

j is not significantly different from the mean MA(i,j�1) computed on the left-hand-side

due to the relatively small size of estimation window w. So, the log2 mean ratio is

expected to fluctuate around zero when we are at outside TAD region. When we move

closer to the TAD edge, the right-hand-side mean estimating window catches more

interactions from inside TAD region. As a result, the log2 mean ratio is expected to

rise till the moment when the moving average mean MA(i,j+1) computed based only on

interactions inside TAD, in other words, when the column position j is one bin before the

TAD edge. After crossing the TAD edge, the left-hand-side mean estimation window

catches more interactions from inside TAD region and less from outside TAD region.

It means that the mean on the right-hand-side and mean on the left-hand-side from

the column position j becomes not significantly different from each other, so the log2

mean ratio start to decrease to zero. Theoretically speaking, we expect to observe

the local maximum at the left TAD edge position and the width of the peak is expected
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Figure 3.3. Performance of the threshold-based TAD edge calling algorithm. A. Heat map

represents the allocation of log2 mean ratios within Hi-C matrix on the testing genomic region.

White lines on upper triangle indicate the TADs called using HiCExplorer. White lines on lower

triangle indicate TAD edge areas detected with 1.0344 (top panel), 1.1689 (middle panel) and

1.4826 (bottom panel) thresholds. B. Same as A, but white lines on lower triangle indicate

reconstructed TAD edges on the basis of TAD edge squares. C-D. The Hi-C interaction heat

map. Black lines represented the same HiCExplorer TADs, TAD edge squares and recon-

structed TAD edges as on A-B. E. The number of reconstructed TADs called on the testing

genomic region with different thresholds (x-axis). The blue bar represents the number of TADs

called by HiCExplorer. F. The distribution of widths measured in Kb of reconstructed TADs.

The blue bar represents the width of TADs called by HiCExplorer. G. Same as F, but widths

are measured in bins.

to be (2w + 1). So, instead of point position we observe the stripe that surrounds

the left TAD edge candidate position (Figure 3.4.B). The stripe is expected to be non-

homogeneous: the log2 mean ratio reaches its maximum intensity around the centre

of the stripe.

We worked only with lower triangle of Hi-C matrix as we were exploring the criteria

of left TAD edge detection, i.e. the allocation of the start of the TAD. Moving further

within Hi-C row i, beyond the diagonal, we deal with interaction between locus i and

locus j = i+1, i+1, ..., n where n is the total number of fragments. As the Hi-C matrix

is symmetric, when we cross the left TAD edge within the lower triangle of Hi-C map,

we expect to cross the right edge of the same TAD within the upper triangle of Hi-C

map (Figure 3.4.C). The right TAD edge represents the end of the TAD. Thus, when

we move from the position j = i + 1 to the position j = n, we observe the interactions

within inside TAD area, then cross the edge and we observe the dramatic “drop” of

interaction intensity when we are outside TAD. So, we get the similar situation with the

left TAD edge but the difference is that instead of the local maximum we observe local

minimum at the end TAD edge position. The local minimum appears because when

right-hand side MA window is already outside TAD and left-hand side MA window is

still inside TAD, we get the negative log2 mean ratio as when calculating the ratio we
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get numerator being lower than denominator. When both MA windows are both either

inside or outside, the log2 mean ratio should fluctuate around zero.

From the memory efficiency point of view, we may prefer to store only either lower or

upper triangle instead of storing the full Hi-C matrix. Again, as Hi-C matrix is symmetric,

moving within the Hi-C row i at the upper triangle from the diagonal is analogical to

moving within Hi-C column i at the lower triangle from the diagonal (Figure 3.4.D).

Mathematically, for the selected pair of DNA fragments (j, i), we define log2 mean ratio

as log2(MA(j+1,i)/MA(j�1,i)) where MA(j+1,i) and MA(j�1,i) are computed based on the

pre-defined window size w as following

MA(j+1,i) =
1
w (x(j+1,i) + x(j+1,i) + ...+ x(j+w,i)) (3.3)

MA(j�1,i) =
1
w (x(j�1,i) + x(j�2,i) + ...+ x(j�w,i)) (3.4)

Then, we aim to detect local minima position of log2 mean ratio as the end TAD

edge candidates. Note that from here we refer left TAD edge as start TAD edge and

right TAD edge as end TAD edge. When we visualise the computation of log2 mean

ratio column-wide in a form of a heat map, we observe the stripes of negative log2

mean ratios analogically to row-wise computed log2 mean ratios when detecting the

start TAD edge (Figure 3.4.E). Note that these stripes mimic the visually detectable

ends of TAD triangles.

We suggest that the width of the peak (i.e. the width of log2 mean ratio stripe) is

defined through the MA window size w as (2w+1). As we expect to observe one single

peak with the mentioned width, we expect that no other TAD edge can be detected

within the distance of (2w + 1). So, the following limitation is arising: there is the

connection between minimum distance between neighbouring TAD edges and selected

MA window size w. If the window size is too large, we would catch several TAD edges

within one stripe. Still, if the window size is too short, we would catch many fluctuations

due to biases in Hi-C data.
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Figure 3.4. Local extrema searching for start and end TAD edge allocation. A. Log2 mean

ratio is expected to follow the bell-shaped function near the start (left) TAD edge position

within single Hi-C row. Orange cell represents the position of log2 mean ratio of the loci

pair (i, j), the blue cells on the right indicates the right hand side moving average mean

estimate window, the blue cells on the left indicates the left hand side moving average mean

estimate window. B. Lower triangle represents the allocation of log2 mean ratios within Hi-C

matrix, computed row-wise according to explanation in A. Upper triangle represents the Hi-C

interaction frequency. C. Same as A, but the function is near the end (right) TAD edge. D.

For computational simplicity, because of symmetric Hi-C matrix the end TAD edge expected

function can be defined within the lower triangle. E. Same as B, but the ratios are computed

column-wise according to description in D.
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3.3.4. Moving Average window size balances the number of valid log2 mean

ratios

Generally, Hi-C data contains large amount of non-available interactions. Some pairs

of DNA fragments are not present due to low mappability: if they are too short or

enriched with repetitive elements and cannot be uniquely mapped to the genome. Also

fragments that are involved in complex interactions cannot be counted: if, for example,

there are more than two DNA fragments interact simultaneously, only single pair is

counted. All these experimental and processing limitations generates NAs in Hi-C data.

On the other hand, NAs could appear if the pair of loci did not interact in population

of cells in Hi-C experiment. Then, the contact count in this case can be replaced by

zero. Some processing procedures and Hi-C-related modelling algorithms propose to

replace all NAs with zeros. However, if we aim to work with estimation of average

frequencies, presence of large number of zeros can underestimate the averages.

Short MA windows have a higher chance to be filled by lost data points (NAs) only,

while long MA windows more probably contain both observations and NAs. The danger

of MA subsets either containing mainly NAs or only NAs is that the estimated mean

is expected to be either biased or not to be computed at all, respectively. So, the

window w should be large enough to have reasonable amount of the windows with

observations. At the same time, larger window size leads to wider log2 mean ratio

stripe that, as a consequence, affects the accuracy of allocation of the exact TAD edge

position within the stripe and reduce the number of stripes that we are able to detect.

Most of the NAs appear far from the diagonal representing extremely distal inter-

actions. Also, as we can see from TADs called with HiCExplorer, the largest detected

TAD width within the whole genome is around 400 Kb or 600 bins, at the testing region

the maximum width is around 75 Kb and 140 bins (Figure 3.5.C). It means that the stor-

ing the whole matrix is not required, it is enough to store the restricted amount of bins

from the diagonal (Figure 3.5.A). Thus, when we work genome-wide, we can restrict

the data up to 1000 bins as we do not expect TADs to be detected with edges at length

more than 1000 bins. At DpnII resolution with median bin size of 575 bp, for each in-
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vestigating locus i 1000 bins restriction means that we deal with interactions that are

not far than 500-600 Kb upstream from the locus i if we extract signal row-wise (start

TAD edge detection) and downstream from the locus i if we extract signal column-wise

(end TAD edge detection) (Figure 3.5.A and B).

Increasing the MA window size will reduce the number of data observations used

for log2 mean computation. Assume, that we denote the restriction length as X and

the total number of fragments as N . On Figure 3.5.A and B, the area representing

the total number of interacting pairs used for log2 mean ratio computation is coloured

with blue and orange. For selected window size w, the amount of log2 mean ratios are

visualised with orange colour only and can be formally computed as

(X � 2w)(N �X)

The log2 mean ratio turns into NA when at least one of the MA windows is com-

pletely filled with NAs, in other words, when we have at least w consecutive NAs.

1. When w consecutive NAs are at the beginning of the Hi-C row i, for column position

j = w + 1 according to Formula (3.2)

MA(i,j�1) = NA, so log2MA(i,j+1)/MA(i,j�1) = NA.

2. When w consecutive NAs are somewhere within the Hi-C row i, i.e. for column

positions j = j1, j2, ..., jw where j1 6= 1 and jw 6= i � 1, at j = j1 � 1 according to

Formula (3.1)

MA(i,j+1) = NA, so log2MA(i,j+1)/MA(i,j�1) = NA

and at j = jw + 1 according to Formula (3.2)

MA(i,j�1) = NA, so log2MA(i,j+1)/MA(i,j�1) = NA

3. When w consecutive NAs are at the end of the Hi-C row i, for column position

j = i� 1� w according to Formula (3.1)

MA(i,j+1) = NA, so log2MA(i,j+1)/MA(i,j�1) = NA.

Overall, the amount of non-available log2 mean ratios when the MA window size is w

is between the number of w consecutive NAs and the number of w consecutive NAs

multiplied by 2. Also, each w consecutive NAs produce non-available log2 mean ratios

with proposed window sizes at w�1, w�2, w�3 and so on. Thus, computing the num-
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ber of consecutive NAs within the given restricted Hi-C dataset, we can estimate the

upper and lower boundary of the number of non-available NAs and, as a consequence,

the number of available NAs (Figure 3.5.D and E). Convex shape of the amount of valid

log2 mean ratios versus the window size is expected. When we first increase the short

MA window we reduce the chance to catch the MA window consisting of NAs only, so

we get fewer non-valid log2 mean ratios and get more valid ones. However, further

increase of window size requires more interaction for log2 mean ratio computation, so

we get fewer ratios computed. So, for large windows the advantage of getting less

non-valid log2 mean ratios is outweighed by the disadvantage of getting fewer signals

for further analysis. The minimum estimated number of valid log2 mean ratios reaches

its maximum at w = 70. This value is too large from the biological point of view as it is

expected to produce the log2 mean ratio stripe of approximately 70 Kb. The marginal

increase of the convex function reaches 5% at w = 10, the same value as we proposed

to use when we tested the TAD edge detection criteria in the Section S3.1.

3.3.5. The Mann-Whitney U test statistics is used to detect TAD edge stripes

Suppose that we have a formal procedure that at the end gives us the set of locus po-

sitions that are the TAD edge candidates, i.e. local maxima of log2 mean ratio for start

TAD edge detection and local minima of log2 mean ratio for end TAD edge detection.

These candidates include both the peaks that can be called local maxima/minima with

some degree of certainty and peaks that are actually spurious because of the noise.

We aim to formalise the procedure that can distinguish between these two scenarios.

We focus at start TAD edge only at the current stage as the procedure is expected to

be approximately the same for the end TAD edge detection with the only difference that

we need to work with local minima detection instead of local maxima.

While we build and explore the approach, we can use the following procedure to se-

lect local maxima candidates quickly. We, first, extract log2 mean ratios per each Hi-C

row and then use scatter plot with log2 mean ratios versus Hi-C row coordinates (Fig-

ure 3.6.A). Then, we apply the Kernel Regression Smoother (the Nadaraya–Watson
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Figure 3.5. Optimal MA window size diagnostics. A. Schematic representation of the re-

stricted and non-restricted Hi-C matrices. On the left panel we represent the unrestricted ma-

trix with N interacting loci and MA window w. On the right panel we represent the restricted

dataset when the restricted length is X. The blue and orange colours represent the matrix

elements that contain the interacting frequencies, the orange colour represents the positions

for which we can compute the log2 mean ratios with MA window w. The arrow represents the

direction of computing log2 mean ratio, for start TAD edge we compute the ratios row-wise.

B. Same as A, but we compute log2 mean ratio column-wise for end TAD edge detection.

C. The distribution of widths (in Kb and in bins) of TADs detected with HiCExplorer genome-

wide. The orange dots represent the TADs allocated within the selected test region. D. The

minimum and maximum estimates of the number of log2 mean ratios being NA computed

row-wise (top) and column-wise (bottom) within the genome. The vertical line represents the

MA window w starting from which we observe marginal decrease being less than 5%. In the

corner we represent the function at larger window sizes. Note that we estimated the numbers

based on restricted matrix with X = 1000. E. Same as D, but we estimated number of log2

mean ratios that do not equal to NA.
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kernel regression estimate implemented in R as a part of stats package) with normal

kernel and various bandwidth parameters and defined the local maxima points. We

use the Hi-C matrix restricted by 1000 bins from the diagonal and we still get many

NAs and also next to zero log2 mean ratios which are produced far from the diagonal.

Including these distal log2 mean ratios can over-weight the smoothing curve closer to

the zero line and over-smooth visually detectable peaks of log2 mean ratios. To avoid

these problem, at each Hi-C row we extracted only log2 mean ratios that exceed the

pre-selected quantile, so we ensure that we apply smoothing only on top log2 mean

ratios that are most probably allocated closer to the diagonal. We set two quantile limits

at 0.9 and 0.5 and bandwidth parameter at 10. We do not require high accuracy at this

stage, as before formalising the procedure we aim to learn nuances that we have to

keep in mind.

Even if smoothing curve at 0.5-quantile limit is visually over-smoothed, we still call

all visually detectable local maxima (Figure 3.6.A). Actually, we get more local max-

ima candidates with 0.5-quantile than with 0.9-quantile. The reason is the presence of

peaks that are allocated too close to each other (for example, close to rows 100, 180 or

280), so the smoothing curve creates patterns that we can name as “plateau regions”:

parts of the smoothing curve that are approximately flat. Given these findings, we can

conclude that when we call local maxima candidates we do not require the data set to

be restricted but the log2 mean ratios extracted from the whole Hi-C row makes differ-

ences to be less pronounced. So, using weighted average of log2 mean ratios when

we give larger weights to observations next to the diagonal and lower weights to obser-

vations far from the diagonal can make the local maxima more pronounced. Also note

that the smoothing is a useful tool when we work with large datasets and we can get too

many local maxima candidates that should be examine further. However, it is sensitive

to the bandwidth parameter: when the bandwidth is too large we can accidentally lose

some significant peaks because of over-smoothing (like in case of plateau regions) but

when the bandwidth is small, the signal becomes noisy and we again should deal with

extreme number of candidates. With the relatively small Drosophila genome, we can
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continue to work without smoothing but if we want to perform the TAD edge calling on

large organisms like human we may require the smoothing step.

If several neighbouring Hi-C rows share the same start TAD edge, we expect the

local maximum to be detected at approximately the same column position (to be accu-

rate, within the stripe of (2w + 1) width). So, we should observe not a single, but a set

of log2 mean ratios within several neighboring Hi-C rows that have in average higher

value close to the local maximum and lower value when we are far away from the local

maximum position. So, there are three main features that we need to formalise. The

first one is that we have to define the genomic region that surrounds the local maximum

and demonstrate in average higher log2 mean ratios. The second feature is that we

have to define the genomic regions that are remote enough to demonstrate in average

lower log2 mean ratios. And the third one is that we have to define the way to conclude

whether the difference in average log2 mean ratios is significant or not. So, it make

sense to introduce the window here to define the region around the local maximum

candidate position. Actually, we introduce three windows called left, middle and right

windows (Figure 3.6.B-D). The middle window is the region centered at the maximum

candidate position, the left and right widows are the regions on the left-hand-side and

right-hand-side, respectively, from the middle window and they describe area that is far

away enough from maximum candidate position.

The values of the log2 mean ratio covered by the left, middle and right windows are

used to validate the candidate position to be real rather than spurious local maximum.

If it is the local maximum, the log2 mean ratios are expected to be in average higher

within the middle window than within the right or left window (Figure 3.6.C). The Mann-

Whitney U test is the first natural choice for a statistical non-parametric test that allows

us to say with some certainty level that two sets of observations come from different

populations.
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The Mann-Whitney U test.

We have a sample of nx observations (x1, x2, ..., xnx) and a sample of ny observations

(y1, y2, ..., yny). ). All xi where i = 1, . . . , nx are independent, all yj where j = 1, . . . , ny

are independent and xi and yj are independent from each other. We aim to test whether

two samples come from the same population:

H0 : P (xi > yj) = 1/2 8 i = 1, ..., nx; j = 1, ..., ny;

H1 : P (xi > yj) 6= 1/2 (two-sided)

Simply to say, we aim to compare the medians: under the null hypothesis the medians

are the same, under the alternative hypothesis the medians are different. When the null

hypothesis is rejected, it means that we obtained two sets of observations most probably

representing two different distributions. When the null hypothesis is not rejected, it means

that the datasets did not demonstrate enough evidence to conclude that they obtained

from different distributions.

The test statistics is calculated as follows:

Ux = number of times when xi > yj 8 i = 1, ..., nx; j = 1, ..., ny;

Uy = number of times when xi < yj 8 i = 1, ..., nx; j = 1, ..., ny;

U = min(Ux, Uy)

Then, use the statistical tables for the Mann-Whitney U test to find the probability of

observing the value lower than U . If test is two-sided, double the probability.

We apply the one-sided Mann-Whitney U test comparing, at first, log2 mean values

from the middle and left windows, then from the middle and right windows. Thus,

low p-values (lower than pre-defined cut-off) means that the log2 mean ratios around

the candidate position are on average higher than ratios that are far enough from the

candidate position and this candidate position can be called a local maximum. So, we

say that the candidate position is the local maximum when log2 mean ratios within both

left and right window are on average lower than within middle window. Technically, we

compare the maximum of two p-values with the pre-defined cut-off to conclude that

the candidate is a local maximum. This is reasonable when we observe a clear stripe

that is remote enough from neighbouring stripes. When two stripes are close enough
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we have a high chance that we catch a neighbouring peak within right or left window.

It is exactly the situation of plateau regions: we observe two clear peaks which are

too close to each other (Figure 3.6.D). So, as the consequence of the Mann-Whitney

U test, neither of the peaks is determined as local maxima. To avoid the problem,

either the width of the left, middle and right windows should be selected in a way

that two neighbouring candidates do not belong to neighbouring testing windows, or

instead of both left and right windows being on average filled with lower signals, it is

enough to have the significant difference at only one side - either left or right. The first

solution creates a danger of performing the test with relatively small sample sizes that

decreases its power and trustfulness in the results. The second solution allows both

clear peaks and plateau regions to be detected.

So, we have left, middle and right windows to perform a test and if the p-value in at

least one direction is significant, we confirm the local maximum and, as consequence,

start TAD edge position.However, the number of observations which we include within

each window can affect the result of the validation test. Log2mean ratio demonstrates

the distance decay: log2mean ratio is intense within the TAD edge and then decreases

when it is far away from the diagonal. At the long distance, there are either no contacts

detected or contact frequencies are very low, so we accumulate more log2mean ratios

which are zeros or NAs. In particular, visually the log2mean stripes do not go further

than 150 bins (Figure 3.5.C). If we include all zeros and NAs appearing at the long

distances, we face a risk that the distributions would almost be composed of zeros, so

the medians at left, middle and right would be approximately the same and the Mann-

Whitney U test would not recognise the candidate position as local maxima even if at

shorter distances it is. For example, the peak that is under 0.9-quantile limit is defined

as significant, but when we include more observations with 0.5-quantile limit the same

peak will not be defined as significant anymore (Figure 3.6.B and C). The number of

observations included into the test can be restricted by the sizes of left, middle and

right windows. The number of observations included into the test is defined by the

sizes of left, middle and right windows.
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The Mann-Whitney U test is non-parametric, so it is helpful tool when we don’t

assume any distribution. However, the test assumes the independence of the ob-

servations between the groups. In case of Hi-C data, the contacts are not indepen-

dent. When two DNA fragments interact to each other, due to ligation neighboring

fragments will also demonstrate intensive interactions in Hi-C dataset. So, we face a

spatial dependency of neighboring chromatin interactions. However, when we compute

log2mean ratio, we extract the average long-range interactions between fragment i and

two windows – upstream and downstream from fragment j. In this Chapter, the win-

dow is 10 bins which is approximately 5 Kb – the distance is long enough to diminish

the spatial dependence. Two neighbouring log2mean ratios computed row-wise within

the same Hi-C row are based on approximately the same contact observations and

different only by two contact frequencies: downstream windows are different in con-

tacts xj+1 and xj+w+1 and upstream windows are different in contacts xj�1 and xj�w�1.

These interactions are relatively far from each other, so can be treated as independent

for some extent. Overall, on log2mean ratios within the same Hi-C row can be treated

as independent. At column-wise perspective, we face a distance decay. When row-

wise log2mean ratios within the same column are computed, we look on the average

interaction frequencies between fragments from (j�w) to (j+w) and fragments i, i+1,

i+ 2 and etc. For i and i+ 1, for example, the spatial dependency between log2mean

ratios exist as these fragments are too close to each other. However, the spatial re-

lationship between log2mean ratios within validation test windows is expected to be

different for left, middle and right windows if TAD edge is present within the middle

window. The log2mean ratio decay should be more pronounced within middle window

as ratios face both distance effect and the presence of TAD edge while within left and

right windows ratios face only distance effect. So, we suggest that the distance de-

cay is not critical for independence between left, middle and right validation datasets.

Although, for future research it worth to carefully analyse the functional relationship be-

tween log2mean ratio and genomic distance to better understand the distance decay

effect and how it can affect the TAD edge length estimation.
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Figure 3.6. The Mann-Whitney U test as a tool for local maxima validation. A. The allocation

of left, middle and right Mann-Whitney U testing windows. Top panel represents the heat map

of log2 mean ratios computed row-wise rotated to simplify the representation of start TAD

edge. Middle panel represented the log2 mean ratios extracted within each column candidate

position, we expect to observe more higher dots at start TAD edge candidate positions. We

select only ratios that are higher than 0.5-quantile limit computed at each x-coordinate. The

yellow line smooths the signal based on the Kernel Regression Smoother with normal kernel

and bandwidth parameter set at 10. Bottom panel represents the same as top panel but

with 0.9-quantile limit. B. The visualisation of the scenario if we select all (or majority) of

log2 mean ratios within the candidate position. On the right, we represented the described

scenario based on 0.5-quantile limit (middle panel A). The numbers represent the p-values

of one-sided Mann-Whitney U tests. C. Same as B, but we represent the scenario when

we select only ratios belonging to the TAD edge stripe length. On the right, we represented

the described scenario based on 0.9-quantile limit (bottom panel A). D. Same as C, but we

represented the plateau region scenario.
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3.3.6. Computing the effect size statistics may be a base for log2 mean stripe

length identification

We need to define the proper left, middle and right window sizes selection procedure.

Using the Mann-Whitney U test, we can compare the median of two data sets that are

not required to be the same size. So, in theory, the width and the length of testing

windows can be different. However, for simplicity and homogeneity of motivation we

select the sizes of windows according to similar rules.

We start with testing windows width. We expect that the width of log2 mean stripe,

which position we aim to detect, is approximately (2w + 1), so the distance between

two neighbouring peaks is at least (2w+1). If we assume that all three testing windows

have the same widths ŵ, the distance between centre of middle window and the last

column position belonging to the right window is approximately 1.5ŵ (Figure 3.7.A).

This distance should be equal or less than minimum distance to the neighbouring peak:

1.5ŵ  2w + 1

ŵ  2
3(2w + 1)

For simplicity, when selecting the testing window to be the same width as the MA

window, i.e. ŵ = w, we insure that candidate peaks are allocated far enough from each

other to be detected. In addition, we also stated that we aim to detect the significant

difference between average log2 mean ratios in at least one direction - either left-

hand side or right-hand side - so, we do not face a danger to accidentally cover two

neighbouring local maxima candidates within two neighbouring testing windows.

In the previous section, we stated that we have to limit the length of testing win-

dow in order to avoid the risk of incorrect validation testing due to the distance decay

of log2mean ratios within the stripe. The length of the testing window should reflect

the length of log2 mean ratio stripe - when the stripe is finished, there is no more

difference in signals between left, middle and right windows. As different TADs are

expected to have different length of TAD edges, we should be accurate if we decide to

select the single testing window length for all candidate positions. Otherwise, we can

introduce the procedure that selects the optimal window length individually for each
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candidate position based on some statistics. The effect size measure can be used as

this statistic. The effect size can be use when we need to measure the strength of the

relationship between two variables in a population. In particular for the Mann-Whitney

U test, the effect size can measure the strength of the difference between medians of

two investigated samples.

The effect size of the Mann-Whitney U test.

The effect size r for the Mann-Whitney U test with sample sizes nx and ny and test

statistics U is computed as:

r = zp
nx+ny

where z = |U�µ|
� , µ = nxny

2 and �
2 = nxny(nx+ny+1)

12

The programming implementation can use the following formula where val is the Mann-

Whitney U test p-value and the factor k = 2 if test is two-sided and k = 1:

r <- abs(qnorm(p val/k))/sqrt(n x + n y)

When a stripe is fully covered, the difference between median signals within neigh-

bouring testing regions is maximised. Then, increasing the testing window length fur-

ther than the end of the stripe, we catch more close to zero signals and the overall

difference is expected to fall. Following this logic, we expect the difference between

medians to be strong when the testing window covers the part of the stripe or the

stripe in full and the strength of the difference should fall when we set testing window

be longer than the stripe. Considering distance decay of log2 mean, the effect size is

expected to smoothly fall even within the log2 mean stripe. On Figure 3.7.D, where

demonstrated the relationship between p-value, effect size and depth for start TAD

edge candidate positions on the testing genomic region, we observed that the effect

size generally decreases when depth increases and the speed of change is also differ-

ent: first, effect size changes slowly and p-value dramatically decreases, then, effect

size falls faster and p-value reaches its minimum, and, at the end, effect size again

slowly decreases together with the increase in p-value. As p-values themselves are

not comparable, we can implement the optimal stripe depth estimation based only on
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the effect size decrease speed as follows. With particular local maxima candidate, we

start with left, middle and right windows with size being w ⇥ w and compute both the

Mann-Whitney U test p-values and effect sizes comparing middle versus left testing

window and middle versus right testing window. Then, we select the single p-value

that is lower (as we require only one p-value to be lower than pre-selected cut-off) and

single corresponding effect size. At the next step, we expand the length of the testing

window by w, so the testing windows have size of 2w⇥w (Figure 3.7.A). We repeat the

procedure until we reach the end of the restricted matrix. For each candidate position,

we fix the effect size one step before its largest “drop” as it reflects the moment when

the marginal increase in testing window length brings the signals that significantly re-

duce the strength of the difference in medians. Together with the effect size we fix the

corresponding p-value.

Each candidate position is characterised by the p-value and effect size. The p-

value informs that the difference in log2 mean ratios between the candidate position

and neighbouring regions exists or not and the effect size reports the strength of this

difference. We require one more measure that indicates the actual strength of TAD

edge, i.e. the quantity representing the average increase in signal when we cross the

TAD edge. As we define the optimal stripe length with effect size, the sample average

computed on the middle window log2 mean ratio can be a proper estimate for this

measure. Generally, TAD edge strength can be treated as an insulation strength - how

clear is the insulation of DNA fragments belonging the TAD from the fragments that

are outside the TAD edge. Here we face a difference between the proposed TAD edge

calling procedure from other insulation score based techniques like HiCExplorer. For

starts we indicate how each particular locus is insulated when we move along DNA

downstream, for ends we indicate the insulation in upstream direction. So, we indicate

one-sided insulation cases. HiCExplorer is an insulation score (IS) based TAD calling

tool (Ramirez et al. 2018). The IS indicates the average interaction frequency around

the genomic position and when the IS is significantly lower than IS at surrounding

regions, we detect the TAD border (Crane et al. 2015). Overall, HiCExplorer searches
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for the regions that demonstrate significantly lower interaction frequency in comparison

with regions allocated in both directions - downstream and upstream. So, HiCExplorer

detects only two-sided insulation. When one-sided insulation is allowed, we give more

freedom for the algorithm to detect more complex structures as now each start does

not require the paired end at the same position and each end does not require the

paired start.

On Figure 3.7.B, we demonstrate all discussed above features of the TAD edge

calling algorithm. To make it easier to refer to the algorithm, we name it as COrTADo

(Complex Organisation of Topologically Associated Domains). COrTADo combines

the data import, transformation in log2 mean ratio matrix, statistics extraction and val-

idation analysis. As an input for statistics extraction step, we get the matrix of log2

mean ratios computed row-wise. Start TAD edge is defined as the straight line seg-

ment that starts on the diagonal and goes within several neighbouring rows down at

single column position. Given the definition, at first, we extract log2 mean ratios per

each column. Then, we compute the weighted average within each column where the

weight is the reciprocal of the distance to the diagonal (in bins). So, we get the largest

weight to the signals that are allocated close to the diagonal and then weights decrease

when we far from the diagonal. At the next step we detect the local maxima coordi-

nates at log2 mean weighed average line as potential TAD edge positions. We define

the optimal stripe length, extract the p-value, effect size and strength statistics. The

coincidence between the estimated stripe lengths and stripes is highly visible. It is not

perfect when the stripe has clear reduction in the intensity, but after the reduction the

signal is still present. For example, the start TAD edge at Figure 3.7.B at the position

chr3R: 21.38 (4th stripe from the left) shows the estimated stripe length being shorter

than visually clear stripe. It possibly signals about the presence of nested TADs, in par-

ticular, when two or more TADs have the same start position but different edge lengths.

The proposed criteria catches the maximum “fall” in effect size and not the moment

when stripe signal absolutely disappear. So, the criteria can efficiently catch the TAD

edge start but if we aim to reconstruct the TAD patterns (and not only edge positions)
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we have to keep in mind that detected start position can be the start for several TADs.

For the end TAD edge detection, the procedure is approximately the same, the only

couple of corrections have to be considered (Figure 3.7.C). The first difference is that

when we computed the log2 mean weighted average line we search for local minima

coordinates to select TAD edge candidates. The second difference is that when we

perform a test, we expect that the log2 mean ratios within the middle window is in

average lower than within the left and right windows. Also note that when we compute

the insulation strength, we take the absolute average value of the log2 mean ratios

within the middle window. The log2 mean ratios at end TAD edge are expected to be

negative as we detect a “drop” of interaction intensity when crossing TAD edge. In

order to be consistent with the start TAD edge characteristics, we take the absolute

value.

Note, that the whole COrTADO algorithm is formalised in the Appendix 3.3 and the

implementation in R is available on this GitHub repository:

https://github.com/lm17047/COrTADo.git

3.3.7. Threshold selection affects the number of confident TAD edges

We got approximately 7200 candidate positions for start TAD edges and 7200 candi-

date positions for end TAD edges. Each candidate position was characterised by three

parameters: p-value, effect size and signal strength. Based on the combination of

these measures we could distinguish between different classes of TAD edges such as

insignificant insulation, weak insulation and strong insulation. Insignificant insulation

related to situations when we detected candidate position either due to biases in Hi-C

data or because the difference between interaction frequency inside TAD and outside

TAD was negligible. On the other side, strong insulation took place when this differ-

ence is dramatic and we could visually distinguish the presence of the TAD edge on

Hi-C heat map. We also require the weak insulation scenario, when the TAD edge was

relatively weaker and not so pronounced as in strong insulation case but still intra-TAD

interactions were more statistically significant than inter-TAD interactions.
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Chapter 3 Statistical framework for complex chromatin organisation analysis

Figure 3.7. Effect size statistics for optimal TAD edge length estimation and COrTADo sum-

mary. A. The step-wise procedure of checking the candidate length of TAD edge stripe based

on the Mann-Whitney U test effect size. Top panel represents the expected behaviour of log2

mean ratios within the start TAD edge stripe. Bottom panel represents the allocation of left,

middle and right testing windows. The arrow represents the direction in which we expand

the testing window. B. The COrTADo start selection summary. First panel is the heat map

that represents the Hi-C interaction matrix. Second panel represents the allocation of log2

mean ratios computed row-wise. Heat maps are rotated to simplify the representation of start

TAD edge. Black and white lines represent the estimated TAD edge stripe length based on

effect size statistics. Second panel represents the log2 mean weighted average. Local max-

ima positions identify the TAD edge candidate positions. Next three panels represent p-value,

effect size and strength statistics computed at TAD edge candidate positions. C. Same as B,

but instead of start TAD edge summary we represent end TAD edge summary. Note that as

strength is expected to be negative (as ratios within stripe are mostly negative), we represent

absolute value of strength to be consistent with start TAD edge summary. D. The relation-

ship between validation test non-adjusted p-values for middle-vs-left windows (left panel) and

middle-vs-right windows (right panel) and effect sizes at different depths (log2mean ratio stripe

length). Each line represents the test for each start TAD edge candidate shown at (B), lines

are distinguishable by colors. Size of the points represents different depths, selected with step

of 10 bins from 20 to 980.
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Chapter 3 Statistical framework for complex chromatin organisation analysis

Genomic region that was allocated in between two TADs can demonstrate two-

sided balanced insulation when both upstream and downstream chromatin domains

are strongly insulated from each other. However, the genomic region can also demon-

strate two-sided insulation but insulation strength from upstream and downstream do-

mains would be different. We call this scenario as two-sided imbalanced insulation.

In the case of weak insulation parameter thresholds, both upstream insulation and

downstream insulation would be detected, so this genomic region would be included

in both COrTADo start and COrTADo end sets. In case of strong insulation parameter

thresholds, insulation in only one direction would be detected and we would get either

COrTADo start or COrTADo end. Note, that in this scenario of unbalanced insula-

tion other two-sided insulation based TAD calling tools, such as HiCExplorer or Fan-C,

would not recognise the genomic region of interest if the threshold parameters would

be too stringent.

The first parameter was p-value. The p-value measured the probability that there

was no difference between median of log2 mean signal at candidate position and me-

dian of log2 mean signal within neighbouring regions. Lower probability meant greater

difference in median signals. We would reject the hypothesis of median equality when

the probability is less then pre-selected threshold - significance level ↵. However, we

could not compare p-values straightforward as we had many candidate positions and

the problem of multiple testing arose.

In general, when we perform several hypothesis tests simultaneously, the overall

chance to detect at least one false positive, i.e. when we reject null hypothesis while

it is true, increases with the number of tests done. In particular for the COrTADo al-

gorithm, when we test so many candidate positions the chance to incorrectly accept

the uninsulated TAD edge is extremely high. So, the multiple testing correction implies

that individual test p-values should be adjusted in some way to ensure that the overall

probability of observing at least one significant result due to a chance remains below

the pre-selected threshold ↵. There are several correction methods that deal with this

problem, the most widely used are Bonferroni correction and Benjamini-Hochberg cor-
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rection (also known as FDR correction). Bonferroni adjustment treats all simultaneous

tests equally and independently, so if the probability to observe at least one false posi-

tive across all tests is set at ↵, each individual test result is rejected when it is less than

↵ divided by the number of tests performed. Despite being computationally simple, the

disadvantage of Bonferroni correction is that it can be too strict. This method, when

corrects the false positive rate, the same time increases the false negative rate. For

COrTADo it means that there is the high chance to remove TAD edge candidates that

are actually highly insulated. This characteristic may be useful when the cost of error is

too high and we cannot pay the risk. When the research is more exploratory, we would

prefer more relaxed method, for example, FDR correction. Instead of decreasing the

chance of incorrectly selecting an insignificant result within all tests, FDR correction

selects the individual cut-off based on the rank of individual p-value among others. It

implies that the proportion of false positives, on average, would be less than overall

cut-off ↵. FDR correction is widely used in genomic association studies.

The second parameter was effect size. The parameter p-value itself was not

enough to detect the difference in median signals between candidate position and

neighbouring regions as it was sensitive to sample size. A larger sample used in the

test tended to generate lower p-value and demonstrated more significant result even

if the difference was not actually significant. So, long TAD edge stripes with negligible

insulation had a high chance to be accepted. The effect size was the measure that,

independently on sample size, identified the proportion of observations that supported

the median differences direction. Effect size of 0 detected complete overlap in distri-

butions of candidate position and neighbouring regions, effect size of 1.0 detected the

absence of any overlap in two sets. Summing up, we would need to accept candidate

positions with adjusted p-values being less than selected significance level and then

exclude from them the ones that demonstrated low effect size values.

The third parameter was TAD edge insulation strength. Even if the difference in

median signals was significant between the TAD edge candidate position and neigh-

bouring regions (low p-value and high effect size), the strength of insulation could be
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relatively low. Most of the time we would expect that effect size and strength were

highly correlated. However, careful analysis of these two measures together would

allow us to distinguish between TAD with weak but visually sharp edge and TAD with

dramatic increase in interactions inside but blurred edge.

We analysed the distribution of three described parameters at all candidate start

and end positions called with COrTADo. Although we explained the preference of FDR

multiple testing correction over Bonferroni, we visualised both adjustment methods

(Figure 3.8.A and B). As expected, Bonferroni produced less significant candidates

than FDR at the same significance level of 0.01; i.e. Bonferroni removed 1934 start

and 1914 end candidates while FDR removed only 821 start and 849 end candidates.

Even as FDR allowed more candidates, at the next step we removed the ones that

demonstrated low insulation by selecting proper effect size and strength thresholds

(Figure 3.8.C). To classify the candidates based on the effect size, we used Cohen’s

conventions (Cohen 1988). Effect size of 0.5 and larger represented a large level of

insulation, effect size from 0.3 to 0.5 represented the moderate insulation, effect size

from 0.1 to 0.3 represented weak insulation and below 0.1 was negligible insulation.

We selected possible strength thresholds from 0.2 to 1.0 with 0.2 step and analysed the

number of candidates that fell into each cluster. Note that as strength was computed as

the average log2 mean ratio within TAD edge stripe, it estimated the log2 ratio of mean

interaction frequency of intra-TAD area over mean interaction frequency of inter-TAD

area. So, possible strength thresholds referred to approximately 1.15, 1.32, 1.52, 1.74

and 2 times increase in interaction frequency when crossing TAD edge. Two largest

clusters that contained 20-22% of valid candidates (FDR adjusted p-value < than 0.01)

were characterised by small effect size (from 0.1 to 0.3) and strength up to 0.4. Approx-

imately half of valid candidates demonstrated either effect size being greater than 0.3

or strength being greater than 0.4 - we defined these borders as confident ones and

we would use them for further analysis (Figure 3.7.C, yellow and green area). There

were 3284 start and 3320 end positions (Figure 3.8.D). Also, we defined more strin-

gent set of thresholds - either effect size cut-off at 0.5 or strength cut-off at 0.6 - to
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Figure 3.8. Diagnostics and classification of TAD edges based on strong or weak insulation.

A-B. Distribution of -log10 of adjusted p-value (Bonferroni correction in A and FDR correc-

tion on B) versus strength. Darker colours indicate lower effect size, brighter colour indicate

higher effect size. Left panel indicated the values computed at left TAD edge candidates that

represent TAD start positions (7459 candidates). Right panel indicated the values computed

at bottom TAD edge candidates that represent TAD end positions (7462 candidates). Red

horizontal line indicates the adjusted p-value threshold of 0.01 to remove insignificant TAD

edge candidates. C. Distribution of effect size versus strength at candidates with FDR ad-

justed p-value < 0.01. Effect size divided into 4 classes: large when � 0.5, medium when <

0.5, small when < 0.3 and no effect when < 0.1. Vertical lines represent possible strength

thresholds of 0.2, 0.4, 0.6, 0.8 and 1.0. These values mean, respectively, 1.15, 1.32, 1.52,

1.74 and 2.0 times increase of interaction frequency when crossing TAD edge. Numbers and

percentages correspond to the candidates that belong to each specified strength and effect

size intervals. Green area represents set of intervals that defines strong COrTADo borders.

Yellow area represents additional set of intervals that together with green area defines weak

COrTADo borders. E. Bar plot represents the number and share of strong (green) and weak

(yellow) COrTADo borders within all valid candidates (adjusted p-value < 0.01). D. Distribu-

tion of effect size versus strength at candidates with FDR adjusted p-value < 0.01. Dark blue

colour demonstrates COrTADo start candidates that allocated within 5 Kb from nearest end

candidate (and vice versa) and can be defined as candidates with two-sided insulation. Grey

colour demonstrates other candidates that can be defined as candidates with one-sided insu-

lation. Bar plot at right bottom corner represents the share of candidates with two-sided and

one-sided insulation selected with weak and strong thresholds.

separate the borders with more significant and stronger insulation (Figure 3.8.C and D,

green area). There were 976 start and 923 end positions defined as strong COrTADo

borders (Figure 3.8.D).

We suggested that one-sided and two-sided insulation might be maintained by dif-

ferent epigenetic mechanisms and their roles in cellular functioning might be different.

To study possible imbalances in insulation at TAD borders, we ensured that selected

thresholds did not introduce any biases in proportions of two-sided and one-sided insu-

lation cases. We defined start candidate as two-sided insulation when it was allocated
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within 5 Kb from the nearest end candidate. Analogically, we defined two-sided end

candidates. We did not observed any specific preferences of either two-sided or one-

sided candidates in terms of effect size and strength, both classes were approximately

uniformly distributed on strength versus effect size plane (Figure 3.8.E).

3.4. Robustness of COrTADo algorithm under different conditions

3.4.1 Normalised versus non-normalised Hi-C map

The whole framework was based on Drosophila BG3 wild-type Hi-C data which was

not trimmed and not normalised. Usually, before TAD calling, Hi-C data should be

corrected to avoid the influence of technical biases (see Chapter 1 for more details).

Along with TAD allocation, HiCExplorer uses the ICE correction (iterative correction

and eigenvector decomposition) (Imakaev et al. 2012). The ICE procedure relies on

the assumption that all DNA fragments have the same chance to be detected, so there

is no special preference towards some pair-wise interactions during a Hi-C experiment.

As a result, the corrected Hi-C interaction matrix has a higher chance to represent the

contacts that are consistent with the real 3D chromatin architecture and which are not

caused by ligation artefacts or low mappability of the fragments.

Here, we compare the performance of COrTADo when we use raw Hi-C data and

when we use the data where we performed ICE correction before TAD edge calling.

First, we balanced the Hi-C matrix with the same parameters as we did in Chapter 2 to

filter low quality reads and remove the systematic biases. Then, we called start and end

TAD edges using COrTADo with MA window w set at 10 bins, FDR multiple testing cor-

rection and adjusted p-value threshold at 0.01. The window size was selected based

on MA window size as described in the Section 3.3.4. We got approximately 6300 can-

didate positions for start TAD edges and the same number for end TAD edges, which

is slightly less than for raw Hi-C (Figure 3.9.A, C and D). In addition, the distribution

of effect sizes and strengths is visually indistinguishable between raw and corrected

datasets (Figure 3.9.A). The Mann-Whitney U test also confirmed that the differences

are not statistically significant or very small (Figure 3.9.E and F, boxplots labelled with
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“all”). The high similarity makes it possible to apply the same set of rules as before to

separate candidate positions with weak and strong insulation profiles. The number of

weak start and end COrTADo borders was also similar when we corrected the data,

while the number of strong borders were slightly reduced (Figure 3.9.B-D).

At first, it seems that the reduction is reasonable: the correction should remove

the skewness towards some bins, so the Hi-C interaction matrix will demonstrate more

smooth signal and, as a consequence, the sharp TAD edges that appeared due to

noise would not be detected anymore and only clear edges would remain. The heat

maps of raw and corrected Hi-C matrices plotted at the testing genomic regions con-

firmed this - we notice more sharp and scattered interactions with raw data and more

smooth interactions with corrected data (Figure 3.8.H, bottom panel). However, the al-

location of borders detected on raw and corrected datasets mostly was not the same -

even if they were placed relatively close to each other, they demonstrated the different

insulation strength (Figure 3.9.H).

At the genome-wide level, the raw and corrected borders did not mostly overlap as

well (Figure 3.9.I). However, while we provide the punctuated positions (same restric-

tion site) of the start and end TAD borders, the actual border is allocated within the log2

mean ratio stripe, so the position of the border can vary, in our particular case, within

±w, so ±10 bins. When we looked at any overlaps between stripes, we got overall

more common borders - approximately 67% of borders detected at raw Hi-C data were

also detected at corrected Hi-C data (Figure 3.9.J, left panel). As the medium bin size

at DpnII resolution is around 500-600 bp, the 10 bins window on average represents

the 5 Kb window. However, we get less commonly detected borders when we use 5 Kb

window instead of 10 bins window (Figure 3.9.K, left panel) meaning that the distance

between neighbouring borders that we treat as common between raw and corrected

datasets is slightly more than 5 Kb for at least 1000 common borders. However, ex-

panding the window up to 10 Kb the overlap becomes approximately full, so borders

survive the Hi-C matrix correction (Figure 3.9.L, left panel).

Surprisingly, the percentage of common borders decreases when we compare sets
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Figure 3.9. COrTADo performance with raw and corrected Hi-C data. A. Distribution of effect

size versus strength at candidates with FDR adjusted p-value < 0.01 for TAD edges called on

the corrected Hi-C data. Effect size divided into 4 classes: large when � 0.5, medium when

< 0.5, small when < 0.3 and no effect when < 0.1. Vertical lines represent possible strength

thresholds of 0.2, 0.4, 0.6, 0.8 and 1.0. These values mean, respectively, 1.15, 1.32, 1.52,

1.74 and 2.0 times increase of interaction frequency when crossing TAD edge. Numbers and

percentages correspond to the candidates that belong to each specified strength and effect

size intervals. Green area represents set of intervals that defines strong COrTADo borders.

Yellow area represents additional set of intervals that together with green area defines weak

COrTADo borders under the same set of rules as described in the main text for raw Hi-C data.

B. Bar plot represents the number and share of strong (green) and weak (yellow) COrTADo

borders within all valid candidates (adjusted p-value < 0.01) at corrected Hi-C data. C-D.

Bar plots represent the number of all valid, weak and strong start and end COrTADo borders

called on raw (orange) and corrected (blue) Hi-C data.E-F. Box plots represent the distribution

of insulation strength (E), effect size (F) and log2 mean stripe length or depth (G) for all valid,

weak and strong start and end COrTADo borders called on raw (orange) and corrected (blue)

Hi-C data. H. COrTADo summary at testing genomic region. First panel is the heat map that

represents the allocation of log2 mean ratios computed at raw (top) and corrected (bottom)

Hi-C data. Second panel represents the log2 mean weighted average for raw (orange) and

corrected (blue) datasets. Next two panel represent the allocation of COrTADo borders: with

grey we indicate valid borders that are not in weak and not in strong sets, transparent color

indicates the weak borders and bright color indicates the strong borders. Last panel is the

heat map that represents the allocation of raw (top) and corrected (bottom) Hi-C interactions.

Black lines represent the estimated TAD edge stripe length based on effect size statistics. I-K.

Venn Diagramms indicate the overlap between COrTADo borders called at raw and corrected

datasets for different classes (all, weak and strong) assuming the punctuated positions (I) and

10 bins (J), 5 Kb (K) and 10 Kb (L) windows around TAD borders.

of weak and strong borders (Figure 3.9.J-L, middle and right panels). We expect that,

for example, strong borders are the most insulated ones, so they should be most prob-

ably detected in both raw and corrected data. In order to understand the source of this

inconsistency, we decided to look closer on the distribution of strength, effect size and

log2 mean stripe length (depth) (Figures 3.9.E-G). We noticed that for both COrTADo
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starts and ends, strength and effect size in case of corrected dataset are slightly lower

than in case of raw dataset indicating a modest decrease in insulation strength. How-

ever, significant changea were detected only for weak borders, for set of all borders and

strong borders the decrease was either insignificant or little significant. Depth distribu-

tions, in turn, were extremely different when looking at all detected TAD borders. In fact,

after the Hi-C correction, the optimal log2 mean stripe lengths became much longer.At

the testing region, some of the stripes were indeed longer than the visually noticeable

TAD edges (Figure 3.9.H). Overall, the Hi-C matrix correction seems to smooth inter-

actions in the way that TAD edges became more blurred, so the optimal stripe length

then fixed at the larger distances from the diagonal. As a consequence, the average in-

sulation strength within the stripe is computed, first, based on in average slightly lower

log2 mean ratios as the “jump” from inter-TAD to intra-TAD interactions is not as sharp

as for raw Hi-C data, and, second, based on more interactions which are far from the

diagonal. This explains the reason why we observe many common borders within all

valid raw and corrected datasets, but the share becomes lower with more stringent

set of thresholds. The decrease in average insulation strength followed by the matrix

correction means that the borders may have possibly changed the insulation strength

class.

The COrTADo calling algorithm relies on an estimation of optimal stripe length

based on effect size. The current implementation of the procedure computes the effect

size at different stripe lengths and then searches for the point where the “drop” in ef-

fect size is the most dramatic, indicating the possible end of a log2 mean stripe. The

algorithm seems computationally simple, but requires the visually sharp stripe, other-

wise we face a danger of overestimating the stripe length. In accordance with this, we

prefer to use the current version of COrTADo on raw Hi-C data as the estimated stripe

length seems more realistic and better mimics the visually clear TAD edges. However,

we have to keep in mind that we have a higher chance to detect spurious edges along

with the actual ones. During Hi-C, some of the bins tends to interact more than oth-

ers, so they would show more interactions and possibly create spurious edges. As

Page 115



Chapter 3 Statistical framework for complex chromatin organisation analysis

an advantage, COrTADo compares the interactions within and outside the stripe using

windows rather than punctuated genomic positions, so skewed interactions of a single

bin should not affect TAD edge detection dramatically.

3.4.2. Replicate stability

The TAD calling procedure is sensitive not only to the systematic biases but also to the

library size. When the library is small, we observe less interactions, so the insulation

between chromatin domains is expected to be not so pronounced in comparison with

data based on a large Hi-C library. In this Chapter, we work with the merged Hi-C matrix

which represents the sum of two matrices obtained from two biological replicates. So,

each replicate generates some proportion of total Hi-C reads. In the case of our data,

both replicates are approximately the same size (see Chapter 2 and Table 2.1 for more

details), which means that each replicate represents approximately 50% of a merged

library. We used COrTADo to call start and end TAD edges on both replicates to access

the robustness of the algorithm depending on the library size.

Using FDR multiple testing correction and p-value threshold of 0.01, we obtained

around 6000 start and 6000 end TAD border positions (Figure 3.10.A-C). Looking at

the distribution of effect size versus strength parameters of the selected borders, we

notice that the points are more concentrated at lower values and there are slightly less

points showing a strong insulation strength. In consistence with this observation, when

we apply the same set of rules as before to call weakly and strongly insulated TAD

borders, we get significantly less borders belonging to each class in comparison with

merged data. It supports the suggestion that as the library size decreases, we get less

interactions and insulation between chromatin domain is not so pronounced.

As COrTADo allocates the TAD edges based on the change between intra-TAD and

inter-TAD interaction frequencies observed in several neighbouring genomic positions,

the TAD edges have a high chance to be detected at the same positions even with

the reduced library. A comparison of punctuated TAD border positions did not show

massive overlap between merged and both replicates, however, the significant amount
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Figure 3.10. COrTADo performance with merged matrix and matrices per biological replicate.

A-B. Distribution of effect size versus strength at candidates with FDR adjusted p-value <

0.01 for TAD edges called on the replicate 1 (A) and replicate 2 (B). Effect size divided into

4 classes: large when � 0.5, medium when < 0.5, small when < 0.3 and no effect when <

0.1. Vertical lines represent possible strength thresholds of 0.2, 0.4, 0.6, 0.8 and 1.0. These

values mean, respectively, 1.15, 1.32, 1.52, 1.74 and 2.0 times increase of interaction fre-

quency when crossing TAD edge. Numbers and percentages correspond to the candidates

that belong to each specified strength and effect size intervals. Green area represents set

of intervals that defines strong COrTADo borders. Yellow area represents additional set of

intervals that together with green area defines weak COrTADo borders under the same set of

rules as described in the main text for merged Hi-C data. C. Bar plots represent the number

of all valid, weak and strong start and end COrTADo borders called on merged data (grey),

replicate 1 (blue) and replicate 2 (red) data. D-F. Venn Diagramms indicate the overlap be-

tween COrTADo borders called at merged matrix and replicate matrices for different classes

(all, weak and strong) assuming the punctuated positions (D) and 10 bins (E) and 5 Kb (F)

windows around TAD borders.

of borders were common between either replicate 1 and replicate 2, or merged data set

and one of the replicates (Figure 3.10.D). Moving from the punctuated position to the

genomic window of 10 bins (Figure 3.10.E) or 5 Kb window (Figure 3.10.F) increases

the overlap, so many borders become common between two sets and all three sets as

well. However, comparison of the borders defined as weak and strong did not reveal

huge coincidence between merged, replicate 1 and replicate 2 data sets as expected.

3.4.3. Homogeneous and non-homogeneous bins

The COrTADo algorithm does not rely on the genomic distances and only on the rel-

ative distances between the bins within Hi-C matrix. When bins are homogeneous,

mathematically speaking, there is not difference between genomic distances and rel-

ative distances. Up to this point, we analysed the Hi-C data at DpnII resolution - use

of the DpnII restriction enzyme enables the generation of the high resolution Hi-C ma-

trix with non-homogeneous bins with the median size between 500-600 bp. We aim
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to look at the differences in TAD edge calling procedure between Hi-C matrices with

non-homogeneous (Dpn II resolution) and homogeneous (1 Kb resolution) bins.

Note that a switch to 1 Kb bins changes the ratio between valid and non-available

log2 mean ratios: when a particular bin with the size less than 1 Kb shows NA, there is

a high chance to lose this NA after the aggregation of this bin with neighbouring ones

to create a single bin of 1 Kb; when a particular bin is larger than 1 Kb shows NA, it will

be possibly segregated into several NAs which would affect the total number of valid

interactions. When we perform the window size diagnostic, we confirmed the optimal

window size to be at least 7 bins which is analogical to 7 Kb window (Figure 3.11.A).

We run the COrTADo calling with FDR multiple testing correction and p-value thresh-

old of 0.01 as well as with DpnII Hi-C data. Interestingly, the distribution of edge pa-

rameters was significantly different when we use 1 Kb bins. While the total numbers of

valid TAD edges were comparable, the 1 Kb borders showed the insulation strengths

that were much higher (Figure 3.11.B and C). Around 70% of TAD borders called on 1

Kb resolution matrix demonstrated either a medium and large effect size or insulation

strength being higher than 0.4 (than is at least 1.3 times increase of inside-TAD interac-

tions in comparison with outside TAD area). Also, under the same set of rules to define

weak and strong borders for DpnII and 1 Kb data sets, the amount of strong borders at

1 Kb resolution was more than 2 times higher than at DpnII resolution. A visually clear

increase in insulation strength indicates that the TAD edges at 1 Kb resolution maps

are more pronounced than the same edges at DpnII resolution maps.

There is nearly no overlap between DpnII and 1 Kb TAD edges when we look at

single genomic positions which is reasonable taking into account different genomic co-

ordinates of DNA fragments (Figure 3.11.D). However, looking at the overlaps between

10 bins window for DpnII data and 7 bins window for 1 Kb data around the valid TAD

edges, approximately half of the DpnII and half of 1 Kb borders were common (Figure

3.11.E). As the distribution of insulation strength parameters have changed, the overlap

for weak and strong borders was not so pronounced. The large differences in classi-

fication into weak and strong borders with homogeneous and non-homogeneous bin
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Figure 3.11. COrTADo performance with homogeneous and non-homogeneous bin sizes.

A. MA window size diagnostics as described in the main text. B. Distribution of effect size

versus strength at candidates with FDR adjusted p-value < 0.01 for TAD edges called on 1

Kb resolution Hi-C matrix. Effect size divided into 4 classes: large when � 0.5, medium when

< 0.5, small when < 0.3 and no effect when < 0.1. Vertical lines represent possible strength

thresholds of 0.2, 0.4, 0.6, 0.8 and 1.0. These values mean, respectively, 1.15, 1.32, 1.52,

1.74 and 2.0 times increase of interaction frequency when crossing TAD edge. Numbers and

percentages correspond to the candidates that belong to each specified strength and effect

size intervals. Green area represents set of intervals that defines strong COrTADo borders.

Yellow area represents additional set of intervals that together with green area defines weak

COrTADo borders under the same set of rules as described in the main text for DpnII resolution

Hi-C data. C. Bar plots represent the number of all valid, weak and strong start and end

COrTADo borders called on DpnII (orange) and 1 Kb (blue) resolution Hi-C data. D-F. Venn

Diagramms indicate the overlap between COrTADo borders called at DpnII and 1 Kb resolution

matrices for different classes (all, weak and strong) assuming the punctuated positions (D) and

10 (DpnII) and 7 (1 Kb) bins (E) and 5 Kb (F) windows around TAD borders.
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sizes indicate that the set of rules to distinguish between different insulation strength

classes should be revised for each particular data set. Selection of common rules

for all conditions, which we aim to compare, can dramatically affect the downstream

conclusions about the differences in insulation of chromatin domains.

3.5. Summary and discussion

We introduced the COrTADo. COrTADo is a TAD calling tool which uses the Hi-C gen-

erated data to detect the border positions of topologically associated domains (TADs).

The algorithm allocates the start and end TAD borders separately, so allowing com-

plex chromatin architectural patterns to be detected. The list of such patterns include

partially overlapping and nested TADs, breaks between TADs, as well as TAD borders

demonstrating different insulation strengths in upstream and downstream directions.

TAD borders detected using COrTADo can be further used to reconstruct the complex

chromatin topology. TAD borders detected using COrTADo can be further used to re-

construct the complex chromatin topology. Complex architectural patterns can include

partial overlapping, breaks between neighboring TADs and nested TAD. All these pat-

terns rely on the reconstruction of TADs based on TAD borders and it is a separate

research question which should be address in the future. One of the natural assump-

tions that could be made is that the start anchor locus should interact with fragments

within the TAD with approximately the same level of intensity as end anchor locus, so

the start and end TAD edges which have approximately the same length and the same

insulation strength can be connected to form a TAD. However, under this assumption

start or end edges which have significantly different insulation strength and/or stripe

length profiles cannot be connected. The above suggestion requires more investiga-

tion whether the TADs can have different contact intensity at the start and the end.

In theory, it could be the case when single enhancer can contact several promoters.

Then, as Hi-C is performed in bulk-manner, the enhancer can interact with promoter

one and another two with different intensities as, within the population, the number of

cells demonstrating contacts with promoter one and demonstrating contacts with pro-
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moter two are not the same. At the same time, the detection of partial overlappings

between neighboring TADs seems less complicated question. Partial overlapping re-

quires the end TAD edge to be allocated downstream from the start TAD edge and

their stripe lengths should be long enough for edges to intersect. Also, the interac-

tion frequency can be assumed to be uniformly distributed within the overlapping area

to exclude the complicated scenario of many partial overlappings happen within the

vicinity. This direction for further research can be interesting in order to understand

whether the partial overlapping is biologically relevant, or it is the algorithm artefacts

arising from the intensive interactions between proximal fragments so the neighboring

TADs cannot be strictly separated. COrTADo is a novel tool which can also reveal the

insulation disbalances between chromatin domains, so making it possible to analyse

the epigenetic differences between TADs with distinct interaction densities.

To be precise, in COrTADo we allocate the TAD edges rather than the TAD borders.

A TAD edge is defined as a straight line on the Hi-C interaction matrix, which lies on

the border of TAD square. So, in simple words, it separates the inside-TAD area from

outside-TAD area. COrTADo relies on this definition of TAD edge in a way that TAD

edge is most probably is located where we observe the dramatic increase in Hi-C inter-

actions occured within several neighbouring genomic regions (Figure 3.1). So, the TAD

edge finding turns into change-point detection problem, where we aim to detect the

genomic position associated with the noticeable change in interaction density. Basic

change-point algorithms, for example, CUSUM, require specific assumptions including

the probability density function to model the Hi-C interactions or decision thresholds

(Appendix 3.1). We observed that when we cross the TAD edge, not only the average

interaction density changes but the deviation of Hi-C interactions as well. In this case,

the change-point algorithm should be modified in order to search for either changes

in both variability and average contact frequency, or we need to make an assumption

about the relationship between mean and deviation. COrTADo, in contrast, is computa-

tionally simple: it is data-oriented and its current implementation in R gives a freedom

to a user to manipulate most of the parameters operated during TAD finding.
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In the current state, COrTADo is limited to detect only increases in interaction den-

sity occurred in upstream direction (COrTADo end) or in downstream direction (COr-

TADo start). However, with some extend the other architectural patterns can be de-

tected. Recent studies on Hi-C demonstrated the presence of stripe domains – loop

anchors which are involved in high frequency interactions with the entire domain proba-

bly indicating the positions of super-enhancers which contacts several promoters (Vian

et al. 2018; Kraft et al. 2019). On Hi-C contact map, the stripe domain is visually

like the TAD with intensive interactions on the edge and significantly less interactions

within inside-TAD area. If the DNA fragment which is associated with stripe domain is

wide enough, the COrTADo would be able to identify its position when log2mean ratio

reaches its local maximum and then its local minimum within the width of the stripe.

Also, any chessboard patterns, when interaction frequencies significantly increase and

then shortly decrease while moving along the DNA downstream, can be detected by

COrTADo after slight modification. The robustness analysis also revealed several other

limitations of COrTADo. The algorithm starts from the computation of the log2 mean

ratios representing the average difference between neighbouring downstream and up-

stream genomic regions. When we cross the TAD edge, the average interaction fre-

quency changes in one of the directions. The log2 mean ratio, then, should reach its

local maxima or local minima within several genomic positions allocated at the same

TAD edge. Due to a data noise and the fact that we use Moving Average approach to

estimate the average contact intensity, we are not able to select single genomic posi-

tion to be a candidate for downstream validation procedure (Figure 3.4, Appendix 3.2).

In COrTADo, the window, where most probably the TAD edge candidate position is allo-

cated, is defined under the assumption that TAD edge is sharp, so the local minimum of

log2 mean ratio should also be sharp (Figure 3.4). The computation of the log2 mean

ratio is based on two MA mean estimation windows: when one of them is fully inside

the TAD while another one is still outside, the log2 mean ratio reaches its local extrema.

When the TAD edge is more blurry, the difference between MA windows would be less

pronounced as both windows would cover interactions on the edge before one of them
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reached the inner TAD area. In case of corrected Hi-C matrices, the interaction sig-

nal is more smooth: Hi-C matrix balancing removes the variations in the interactions

caused by differences in DNA fragments mappability, as well as by other experimental

and systematic biases. So, we would observe TAD edges which are visually less sharp,

so there is the higher chance that the window where TAD edge is allocated would ex-

pand. However, in COrTADo implementation a user has freedom to select the window

size width which is then used in local maxima/minima validation procedure. Still, the

parameter is single for all TAD edge candidate positions, so if within the single Hi-C

interaction matrix we observe both well and poorly insulated TAD borders, we face a

danger to remove the significant blurry TAD edges when using narrow window width,

as well as we possibly exclude many significant sharp TAD edges when using the wide

window width.

Another important point which is associated with MA window is the influence of

NAs. Different Hi-C processing pipelines has different solution how they consider non-

available data points. Some of the fragments demonstrate NAs when they are associ-

ated with low quality reads or the reads are poorly mappable due to, for example, short

length or repetitive elements. So, it is not clear, whether some pairs of DNA fragments

did not ligated within the Hi-C cell population or they were removed from the analysis.

Such NAs can be replaced with zeros, or pairs with NAs can be completely removed

from the analysis. In Appendix 3.4, we show that the inclusion of zeros instead of NAs

reduces the sample means estimate. It leads to the fact that the MA mean estimates

also would be decreased, as a consequence, it is possible that the MA mean differ-

ences would become less pronounced and more TAD edges would not survive the

validation procedure. Also note, that the inclusion of zeros does not show straightfor-

ward effect on variability, so it should not solve the problem of the difference in Hi-C

interaction variability between inside-TAD and outside-TAD area.

During the validation, we have to estimate the optimal TAD edge length. The es-

timation procedure relies on the estimation of the effect size: it is expected to be at

maximum when we collect the observations within the TAD edge, when we start to ac-
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cumulate observations outside TAD edge (so, the TAD edge length is overestimated),

the effect size should decrease. If the length is too long, we face a danger to catch

the interactions which are outside the TAD edge, so the insulation strength would be

defined incorrectly and, as consequence, TAD edge would be removed as being in-

significantly insulated (Figure 3.6). If the length is too short, we face a danger to com-

pare differences in contact intensities between TAD edge and neighbouring genomic

regions based on interactions next to diagonal which also leads to incorrect estima-

tion of insulation strength. The current implementation of COrTADo searches for the

first dramatic “drop” in effect size to fix the TAD edge length. However, the compara-

tive analysis between borders called on non-corrected versus corrected Hi-C matrices

revealed the low robustness of this approach. When the TAD edges are not sharp

enough, the effect size would possibly decrease more smoother, which leads to TAD

edge length overestimation.

In the Section 3.4, we analysed the COrTADo performance on Drosophila BG3

dataset under different conditions. In the next Chapter, we aim to compare the COr-

TADo performance with another TAD calling tool HiCExplorer (Ramirez et al. 2018).

HiCExplorer assumes “head-to-tail” TAD allocation, so the comparative analysis is ex-

pected to shed the light on the existence of the unbalanced TAD borders – borders

which are insulated either upstream or downstream, so cannot be detected by canon-

ical TAD calling algorithms. However, the analysis presented in the Section 3.4 and

Chapter 4 relies on the single dataset and single alternative algorithm. When using

single dataset, we face a danger of making conclusions based on the results contain-

ing certain biases, in particular, in Hi-C some fragments can interact more frequently

than others due to technical biases. Even when we apply the correction methods, we

can reduce the effect of systematic errors, but we do not remove them completely.

Using different datasets obtained in different laboratories and in different experimen-

tal conditions allows us to reduce the effect of the noise and obtain the results which

are truthful not on a single but in many datasets. Also, we would be able to better

understand the factors that can create inconsistencies in the results between different
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datasets – the same way as, for example, the comparison between different replicates

demonstrated the role of library size on the insulation strength of COrTADo borders.

Also, using other alternative TAD calling methods can improve the research. All al-

gorithms are sensitive to the parameters selection and rely on different assumptions,

so only TAD borders which are found by several methods can be called as reliable.

However, the algorithms allowing hierarchical TADs and algorithms allowing canonical

“head-to-tail” TADs can produce significant differences in the allocation, so comparing

COrTADo with more tools – canonical and hierarchical – can improve the confidence

of called TAD borders and downstream conclusions.

We also validated the robustness of the COrTADo algorithm by calling TAD borders

on merged dataset versus Hi-C generated on each biological replicate, which are ac-

counted for approximately 50% of merged library. COrTADo was able to sufficiently

recall most of the border, however, the insulation strength profiles were not similar, so

the borders which were defined as strong were mostly unique. Given this findings, the

set of rules which we aim to apply in order to distinguish between strong and weak

insulation should be selected individually for each data conditions.

We performed the statistical framework based on Drosophila melanogaster genome

which is noticeably smaller than human or mouse. It means that we were able to val-

idate large amount of TAD edge candidate positions within the reasonable amount of

time. In case of human genome, for example, before moving to validation step, we re-

quire to remove less probable candidates. Otherwise, we face a danger to validate the

number of local extrema which is greater than in case of fly genome in several times.

To call local maxima, COrTADo uses the weighted log2 mean average computed within

single Hi-C row (for start positions) or single Hi-C column (for end positions). To remove

fluctuations which can lead to spurious local extrema candidates, we can implement

smoothing the weighted log2 mean average. In particular, the current R implementa-

tion of COrTADo also allows the Kernel Regression Smoother. However, the selection

of bandwidth parameter is another critical point. Bandwidth define the width of the win-

dow within which the signal will be average. With large bandwidth we face a danger to
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over-smooth neighboring local extrema and lose significant TAD edges, with the short

bandwidth the amount of candidate positions can be excessive. There is no unique

way how to define the optimal bandwidth. In order to smooth the signal during the al-

gorithm development, we used the bandwidth that produced the marginal decrease in

number of candidate positions which was less than 5%. Although, we did not use signal

smoothing when we called COrTADo borders genome-wide. Without proper examina-

tion of the TAD edge candidates robustness under the different bandwidth parameters

we would not implement it for the downstream analysis.
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Chapter 4. Functional differences of balanced and imbalanced in-

sulation in TADs

4.1. Introduction

The non-hierarchical TAD organisation was under the question in recent research in

the field of 3D chromatin architecture. Several novel computational approaches were

developed to study more complex TAD folding. The major concern is the functional

role of the complex architectural structures. Computational methods based on Hi-C

data face the challenges of working with noise that comes from the large population of

cells. Adding the fact that the chromatin is the dynamic structure, which changes its

conformation through the time, we are in danger to detect spurious complex structures

that can be experiment artefacts and can show insignificant connection with cellular

functioning.

In the Chapter 3, we introduced the COrTADo: the TAD calling algorithm that de-

tects the significant changes in Hi-C interaction intensity moving downstream or up-

stream along the chromatin. Technically speaking, with COrTADo we can detect the

regions demonstrating at least one-sided insulation: the parts of the chromatin that

seems to be topologically separated from upstream DNA fragments (for COrTADo

starts) and from downstream fragments (for COrTADo ends). So, COrTADo has the

freedom to detect any kind of complex TAD topology: nested TADs (hierarchical fold-

ing), partially overlapping TADs or breaks between TADs. We also discussed the ro-

bustness of the algorithm in different conditions. Based on the analysis from the previ-

ous Chapters, we got the motivation for the particular parameters selected to call COr-

TADo borders based on Hi-C data generated in Drosophila BG3 cells. In this Chapter,

we sought to identify the difference in epigenetic states of COrTADo borders and bor-

ders called by other tool that assumes the “head-to-tail” allocation - HiCExplorer. Using

publicly available ChIP data in Drosophila BG3 cells (larval central nervous system),

we demonstrated the ability of both algorithms to detect two classes of TAD borders -

allocated within either active or silent chromatin regions.
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4.2. Materials and methods

Data. We used the Hi-C datasets generated by (Chathoth and Zabet 2019) in Drosophila

melanogaster wild-type BG3 cells at DpnII resolution (median width of 575 bp).

COrTADo. We used the Hi-C dataset that contained approximately 80 M valid pairs

(see Chapter 2 and Table 2.1 for more details). We selected the following parameters

and thesholds based on statistical framework provided in Chapter 3. We selected pairs

that were no more than 1000 bins apart (approximately 500 Kb). We called TADs using

Moving Average window size of 10 bins (approximately 5 Kb), FDR correction for mul-

tiple testing and p-value threshold of 0.01. For weak borders, we selected candidates

with either strength > 0.4 (medium strength) and effect size > 0.1 (small effect) or

strength > 0.2 (low strength) and effect size > 0.3 (medium effect). For strong borders,

we selected candidates with either strength > 0.6 (high strength) and effect size > 0.3

(medium effect) or strength > 0.4 (medium strength) and effect size > 0.5 (large effect).

The window size parameter was selected from the diagnostic plots. The threshold val-

ues and multiple testing correction method were selected based on the diagnostic plots

and to ensure that we recover a comparable number of TADs as previously reported

(Chathoth and Zabet 2019).

HiCExplorer. We used the pre-processed (ICE correction) Hi-C datasets. We

called TADs using HiCExplorer with parameters similar to (Chathoth and Zabet 2019)

using FDR correction for multiple testing, p-value threshold of 0.01 and a minimum

threshold of the difference between the insulation score of 0.04 for weak and 0.08 for

strong TADs.

4.3. Preliminary results of comparative analysis between COrTADo and HiCEx-

plorer TAD borders

We identified approximately 3284 start and 3320 end TAD edge positions using COr-

TADo at DpnII resolution with the average strength of 0.48, which reflected the average

1.4-times increase of intra-TAD interactions compared to inter-TAD. 976 start and 923

end positions were classified as strong and demonstrated the average strength of 0.68
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corresponding the average 1.6-times intra-TAD interactions increase (see Methods,

Figure 4.1.A). The number of detected TAD borders with weak set of thresholds was

significantly higher than reported in other studies (Cubenãs-Potts et al. 2017; Ramirez

et al. 2018; Chathoth and Zabet 2019). In particular, when we called TADs using HiC-

Explorer on the same Hi-C data at DpnII resolution we obtained 2253 TAD borders and

982 of them were classified as strong (Figure 4.1.A).

Although the number of borders detected with stringent parameters was consistent

between COrTADo and HiCExplorer, both tools generated the large share of unique

borders. Only 33-34% of weak COrTADo borders were allocated within 5 Kb from weak

HiCExplorer borders and could be classified as common (Figure 4.1.B, first and second

panels). This overlap was even lower under strong set of parameters - the share of

common borders was only 24% (Figure 4.1.B, third and fourth panels). Additional 26%

of strong COrTADo borders were found within weak HiCExplorer borders but other 50%

were absolutely unique.

Most algorithms, including HiCExplorer, detects TADs based on “insulation”: the re-

gion that insulates upstream and downstream interactions is most probably the region

between domains, i.e. TAD border (see Chapter 2 for more details). As a consequence,

TADs are called in “start-to-end” manner: the start of one TAD coincides with the end of

the previous one. In COrTADo, the “insulation” can be one-sided - TAD start insulates at

least downstream interactions and TAD ends insulates at least upstream interactions.

If we suggest the presence of imbalanced insulation where the insulation strength in

one direction is greater than in other one, these genomic regions are less probable

to be detected by algorithms with two-sided insulation assumption under strong set of

parameters. This limitation is clear if we look on the particular genomic regions rep-

resented in Figure 4.1.D. The triangular shapes which reflect TADs are visually clear,

however the separation between them is not sharp and looks more like “transition re-

gions” where one TAD smoothly goes to another one. HiCExplorer allocates the TAD

borders based on TAD-separation score (which is technically the same as insulation

score introduced by (Crane et al. 2015)). In simple words, the score represents the
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average interaction frequency at each genomic position and when it reaches its local

minima we observe the region that demonstrates the “drop” of interactions in compar-

ison with neighbouring upstream and downstream regions. When this “drop” is larger

than pre-selected delta parameter (in our case, 0.04 for weak and 0.08 for strong bor-

ders), HiCExplorer allocates the TAD border. However, when the “transition region” is

relatively long, we would not see a sharp local minimum at TAD-separation score and

it would be more like “plateau” - at the end of one TAD there would be a decrease in

score followed by approximately monotone signal and then there is an increase at the

start of the next TAD (Figure 4.1.D, top panels). COrTADo, in contrast, has high chance

to detect such imbalances at least in one direction (Figure 4.1.D, middle and bottom

panels). In addition, COrTADo provides the insulation strength statistics that reflects

the difference between inside-TAD and outside-TAD average interaction frequencies

associated with each particular TAD edge. So, we can detect the TAD borders that

show significantly different interaction strength profiles in downstream and upstream

directions. Consequently, it raises the question whether the imbalanced insulation is

associated with specific chromatin and epigenetic mechanisms or is is an artefact of

bulk Hi-C experiment.

HiCExplorer also generated unique borders that were not detected by COrTADo un-

der both strict and relaxed set of thresholds (Figure 4.1.C). Thus, approximately 40%

of strong HiCExplorer borders were allocated within 5 Kb from strong COrTADo bor-

ders, so were treated as common under strong threshold values (Figure 4.1.C, bottom

panel). The share of common borders increased up to approximately 70% when we

also searched within weak COrTADo borders (Figure 4.1.C, middle panel). It means

that we observed more strong borders which were not common with strong COrTADo

borders but were common with weak ones. This increase possibly revealed the differ-

ence in stringency of selected thresholds in COrTADo and HiCExplorer. So, the COr-

TADo thresholds did not allow some of the borders defined as strong with HiCExplorer,

while they were possibly detected within all valid COrTADo borders. According to this,

approximately 30% of weak HiCExplorer borders, which were not found within weak
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COrTADo borders, could be not unique but just removed as the insulation strength of

these borders was low to be defined as weak with COrTADo (Figure 4.1.C, top panel).

4.4. Results of the comparative analysis between COrTADo and HiCExplorer

4.4.1. COrTADo and HiCExplorer display the existence of active and silent bor-

ders

To investigate the functional role of TAD borders that were obtained using either COr-

TADo or HiCExplorer, we analysed the presence of several factors: architectural pro-

teins (BEAF-32, Cp190, Chro, CTCF, Rad21 and MED1), polycomb marks (Pc and

dRING), accessibility marks (H3 and H4), transcription factors (Pol-II and Trl), nascent

RNA and histone modifications (H3K4me1, H3K4me3, H3K9me2, H3K9me3, H3K27me3

and H3K27ac). We used the ChIP-chip datasets generated and pre-processed (M val-

ues smoothed over 500 bp) by the modENCODE Consortium. We also used the pre-

processed MED1 and Rad21 ChIP-chip (GSE118484) from (Pherson et al. 2019) and

3’NT-seq (GSE100545) from (Pherson et al. 2017). The full list of data GEO accession

numbers used can be found in Appendix 2.1. For selected factors, we used ChIP peaks

called by modENCODE Consortium. We also merged ChIP peaks datasets for BEAF-

32 (GSE20811, GSE32775), Cp190 (GSE20814, GSE32778) and CTCF (GSE20767,

GSE32783). For MED1 and Rad21, we used ChIP peaks called in (Chathoth et al.

2021). For nascent RNA, we first summarised 3’NT-seq data obtained from positive

and negative strands, then smoothed the score using the Kernel Regression Smoother

with normal kernel and bandwidth set at 80. We selected the bandwidth that gener-

ates the marginal decrease in number of peaks to be less than 5% when we increased

bandwidth by 1.

We combined all TAD borders called by different tools (COrTADo start, COrTADo

end, HiCExplorer) under the weak set of thresholds, computed the distance to nearest

occupancy peak and split them into 4 categories: less than 2 Kb, 5 KB, 10 Kb and more

than 10 Kb. We re-ordered TAD borders and and selected factors based on Hierarchical

Clustering with Euclidean distance measure and complete linkage clustering method
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for plotting (Figure 4.1.F and G). We grouped factors into five categories that reflected

different epigenetic states (Figure 4.1.F).

1. H3K27me3, Pc and dRING are known to be enriched in Polycomb-associated

regions. Pc and dRING are proteins from PcG (Polycomb group) that are both parts

of PRC1 complex. PRC1 binds H3K27me3, leads to chromatin compaction and Pol-II

pausing (Min et al. 2003; Lehmann et al. 2012).

2. Pol-II, H3K4me3 (active promoters) (Koch et al.2007; Pekowska et al. 2011; Dong

et al. 2012) and nascent RNA together with histone H4 (compact DNA) are strong

signatures of active transcription. Both insulation proteins BEAF-32 and Chro can

also be associated with transcription. Binding sites of BEAF-32 are allocated near

TSS, in particulr, BEAF-32 was shown to separate head-to-head genes with different

transcription patterns (Yang et al. 2012). Chro cannot not bind DNA independently

but it can be recruited by BEAF-32. Note that BEAF-32 and Chro are previously found

to be strongly enriched at TAD borders in Drosophila (Bushey et al. 2009; Cubenas-

Potts et al. 2017). Architectural protein Rad21 is a Cohesin subunit, which binds active

promoters and it is suggested to play a role in enhancer-promoter looping (Pherson et

al. 2019).

3. The combination of CTCF, histone H3 (compact DNA), GAF and H3K27ac we clas-

sify as bivalent as we can distinguish between active or silence states when these

molecular signals are present together with other factors. So, the enrichment of both

H3K27ac and H3K4me1 is a signature of active enhancer, while the enrichment of

H3K4me1 in absence of H3K27ac is associated with primed enhancers - inactive en-

hancers that are primed for future activation (Calo and Wysocka 2013). CTCF is an-

other insulation protein that is mainly known for its interplay with Cohesin in TAD for-

mation in mammals (Racko at al. 2018; Nora et al. 2021). GAF (known also as GAGA

factor) promotes promoter proximal pausing in Drosophila, so joint enrichment of Pol-II

and GAF signals about paused transcription (Chetverina et al. 2021).

4. H3K9me2 and H3K9me3 are both marks of heterochromatin. As well as the

Polycomb-associated regions, heterochromatin-associated regions indicate the silenced
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chromatin but through different mechanisms. Heterochromatin is highly packed DNA

regions that is inaccessible for transcriptional machinery while Polycomb repressive

complexes block transcription initiation but the region remains accessible for transcrip-

tion factors binding.

5. In addition to H3K4me1 which role we already mentioned above, we observed

enrichment of Cp190 and MED1 at the fifth class. MED1 is a subunit of large Mediator

complex that links enhancer-bound transcriptional factors with Pol-II and transcriptional

machinery (Immarigeon et al. 2019). Cp190 as an insulator, on the one hand, can

block functionally distinct enhancers and promoters from improper interaction, and, on

the other hand, promotes formation of chromatin loops that bring distal enhancers to

their target promoters. Altogether, the presence of these factors can be referred to

signatures of enhancer activity.

We applied K-Means Clustering method and revealed that TAD borders detected

with either of considered algorithms can be classified into two large classes (Figure

4.1.E and G).

The borders associated with the first class were allocated within the black bar

on Figure 4.1.G. These TAD borders were occupied mostly with signatures of active

transcription and enhancer activity. We also observed partial enrichment of hete-

rochromatin and bivalent factors. Even if the most of the borders were enriched with

H3K4me1, we could distinguish borders that were enriched with H3K27ac and clas-

sified as active enhancer regions, but also borders that were depleted with H3K27ac

which indicated the presence of primed enhancers. Interestingly, we also observed

small sub-group of borders that were highly enriched with Polycomb marks (repres-

sion state) while enriched with active transcription marks like Pol-II, nascent RNA and

H3K4me3. These signatures indicated that this sub-group belonged to poised en-

hancers - poised enhancers were found to target major developmental genes that

stayed inactive and were activated during differentiation. Overall, we associated the

first class of TAD borders with the active chromatin state.

The second class was more associated with the features of silenced chromatin
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Figure 4.1. Classification of TAD borders detected by COrTADo and HiCExplorer. A. The

number of TAD borders detected by different tools. COrTADo identified more TAD borders

than HiCExplore under weak set of thresholds. With more stringent thresholds the number of

borders was consistent. B. Distance from COrTADo borders to nearest HiCExplorer border.

Approximately 33-34% of COrTADo weak borders were allocated withing 5 Kb distance. Ap-

proximately 24% and 50% of COrTADo strong borders were allocated close to HiCExplorer

strong and weak borders, respectively. C. Distance from HiCExplorer borders to nearest COr-

TADo border. Approximately 69% of HiCExplorer weak borders were classified as common

with COrTADo as they were allocated within 5 Kb. 39% and 68% of HiCExplorer borders were

allocated within 5 Kb from COrTADo weak and strong borders, respectively. D. Represen-

tative examples of COrTADo and HiCExplorer TAD calling. Red arrow marked the genomic

region which was detected either as COrTADo start or COrTADo end but was not detected

by HiCExplorer. Black bard identified borders called with weak set of thresholds, orange bars

identified borders called with strong set of thresholds. Panels represented measures that were

used as a basis for classification on weak and strong borders (see Chapters 3 and 4 for more

details). E. K-Means Clustering analysis at joint COrTADo and HiCExplorer borders. The lo-

cation of a bend is an indicator of the optimal number of clusters. F. Dendrogam represented

the selected factors that were ordered based on the Hierarchical Clustering and divided into

5 classes considering their epigenetic signatures. G. Heat map indicates the distance from

joint TAD borders to nearest peak of selected factors. Side bar demonstrates the division of

TAD borders into active (black) and silence (grey) regions. H. Barplots (top) and heat map

(bottom) represent the percentage of active and silent borders which distance to closest peak

is no more than 5 Kb. We performed a Fisher’s exact test and the corresponding p-values

were displayed above the barplots (n.s. p ≥ 0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001).

(Figure 4.1.G, grey bar). We observed the sub-group of borders with pronounced en-

richment of Polycomb-associated factors indicating genomic regions in repressed state

that were controlled mostly by Polycomb repression machinery. Majority of borders

within the group demonstrated high enrichment of heterochromatin associated marks

also indicating repression. In addition, the absence of H3K27ac coupled with the par-

tial presence of H3K4me1 indicates the association of these TAD borders with primed

enhancers.
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We also compute the percentages of active and silent borders which were allo-

cated no more than 5 Kb from each particular factor (Figure 4.1.H). We performed the

Fisher’s exact test which confirmed that two classes show significantly different occu-

pancy profiles. The only two signatures that were present in approximately the same

share of borders are dRING (Polycomb) and H3K9me3 (heterochromatin). However,

other two Polycomb-associated factors H3K27me3 and Pc as well as heterochromatin

signature H3K9me2 were present more within silent chromatin class. All other factors

were mostly enriched within active chromatin class.

4.4.2. Active borders seemed to be mostly common between COrTADo and HiC-

Explorer while silent ones are mostly algorithm specific

We separated active and silent TAD borders based on the calling algorithm and anal-

ysed the differences in factors binding, insulation strength and the distribution of com-

mon and unique borders. Signatures of active and silent chromatin states in COrTADo

and HiCExplorer profiles were not visually different: active borders were strongly de-

pleted in Polycomb marks, partially depleted in bivalent and heterochromatin marks

and strongly enriched with active transcription and enhancer marks, while silent bor-

ders contained small group of Polycomb enriched borders, strong depletion of ac-

tive transcription and partial enrichment of heterochromatic regions (Figure 4.2., heat

maps).

We also visualised the position of borders detected by both tools under the same

stringency of the thresholds (Figure 4.2., red bars). Within the COrTADo borders, the

common ones demonstrated the tendency to be mostly active, while the unique borders

seemed to be associated more with silent state. The difference is more pronounced at

weak borders, among the strong borders the connection was not as visually clear. The

same separation of common and unique borders was detected for HiCExplorer borders

as well.

As COrTADo detects start and end TAD borders separately, we can face several in-

sulation scenarios. First, borders can show two-sided insulation when COrTADo start

Page 137



Chapter 4 Statistical framework for complex chromatin organisation analysis

and COrTADo end were allocated relatively close to each other (we selected the dis-

tance of 5 Kb) and defined both as strong or both as weak. This scenario represent the

situation when interaction frequencies upstream and downstream from the TAD border

are approximately the same. Second, borders can show imbalanced insulation when

neighbouring COrTADo start and COrTADo end belong to different classes meaning

that the average contact frequencies within the neighbouring TADs are significantly dif-

ferent. Third, when the neighbouring COrTADo borders were allocated at more than

5 Kb from each other, we observed the break between two neighbouring TADs and

we defined it as one-sided insulation. As HiCExplorer detects TADs in “start-to-end”

manner, the two-sided and imbalanced insulation COrTADo borders are expected to

be common between both tools while the one-sided borders have high chance to be

undetected with HiCExplorer, so to be unique COrTADo borders. In accordance with

this, the blue bar, which represents the allocation of two-sided and imbalanced insu-

lation borders, seemed to mimic the allocation of common borders (Figure 4.2., blue

bar).

In addition, the insulation strength statistics of COrTADo and HiCExplorer borders

appeared to correlate with the active/silent chromatin state (Figure 4.2., line plot).

In COrTADo, insulation strength represents the average difference in interaction fre-

quency between inside-TAD and outside-TAD areas. So, the greater insulation strength

score means the greater segregation of chromatin domain from upstream (for COr-

TADo start) or downstream (for COrTADo end) fragments. Under the weak set of

thresholds, the insulation strength at active borders seemed higher than at silent bor-

ders suggesting the contribution of active transcription to the insulation strength of TAD

boundaries.

Note that HiCExplorer is an insulation score-based approach which defines the ge-

nomic region to be, most probably, a TAD border when it demonstrates significant both

upstream and downstream insulation. Technically, it searches for the locus that shows

the decline in contacts with close neighbouring DNA fragments comparatively to down-

stream and upstream regions. So, a low insulation score indicates poorly interacting

Page 138



Chapter 4 Statistical framework for complex chromatin organisation analysis

H
3K
27
m
e3 Pc

dR
IN
G H
4

Ra
d2
1

N
Ts
eq

Po
l-I
I

BE
A
F-
32

Ch
ro

H
3K
4m

e3

CT
CF H
3 Tr
l

H
3K
27
ac

H
3K
9m

e2

H
3K
9m

e3

Cp
19
0

M
ED

1

H
3K
4m

e1

COrTADo start weak COrTADo end weak HiCExplorer weak

COrTADo start strong COrTADo end strong HiCExplorer strong

H
3K
27
m
e3 Pc

dR
IN
G H
4

Ra
d2
1

N
Ts
eq

Po
l-I
I

BE
A
F-
32

Ch
ro

H
3K
4m

e3

CT
CF H
3 Tr
l

H
3K
27
ac

H
3K
9m

e2

H
3K
9m

e3

Cp
19
0

M
ED

1

H
3K
4m

e1

H
3K
27
m
e3 Pc

dR
IN
G H
4

Ra
d2
1

N
Ts
eq

Po
l-I
I

BE
A
F-
32

Ch
ro

H
3K
4m

e3

CT
CF H
3 Tr
l

H
3K
27
ac

H
3K
9m

e2

H
3K
9m

e3

Cp
19
0

M
ED

1

H
3K
4m

e1

H
3K
27
m
e3 Pc

dR
IN
G H
4

Ra
d2
1

N
Ts
eq

Po
l-I
I

BE
A
F-
32

Ch
ro

H
3K
4m

e3

CT
CF H
3 Tr
l

H
3K
27
ac

H
3K
9m

e2

H
3K
9m

e3

Cp
19
0

M
ED

1

H
3K
4m

e1

H
3K
27
m
e3 Pc

dR
IN
G H
4

Ra
d2
1

N
Ts
eq

Po
l-I
I

BE
A
F-
32

Ch
ro

H
3K
4m

e3

CT
CF H
3 Tr
l

H
3K
27
ac

H
3K
9m

e2

H
3K
9m

e3

Cp
19
0

M
ED

1

H
3K
4m

e1

0 strength 1 0 strength 1 -0.5 insulation
score

0.5

0 strength 1 0 strength 1 -0.5 insulation
score

0.5

H
3K
27
m
e3 Pc

dR
IN
G H
4

Ra
d2
1

N
Ts
eq

Po
l-I
I

BE
A
F-
32

Ch
ro

H
3K
4m

e3

CT
CF H
3 Tr
l

H
3K
27
ac

H
3K
9m

e2

H
3K
9m

e3

Cp
19
0

M
ED

1

H
3K
4m

e1

> 10Kb

< 10Kb

< 5Kb
< 2Kb

silent
active

specific
common

1-sided

2-sided
imbalanced

A

B

active active

COrTADo start weak

st
re
ng
th

st
re
ng
th

st
re
ng
th

st
re
ng
th

C

0

0.25

0.5

0.75

1

2L 2R 3L 3R 4 X Y

0.5

0.75

1

COrTADo end weak

0

0.25

0.5

0.75

1

2L 2R 3L 3R 4 X Y

0.5

0.75

1

silent silent
0

0.25

0

0.25

Figure 4.2. Individual TAD border profiles called by COrTADo and HiCExplorer under the

weak (A) and strong (B) set of thresholds. Heat maps represent the distance to closest ChIP

peak of selected factors, distances are split into four groups: > 10 Kb, < 10 Kb, < 5 Kb and < 2

Kb. First bar represents the classification into active (black) and silent (grey) borders. Second

bar represents the allocation of common (red) and algorithm specific (white) borders. A border

is defined as common if it is detected by both tools under the same threshold (weak or strong)

stringency. Third bar (present for COrTADo profiles only) represents the allocation of 2-sided

(dark blue) and imbalanced (violet) insulated borders as described in the main text. Line

plot represents the smoothed strength (for COrTADo) and insulation score (for HiCExplorer)

profiles. C. Allocation of weak COrTADo borders within the genome. Black squares indicate

the regions visually depleted with active borders but enriched with silent borders.
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regions (again, comparatively to surrounding chromatin) and a high insulation score in-

dicates highly interacting regions. As a consequence, lower insulation score indicates

the TAD borders with higher insulation, and higher insulation score indicates the TAD

borders with lower insulation. According to this, active borders detected by HiCExplorer

were associated mostly highly insulated while the silent borders were less insulated.

We also visualised the positions of active and silent COrTADo borders within the

genome (Figure 4.2.C). We noticed some genomic regions which demonstrated visu-

ally clear depletion of active borders while the silent borders were present there. These

were the regions belonged to chromosome centromeres - they were expected to con-

sist of heterochromatin to ensure sister chromatid cohesion and proper chromosome

segregation (Przewloka and Glover 2009).

4.4.3. Active borders detected with COrTADo were more robust to tightening of

thresholds than ones detected with HiCExplorer

Although the profiles of closest ChIP peaks seemed not significantly different between

COrTADo and HiCExplorer, the proportions of active and silent borders were not the

same (Figure 4.3.A and B). Under the weak set of thresholds, COrTADo borders were

defined as active in slightly more than 50% of cases while for HiCExplorer this share

was approximately 60%. We performed Fisher’s exact test and confirmed that HiCEx-

plorer demonstrated more pronounced dis-balance between active and silent regions in

comparison with COrTADo. Interestingly, with stringent parameters, COrTADo demon-

strated more preference towards active regions while HiCExplorer lost more active

regions than silent ones. These findings raised the following suggestion. Active bor-

ders could be characterised by comparatively high insulation strength in at least one

direction, so they would be more robust to tightening of thresholds. Given that HiC-

Explorer tended to lose more active borders than silent, either active borders would

possibly demonstrate lower two-sided insulation strength than silent regions, or active

borders would possibly demonstrated more imbalanced insulation and would not “sur-

vive” the threshold tightening. The first hypothesis is inconsistent with the fact that
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Figure 4.3. Comparative analysis between COrTADo and HiCExplorer borders. A-B. Bar

plots represent the numbers and the proportions of active and silent borders detected under

different conditions. We performed a Fisher’s exact test and the corresponding p-values were

displayed above the barplots (n.s. p ≥ 0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001). C.

Distribution of COrTADo strengths and HiCExplorer insulation scores at active versus silent

borders. We performed a Mann-Whitney U test and the corresponding p-values were dis-

played below the boxplots (n.s. p ≥ 0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001).

we observed active borders being significantly more insulated in all possible conditions

(Figure 4.3.C). We observed the decrease in insulation strength of silent COrTADo bor-

ders in comparison with active ones. The insulation score computed with HiCExplorer

was higher for silent borders indicating their lower insulation strength. We confirmed

the significance of the insulation differences with the Mann-Whitney U test (p-value <

0.001 in all cases). In contrast, share of active COrTADo borders increased with the

threshold tightening (Figure 4.3.B). As COrTADo allows the imbalanced insulation and

as active borders demonstrated higher insulation strength than silence ones, it was

expected that active borders had higher chance to pass the strong set of thresholds.
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4.4.4. Selected COrTADo thresholds tended to be more strict than HiCExplorer

ones

COrTADo detected approximately 33-34% of borders which were also detected by HiC-

Explorer, while the remaining 66-67% were COrTADo unique (Figure 4.1.B). The pres-

ence of unique COrTADo borders was expected as COrTADo allows the one-sided and

imbalanced insulation scenarios which have a low chance to be detected by HiCEx-

plorer. HiCExplorer also produced some unique borders - they were accounted for ap-

proximately 31% of all weak HiCExplorer borders. The presence of these HiCExplorer-

specific borders is not clear.

Interestingly, in Figure 4.2, we noticed the association between common borders

and their active state. For the whole mass of active borders detected by either of

tools, most of them were generated by COrTADo only (Figure 4.4.A). The share of

HiCExplorer-specific active borders were significantly lower. This disbalance with the

preference towards COrTADo-specific borders possibly indicated the presence of nu-

merous active borders with one-sided or imbalanced insulation.

In Figure 4.2, we noticed the association between borders defined as common and

borders defined as active for both COrTADo and HiCExplorer, as well as association of

common borders with higher insulation. We performed a Fisher’s exact test and con-

firmed that borders, which were found by both tools, demonstrated in average higher

insulation strength than the borders which were algorithm specific (Figure 4.4.B). So,

the most insulated borders had a higher chance to be detected by both tools.

Both COrTADo and HiCExplorer displayed that common borders were mostly active

while the algorithm-specific were mostly silent. Interestingly, the HiCExplorer-specific

borders show more balanced separation into active and inactive borders than COrTADo

(Figure 4.4.C). When we call borders using COrTADo we initially generate much larger

set of all valid borders. Even these borders were validated using statistical test, they

can contain some TAD edges which appeared to be valid due to incorrect estimation of

optimal TAD edge length (see Chapter 3 for mote details). So, the borders that did not

pass the weak set of COrTADo thresholds can be common with HiCExplorer borders.
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In agreement with the suggestion, when we compare the allocation of HiCExplorer

weak and all COrTADo valid borders, the share of common borders increased up to

90% (Figure 4.4.D). So, the HiCExplorer borders can be defines as common, common

which did not pass the COrTADo thresholds but were defined within valid borders and

strictly HiCExplorer-specific (Figure 4.4.E).

The borders which were common between COrTADo and HiCExplorer but did not

passed the weak set of COrTADo thresholds were found in approximately 30% of HiC-

Explorer borders (Figure 4.4.E). Half of such borders was defined as active and another

half as inactive, so the weak COrTADo thresholds did not show preference towards ac-

tive or silent borders. Occupancy profiles of the common borders that did not passed

the thresholds are approximately the same with HiCExplorer common borders: we ob-

serve the significant difference only in histones H3 and H4, BEAF-32, Chro, CTCF,

Cp190 and the modest difference with heterochromatin signature H3K9me3. Aside

from H3K9me3 and histones, all factors can be characterised as architectural proteins

which tend to colocolise at TAD borders in flies (see Chapter 2 for more details). Al-

together, the borders that did not “survive” the weak COrTADo thresholds were less

occupied with these architectural proteins. Given this result, we can suggest that the

binding of BEAF-32, Chro, CTCF and or/Chro defines the TAD boundary insulation

strength. Assuming that the common between HiCExplorer and COrTADo borders

probably demonstrate two-sided insulation, these architectural proteins can establish

strong insulation in both upstream and downstream directions. Interestingly, BEAF-32

was shown to separate head-to-head genes with different transcription patterns (Yang

et al. 2012). It rises the question of the connection between insulation balance and

the directionality of transcription. It is possible that when the transcription machinery

demonstrates the preference toward unidirectional transcription at at the specific TAD

border, we would observe more imbalanced or unidirectional transcription.

HiCExplorer borders, which were not detected within all valid COrTADo borders,

accounted for only 10% (Figure 4.4.E) indicating the strictly algorithm-specific borders.

These borders were mostly silent - only 25% of them were defined as active. Despite
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Figure 4.4. Association of common and algorithm-specific borders with the active state. A.

The share of common, COrTADo-specific and HiCExplorer-specific borders within all active

and silence borders detected with either of tools. B. Distribution of COrTADo strengths and

HiCExplorer insulation scores for common versus algorithm specific borders. We performed

a Mann-Whitney U test and the corresponding p-values were displayed below the boxplots

(n.s. p ≥ 0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001). C. Barplots represent the share

of active borders within common (red) and algoritm-specific (white) borders. Corresponding

p-values of a Fisher’s exact test displayed above the barplots. D. Distance from HiCExplorer

weak borders to nearest COrTADo border. We consider both weak borders, as well as all valid

COrTADo borders (adjusted p-value < 0.001). E. The distribution of HiCExplorer common, not

passed and not detected borders as described in the main text. F. The proportion of active

borders within each of specified class of weak HiCExplorer borders. Corresponding p-values

of a Fisher’s exact test displayed above the barplots. G. Barplots represent the percentage of

common, not passed and not detected HiCExplorer borders which distance to closest peak is

no more than 5 Kb. We performed a Fisher’s exact test and the corresponding p-values were

displayed above the barplots.
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the silent state, these borders were strongly enriched with the signatures of active

transcription including Rad21, nascent RNA, Pol-II, H4K4me3 (active promoters), Trl

and MED1, as well as with joint presence of H3K27ac and H3K4me1 indicating the

active enhancer regions (Figure 4.4.G). At the same time, the association of the un-

detected borders with the Polycomb-associated factors (Pc and dRING) is significantly

higher in comparison with common borders. The presence of Polycomb marks cou-

pled with strong enrichment of active transcription factors indicated that some of the

HiCExplorer-specific borders belong to poised enhancers (inactive enhancers that wait

for the activation).

COrTADo and HiCExplorer thresholds aim to remove the borders which demon-

strate insignificant difference between inter- and intra-TAD interactions. In HiCExplorer,

the TAD separation score represents the average interaction frequency between the

genomic region and regions in proximity. So, the minimum difference between the TAD

separation score of 0.04 (insulation strength threshold for HiCExplorer weak borders)

means the TAD separation score at the genomic region corresponding to TAD border

should be different from the score at the neighboring regions by 0.04. In simple, the

difference in interaction frequency between intra- and inter-TAD interactions should be

at least 0.04. In COrTADo, insulation strength is computed only at candidate genomic

positions and not genome-wide. So, the insulation strength threshold of 0.4 (insulation

strength threshold for COrTADo weak borders) means that the intra-TAD interaction

frequency should be at least 1.4 times more the inter-TAD interaction frequency. So,

the difference between interaction frequencies in HiCExplorer is measured through

the subtruction (delta) of interaction frequencies while in COrTADo this difference is

measured through the division (fraction) of interaction frequencies. COrTADo and HiC-

Explorer thresholds can become comparable only if we introduce another parameter

like inter-TAD interaction frequency. For example, at each level of inter-TAD interac-

tion frequency we can select HiCExplorer and COrTADo insulation strength thresholds

which would limit the difference between inter- and intra-TAD interaction frequencies

in similar manner. However, it makes the threshold selection even more complicated
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procedure.

We demonstrated that when we weakened the COrTADo thresholds we obtained

the larger overlap with HiCExplorer borders. If we aim to get more TAD borders which

are consistent between both methods, we can possibly review the thresholds and set

less strict ones. However, along with the increasing of overlap between HiCExplorer

and COrTADo borders, we increase the number of COrTADo-unique borders which are

less significant than the borders under the stricter thresholds and which can affect the

confidence of the downstream analysis.

4.4.5. Most of the COrTADo borders could be described as active unique borders

with imbalanced insulation

As COrTADo detects the insulation of the chromatin domains in either upstream or

downstream direction, as well as provides the insulation strength statistics, we can

closer look on the sources of balanced in imbalanced insulation. Under the weak set

of thresholds, the difference in insulation strengths was pronounced in all pair-wised

comparisons of two-sided, imbalanced and one-sided insulation (Figure 4.5.A). In case

of imbalanced insulation, each weak border has its pair within strong borders. The in-

creased insulation strength of weak imbalanced borders indicates that they are more

closer to strong borders then to the weak ones in terms of insulation strength. One-

side insulated weak borders, in contrast, are less insulated indicating that they are just

slightly above the insulation strength allowed to for weak COrTADo borders. Borders

with balanced insulation are somewhere between them. For strong borders, the allo-

cation is different. The strongest insulation is observed at two-side insulated borders.

Then, there are borders with imbalanced and then with one-sided insulation. Based

on these observations, we suggest that the borders with weak two-sided insulation are

mostly affected by parameter stringency.

Two-sided balance and imbalanced insulation borders did not show significant dif-

ference in the share of common borders with the exception for weak COrTADo ends.

In particular, approximately 50% of two-sided and slightly more for imbalanced borders
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were defined as common between HiCExplorer and COrTADo borders under the weak

set of parameters (Figure 4.5.B). However, the share drops to approximately 30% of

common borders when the thresholds tightened. As expected, the one-sided insulation

is mostly COrTADo-unique, so it supports the idea that COrTADo is able to detect the

TAD borders with imbalanced insulation which cannot be detected by tools assuming

“head-to-tail” TAD border allocation.

Most of the two-sided and imbalanced borders were associated with active state

while one-sided borders did not show specific presence between active and silent chro-

matin (Figure 4.5.C). However, when we consider strong borders, all insulation classes

demonstrate approximately the same preference towards active borders. As the two-

sided insulation borders did not change the proportion of active borders when moved

from weak to strong, there was no specific preference towards active or silent state

within the lost borders. The proportion of active one-sided borders increased with the

strong thresholds, indicating the loss mostly of the borders associated with silent state.

Imbalanced borders were mostly active. Note that all imbalanced weak borders do not

“survive” the threshold tightening. They are defined as weak borders that have their

pair within strong border insulated in opposite direction (weak start and strong end and

visa versa). So, all borders that are weak, imbalanced and active would not be present

within strong borders. On the other hand, borders that are imbalanced, strong and

active are the ones which successfully switch the class from weak to strong.

Theoretically, an imbalanced border can be detected in two cases. First, when it

is a real insulation imbalance, i.e. the end of the one TAD and start of the next TAD

coincide but they demonstrate significant differences in insulation strengths. Second,

when it is a spurious insulation imbalance, i.e. the end of the one TAD and the start

of the next TAD coincide but the insulation strength was incorrectly estimated. The

incorrect estimation can happen because of incorrect estimation of TAD edge length:

when the length is overestimated, we consider more long-range contacts which can

underestimate insulation strength. Analogically, when the length is underestimated,

the insulation strength is overestimated as only intense short-range contacts are con-
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sidered. Underestimation most probably takes place when we have nested TADs. We

fix the TAD edge length at the level when inclusion of more long-range contacts shows

the first dramatic decrease in effect size. Effect size decreases dramatically in case

when we include more long-range contact with significantly different contact frequency.

When TADs are nested and have coinciding start or end positions, the contact fre-

quency would significantly change when we move from inner TAD to outer TAD, so

we expect that the edge of outer TAD would be not detected by COrTADo. In that

case, even if the neighboring TAD may have similar average interaction frequency with

outer TAD, the border between them would be imbalanced with inner TAD. Overesti-

mation of TAD edge length can also happen when distance decay of log2mean ratio

is smooth, and TAD is fading towards its peak. In this case, the effect size would de-

crease smoothly as well and estimated TAD edge would be too long. If the neighboring

TAD has stricter edges, there is high chance of imbalanced insulation detected even

if the interaction frequencies are visually approximately the same. The current crite-

rion for TAD edge length estimation is not strict and create possibilities for predilection

towards detecting imbalanced borders, so in future research it should be improved.

However, using the threshold on absolute value of effect size to remove insignificant

borders we lessen the effect of overestimation of TAD edge length which can affect the

corresponding insulation strength and analyse only significant border imbalances.

4.4.6. Imbalanced insulation did not revealed possible preference towards spe-

cific direction of transcription machinery

The emergence of nascent RNA on either positive or negative strand highlights the di-

rection of the transcription machinery moving. Thus, presence of nascent RNA on

positive strand indicates the transcription going downstream while the presence of

nascent RNA on negative strand indicates the transcription going upstream. It was

previously found that TAD borders in Drosophila were associated with divergent tran-

scription: Pol-II could bind the DNA region and transcribe in either downstream or

upstream direction. Given these findings, imbalanced insulation could be also possibly
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Figure 4.5. Balanced and imbalanced insulation detected by COrTADo. A. Distribution of

COrTADo insulation strengths for two-sided, imbalanced and one-sided insulation. We per-

formed a Mann-Whitney U test and the corresponding p-values were displayed below the

boxplots (n.s. p ≥ 0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001). B. Barplots represent

the share of common borders within each specified insulation class. C. Barplots represent

the share of active borders within each specified insulation class. Corresponding p-values of

a Fisher’s exact test displayed above the barplots. D. Histogram represented the distribution

of directionality scores in two-sided, imbalance and one-sided insulation case. Orange color

represented COrTADo starts and violet color represented COrTADo ends. Directionality score

was calculated as log10 of average nascent RNA positive strand signal within 500 bp win-

dow 500 bp away downstream from the COrTADO border over average negative strand signal

within 500 bp window 500 bp away upstream from the COrTADo border. The vertical lines rep-

resent cut-off values at -0.47 and 0.47 to distinguish between unidirectional and bidirectional

borders.E. Bar plots represented the shares of unidirectional (grey) and bidirectional (black)

borders in each specified scenario. F. We split unidirectional borders depending on preference

towards positive strand (red, directionality score > 0.47) and towards negative strand (blue,

directionality score < -0.47). G. Same as (D-F), for strong COrTADo borders.
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associated with preference towards specific transcription direction. So, high insulation

at COrTADo start represented regions with Pol-II preference towards downstream tran-

scription while highly insulated COrTADo end could be associated with transcription of

upstream regions.

We first computed the mean nascent RNA levels considering 500 bp window that

were 500 bp downstream away on the positive strand and 500 bp upstream away on

the negative strand. Then, we computed directionality score as log10 ratio of mean

nascent RNA on the positive over negative strand. Borders with directionality score

being lower than 0.47 were classified as bidirectional. The value of 0.47 represents

slightly less than three times more transcription on positive strand than on negative

strand.

We computed the directionality scores for borders classified as two-side insulation,

imbalance insulation and one-sided insulation (Figure 4.5.D). When borders did not

show specific choice of transcription direction we defined them as bidirectional. The

proportion of bidirectional borders was slightly dominated by unidirectional ones in all

scenarios (Figure 4.5E.B). The imbalanced start and end borders displayed slightly

different distribution of bidirectional and unidirectional borders. Interestingly, when the

weak imbalanced starts showed slightly less share of the unidirectional borders and

ends showed slightly more, within the strong borders the distributions were opposite.

However, the differences were not significant. Also, we observed slight preference of

upstream transcription (negative strand) at COrTADo starts and downstream transcrip-

tion (positive strand) at COrTADo ends (Figure 4.4.F). We would expect to see more

pronounced association in one-sided insulation case. Although, all the differences

seem to be insignificant. Overall, we did not get enough evidence to support the idea

that the imbalanced insulation correlates with the specific direction of transcription ma-

chinery. On the other hand, the insignificance of the results can be related to the fact

that, first, the nascent RNA and Hi-C datasets were obtained in different experimental

condition, so the association can be not so pronounces. Also, we did not exclude the

silent borders and borders with no transcription from the analysis. One-sided insulation
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was shown to be associated with both active and silent borders while imbalanced and

two-sided insulation showed more preference towards active borders (Figure 4.5.C).

Therefore, the expected disbalance between unidirectional and bidirectional borders

was not clear.

4.4.7. Polycomb-associated borders were mostly COrTADo-specific

Although the separation between active and silent borders was visually clear, there was

a group of silent borders that demonstrated some distinctive features. These borders

were strongly enriched with Polycomb marks while other silent borders were approxi-

mately everywhere Polycomb depleted. Using methods of Hierarchical Clustering with

one additional cluster we separated these borders for further analysis. We performed

Fisher’s exact test and confirmed that these borders had significantly different associa-

tion of chromatin binding factors (Figure 4.6.B). In comparison with other silent borders,

Polycomb-associated borders showed the significantly different level of occupancy in

case of Pol-II (transcription), BEAF-32 (insulation protein) and H3K9me3 (heterochro-

matin) enrichment. In case of other factors these borders showed the largest differ-

ence in H3K27me3, Pc and dRING. Based on these results, we suggested that the

Polycomb-associated group was combined of regions that were associated with joint

Polycomb and heterochromatin repression machinery and regions that were associ-

ated with Polycomb repression only, while other silent borders were mainly heterochro-

matic.

The number of Polycomb-associated borders called by COrTADo was higher than

by HiCExplorer under weak set of thresholds and approximately the same under strong

set of thresholds (Figure 4.6.A). The proportion of Polycomb borders was moderately

higher for COrTADo under the weak threshold values, for the strong borders the pro-

portion was the same for both tools (Figure 4.6.C).

Most of Polycomb borders called by COrTADo were algorithm-specific, while for

HiCExplorer the share of unique Polycomb borders accounted for approximately 25%

(Figure 4.6.E). At the same time, strong Polycomb borders were both COrTADo and
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Figure 4.6. Polycomb-associated borders and their difference from remaining silent borders.

A. Bar plot represents the number of Polycomb-associated borders called with strong and

weak thresholds using COrTADo and HiCExplorer. B. Bar plot (top) and heat map (bottom)

represent the percentage of active, Polycomb-associated and remaining silent borders which

distance to closest peak is not more than 5 Kb. We performed a Fisher’s exact test and the

corresponding p-values were displayed above the bar plots (n.s. p ≥ 0.005, * p < 0.05, **

p < 0.01 and *** p < 0.001). C. Bar plot represents the proportions of active, Polycomb-

associated and remaining silent borders. D. Distribution of COrTADo insulation strengths for

active, Polycomb and remaining silent insulation. We performed a Mann-Whitney U test and

the corresponding p-values were displayed below the boxplots (n.s. p ≥ 0.05, * p < 0.05,

** p < 0.01 and *** p < 0.001). E. Barplots represent the share of common borders within

Polycomb-associated borders.
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HiCExplorer-specific. So, HiCExplorer lose more common Polycomb borders with the

threshold tightening which can possibly indicate the association of Polycomb borders

with imbalanced insulation.

4.5. Summary and discussion

In this Chapter, we performed the comparative analysis between TAD borders called

using the insulation score-based approach implemented as a part of HiCExplorer tool

and borders called by COrTADo. We introduced the COrTADo as we aim the inves-

tigate the functional role of complex chromatin architectural patterns such as nested

TADs, partially overlapping TADs, breaks and imbalances in TAD boundary insula-

tion. The first three groups of complex topologies required the reconstruction of TAD

edges. However, the imbalanced insulation between neighbouring chromatin domains

can be studied straightforward. COrTADo calls start and end TAD borders separately,

so we can explore the upstream and downstream insulation and classify borders into

balanced (or two-sided insulation), imbalanced (where the insulation strengths of up-

stream and downstream borders are significantly different) and one-sided insulation

(when either start or end is present). However, due to bulk manner of Hi-C data, the

imbalances can appear due to either the differences in mappability of regions colo-

colised with TAD borders or the dynamic changes of chromatin architecture within the

population of cells.

Most of the borders indicated by HiCExplorer were either common with COrTADo,

common but these borders did not pass through the weak set of COrTADo thresholds

and were HiCExplorer-specific. The borders were common in 90% of HiCExplorer

borders which is not surprising as COrTADo allows both balanced and imbalanced

insulation detection while HiCExplorer can indicate only balanced insulation scenario.

In particular, HiCExplorer-specific seemed to mostly associate with primed enhancers.

The borders that did not passed the weak COrTADo thresholds showed approximately

the the same epigenetic features as common ones, except the depletion of architectural

proteins BEAF-32, Cp190, CTCF and Chro was noticeable. It reveals the importance
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of these proteins binding in maintaining the insulation strength.

When the threshold values tightened, COrTADo lost mostly silent borders which is

expected as they demonstrated comparatively low insulation strength. However, HiC-

Explorer border lost mostly active borders. Given this, we suggested the association

of active borders with imbalanced insulation - with more stringent parameters only one

of the borders would be able to cross the thresholds while another one would be lost.

HiCExplorer, in turn, would not be able to detect this imbalances. We supported this

observations when looked at the association between active borders and insulation

balance.

Imbalanced insulation coupled with active chromatin state can possibly reveal the

role of transcription directionality in maintaining the one-sided insulation. However, the

nascent RNA data did not show enough support to this hypothesis.

We observed the large group of borders that were active and one-side insulated

as well, however we detected these borders not only with COrTADo but also with HiC-

Explorer. The ability of HiCExplorer to detect so many borders that we classified as

one-sided signals about different stringency of thresholds selected for HiCExplorer and

COrTADo. In case of imbalanced insulation, COrTADo removed candidate with lower

insulation while HiCExplorer allowed this level of insulation to be detected. So, further

weakening of COrTADo thresholds could possibly lead to better overlap between HiC-

Explorer and COrTADo. Also note here that HiCExplorer strong and weak thresholds

did not produce the borders with significant difference in insulation score. Delta thresh-

olds that were used to distinguish between weak and strong borders allowed to select

genomic regions that demonstrated the desired difference in interaction frequency with

neighbouring regions, so this parameter did not affect the strength of insulation itself. In

contrast, COrTADo had two parameters that controlled both difference with neighbour-

ing regions (effect size) and insulation strength itself. Based on this, we could expect

that thresholds in COrTADo were stricter than thresholds in HiCExplorer.
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Discussion and future research

5.1. Summary and discussion

Chromatin architecture and, in particular, topologically associated domains (TADs) are

highly conserved between cell types, developmental stages and even different organ-

isms which suggests their importance for proper gene regulation maintenance and cell

functioning. Previously it was demonstrated that the chromatin topology disruptions,

which were caused by changes architectural protein binding, affected the changes in

gene expression patterns (Lupianez et al. 2015; Taberlay et al. 2016; Kragesteen et

al. 2018). In particular, in Drosophila we have shown that the knockdown of BEAF-32,

Cp190, Chro and Dref caused rearrangements in normal chromatin architecture and

changes in gene expression. Also, we found that the genes altered their expression

when they were associated with massive perturbations in TAD allocation.

The cause-and-effect relationship between gene expression and chromatin topol-

ogy is not trivial. Along with the research showing the disruption of chromatin archi-

tecture coupled with the changes in gene expression, there is also some evidence on

conformational rearrangements which were not coupled with transcriptional changes,

and vice versa – no changes in TAD organisation in the presence of transcriptional

alterations (Ghavi-Helm et al. 2019; Ing-Simmons et al. 2021). Based on the analysis

on BEAF-32 knockdown and Cp190 and Chro double knockdown presented in Chapter

2, we showed that the TADs were found both in active and silent chromatin which is

consistent with previous studies on Drosophila (Ramirez et al. 2018). However, the

TAD borders which were maintained in the mutants were mainly associated with active

state while the borders which were lost in the result of knockdowns were associated

with silent state. It suggests that in the absence of architectural proteins the chromatin

architecture still can be sustained with the support from the transcription machinery

but, in absence of such support, the chromatin architecture is disrupted when the ar-

chitectural proteins are not present. These results and suggestions are consistent with

the hypothesis that architectural proteins can maintain the topology which can “guide”

the transcription machinery and maintain proper contacts between regulatory elements
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and/or insulate the improper ones. Then, further in the development, the transcription

can maintain the architecture even without such ‘guidance’ from the architectural pro-

teins. This hypothetical model is consistent with the dynamics of Runx1 gene expres-

sion and topological changes associated with CTCF binding published in (Owens et

al. 2021). Although, it is unclear whether the transcription is enough when the topol-

ogy is already established or for how long the transcription can maintain the chromatin

architecture. These questions are still not addressed. In addition, significant inconsis-

tencies between different studies whether the gene expression defines the chromatin

segregation between TADs or TAD organisation establishes the proper gene regulation

still does not provide clear understanding on TAD formation mechanism.

TAD allocation is sensitive to the several factors including the experiment condi-

tion, data processing and TAD calling algorithm. Some of the TADs can be detected in

the result of the noise when the associated DNA fragments demonstrate significantly

higher interaction frequency due to improper ligation, PCR amplification or mapping to

the genome. So, the additional steps in order to remove TADs which were allocated

because of the biases are required, otherwise the analysis of the biological functions

of the TADs would not be clear. However, we can face a risk that along with spurious

TADs we can remove the real ones which also can affect the downstream analysis.

For example, excluding excessive number of TADs can affect the comparative analysis

between wild-type and mutant datasets which probably would have similar TAD alloca-

tions, so small rearrangements between two conditions would be missing. However,

in our analysis in Chapter 2 even with multi-stage robust analysis which removes the

many TADs which can be affected by the TAD calling tool parameter selection and dif-

ferences in library sizes between datasets, we still observe massive rearrangements

between wild-type and different knockdowns.

Canonically, TADs are assumed to have “head-to-tail” allocation meaning that the

end of the one TAD should coincide with the start of the next one. This assumption

ignores the complex architectural patterns as breaks, nested TADs, or partial overlap-

ping between neighbouring TADs. Recent TAD calling algorithms started to overcome
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this limitation allowing hierarchical folding of TADs (Rao et al. 2014; Durand et al.

2016; Weinreb and Raphael 2016; Forcato et al. 2017). Other complex architectural

structures require TAD starts and ends to be known, so we require the algorithm, which

can allocate these starts and ends separately from each other. To be more specific,

we require the allocation of start and end TAD edges – the set of loci which interacts

within the same TAD and separates the inter- and intra-TAD interactions. Visually, these

edges are described as imaginary line segments on the border of TADs on the Hi-C

contact maps. Reconstruction of complex topology from the TAD edges can potentially

shed the light on whether the visually detectable complex TAD folding is inconsistent

with canonical “head-to-tail” TAD allocation because the “head-to-tail” assumption un-

able to describe complex chromatin organisation or it is an artefact of the bulk manner

of Hi-C experiment. Further in the Section 5.2.1, we propose simple basic model which

has a potential to separate real complex chromatin interactions from spurious ones in

case of partial overlap between neighbouring TADs.

Understanding of complex chromatin architecture and accurate TAD allocation which

represents the real DNA-DNA interactions is also important for Hi-C pre-processing

and removing the biases. In general, we assume the genomic distance between inter-

acting fragments to be an important explanatory variable at Hi-C interaction frequency

modelling. There are other important factors which include GC-content, DNA acces-

sibility or presence of transposable elements. However, these other factors seem to

affect the chromatin architecture and presence of TADs. So, using the affiliation of

DNA fragments to the same TAD can possibly cover all these factors along with other

hidden factors which were not presented in the Hi-C associated studies up to date. Fur-

ther in the Section 5.2.2, we highlighted some potential scenarios which can possibly

describe the functional relationship between Hi-C contact frequency, genomic distance,

and TAD affiliation, which, in turn, can become a basis for different statistical modelling

problems associated with Hi-C data such as removing the biases or detecting interac-

tions which are significantly different from the expected Hi-C contacts and can possibly

indicate the presence of the loops.
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Although, the reconstruction of complex TAD folding based on TAD edges requires,

first, an algorithm to detect the TAD edges and in the Chapter 3 we introduced COr-

TADo. COrTADo detects TAD edges based on the changes in insulation strength which

measures the differences in contact intensity between DNA fragments belonging to

the same TAD and between fragments outside single TAD. As COrTADo detects TAD

starts and ends separately from each other, it creates a basis for downstream analy-

sis on insulation imbalances. Under the canonical “head-to-tail” TAD allocation, when

neighbouring TADs demonstrate the significantly different inter-TAD average contact

frequencies, we face a risk that TAD border would not be allocated even if they are

visually clear. Also, if neighbouring TADs are not clearly separated and have long

“transition” region, there is a high chance to lose such TAD border as well.

Applying COrTADo on Drosophila BG3 wild-type Hi-C data, we demonstrated that

COrTADo was able to detect the majority of TAD borders detected by other tool, HiC-

Explorer, which assumes “head-to-tail” allocation. However, COrTADo also detects

many unique borders which were expected assuming the presence of borders with

imbalanced insulation. Unique COrTADo borders were actually detected with other

tool but demonstrated lower insulation strength. They also demonstrated significantly

lower binding of several architectural proteins including BEAF-32, Chro, Cp190, CTCF.

Based on these findings, we suggest that the architectural proteins binding can affect

the insulation strength of TAD borders – more protein presented nearby the TAD bor-

der, more segregated the corresponding chromatin into domains. We also showed

the importance of some of these proteins for TAD border maintenance in Chapter 2.

Borders, which were classified as lost during BEAF-32, Cp190 and Chro knockdowns,

demonstrated higher TAD separations score, which is the same as lower insulation

strength, and low or no binding of architectural proteins which does not contradicts

with the results in Chapter 4.

Most of the COrTADo borders were classified as active unique borders with imbal-

anced insulation. As being active, we can expect that most of COrTADo borders would

be maintained in the result of BEAF-32 single knockdown or Cp190 and Chro double
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knockdown based on the results in Chapter 2. However, we predict that their insula-

tion strength profiles would be affected – the maintained borders can significantly lose

their insulation strength in absence of architectural proteins. As we did not analyse

whether the protein binding have any preference towards COrTADo end or start bor-

der to affect the significance of insulation disbalance, we don’t have any prediction on

the distribution of balanced and imbalanced border after the protein knockdowns. The

position preference has a potential to become an important factor for establishment

of insulation imbalance because, first, we showed that the binding is important for in-

sulation strength and, second, the directionality of transcription was not found to be

significantly important to define the insulation imbalance. Altogether, the comparison

of COrTADo borders in wild-type and BEAF-32, Cp190 and Chro knockdowns can help

us to understand the exact mechanism of TAD border insulation establishment and its

connection to transcription without being biased towards only borders with balanced

insulation only.

5.2. Future research

5.2.1. Reconstruction of complex TADs is required for single cell architecture

prediction

We assume that a simple chromatin loop could have a toroidal or a plectonemic shape

(Bjorkegren and Baranello, 2018) (Figure 5.1). In the case of a toroidal loop, anchor

loci interact most of the time, while loci that are in between do not interact with each

other. So, we expect that a sub-TAD that represents a simple toroidal loop could be

treated as a triangle having a peak point and no interactions inside. It is unrealistic

representation, but its simplicity helps to understand the behaviour of plectonemic loop

and how the aggregation of supercoiled loops is visualised at Hi-C matrix. In the case

of a plectonemic loop, anchor loci and all loci in between interact more frequently than

by chance. Sub-TAD that represent this kind of loop could be treated as a triangle

with no peak but having approximately the same level of interaction intensity inside

(we assume that a simple plectonemic loop is small enough to have approximately the
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same number of interactions between loci that belong to the loop).

At the next step we want to understand how two simple loops could be aggregated

into more complicated chromatin structure. As we matched loop shapes and triangle

representations, we can imagine how the chromatin architecture will look like when: (i)

two triangles have one common point; (ii) two triangles partially overlap. If two triangles

have one tangent point, it means that two simple loops should have one common

anchor locus. As a consequence, all three anchor fragments should be in close spatial

proximity. It means that the whole structure could be aggregated into one large TAD

with a peak on the top.

If two triangles partially overlap, it means that there are several loci that belong to

two simple loops. These loci are located between the anchor fragment from one loop

and the anchor fragment from another loop. This chromatin region is expected to have

a higher interaction intensity because it faces interactions from two loops at the same

time. The aggregating TAD in this case is expected to be non-peaked as the furthest

anchor loci are not in close spatial proximity, so they will not interact more often than

by chance.

We described simple structures that could be theoretically observed in chromatin

architecture in a single cell. The next step is to understand what we expect to see on

the resulting Hi-C heat map, based on the ideas described above.

On the one hand, we keep in mind that the Hi-C experiment takes a huge amount

of cells and, as a consequence, produces the contact map in a population average

manner. It means that it is still possible that some loops are not tightly conserved: one

particular loop could appear on some fixed chromatin region but have some location

variation (Figure 5.2., model 1). Because of the aggregation of single profiles within

the population, the Hi-C contact map is expected to have two partially overlapping

triangles. If we assume that the first loop has some contact intensity λb and the second

loop has some contact intensity λp, we expect that the overlapping region should have

the λv contact intensity where λv = λb+λp because of the population averaging manner

of the experiment. So, this is spurious overlapping sub-TADs.
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Figure 5.1. Schematic representation of loop aggregation.

Figure 5.2. Schematic representation of single cell scenario.
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On the other hand, in theory, the combination of two simple loops that are repre-

sented by two partially overlapping triangles could be conserved across cells (Figure

5.2, model 2). We expect that the models should be different by the contact intensity

value: in real overlapping sub-TADs the contact intensity λv is defined only by the spe-

cific loops architecture (and not by the population averaging manner like for spurious

overlapping) and, as a consequence, may be different from λb + λp.

In order to access these different scenarios, we require a TAD calling tool which

allows the partial overlapping to be detected. COrTADo is able to allocate start and end

positions separately which can become a basic for reconstruction of complex chromatin

topology. COrTADo is able to allocate start and end positions separately which can

become a basic for reconstruction of complex chromatin topology. Complex patterns

such as partial TAD overlapping, breaks and nested TADs can be produced by either

chromatin contacts which can have a specific biological function and it was not studied

properly before, or it can be a product of noisy interactions from population of cells in

Hi-C experiment and it can help to improve the existing TAD calling algorithms to obtain

more robust TAD allocation. There is still important methodological question how we

can move from separate start and end TAD border positions to complex chromatin

architecture, but COrTADo created a basis for this move, as well as it can help to

answer other research questions like the existence of imbalanced insulation between

neighbouring TAD borders and reasons behind such phenomenon.

5.2.2. Importance of topologically associated domain allocation for Hi-C interac-

tion modelling

If the locus i interacts with another DNA locus j for randomly selected cell, it is expected

to be cross-linked and ligated during Hi-C only once with this specific locus j, meaning

that locus i may be involved only in single interaction in each cell. Note that it is not

true for diploid organisms which has two copied of DNA. So, the correct way is to say

“may be involved in not more than two interactions in each cell”. However, from the

mathematical point of view, one diploid cell can be treated here analogically to two
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haploid cells. If the locus i does not interact with any other locus genome-wide, we

can call it as self-interaction event and to assign the number of such interactions to

the diagonal entry (i, i). Note that self-interactions are expected to happen rarely and

commonly treated as experiment artefacts rather than real absence of interactions with

other DNA fragments.

Mathematically speaking, for a randomly selected cell, the DNA fragment i success-

fully interacts with exactly one of n other fragments. Suppose, the contact probability

between locus i and locus j = 1, ..., n is defined as pj. If the random variable X(i,j)

indicates the number of times when locus i contacts locus j in a population of T in-

dependent cells in Hi-C experiment, the vector Xi = (X(i,1), X(i,2), ..., X(i,n)) follows a

Multinomial distribution with parameters T and pi = (p(i,1), p(i,2), ..., p(i,n)). Then, the

expected number of interactions between locus i and locus j = 1, ..., n is

µ(i,j) = E(X(i,j)) = Tp(i,j)

It is important to note here that the interaction outcomes X(i,1), X(i,2), ..., X(i,n) are de-

pendent as they must be summed to T . The first limitation of the proposed model

comes from the fact that the sum of observations x(i,1), x(i,2), ..., x(i,n) most of the time is

less than the population size T . The reason is that we lose huge amount of pair-wise

interactions during Hi-C experiment and during following pre-processing. In order to

implement the proposed Multinomial modelling, additional assumptions for lost interac-

tions has to be made.

In Hi-C associated studies, we assume that the interaction frequency between DNA

fragments depends on the genomic distance between them - fragments that are close

to each other on the DNA strand tend to interact more frequently than fragments that

are far away from each other. It is the reasonable assumption for Hi-C maps generated

using cells in late prophase when chromosomes become condensed and chromatin

architectural features are lost. Heat maps of late prophase Hi-C are close to “gradient”

pattern - interaction intensity smoothly changes from high to low when we move from

the diagonal to the top of the map.

This pattern is violated during the interphase. We observe the appearance of differ-
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ent architectural structures like TADs and loops. Interactions inside TADs happen more

frequently than interactions outside TADs. If the pair of loci belongs to the same TAD,

we expect to observe more interactions between them comparing to the pair of loci

that do not belong to the same TAD but located on the same genomic distance from

each other. Generally speaking, when we model either the Hi-C interaction frequency

or contact mean, both the genomic distance between fragments and their affiliation to

the same TAD should be taken into account.

Note, that existing statistical models for Hi-C data highlights other factors besides

the genomic distance to be significant. Such factors include, for example, GC-content,

DNA accessibility or presence of transposable elements (TEs). Along with existing

studies, we demonstrated that TADs were found to be associated with complex in-

terplay between transcription activity, architectural proteins and other DNA-binding

molecules, which, in term, could correlate with DNA accessibility or transposable el-

ements. Thus, many CTCF binding sites were found within TEs, so there could be

a link between TEs and chromatin architecture. Or, another example, the binding

of transcription machinery and transcription initiation could be blocked within highly

compact, inaccessible chromatin regions. We experience the lack of understanding

of cause-and-effect relationship between cell functioning and chromatin architecture,

which makes the process of parameter selection in Hi-C modelling unclear. So, further

analysis, to define whether the TAD affiliation and genomic distance are factors that are

highly significant themselves or we have to take into account other important factors,

is required.

Suppose, we focus on the Hi-C matrix row i which corresponds to the interactions

with locus i and there is single start TAD edge which has a position k - all entries before

the position k (entries with index numbers 1, 2, ..., k − 1) represent DNA fragments

outside TAD; all entries from the position k to the diagonal (entries with index numbers

k, k+1, ..., i− 1) represent fragments that are inside the same TAD as the locus i. The

probability of interaction between fragments belonging to the same TAD is higher than

the probability of interaction between fragments which do not belong to the same TAD.
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Mathematically speaking,

(p(i,1), p(i,2), ..., p(i,k−1)) < (p(i,k), p(i,k+1), ..., p(i,i−1))

As interaction mean is the direct ratio of the interaction probability, we have

(µ(i,1), µ(i,2), ..., µ(i,k−1)) < (µ(i,k), µ(i,k+1), ..., µ(i,i−1))

Next, we propose some basic scenarios to model the vector of means (µ(i,1), µ(i,2), ..., µ(i,i−1))

that, first, take into account the TAD edge position, and, second, are reasonable and

computationally feasible.

Scenario 0. As discussed above, the mean was previously modelled as a decreasing

function of the distance between locus i and locus j. Analogically, we model mean

as an increasing function of the locus j position. The function is increasing because

locus j = 1 indicates the fragment that is at the greatest distance from locus i on the

analysing Hi-C matrix row, while the locus j = i−1 indicates the fragment neighbouring

to the locus i. Mathematically speaking,

µ(i,j) = βjα

with parameters β > 0 and α > 0. According to the scenario, TAD edge does not affect

the interaction mean. We can use this model as a control model in order to decide

whether the TAD edge is a significant factor in Hi-C interaction modelling or not.

Scenario 1. The mean count is modelled as a constant function that changes its level

after reaching the TAD edge:

µ(i,j) =


β0 j < k (outside TAD)

βi j ≥ k (inside TAD)

with parameters βi > β0 > 0 for any i = 1, ..., n. According to the scenario, the only

significant factor is TAD edge. In addition, the parameter βi is proposed to be the same

for rows i belonging to the same TAD and it can be different for rows belonging to

different TADs. The scenario does not look realistic, but it is computationally fast and

easy to implement when TAD edges are known. This scenario can help to assess the

accuracy of the method in comparison with other scenarios.

Scenario 2. The mean count is modelled as a increasing function of the locus j posi-
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Figure 5.3. Schematic representation of Hi-C modelling scenarios.

tion. The functional relations inside and outside TAD are different:

µ(i,j) =


β0j

α0 j < k (outside TAD)

βij
αi j ≥ k (inside TAD)

with parameters β0 > 0, βi > 0, α0 > 0, αi > 0 and (βiα0)/(β0αi) > 0 for any i =

1, ..., n. Similar to Scenario 1, the parameters βi and αi are proposed to be different

for rows belonging to different TADs. On the one hand, the Scenario 2 seems to be

more realistic than Scenario 0 and Scenario 1. On the other hand, the Scenario 2 is

computationally heavy. Also, it requires TAD to be large enough to have observations

for parameters estimation.

Scenario 3. The mean count is modelled as an increasing function of the locus j

position, inside TAD the mean value is shifted up by constant value γ:

µ(i,j) =


βjα j < k (outside TAD)

βjα + γi j ≥ k (inside TAD)

with parameters β > 0, α > 0 and γi > 0 for any i = 1, ..., n. The parameter γi is

expected to be different for rows that belong to different TADs.

All scenarios described above rely on known TAD edge positions as we need to

define the point, where the mean is expected to change its functional relation. It allows

us to divide observations into inside and outside TAD subsets in order to estimate the

functional parameters. In addition, in all scenarios we assume single TAD edge to be

present within the selected Hi-C row and the possibility of nested and overlapping TADs

Page 166



Discussion and future research

violates this assumption. Allowing more TAD edges, we make Scenarios more compli-

cated and, at the same time, reduce number of observations available for parameter

estimation.

Improper TAD edge allocation possibly could happen when using TAD calling tools

that generated TADs in “head-to-tail” manner. When TAD edge is longer than expected

(or, in other words, visually detectable) we include more observations that do not follow

the predicted functional relationship between interaction frequency, genomic distance

and TAD affiliation and introduce biases in parameter estimation. When TAD edge is

shorter than expected, we result in scarcity of observation for estimation. So, imple-

mentation of TAD calling tool, which allow complex architectural structures and, as a

consequence, proper TAD edge detection, is the required step before proposed Hi-C

model.
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Appendix 2.1. ChIP in flies

Source GEO accession Occupancy Peak

Architectural proteins

BEAF-32 modENCODE 921 GSE20811 + +

BEAF-32 modENCODE 3665 GSE32775 +

BEAF-32 (BEAF-32 KD) modENCODE 3663 GSE32773 +

BEAF-32 (Cp190 KD) modENCODE 3664 GSE32774 +

CTCF modENCODE 3673 GSE32783 + +

CTCF modENCODE 282 GSE20767 +

Cp190 modENCODE 924 GSE20814 + +

Cp190 modENCODE 3668 GSE32778 +

Cp190 (Cp190 KD) modENCODE 3747 GSE32816 +

Chro modENCODE 275 GSE20761 + +

JIL-1 modENCODE 3035 GSE27754 +

mod(mdg4) modENCODE 3064 GSE20802 +

Su(Hw) modENCODE 951 GSE20833 +

ZW5 modENCODE 3064 GSE25373 +

Fs(1)h Pherson et al. 2019 GSE118484 +

Nipped-B Pherson et al. 2019 GSE118484 +

Rad21 Pherson et al. 2019 GSE118484 + +

SA Pherson et al. 2019 GSE118484 +

Smc1 Pherson et al. 2019 GSE118484 +

Transcription and replication

GAF modENCODE 2651 GSE23466 + +

MED1 Pherson et al. 2019 GSE118484 + +

MED30 Pherson et al. 2019 GSE118484 +

Nascent RNA Pherson et al. 2017 GSE100545 + +

Orc2 modENCODE 2754 GSE20888 +

Pof modENCODE 3052 GSE27808 +

Pol-II modENCODE 950 GSE20832 + +

Topo-II modENCODE 5058 GSE45069 +

Appendix Table 2.1. Datasets for epigenetic factors used in the Thesis.
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Source GEO accession Occupancy Peak

DNA accessibility

DNase-I Kharchenko et al. 2011 +

H1 modENCODE 3299 GSE32767 +

H2Av modENCODE 6073 GSE45110 +

H3 modENCODE 3302 GSE32769 + +

H4 modENCODE 3303 GSE32770 + +

Histone modifications

H2Bubi modENCODE 288 GSE20771 +

H3K18ac modENCODE 291 GSE20774 +

H3K23ac modENCODE 293 GSE20776 +

H3K27ac modENCODE 295 GSE20778 + +

H3K27me1 modENCODE 3941 GSE51965 +

H3K27me2 modENCODE 2999 GSE27789 +

H3K27me3 modENCODE 297 GSE20780 +

H3K36me1 modENCODE 299 GSE20782 +

H3K36me3 modENCODE 301 GSE20783 +

H3K4me1 modENCODE 2653 GSE23468 + +

H3K4me2 modENCODE 2654 GSE23469 +

H3K4me3 modENCODE 967 GSE20839 + +

H3K79me1 modENCODE 3005 GSE32736 +

H3K79me2 modENCODE 306 GSE20788 +

H3K79me3 modENCODE 4934 GSE45062 +

H3K9me2 modENCODE 310 GSE20791 + +

H3K9me3 modENCODE 312 GSE20793 + +

H4K16ac modENCODE 316 GSE20795 +

H4K20me1 modENCODE 3286 GSE32755 +

H4K8ac modENCODE 5060 GSE45070 +

Appendix Table 2.1. (continue) Datasets for epigenetic factors used in the Thesis.
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Source GEO accession Occupancy Peak

Polycomb

Pc modENCODE 325 GSE20803 + +

dRING modENCODE 927 GSE20817 + +

sSFMBT modENCODE 2986 GSE27728 +

Ez modENCODE 2650 GSE23465 +

Pcl modENCODE 948 GSE20830 +

Psc modENCODE 3055 GSE25370 +

Heterochromatin

HP1a modENCODE 4126 GSE44515 +

HP1b modENCODE 3016 GSE44462 +

HP1c modENCODE 942 GSE20824 +

HP2 modENCODE 3026 GSE27747 +

HP4 modENCODE 4185 GSE44521 +

Su(var)3-7 modENCODE 2671 GSE23486 +

Su(var)3-9 modENCODE 952 GSE20834 +

Nucleosome remodellers

ASH-1 modENCODE 3279 GSE32748 +

JHDM1 modENCODE 5145 GSE45092 +

ISWI modENCODE 3030 GSE27750 +

MRG15 modENCODE 3045 GSE25365 +

NURF301 modENCODE 5063 GSE45072 +

PR-Set7 modENCODE 5065 GSE45074 +

RPD3 modENCODE 4188 GSE44523 +

WDS modENCODE 5148 GSE45094 +

MOF modENCODE 3041 GSE27803 +

Appendix Table 2.1. (continue) Datasets for epigenetic factors used in the Thesis.
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Appendix 3.1. CUSUM-based change-point detection algorithm

We fix the single Hi-C row i = 1, ..., N where N is the number of DNA fragments. We

observe x(i,j) Hi-C interactions between locus i and locus j = 1, ..., i − 1. We esti-

mate the mean interaction frequency between locus i and locus j based on a Moving

Average (MA) as

MA(i,j) =
1
w
(x(i,j) + x(i,j+1) + ...+ x(i,j+(w−1)))

where w is MA estimation window size. So, within the Hi-C row i we get a sequence of

mean estimates (MA(i,1),MA(i,2), ..., MA(i,i−w)). When the particular column position

j represents the TAD edge, we expect the increase in contact mean. So, we assume

the following behaviour. The mean estimates before the position j are approximately

monotone, then there is a rise when we reach the TAD edge, and again monotone

inside the TAD. If there are nested or partially overlapped TADs, within the single Hi-C

row we get several increases in contact mean, each of them represent the TAD edge

position. This assumption is quite unrealistic as we ignore the relationship between the

genomic distance and interaction frequency - fragments which are allocated close to

each other on DNA strand interacts more frequently than fragments which are far away

from each other. However, due to simplicity of the suggested behaviour we can refer

to the change-point detection algorithms in order to detect the coordinates of contact

mean changes.

In this section we introduce the general steps of CUSUM (cumulative sum) algo-

rithm and its possible modifications to make it appropriate specifically to Hi-C data and

TAD edge allocation problem.

Appendix 3.1.1. General form of a sequential change detection algorithm

Suppose that Hi-C interactions within the row i are modelled as independent and iden-

tically distributed random variables X(i,j) where j = 1, 2, ..., i− 1. Each variable follows

the probability density function fX(x|µ) depending on a parameter µ that is the same

for all variables before the change time jc < (i − 1) and increases by δ at the change

time jc. Therefore, X(i,1), X(i,2), ..., X(i,jc−1) follows pdf depending on the parameter
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µ = µ0 (before the shift) and X(i,jc), X(i,jc+1), ..., X(i,i−1) follows pdf with µ = µ1 where

µ1 = µ0+δ (after the shift). Suppose we are in the case when the shift does not happen

within the variables X(i,j) (null hypothesis H0), then the whole pdf is defined as

fX|H0 =
∏j=i−1

j=1 fX(x(i,j)|µ0)

If we are in the case when one change in parameter happens at change time jc (alter-

native hypothesis H1), then the whole pdf is defined as

fX|H1 =
∏j=jc−1

j=1 fX(x(i,j)|µ0)
∏j=i−1

j=jc
fX(x(i,j)|µ1)

We aim to construct the rule in order to decide between two hypotheses H0 and H1.

The detection theory provides us with the solution – the likelihood ratio test.

Likelihood ratio test. The log-likelihood ratio is defined as

LX = ln
(
fX|H1
fX|H0

)
Then, decide H1 if LX > h or decide H0 otherwise, where h is a test threshold.

In our case, the log-likelihood ratio is defined as

LX(jc) = ln
(∏j=i−1

j=jc

fX(x(i,j)|µ1)

fX(x(i,j)|µ0)

)
=

∑j=i−1
j=jc

ln
(

fX(x(i,j)|µ1)

fX(x(i,j)|µ0)

)
However, jc is unknown and we aim to detect it. One way to efficiently define the

change time is to use the value of jc that maximises the likelihood fX|H1, i.e. the

distribution most probably fits the observed data given that the alternative hypothesis

is true (the shift in mean is present):

ĵc = argmax
1 ≤ jc ≤ i−1

fX|H1(jc) = argmax
1 ≤ jc ≤ i−1

LX(jc) = argmax
1 ≤ jc ≤ i−1

∑j=i−1
j=jc

ln
(

fX(x(i,j)|µ1)

fX(x(i,j)|µ0)

)
Then, the likelihood ratio test turns into the generalised likelihood ratio test.

Generalised likelihood ratio test. The generalised log-likelihood ratio is defined as

GX = max
1 ≤ jc ≤ i−1

LX(jc) = max
1 ≤ jc ≤ i−1

ln
(
fX|H1
fX|H0

)
Then, decide H1 if GX > h or decide H0 otherwise, where h is a test threshold.

In our case, the generalised log-likelihood ratio is defined as

GX = max
1 ≤ jc ≤ i−1

∑j=i−1
j=jc

ln
(

fX(x(i,j)|µ1)

fX(x(i,j)|µ0)

)
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Appendix 3.1.2. CUSUM algorithm and its recursive form

The decision rule for the generalised likelihood ratio test could be rewritten in a form

of recursive algorithm. Suppose at position j we observe the experiment value x(i,j).

Then, we can define the instantaneous log-likelihood ratio at j as

s(j) = ln
(

fX(x(i,j)|µ1)

fX(x(i,j)|µ0)

)
(A3.1)

and cumulative log-likelihood ratio which is the cumulative sum of instanteneous

ratios up to the position j, i.e.

S(j) =
∑t=j

t=1 s(t) =
∑t=j

t=1 ln
(

fX(x(i,t)|µ1)

fX(x(i,t)|µ0)

)
So, when the coordinate j passed through the change time jc, i.e. j > jc, we have

S(j) =
∑t=jc−1

t=1 ln
(

fX(x(i,t)|µ1)

fX(x(i,t)|µ0)

)
+
∑t=j

i=jc
ln

(
fX(x(i,t)|µ1)

fX(x(i,t)|µ0)

)
S(j) = S(jc − 1) + LX(jc)

LX(jc) = S(j)− S(jc − 1)

As generalised log-likelihood ratio is the same as maximised likelihood ratio, we can

rewrite it as

GX(j) = max
1 ≤ jc ≤ j−1

LX(jc) = S(j)− min
1 ≤ jc ≤ j−1

S(jc − 1)

Analogically, the optimal change position ĵc turns into

ĵc = argmax
1 ≤ jc ≤ j−1

LX(jc) = argmin
1 ≤ jc ≤ j−1

S(jc − 1) (A3.2)

The cumulative log-likelihood ratio and the generalised log-likelihood ratio then can be

rewritten in the recursive manner as

S(j) =
∑t=j

t=1 s(t) =
∑t=j−1

t=1 s(t) + s(j) = S(j − 1) + s(j) (A3.3)

GX(j) = max
1 ≤ jc ≤ j−1

(S(j − 1) + s(j)− S(jc − 1))

GX(j) = max {GX(j − 1);GX(j − 1) + s(j)} (A3.4)

Overall the CUSUM algorithm can be described as follows. We have an ordered set

of experimental values x(i,j) where j = 1, 2, ..., i − 1 and for each j we compute the

instantaneous log-likelihood ratio based on Formula A3.1. In simple words, this ratio

represents which hypothesis, null or alternative, fits the observed data point most prob-

ably: when the ratio is positive, the data better fits the alternative hypothesis (shift in
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mean is present); when the ratio is negative, the data better fits the null hypothesis

(no shift in mean). Then, we compute cumulative and generalised log-likelihood ratios

according to the Formulas A3.3 and A3.4, respectively. When GX(j) cross the pre-

selected threshold value h, it means that there is a high chance that we accumulated

large amount of data points that better fits the alternative hypothesis rather than the

null hypothesis. At this moment we fix the detection time jd. According to the Formula

A.3.2, the change point jc can be fixed one step before the moment when S(j) reaches

its minimum such as jc < jd (change point happens before the detection point). Note

that as the pre-selected threshold h should be a positive number, the Formula A3.4.

can be simplified as

GX(j) = max {0;GX(j − 1) + s(j)} (A3.5)

Appendix 3.1.3. Dealing with unknown parameters

The algorithm relies on several assumptions that should be made. Assumptions deal

with pdf fX(x|µ) that defines the value of instantaneous log-likelihood ratio the decision

threshold h that is used to decide between two hypotheses H0 and H1.

Normal probability density function. Each particular observation x(i,j) in Hi-C

matrix represents the number of pair-wise interactions counted during the Hi-C exper-

iment in a population of cells. However, we require the low quality read filtering and

matrix correction to reduce the influence of experimental biases which should be made

before the TAD edge detection. As a result, the discrete count data in raw Hi-C turns

into continuous data in corrected data. So, we would select Poisson density function

if we decide to skip the correction step, and we would select Normal distribution if we

apply the matrix correction step.

The Normal distribution has one advantage over the Poisson distribution. Normal

pdf depends on two parameters – mean µ and varianceσ2 – that can be set inde-

pendently from each other. The Poission pdf, in contrast, depends on single mean

parameter and models variance to be equal to the mean. This finding can become

critical particularly for Hi-C data: Hi-C interactions tend to demonstrate the variance
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being usually greater than mean. So, assuming the Poisson distribution would lead

to overdispersion: the observations would demonstrate variation which is higher than

expected.

At the moment, we assume that the Normal pdf function to implement the algorithm

for TAD edge detection. For simplicity, we also assume the variance parameter is

known and stays the same for all samples.

Replacement alternative mean parameter by introducing shift parameter. In-

stantaneous log-likelihood ratio is defined by the form of pdf, which explicit form, in

turn, is defined by the mean before the shift µ = µ0 and mean after the shift µ = µ1.

In practice, we may have some prior information about the mean value before the shift

but the mean value after the shift is mostly unknown. In this case, the simplest solution

is to introduce the shift parameter δ that represents the difference in mean value before

and after the change, in other words, µ1 = µ0 + δ. In case of Normal distribution, the

instantaneous log-likelihood ratio becomes

s(j) = δ
σ2

(
x(i,j) − µ0 − δ

2

)
Note that shift parameter is priory unknown as well as the mean before the shift µ0 and

the variance σ2.

Estimate null mean parameter using maximum likelihood estimation. The un-

known mean before shift µ = µ0 can be replaced by its maximum likelihood estimate

based on the available samples at time j, i.e.

µ̂0(j) =
1
j

∑t=j
t=1 x(i,t) and σ̂2(j) = 1

t−1

∑t=j
t=1(x(i,t) − µ̂0)

2

Note that in case of Normal distribution we are able to run the algorithm starting with

the coordinate t = 2 only as variance estimate is required to be different from zero. The

maximum likelihood-based algorithm is fromalised in Appendix Algorithm 3.1.1.

Large fluctuations in data may dramatically affect the maximum likelihood estimate

of mean parameter, especially when the coordinate j is not large and not so many

samples are available. It is not critical for samples that are expected to have no shifts

in mean for long time and could be controlled through the detection threshold h: large

increase in mean estimate at the beginning of the algorithm (when number of obser-
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vations is not large) will increase the value GX(j) and may beat the threshold h while

the shift in observations appeared because of the noise and not because of real shift

in mean; increasing the threshold allows to move the detection time from the beginning

to the moment when the real change in mean takes place and more observations that

are most probably indicate shift in mean would be accumulated. Although, for sam-

ples where the time periods with no shift are relatively short the maximum likelihood

estimation may be not appropriate. For example, it is the case of nested TADs. If

we assume that within the Hi-C row i we should detect at least two TAD edge, when

the first change point jc is detected, we need to reset the algorithm starting now from

j = jc. The distance between two neighbouring TAD edges can be relatively short, so

there is a high chance that values accumulated GX(j) represents the spurious “jumps”

in observations.

Appendix 3.1.4. Estimate null mean parameter using Bayesian update method

In case of samples with short periods of stable mean to be expected, we may use the

method that relies on some prior knowledge about the mean parameter before any

sample value x(i,j) is observed. Then, the mean parameter is updated with respect

to the new information coming from the new data point. This method will reduce the

effect of the large data fluctuations on the mean estimate, providing us with more stable

mean parameter independently on the length of the stability period.

Suppose that X(i,j) for j = 1, ... i− 1 are independent random variables that follows

Normal distribution. Mean parameter µ0 is the same for all variables before the change

time jc and increases by δ at the change time jc. Therefore, X(i,1), ..., X(i,jc−1) follow

Normal distribution with mean µ = µ0 and X(i,jc), ..., X(i,i−1) follows Normal distribution

with mean µ = µ1 where µ1 = µ0+δ. We assume that the variance parameter is known

and stays the same for all samples.

Suppose we observed the experiment values x0 = (x(i,1), ..., x(i,jc−1)) before the

change time, they can be viewed as known values. Then, the likelihood function is

written as
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L (µ0|x0) ∝
∏j=jc−1

j=1 exp
{

1
2σ2 (x(i,j) − µ0)

2}
L (µ0|x0) ∝ exp

{
1

2σ2

∑j=jc−1
j=1 (x(i,j) − µ0)

2
}

L (µ0|x0) ∝ exp

{
1

2 σ2

jc−1

(
µ0 −

∑j=jc−1
j=1 x(i,j)

jc−1

)2
}

So, µ0 follows Normal distribution with mean
∑j=jc−1

j=1 x(i,j)

jc−1
and variance σ2

jc−1
. As µ1 =

µ0 + δ, we can conclude that µ1 follows Normal distribution with mean
∑j=jc−1

j=1 x(i,j)

j=jc−1
+ δ

and variance σ2

jc−1
.

Then, we observe the new experiment value x(i,jc) where X(i,jc) follows Normal dis-

tribution with mean µ1 and variance σ2. It is the information brought in by the data and

could be used in order to update the prior knowledge about the mean parameter µ1.

As we deal with normally distributed prior and normally distributed likelihood, we can

conclude that the posterior distribution of µ1 is Normal distribution with

mean =

(∑j=jc−1
j=1

x(i,j)
jc−1

+δ

)
σ2+x(i,jc)

σ2

jc−1

σ2+ σ2

jc−1

=
∑j=jc−1

j=1 x(i,j)+x(i,jc)+δ(jc−1)

jc

variance =
σ2 σ2

jc−1

σ2+ σ2

jc−1

= σ2

jc

Before the new experiment value x(i,jc+1) is observed, the Normal posterior distribution

of µ1 could be treated as prior knowledge that we want update with the new information.

The posterior distribution of µ1 then is Normal with

mean =
∑j=jc−1

j=1 x(i,j)+x(i,jc)+x(i,jc+1)+δ(jc−1)

jc+1

variance = σ2

jc+1

Generalising the procedure, when the new experiment value x(i,k) where k > jc is

observed, the posterior distribution of µ1 is Normal with

mean =
∑j=k

j=1 x(i,j)+δ(jc−1)

k

variance = σ2

k

Detailed above derivation describes the procedure that allows to simulate the µ1

with new-coming observations after the first shift is detected. The advantage of the

method is that the simulated values of µ1 rely on the whole history of observations
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which were before the change point jc. So, it is expected that on relatively short

datasets, simulated value of µ1 would be less variable than the value of µ1 estimated

with maximum likelihood.

These derivations also can be used to estimate µ0 before the first shift detected.

Pairs of loci which are allocated far away from the diagonal (for example, on the corner

of Hi-C matrix build for Mb-scale genomic regions) demonstrate the interactions which

are approximately uniform and close to zero (name it as background noise). First, we

use maximum likelihood estimation for mean and variance parameters based on these

distal interactions. Then, when we start the algorithm at j = 1, we treat this moment

as the first observation after the zero shift from the Hi-C background noise.
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Appendix 3.2. Threshold-based TAD edge detection algorithm

In this section we introduce the threshold-based TAD edge detection algorithm allow-

ing to call the visually clear log2 mean ratio stripes which indicate the area of most

probable allocation of left TAD edges within Hi-C interaction matrix (see Chapter 3 for

more details). This algorithm generates the rectangle areas covering the stripes on

log2 mean ratio heat map. Note that the algorithm was built for the purpose of hy-

potheses testing and as a basis for downstream modeling. The algorithm has very little

applicability for real data analysis because of its sensitivity to the noise.

Appendix 3.2.1. Algorithm notations and assumptions

We fix the single Hi-C row i = 1, ..., N where N is the number of DNA fragments. We

observe x(i,j) Hi-C interactions between locus i and locus j = 1, ..., i− 1. We introduce

log2 mean ratio at position j as log2(MA(i,j+1)/MA(i,j−1)) with MA(i,j+1) and MA(i,j−1)

are defined as:

MA(i,j+1) =
1
w
(x(i,j+1) + x(i,j+2) + ...+ x(i,j+w))

MA(i,j−1) =
1
w
(x(i,j−1) + x(i,j−2) + ...+ x(i,j−w))

where w is MA estimation window size. The log2 mean ratio represents the ratio of

downstream over upstream average interaction frequency. We aim to select the candi-

date positions ĵ such that the change in contact mean from upstream to downstream

is at least at some pre-selected level that we denote as threshold (Appendix Figure

3.2.A-B). So, the following inequality should be satisfied:

log2(MA(i,ĵ+1)/MA(i,ĵ−1)) > threshold

Set of column candidate positions (ĵ) = (ĵ1, ĵ2, ĵ3, ...) consists of smaller sub-sets

(Appendix Figure 3.2.C), which can be characterised as:

• consecutive, meaning that we can identify the window where the possible TAD

edge is allocated,

• single peaks separated from each other by large gaps, meaning that, most prob-

able, we detect jumps in signal because of noise,

• the mix of consecutive regions, gaps and peaks.
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To be a TAD edge position, the log2 mean ratio at ĵ should exceed the threshold

in several Hi-C rows, so should be detected more than ones within the analysed Hi-C

interaction matrix (Appendix Figure 3.2.C). So, we introduce the Frequency Rule in

order to remove column positions that do not cross the threshold or cross it in a single

Hi-C row only.

Frequency Rule. We collect all column candidate positions, which have log2 mean ratio

being greater or equal than pre-selected threshold, from all Hi-C rows within the investi-

gating genomic region. Then, we compute how many times we observe each candidate

position. The computed frequency represents in how many Hi-C rows we observe each

column candidate position. If the frequency is 1, then we exclude this candidate position

from the analysis. If the frequency is greater than 1, we leave the candidate position. It

allow us to leave only column positions that are observed in more than one Hi-C row.

We assume that single TAD edge position can be found within subset of consecutive

column candidate positions (Appendix Figure 3.2.C, scenario 1). It means that when

the single column candidate position ĵ is separated from other candidate positions by

long gaps we possibly detects this ĵ because of the data noise (Appendix Figure 3.2.C,

scenario 2). As well as single column candidates, short gaps have to be removed.

When two subsets, which members are placed continuously, are separated by short

gap, it is the high chance that we observe the gap because of the noise, so we need

to aggregate these subsets into one (Appendix Figure 3.2.C, scenario 3). Altogether,

we aim to detect only subsets with consecutive column positions. We introduce the

Consecutive Rule in order to select consecutive positions including the case when

we need to aggregate two consecutive subsets if they are separated by single column

position.
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Consecutive Rule. We are interested in only consecutive column positions, meaning

that if (ĵ1, ĵ2, ...,ĵ5) is consecutive subset then ĵ2 = ĵ1 + 1, ĵ3 = ĵ2 + 1 and so on. If we

observe a break between candidate positions, for example, between positions ĵ4 and ĵ3,

that, mathematically, can be written as ĵ4 > ĵ3 + 1, we have two options. In first option,

we observe that after the position ĵ4 there is a new consecutive region, i.e. ĵ5 = ĵ4 + 1,

so we leave the whole subset (ĵ1, ĵ2, ...,ĵ5). In second option, we observe that after the

position ĵ4 there is a large break again, i.e. ĵ5 > ĵ4 + 1, so we remove ĵ4 and ĵ5 from the

analysis. We continue to apply the rule until only consecutive regions remain.

First of all, we have to note that according to Consecutive Rule, at this point we treat

as a “short gap” only gaps which lengths are 1 position only. Using this assumption, we

face a danger to generate too many long consecutive subsets separated by relatively

short gaps, so we have to either modify the Consecutive Rule, or take into account

such gaps in further steps of the algorithm. Second thing is that the order of rules to

apply is critical. The Frequency Rule applied after the Consecutive Rule would remove

some elements from consecutive subsets and, as a consequence, generate single

column candidates with computed frequencies to be higher than 1, but separated from

consecutive regions by large gaps. However, the Consecutive Rule applied after the

Frequency Rule insures that consecutive regions mostly (not all) formed by column

positions that are observed in more than one row in Hi-C contact map. The start and

the end of each consecutive region are, respectively, the left and the right coordinates

of the window that contains the TAD edge position (Appendix Figure 3.2.D).

Appendix 3.2.2. Detection of bottom TAD edge requires the usage of Frequency

and Consecutive Rules as well

We defined the set which includes several subsets of consecutive column positions and

each of them represents the window around particular left TAD edge. Suppose that

there is TAD edge at the position ĵs and it is included into subset (..., ˆjs−1, ĵs, ˆjs+1, ...).

The same ĵs is expected to be a left TAD edge position for several neighbouring Hi-C
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Appendix Figure 3.2. Step-by-step performance of the threshold-based TAD edge detection

algorithm. A-B. At each Hi-C row, we define column positions at which log2 mean ratio ex-

ceeds the threshold. Red line represents the threshold value and starts represent the success

event (log2 mean ratio beats the threshold). C. We sum number of successes per each col-

umn. According to frequency rule we select column positions which demonstrate the number

of successes being greater than 1. There are three scenarios: (1) consecutive column po-

sitions; (2) single position separated from neighbouring consecutive positions by large gaps

(removed according to Consecutive Rule); (3) Consecutive regions separated by short gaps

of 1 position (aggregated according to Consecutive Rule). D. Scenarios 1 and 3 form the

left and right coordinates of TAD edge squares (coloured with orange). Each rectangle area

defines the window where left TAD edge is allocated. E. Applying Frequency and Consecu-

tive Rules at Hi-C rows within each subset of consecutive column positions, we generate TAD

edge squares where top and bottom coordinates represent the window where bottom TAD

edge is allocated. TAD edge squares separated by less than minimum with difference be-

tween neighbouring TAD borders (user-selected parameter) are aggregated. Left TAD edge is

placed at the centre between left and right coordinates, bottom TAD edge is placed at bottom

coordinate.
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rows i = ĵs, ˆjs+1,..., ĵf where ĵf is bottom TAD edge position. This definition represents

the left TAD edge as a straight line starting at the Hi-C diagonal and finishing at specific

Hi-C row i = ĵf (Appendix Figure 3.2.D).

As the TAD edge is defined as a straight line, sequence of Hi-C rows between the

diagonal and bottom TAD edge position should be continuous. So, for each subset

of consecutive column positions (..., ˆjs−1, ĵs, ˆjs+1, ...) we aim to define the subsets of

continuous row positions î such as

log2(MA(̂i,ĵ+1)/MA(̂i,ĵ−1)) > threshold

Technically speaking, we need to apply similar Frequency and Consecutive Rules

within the subset of columns (..., ˆjs−1, ĵs, ˆjs+1, ...) and call consecutive subsets within

Hi-C rows. Despite the fact that TAD edge is defined as a straight line and there should

be single consecutive set of rows, we used a term “subsets” instead and there are two

reasons. First reason is technical ((Appendix Figure 3.2.E). Due to a noise, we expect

several gaps within consecutive row position subsets. If we remove only gaps of 1

position, according to the Consecutive Rule, and select the first subset to represent

continuous TAD edge, we face a danger to fix the TAD edge with much shorter length

that expected. Second reason is associated with nested TADs. If we assume that we

do not allow nested TADs, then the bottom TAD edge position must be the only one.

In opposite, taking into account nested TADs we can have several TADs with the same

start edge and different end edges. So, we expect to observe several consecutive

regions separated by large gaps.

The Frequency Rule would allow only Hi-C rows that demonstrate more than one

column position ĵ where log2 mean ratio cross the threshold. So, if the number of such

positions ĵ is exactly 1, we exclude this candidate row from the analysis. If the number

of such positions ĵ is greater than 1, we leave the candidate row. After removing

unreliable row candidates with the Frequency Rule, the set of row candidates can be:

• consecutive, meaning that all candidate rows belong to the start edge and the

end of consecutive region represents the position of end edge,

• single peaks separated from each other by large gaps, meaning that, most prob-
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able, we caught single jumps in signal because of noise,

• the mix of consecutive regions, gaps and peaks.

After applying the Consecutive Rule, within each column consecutive subset we gen-

erate several row consecutive subsets. The start and end of each row consecutive

region are, respectively the top and the bottom coordinates of the window that contains

the bottom TAD edge position.

Appendix 3.2.3. The neighbouring consecutive row candidates can be aggre-

gated, otherwise, nested TADs are allocated too close to each other

The gaps between consecutive row candidates are not restricted. After applying the

Consecutive Rule, the consecutive regions may be separated by both short and large

gaps. Imagine the following scenario: there are two neighboring relatively short con-

secutive regions, containing just 3 rows each, and they are separated by the short gap,

just 3 rows as well. In this case, we define two nested TADs and their end edges are al-

located from 3 to 9 rows apart (as the end edge should be allocated somewhere within

the consecutive region). So, the difference in these TAD widths is expected to be from

3 to 9 bins.

There are different ways to define the criteria or rule to aggregate two neighbouring

consecutive regions separated by the relatively short gap into one large region. At the

current stage, we are mainly interested in the ability of the proposed algorithm to detect

the TAD edges that are, first, coincide with visually clear TAD edges in Hi-C interaction

matrix map, and, second, coincide with the reliable TADs called by other tools (we

used HiCExplorer in Chapter 3). As a result, the criteria to aggregate the neighbouring

consecutive regions or not can be stated in a simple way by user-controlled parameter

to set the minimum TAD width difference (Appendix Figure 3.2.E). If the gap between

two neighbouring consecutive regions is less than the minimum TAD width difference

we aggregate to regions into one, if the gap is greater than the minimum TAD width

difference we leave two regions to be separated.
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Appendix 3.2.4. Threshold-based TAD edge detection algorithm produces the

TAD edge squares which can be further reconstructed into TADs

We got the left/right coordinates of the windows containing the left TAD edges and

top/bottom coordinates of the windows containing bottom TAD edges. The combination

of these 4 coordinates creates the structure that we name as “TAD edge square”. The

TAD edge squares are expected to shrink when the threshold value increases: there is

the lower chance for log2 mean ratio to cross the higher threshold values, so the less

column positions ĵ and less row positions î to be included.

We also can reconstruct TAD edges based on squares to make them more canon-

ical to the Hi-C user’s eyes (Appendix Figure 3.2.E). At the current stage, we propose

the left TAD edge to be allocated exactly in the centre of the TAD edge square. With

respect to the bottom TAD edge, we propose to allocate it in the bottom of the TAD

edge square - all row candidates within the TAD edge square should belong to the

same TAD, so the last row belonging to the square represents the last row belonging

to the TAD.

Appendix 3.2.5. Algorithm formalisation suitable for programming language im-

plementation

Here we provide the algorithm in its formalised format. The whole procedure can be

split in six main stages. Line numbers below refer to the specific lines in formalised

algorithm, see Appendix Algorithm 3.2 for details.

• Stage 1 (lines 1-6) describes the selection of candidate column positions that are

potential left TAD edge positions.

• Frequency Rule (lines 7-8) is applied further on column candidate positions col-

lected in Stage 1. In simple words, the Rule removes all the candidate column

positions that are observed only in single Hi-C row and cannot be reliable left TAD

edge position candidate.

• Consecutive Rule (lines 9-17) allow us to leave only consecutive column can-

didate positions and remove single positions that are separated from others by
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gaps. The start of each consecutive region represents the most left TAD edge

position, the end of each consecutive region represents the most right TAD edge

position.

• For each pair left/right position, during Stage 2 (lines 23-31) we collect candi-

date row positions that have log2 mean ratio exceeding the threshold value in at

least two column positions. So, in this stage we at the same time search for row

candidate positions and remove the unreliable ones with Frequency Rule.

• We want to leave only consecutive row candidates, so we apply the Consecutive

Rule (lines 32-39) on row candidate positions.

• Then, if two row consecutive regions are closer than minimum allowed break,

we join two consecutive regions (lines 41-45). The start and end of aggregated

region represents top and bottom positions, respectively, of TAD edge squares.

If two regions are not aggregated, we have two separate TAD edge squares with

top side position at starts of the regions and bottom side position at ends of the

regions.

Depending on the threshold value provided by the user, we can either have no TAD

edge squares if the threshold value is extremely high, or have TAD edge squares rep-

resented by four coordinates each, where first coordinate is the left side position of the

square, second coordinate is for the right side, third coordinate is for top side and last

coordinate is for bottom square side position.
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Appendix Algorithm 3.2. Threshold-based TAD edge detection algorithm.

Data: N ×N Hi-C matrix where x(i,j) is a matrix entry on row i and column j

Result: 4 coordinates of TAD edge squares

User Inputs:

w = MA estimation window width

threshold = threshold value that log2 mean ratio should exceed

min dif = minimum width difference in nested TADs

Initialize:

Î = set of row candidate positions, Î ← {}

Ĵ = set of column candidate positions, Ĵ ← {}

LEFT = set of left side positions of TAD edge squares, LEFT ← {}

RIGHT = set of right side positions of TAD edge squares, RIGHT ← {}

TOP = set of top side positions of TAD edge squares, TOP ← {}

BOTTOM = set of bottom side positions of TAD edge squares, BOTTOM ← {}

1 for i← (2w + 1) to n do

2 for j ← (1 + w) to (i− 1− w) do

3 M(i,j+1) = mean over non-NA elements (x(i,j+1), x(i,j+2), ..., x(i,j+w))

4 M(i,j−1) = mean over non-NA elements (x(i,j−1), x(i,j−2), ..., x(i,j−w))

5 if log2(MA(i,j+1)/MA(i,j−1)) > threshold then

6 collect j into set Ĵ

7 if element in set Ĵ is observed only once then

8 remove it from set Ĵ

9 order elements in set Ĵ

10 k = 1

11 while k < |Ĵ | do

12 if ĵk+1 − ĵk = 1, (jk, jk+1) ∈ Ĵ then

13 collect jk into set LEFT

14 else

15 if k > 1 then

16 collect jk into set RIGHT

17 k = k + 1
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:

18 if LEFT and RIGHT sets are empty then

19 stop the algorithm

20 order elements in set LEFT and set RIGHT

21 t = 1

22 while t < |LEFT | do

23 for i← (2w + 1) to n do

24 count = 0

25 for j ← leftt ∈ LEFT to rightt ∈ RIGHT do

26 M(i,j+1) = mean over non-NA elements (x(i,j+1), x(i,j+2), ..., x(i,j+w))

27 M(i,j−1) = mean over non-NA elements (x(i,j−1), x(i,j−2), ..., x(i,j−w))

28 if log2(MA(i,j+1)/MA(i,j−1)) > threshold then

29 count = count+ 1

30 if count > 1 then

31 collect i into set Î

32 k = 1

33 while k < |Î| do

34 if îk+1 − îk = 1, (ik, ik+1) ∈ Î then

35 collect k into set TOP

36 else

37 if k > 1 then

38 collect k into set BOTTOM

39 k = k + 1

40 order elements in set TOP and set BOTTOM

41 if TOP contains more than 1 element then

42 for s← 1 to (|TOP | − 1) do

43 if tops+1 − bottoms ≤ min dif + 1, tops+1 ∈ TOP, bottoms ∈ BOTTOM then

44 remove tops+1 from set TOP

45 remove bottoms from set BOTTOM

46 if TOP and BOTTOM sets are not empty then

47 for s← 1 to |TOP | do

48 combination of (leftt, rightt, tops, bottoms) forms singe TAD edge square

49 stop the algorithm
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Appendix 3.3. COrTADo R-based implementation

In this section we provide the detailed technical overview on the TAD edge calling

procedure that is currently implemented in R as a collection of functions. To call TAD

edges it is necessary to perform the following basic steps:

1. Transform Hi-C input data into a list format.

2. Compute log2 mean ratios row-wise and column-wise.

3. Allocate start and end TAD edge candidates.

4. Perform edges depth estimation.

5. Perform validation test and multiple test correction.

6. Select edges which satisfy the pre-selected thresholds.

Note that the usage example provided below is based on the parameters selected

for the genome-wide COrTADo calling presented in Chapter 3 based on Drosophila

melanogaster BG3 cells at DpnII resolution. We have run the analysis per chromo-

some, therefore in this Section we would specify the single chromosome 3R.

Appendix 3.3.1. Prepare for analysis, load the file and transform into list

The input format is a .bed or .tsv, the file contains the table with seven columns where

first three represents the interacting row locus i (chromosome, start and end positions),

next three represents the interacting column locus j (chromosome, start and end po-

sitions) and the last one represents the interaction frequency (discrete if Hi-C data is

non-normalised and continuous if Hi-C data is normalised). Before transforming into

the list we have to take into account two things. First, the table represents only the

upper triangle of Hi-C matrix, i.e. interactions between pair of loci (i, j) where j ≥ i.

Second, the table omits non-interacting pairs, i.e. if reads for (i, j) interactions are not

mapped to the genome, the pair (i, j) is not represented in the table.

Assume that input .tsv file has a name Example.tsv and it can be loaded into R as

data.frame object, as shown below:

df <- read.table(file = "Example.tsv", header = FALSE , sep = "\t")
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Then, we want to focus the further analysis on specific genomic region. It has to

be given in the following format chr:start-end. If the genomic region is the whole

chromosome, then the format is simply chr.

region = "3R"

chr <- as.character(unlist(strsplit(region , ":"))[1])

start <- as.numeric(unlist(

strsplit(unlist(strsplit(region , ":"))[2] , "-"))[1])

end <- as.numeric(unlist(

strsplit(unlist(strsplit(region , ":"))[2] , "-"))[2])

if (is.na(start) | is.na(end )){

select_df <- df[df[,1] == chr & df[,4] == chr , ]

} else {

select_df <- df[

df[,1] == chr & df[,4] == chr &

df[,2] >= start & df[,5] >= start &

df[,3] <= end & df[,6] <= end , ]}}

The variable select df contains the Hi-C contact data restricted by the provided region

only.

We transform the table into two lists: the list where each element represents the

interactions happen within single Hi-C row (for COrTADo start) and the list where each

element represents the interactions happen within single Hi-C column (for COrTADo

end). So, further computations can be performed separately (and in parallel) within

each Hi-C row/column. In case when we call TADs genome-wise (or in single chromo-

some), we do not need the whole row to be extracted as it requires more memory and

more processing time - we need only the part of the matrix that is close to the main

diagonal and the size of this part is related to the maximum TAD width that we expect

to detect (see Chapter 3 for more details). We restrict the matrix through the parameter

limit size.

To transform the table into the list where each element represents the interactions

within single Hi-C row/column, we, first, need to identify the gaps - fragments that do

not interact with each other, so they are not included into the table, then, when we

identified the full list of loci within the analysing region (including gaps), we fill the

list either with observed interactions where they are present in the input table or with

NAs/zeros where we observe gaps. To do this, we run the following function:
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hic_region_list_per_row <- transform_hictable2list(

data_table = select_df , direction = "row",

fill_empty = FALSE , replace_zero = FALSE ,

limit_size = NA , resolution = NA , cores = select_n_cores)

hic_region_list_per_col <- transform_hictable2list(

data_table = select_df , direction = "column",

fill_empty = FALSE , replace_zero = FALSE ,

limit_size = NA , resolution = NA , cores = select_n_cores)

The function has two required arguments data table and direction, other four ar-

guments are optional. The detailed description of the parameters is summarised in

Appendix Table 3.3.1. In the Chapter 3, we specified the following parameters:

select limit size = 1000

select n cores = 30

When we run the function with direction = "row", the function produces the list

where each element named as row locus and contains a data.frame with three columns:

column one is col locus is the column locus name, column two is col ind is the col-

umn locus index within the selected Hi-C dataset (note, not a whole Hi-C dataset) and

contact is the interaction frequency between column locus and row locus. Note that

the locus names are stored in the following format chr start. When we run the func-

tion with direction = "column", the format is the same but each element of the list

represents the data extracted within single Hi-C column.

Appendix 3.3.2. Compute log2 mean ratios

We compute the log2 mean ratios that are used to identify the difference between the

mean values on the regions that are on the right and on the left from each Hi-C bin.

When we call COrTADo start, for each column position (where appropriate), we extract

the interactions within the window of selected size on the right-hand-side and on the

left-hand-side and compute mean values withing these windows (see Formula 3.3 and

3.4). When we call COrTADo end, we do the same computations column-wise for each

row position. Then, we divide right-hand-side mean over left-hand-side mean and take

log2 of the result to get the log2 mean ratio at the analysed position. To do so, we run

the function compute log2mean on the Hi-C data that is extracted row-wise and column-
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wise and stored in variables log2mean list per row and log2mean list per col, re-

spectively:

log2mean_list_per_row <- compute_log2mean(

data_list = hic_region_list_per_row ,

window_size = select_window_size ,

replace_zero = FALSE , cores = select_n_cores)

log2mean_list_per_col <- compute_log2mean(

data_list = hic_region_list_per_col ,

window_size = select_window_size ,

replace_zero = FALSE , cores = select_n_cores)

The list of required and optional parameters is specified in Appendix Table 3.3.2. In the

Chapter 3, we specified the following parameters:

select window size = 10

select n cores = 30

Function produces the list where each element named as row locus and contains a

data.frame with three columns: column one is col locus is the column locus name,

column two is col ind is the column locus index within the Hi-C matrix and log2mean

is the log2 mean ratio computed at column locus position at specified row locus. If the

specific data.frame contains only single row (NA, NA, NA) it means that the number of

column positions within the row is not enough to compute the log2 mean ratios. Note

that the locus names are stored in the following format chr start.

Appendix 3.3.3. Call start and end TAD edges

Those column positions that have a local maximum of the log2 mean ratio within sev-

eral neighbouring Hi-C rows are more likely to be start TAD edge positions. Then, start

TAD edge positioning is based on four steps. First, extract all log2 mean ratios com-

puted row-wise and store them column-wise, then detect the column positions that are

candidates to be local maximum. Smoothing can be applied here - we can smooth the

log2 mean ratios using Gaussian Kernel smoothing and call local maxima. The prob-

ability of a candidate position to be a local maximum is assessed by comparing the

distributions of log2 mean ratios at the candidate position with the regions on the right

and left by Wilcoxon Rank-Sum Test. We use the effect size statistics to access the
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optimal length of the TAD edge - the number of neighbouring Hi-C rows that demon-

strate approximately the same average log2 mean ratio before log2 mean ratio started

to fade (decrease to zero) due to a distance decay. When effect size demonstrate first

dramatic “drop”, we fix it as the optimal TAD edge length (depth), perform validation

test, extract p-value, effect size and insulation strength (the average log2 mean ratio

within the middle testing window). As the multiple tests performed on all candidate po-

sitions, the Bonferroni correction is applied. The positions that have adjusted p-values

to be below the stated threshold are most likely to be start TAD edges. We also can

apply the effect size threshold to remove the candidates with low effect size and which

are most probably insignificant TAD edges.

Note that as in the usage example is build based on the analysis of single chromo-

some we did not specified the multiple testing correction method and thresholds. In

order to complete the full, genome-wide analysis, we need to run the whole algorithm

on each chromosome, join all the results and run the correction and remove candidates

that did not pass the thresholds.

Also note that this is the detailed description for running the call startCOrTADo.

The procedure to call the COrTADo ends is exactly the same, the only difference is

that the log2 mean ratios are computed column-wise and indicate the decrease in

Hi-C contact frequencies, so we start with storing the log2 mean ratio row-wise and

searching for local minima instead of maxima.

All stages are summarised in functions call startCOrTADo and call endCOrTADo:

startCOrTADo_df <- call_startCOrTADo(

data_list = log2mean_list_per_row , replace_zero = FALSE ,

window_size = select_window_size ,

test_depth_step = select_window_size ,

bandwidth_size = NA, do_weighted = TRUE ,

prob_limit = NA , es_limit = NA ,

do_onesided = TRUE , do_prob_correction = FALSE ,

correction_method = NA, cores = select_n_cores)

endCOrTADo_df <- call_endCOrTADo(

data_list = log2mean_list_per_col , replace_zero = FALSE ,

window_size = select_window_size ,

test_depth_step = select_window_size ,

bandwidth_size = NA, do_weighted = TRUE ,
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prob_limit = NA , es_limit = NA ,

do_onesided = TRUE , do_prob_correction = FALSE ,

correction_method = NA, cores = select_n_cores)

The list of required and optional parameters is specified in Appendix Table 3.3.3. In the

Chapter 3, we specified the following parameters:

select window size = 10

select n cores = 30
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Required arguments

data table The input data.frame object, consists of seven columns
where first three represents the interacting row locus i (chro-
mosome, start and end positions), next three represents the
interacting column locus j (chromosome, start and end posi-
tions) and the last one represents the interaction frequency
(discrete if Hi-C data is non-normalised and continuous if Hi-
C data is normalised).

direction Data transformed into a list where each list represents single
Hi-C row if direction = "row". Each list represents single
Hi-C column if direction = "column".

Optional arguments

fill empty Logical value indicating whether the gaps should be consid-
ered in the data set or skipped. Default: TRUE.

replace zero Logical value indicating whether the gaps with non-available
interactions should be replaced with zeros. Default: FALSE.

limit size The maximum distance between interacting pairs. Should
be specified in bins. If not specified, whole Hi-C matrix is
considered. Default: NA.

resolution If bins are the same size, we need to specify here a bin size.
If the parameter is not specified, the gaps will be filled with
single NA/zero interaction independently on the number of
bins stored within the gap. Skip if replace zero = FALSE.
Should be specified in bp. Default: NA.

cores A non-negative integer. The number of cores to use to run
processes in parallel. If NA, apply non-parallel computing.
Default: NA.

Appendix Table 3.3.1. Parameters of transform hictable2list() function.
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Required arguments

data list The output of transform hictable2list() function pro-
duced at the previous stage. A list object where each
element is a data.frame indicating Hi-C contacts ex-
tracted from specified row (direction = "row") or column
(direction = "column").

window size A non-negative integer. The desired length of MA estimation
window. Should be specified in bins.

Optional arguments

replace zero Logical value indicating whether the log2 mean ratio resulting
in NA should be replaced with zero. Default: FALSE.

cores A non-negative integer. The number of cores to use to run
processes in parallel. If NA, apply non-parallel computing.
Default: NA.

Appendix Table 3.3.2. Parameters of compute log2mean() function.
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Required arguments

data list The output of compute log2mean() function produced at
the previous stage. A list object where each element
is a data.frame indicating log2 mean ratios computed
row-wise (for call startCOrTADo()) or column-wise (for
call endCOrTADo()) .

window size A non-negative integer. The desired width of validation test
windows. Should be specified in bins.

test depth step A non-negative integer. Indicates the increment of validation
test window length. Should be specified in bins.

Optional arguments

replace zero Logical value indicating whether the log2 mean ratio resulting
in NA should be replaced with zero. Default: FALSE.

bandwidth size A kernel bandwidth smoothing parameter (see ksmooth() R
documentation for more details). If NA the simple average of
log2 mean ratio at the column position is used. Default: NA.

do weighted Logical value indicating whether the log2 mean ratios should
be weighted or not. If TRUE, weights are computed as re-
ciprocal of the distance between corresponding pairs of loci.
Default: TRUE.

prob limit P-value threshold for the candidate position to be a local
maximum (for call startCOrTADo()) or local minimum ((for
call endCOrTADo()). Default: NA.

es limit Effect size threshold for the candidate position to be a local
maximum (for call startCOrTADo()) or local minimum ((for
call endCOrTADo()). Default: NA.

Appendix Table 3.3.3. Parameters of call startCOrTADo() and call endCOrTADo() func-

tions.
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Optional arguments

do onesided Logical value indicating the alternative hypothesis at
Wilcoxon Rank-Sum test (validation test). If TRUE, the al-
ternative is ”greater”, the validation test checks whether the
distribution within middle window is greater than within left
and right windows. If FALSE, the alternative is ”two.sided”,
the validation test checks whether the distribution within mid-
dle window is different from the distributions within left and
right windows. Default: TRUE.

do prob correction Logical value indicating whether the multiple testing correc-
tion is applied. Default: TRUE.

correction method If the multiple correction method is applied, the method (”fdr”
or ”bonferroni”) should be specified. Default: NA.

cores A non-negative integer. The number of cores to use to run
processes in parallel. If NA, apply non-parallel computing.
Default: NA.

Appendix Table 3.3.3 (continue). Parameters of call startCOrTADo() and

call endCOrTADo() functions.
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Appendix 3.4. Inclusion of zero observations instead of NAs in the

MA estimation procedure

Suppose we use the MA estimation method to estimate sample mean and sample vari-

ance. We select one particular window with width w. In this window only n observations

are available, other (w − n) observations are lost (NAs). We have two opportunities:

either exclude all NAs from the estimation and use only n available data points, or

include all NAs as zeros, meaning that we treat them as zero contacts between cor-

responding DNA fragments. In order to compare two opportunities, we can estimate

mean and variance using only available data first, and, then, introduce the formulas

to recalculate sample mean and sample variance when we add zero observations to

the available data points. The formulas allow us to describe the relationship between

sample mean and variance when we exclude zero observations and when we include

them in the estimation procedure. We start with derivation of general formula that allow

us to re-estimate mean and variance when one single observation arrives.

Appendix 3.4.1. Sample mean and variance can be simply recalculated when

new observation appears

We estimate sample mean xn and sample variance σ2
n based on n available data points.

The sample mean xn is defined according to the formula

xn = 1
n

∑n
i=1 xi∑n

i=1 xi = nxn

The standard formula for sample variance σ2
n is slightly modified

σ2
n = 1

n−1

∑n
i=1(xi − xn)

2 = 1
n−1

(
∑n

i=1 x
2
i − nxn

2)∑n
i=1 x

2
i = (n− 1)σ2

n + nxn
2

Then, the new observation xn+1 arrives. The sample mean and variance of the full data

set xn+1 and σ2
n+1, resectively, are defined as

xn+1 =
1

n+1

∑n+1
i=1 xi =

1
n+1

(
∑n

i=1 xi + xn+1) =
1

n+1
(nxn + xn+1)

σ2
n+1 =

1
n

(∑n+1
i=1 x2

i − (n+ 1)xn+1
2
)
= 1

n

(∑n
i=1 x

2
i + x2

n+1 − 1
n+1

(nxn + xn+1)
2
)
=
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σ2
n+1 =

1
n

(
(n− 1)σ2

n + nxn
2 + x2

n+1 − 1
n+1

(nxn + xn+1)
2
)
= n−1

n
σ2
n +

1
n+1

(xn − xn+1)
2

Appendix 3.4.2. Sample mean and variance estimated on full data set have exact

formulas when new appearing data points are zeros

Assume that the new arriving point is zero, so xn+1 = 0. Then,

xn+1 =
1

n+1
(nxn + 0) = n

n+1
xn

σ2
n+1 =

n−1
n
σ2
n +

1
n+1

(xn − 0)2 = n−1
n
σ2
n +

1
n+1

xn
2

So, we can re-estimate the sample mean and sample variance with new zero data

point. Then, at the next step, we have another data point appearing that is again zero,

i.e. xn+2 = 0. The new sample mean and variance then equal to

xn+2 =
1

n+2
((n+ 1)xn+1 + 0) = n

n+2
xn

σ2
n+2 =

n
n+1

σ2
n+1 +

1
n+2

(xn+1 − 0)2 = n−1
n+1

σ2
n +

2n
(n+1)(n+2)

xn
2

Repeating the same procedure with the third zero observation, i.e. xn+3 = 0, the

sample mean and variance of full data set are defined as

xn+3 =
1

n+3
((n+ 2)xn+2 + 0) = n

n+3
xn

σ2
n+3 =

n+1
n+2

σ2
n+2 +

1
n+3

(xn+2 − 0)2 = n−1
n+2

σ2
n +

3n
(n+2)(n+3)

xn
2

Looking carefully at the pattern, we can generalise the formulas for k zero observations:

xn+k =
n

n+k
xn

σ2
n+k =

n−1
n−1+k

σ2
n +

kn
(n−1+k)(n+k)

xn
2

When we use the estimation window of width w and only n observations are available,

other (w − n) observations are not lost and may be treated to be zeros. So, if we

estimate sample mean xn and sample variance σ2
n based on n available data points

and then we want to re-estimate them including k = w − n data points that are not

available as zeros, then the new mean and variance will be

xw = n
n+w−n

xn = n
w
xn

σ2
w = n−1

n−1+w−n
σ2
n +

(w−n)n
(n−1+w−n)(n+w−n)

xn
2 = n−1

w−1
σ2
n +

n(w−n)
w(w−1)

xn
2
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Appendix 3.4.3. Inclusion of zeros in the estimation procedure reduces sample

mean while sample variance behaves differently depending on the underlying

conditions

In order to analyse the effect of zeros inclusion, we can, first, look at the difference

between sample means with and without zeros

xw − xn = n
w
xn − xn = n−w

w
xn < 0 as n ≤ w

So, we expect to observe the reduction in the sample mean value when we include ze-

ros when the observations are not available. Then, looking at the difference in variance,

we have

σ2
w − σ2

n = n−1
w−1

σ2
n +

n(w−n)
w(w−1)

xn
2 − σ2

n = w−n
w−1

(
n
w
xn

2 − σ2
n

)
Note, that we expect to see the decrease in sample variance when

(
n
w
xn

2 − σ2
n

)
< 0 or,

alternatively, n
w
xn

2 < σ2
n. When we have the opposite, i.e. n

w
xn

2 > σ2
n, we expect to see

the increase in sample variance.

Appendix 3.4.4. Variance being greater than mean when we assume only the

available data is present as well as when we include zeros

We assume the variance larger than mean, i.e. σ2
n > xn, when we exclude NAs from

the estimation procedure and use only n available data points. We aim to investigate

whether the variance is larger than mean when we include zeros instead NAs. In order

to give an answer, we need to look at the value of the difference between sample

variance and sample mean based on full data set including zeros:

σ2
w − xw = n(w−n)

w(w−1)
xn

2 − n
w
xn +

n−1
w−1

σ2
n

We can treat this expression as the second degree polynomial of xn. Then, the graph

of this function will be a parabola that is opened upwards as n(w−n)
w(w−1)

> 0 and has its

lowest point at xn = w−1
2(w−n)

. Then, the lowest possible value of (σ2
w − xw) is

n−1
w−1

σ2
n −

n(w−1)
4w(w−n)

As σ2
n > xn, at the minimum point we have σ2

n > w−1
2(w−n)

. It leads to the fact that

n−1
w−1

σ2
n −

n(w−1)
4w(w−n)

> n−1
w−1

w−1
2(w−n)

− n(w−1)
4w(w−n)

= 1
4(w−n)

(
n
(
1 + 1

w

)
− 2

)
> 0 for n ≥ 2

In order to estimate sample variance, we need at least two available observations,
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so we always have n ≥ 2. So, we showed that the minimum value of the difference

(σ2
w − xw) is always positive, meaning that this difference is everywhere positive. In

other words, we will observe sample variance being greater than sample mean even if

we include all non-available observations as zeros.
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