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This paper suggests a multiplicative volatility model where volatility is
decomposed into a stationary and a non-stationary persistent part. We pro-
vide a testing procedure to determine which type of volatility is prevalent
in the data. The persistent part of volatility is associated with a nonstation-
ary persistent process satisfying some smoothness and moment conditions.
The stationary part is related to stationary conditional heteroskedasticity. We
outline theory and conditions that allow the extraction of the persistent part
from the data and enable standard conditional heteroskedasticity tests to de-
tect stationary volatility after persistent volatility is taken into account. Monte
Carlo results support the testing strategy in small samples. The empirical ap-
plication of the theory supports the persistent volatility paradigm, suggesting
that stationary conditional heteroskedasticity is considerably less pronounced
than previously thought.

1. Introduction. Two important issues widely discussed in the statistical and finance
literature, over the last 25 years, are structural change and volatility modelling. Starting with
the seminal work of [12], volatility modelling has developed into a large topic of study. Most
work has produced volatility models that are stationary and allow for time variation in the
conditional variance. There are two important groups of parametric models used to model
volatility. The first group represents the conditional variance as a function of observables
and includes autoregressive conditional heteroskedasticity (ARCH) and generalised ARCH
(GARCH) models. The second group, where the conditional variance is treated as a latent
variable and may depend on more than one innovation processes, includes stochastic volatil-
ity models.

Empirical work though, has repeatedly concluded that volatility can exhibit extreme per-
sistence. Such persistence is not easily accommodated by stationary volatility models. The
challenge is revealed through the integrated GARCH effect, see e.g. [23], when parameter
estimates are observed to lie near the boundary of stationarity. This effect can be caused by
smooth or abrupt structural change in the unconditional variance over time. So it is possible
that once allowed for, volatility can be best characterised by persistent, and possibly non-
stationary processes. There is a growing literature that tries to characterise volatility using
parameter processes that allow for gradual change in the unconditional variance. First, we
succinctly summarise the main ways this problem is addressed in the literature, and then
present our main contributions.

The first line of recent research on structural change has focused on paradigms coming
from the statistical literature, such as the work of [25] and [6], where parameter processes
are smooth deterministic functions of time. [8] proposed the locally stationary time-varying
ARCH model, that is globally nonstationary. Along the same lines [28] proposed another
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estimation.
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model with deterministic smoothly varying parameters, where volatility is multiplicatively
decomposed into a stationary and nonstationary part. The assumption that a nonstationary
part could drive volatility, has recently permeated in standard ARCH (stationary) models as
well. Specifically, [13] and [4] propose using splines, [22] use the Fourier Flexible form of
[14] in their periodic volatility model, [20] consider the generalized GARCH model and, in
a series of papers [1] and [2], suggest to model volatility as a linear combination of logistic
functions.

While the above characterisations provide an avenue to describe and estimate stationary
and nonstationary volatility processes, there is no clear way to separate the two kinds of
volatility. Further, the above characterisations are either tied to parametric forms or assumed
to be smooth deterministic functions of time.

This paper makes a number of contributions. We suggest a multiplicative specification of a
volatility process that allows a stationary and a nonstationary part. The latter can potentially
account for the extreme persistence of volatility observed in data. We use ideas from the
recent literature on structural change to show how persistence, perhaps surprisingly, allows
kernel estimation of the unobserved stochastic persistent part of volatility without strong
parametric assumptions and the requirement to be a smooth, deterministic function of time,
see e.g. [25], [6], [21] and [28], among others. While smooth deterministic functions for
the persistent part of volatility are still allowed, including stochastic elements in persistent
volatility modelling can provide a richer representation of volatility.

Recent work by [16] shows that as long as a parameter process satisfies some smoothness
and moment or boundedness conditions, it can be stochastic but still estimable using a kernel
estimator. Such processes may adequately fit the observed behaviour of volatility, as they are
clearly more persistent than stationary processes. In fact, persistence is their most distinctive
characteristic. [17] essentially ask the following question: Assuming a decomposition of the
form y; = h,u,, for some observed process y; and unobserved stationary process u;, what
properties should h; have, so that h? can be consistently estimated by, essentially, a rolling
window form, mean estimate of y2? They show that 4, has to change slowly, in the sense that
|ht — hs| has to be small when ¢ and s are close, and thus, stationary processes do not qualify.
A normalised random walk provides a canonical example for the sort of processes we have
in mind.

We demonstrate in this paper how the uniform consistent estimation of h; leads to a
strategy of separation between the stationary and persistent parts of volatility. Basically,
if the pe/riistent part can be uniformly estimated, then the rescaled series of residuals

|@ = (h])"Y|y:7, v > 0, can be used to test for ARCH effects (conditional heteroskedas-
ticity) or the presence of a stationary volatility in u,. If only persistent volatility is present,
standard ARCH tests will not detect ARCH effects in residuals. If the persistent part h; is ab-

sent, the normalisation by &, will not distort the residuals and stationary volatility in u; will
be detected. Our specification allows for both the persistent and stationary parts of volatility
to co-exist. Moreover, they can be extracted from the data. After testing for ARCH effects
in u, is performed, in a second step, a stationary volatility model can be fitted to wu;. This
extension is beyond the scope of the current paper.

In this paper, we discuss, in detail, conditions needed for consistent estimation of the
persistent part, h;, of volatility and further, conditions that enable the use of standard ARCH
tests to separate persistent volatility from stationary volatility. We provide illustrative Monte
Carlo results that support our approach on testing, in small samples. We proceed and present
extensive empirical evidence clearly supporting the persistent volatility paradigm, suggesting
that stationary time varying conditional volatility is less pronounced than previously thought
and, further, conditional second moments of asset returns are very persistent and change
slowly.
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The remainder of this paper is organised as follows. Section 2 presents our statistical pro-
cedure and theoretical results. Section 3 contains the simulation study. Section 4 reports the
empirical results from implementing our testing strategy in financial data. Section 5 con-
cludes. Proofs are relegated to the Supplement. Below —p, —p stand for convergence in
distribution and probability.

2. Theoretical considerations. We consider the following white noise model for a se-
ries of uncorrelated random variables

(1) yt:htut, tzl,...,T,

where {u;} is a stationary sequence of uncorrelated random variables with Eu; = 0, Eu? =
1, and hy > 0 is the persistent part of volatility (stochastic or deterministic). Formally, y; =
Yin, t =1,....,T and hy = hy,, t = 1,...,T are triangular arrays but it is unnecessary to add
the additional index in what follows. We assume that sequences {u;} and {h;} are mutually
independent. Then

cov(yt,ys) = E[hihs) Elugus] =0 for t # s.

First, we establish notions of persistent and stationary volatility. We will assume that h; is
measurable with respect to the information set F;_; attime ¢t — 1, and E(u;|F;—1) = 0. Then,
the conditional variance of y; is defined by

(2) var (y¢| Fi—1) = h2E(u?|Fi_1) = h?c?.

To specify the properties of persistence for h;, we introduce below Assumption M. Overall,
the notion of persistence of h; simplifies to
3) lim (hip —hi_7)=pO0,

T—oo ’
for any 1 <t =ty <T. For example, if h; is a deterministic function, the property (3) will
imply that the unconditional variance var(y;) = h? Eu? changes smoothly when 7" increases.
Other processes, such as locally stationary and stochastic unit root processes, h;, satisfy this
property as well, as we discuss below. We refer to h? as the persistent part of volatility.

There is a vast body of literature on modeling stationary volatility. We define the stationary
part of volatility as a conditional variance

at2 = var (u¢| Fi—1),

with respect to the information set F;_1 at time ¢ — 1. Here, both {¢?} and {07 — 07 ;} are
stationary processes and, thus, the persistence property o7 — o2 ; = op(1), does not hold.
The main two classes of stationary volatility models for o7 are the autoregressive conditional
heteroskedastic ARCH and GARCH models and stochastic volatility models.

Our objective is to test whether the conditional variance var (y;|F;—1) contains a stationary
component o7. A simple general specification of such a hypothesis is given by

4) Hy: var (y| Fi—1) = hf vs Hy: var (y|Fi—1) = h?atz,

where {07} is a stationary sequence of dependent random variables. To construct a feasible
testing procedure, we further assume that, under Hy, {u;} is a sequence of independent
identically distributed (i.i.d.) random variables and y; is generated according to the following
processes:

5) Yy = heey under Hy,

Yt = htut, Ut = OE¢ under Hl,
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where {e;} is an i.i.d. sequence with Fe; = 0, var(e;) = 1 and such that E(s¢|F;—1) = 0,
E(£2|F;—1) = 1. This model specification implies (4).

According to the specification (5), {u;} is a white noise process. Essentially, a standard
test for ARCH effect is a white noise test, for the squared time series {u?} and requires the
existence of six finite moments for u;. To relax this assumption, in this paper we consider
tests for ARCH effects, based on {|u|”}, v > 0, which is basically a white-noise test for the
time series {|u¢|7}. The analysis covers the case v = 2.

Since {u;} is not observed, we base our test for ARCH effects on the power transform of
residuals

(6) ue[v where fue]Y = (hy) ™ |ye|?

and h] > 0 is an estimate of h;. Such testing requires uniformly consistent estimation of

h] by h] and thus, stronger conditions on {h¢,u;} are needed, than for consistent point
estimation of h; at time ¢. This is reflected in the Assumptions M and H, we make for u; and
hs. In particular, we impose the assumption of mutual independence between {h?} and {u?},
which clearly holds for a deterministic volatility factor h;.

Assumption M (a-mixing)

1. {w} is a stationary white-noise ergodic sequence with Eu; = 0, Eu? =1, Fusugs =0 for

t +# s.

2. {u;} is a-mixing with mixing coefficients oy, < c¢”, k > 1, forsome 0 < ¢ < 1 and ¢ > 0.

Assumption H (Smoothness)
1. Forsome v € (1/2,1],
(7 |y — hy| < C(|t — j|/T), t,j=1,..,T, or
|he = hi| < (|t = 31/T)" &5,
where C > 0 does not depend on ¢,7", and for some 0 < o < o0, ¢ > 0,

(8) , max TE[eXp(c]&ﬂa)] <(C < o0, t_nllaXTE[exp(c\hﬂo‘)] <(C < o0.
2. There exists a > 0 such that h; > a > 0 a.s. forall ¢t > 1.
3. {h¢} and {u,;} are mutually independent.

The model specification (1) abstracts from the general case of a time series with a specified
conditional mean. It is possible to generalize our test for ARCH effects to a time series with
a non-zero conditional mean

yt:Mt+htut7 /J't:E(yt’]:t—l)v tzlva

The smoothness condition (7) in Assumption H implies that the persistent component of
volatility, hy, drifts slowly in time, which essentially rules out abrupt or explosive behaviour
for hs. This assumption is widely used in the statistical and econometric literature. It allows
the use of both deterministic and stochastic time-varying processes h; and implies the persis-
tence property (3).

The deterministic specification hy = g(t/T'),t =1, ..., T, where g(-) is a Lipschitz smooth
function with parameter 1/2 < v < 1,i.e. |g(z) —g(y)| < Clx —y|", is a standard assumption
in the work of Dahlhaus on locally stationary processes (see, e.g. [6] or [7]). It implies |h; —
hel < C(It — s /T)".
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The stochastic specification hy = T| Z;Zl vjl, t =1,...,T of hy, where {v;} is a sta-
tionary sequence with zero mean, was proposed by [16, 15, 17], to allow for a persistent
process h; that can be presented as non-stationary random walks, see Example 1 below.

A combination of the two, satisfying (7) with parameter v can be summarised as
) he=|T""(v1 + ... +v) +g(t/T)| +a, t=1,..,T, (a>0).

Our testing procedures will still work for the case of y; with a non-zero conditional mean; in
this case a first step estimator for the mean will be required, see e.g. [5].

EXAMPLE 1. Let {v;} be a stationary Gaussian ARFIMA(p,d,q) sequence with pa-
rameter d € (0,1/2) and zero mean, see e.g. Chapter 7 in [18]. Then hy = 77| Z§:1 v;l,
t=1,...,T satisfies (7) of Assumption H with v =1/2 + d and o = 2. Indeed, for ¢ > s,

b = el =T S| = T Sy v

< T_V| Z;:s—o—l 'U]’ < (‘t - S’/T)V‘§t5|7 fts = (t - S)_V Z;:s—kl Uy

Here, & is a Gaussian variable, and by Proposition 3.3.1 in [18] and stationarity of {v;}, the
variance var (&) = var(&—s0) — v? < oo ast— j — oo. Hence, &5 and hy satisfy (8) with
a=2.

2.1. Volatility estimation. To extract residuals |u:|Y = (h])~|y:|", required for the test-
ing of ARCH effects, we need an estimate for i) in |y|7 = b} |u:|7. Without loss of gener-
ality we assume that h; is rescaled so that E'|u;|” = 1. We will show that in model (1), under
Assumptions H and M, k] can be consistently estimated by a kernel type estimate

T T
(10) W =K byl K=Y by, t=1,...T,
=1 i=1

where by ;) = K(|t — j|/H ) are kernel weights. K(-) is assumed to be a non-negative and
bounded function, with piecewise bounded derivative, and H is a bandwidth parameter that
satisfies H = o(T'), as T'— oo. Commonly used examples of K (x) include:

K(z)=(1/2)I(|x| <1), flatkernel,
K(z)=(3/4)(1 —2*)I(|z| <1), Epanechnikov kernel,
K(x)=(1/V2m)e /2,  Gaussian kernel.

The first two kernel functions have finite support, whereas the Gaussian kernel has infinite
support. We further assume that on its support,

(1) K(z)<CA+29)7, |(d/de)K(x)| <C(1+29)"1, 2>0 withg>4, C>0.

Under this setup, in Lemma 7.2 in the Supplement we show the pointwise consistency of this
estimate:

(12) 1 = hJ| = 0y ((H/T)" + H7V2).

Similar results for vector autoregressive models were derived in [17]. In Lemma 7.2, using
the results of [11], we establish the uniform convergence

13 max i/ﬁ—hw =op(1).
(13) t:l,...,T‘ t £ p(1)
This uniform convergence result will prove useful in our testing procedure for the distinction
between the persistent and stationary parts of volatility, that follows.



2.2. Testing. In this subsection we outline how our strategy to discriminate between the
persistent and stationary components of volatility works under (1), where u; is not observed.
Basically, it will be seen that the test of hypothesis (4) reduces to a white noise test for
{|u¢|7}. First, we briefly summarise the basic tests for ARCH effects when a white noise
time series {u;} is observed.

The Lagrange Multiplier (LM) test by [12] is the most commonly used standard ARCH
test to detect autoregressive conditional heteroskedasticity (or stationary volatility) in {u;}.
We simply fit to u? an AR(p), p > 1, model

(14) up = Bo+ Brui_1 + ...+ Byui_, + 1,
where /3y > 0 and test the following null hypothesis:
(15) Hy: Bf1=0p2=...=8,=0 ws Hy: 3;#0 forsome j=1,...p.

The null hypothesis Hy implies absence of correlation in the first p lags of the series {u?}
and vice versa. Basically, this ARCH LM test is equivalent to testing for absence of autocor-
relation in {u?}.

The test statistic of the ARCH LM test by [12] is defined as T'R?, where T is the sample
size and R? is the coefficient of determination of the AR regression (14). Under H, when
{u;} is an i.i.d. sequence with finite fourth moment, the LM statistic follows asymptotically
a X% distribution. Further tests, such as the Wald and Likelihood ratio, have been shown to be
asymptotically equivalent to the LM test.

Through testing, the literature mainly addresses two distinct problems: the misspecifica-
tion of the conditional mean, see e.g. the discussion in [3], and the correct specification of the
volatility process. Our work naturally falls in the second category by addressing the question
of whether allowing for a persistent component h; in (1), provides a better specification for
the volatility process. By ARCH effects in {u;} we mean the presence of correlation in a
sequence {|u|7}, where v > 0 is selected in advance. We will test for ARCH effects in the
unobserved component u; of y; = hyuy in (1) by fitting to |u¢|” an AR(p), p > 1 model

(16) |ue|” = Bo + Brlue—1|" + ... + Bplue—p|” +

and then testing the hypothesis (15) on /1, .., 8,. We replace the unobserved variables |u|”
by residuals

(17) lue| = (h]) " we|,

where h; is the kernel estimate (10) of the y-power h; of the persistent factor h; of volatility.
Our aim is to show that asymptotically, it is equivalent to test for ARCH effects using the
residuals ¥ = [[u1|7, [ug|7,.. ., [ur]]’, instead of w = [|u|", Jua|", ..., |ur[7] .

In addition, such an equivalence implies that the residuals, u; = h; Ly obtained using hy
with v = 1, should behave as a white noise. In Theorems 2.2 and 2.3 we show that both the
ARCH LM test based on regression on u; and the correlogram of %1, ..., up can be used to
test for absence of correlation in {u;}.

The ARCH test using regression (14) for powers, |u;|” obtained in Theorem 2.1, shows
that, that if a stationary process 0,52 (co-)drives the volatility via wu;, then the normalisation by

R in (17) will not corrupt the properties of testing.
In our setup and for p > 1, we consider T'S (u”) = T R?, the test statistic where R is the

coefficient of determination of the AR regression (16) based on 7, and T'S ('z/ﬁ ) = T}/%\2

where ]/%\2 is based on the residuals, w? , as described above. The formulas of S (u”) and
S ('Tﬁ ) are given in (6.6) and (6.7) of the Supplement.
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The following Theorem proven in the Supplement, gives a sufficient condition for LM test
for ARCH effects to be asymptotically valid when applied to w7, instead of u?.

Denote by vy, = cov(|ug|?, |uo|”), k > 0 the covariance function of a stationary sequence
{lut|7}, v > 0, and define the p x p matrix T and p x 1 vector =, by setting

Tp=(Wi-t)jper, Vo= (100 m)"

Denote by 3, the p x 1 vector of parameters (31, ..., 3,) which will appear in testing under
the alternative hypothesis H; and set

B, = (51, ...,,Bp)/ = I‘;l’yp, 012) = var(|up+1|" — Bilup|” — ... = Bplwa]”).

Notice that the existence of I‘Ij L follows from Lemma 3.1(i) in [10] because the stationary
sequence {u?} has bounded a spectral density. The latter follows from the absolute summa-
bility of the covariance function vy, see (7.8) in the Supplement.

Recall notation v of the smoothness parameter of h; appearing in (7).

THEOREM 2.1. Let {y, t =1,...,T}, follow (1), Assumptions H and M hold, and H
satisfies

(18) T2+ < H = o(T'= Y)Y  (for some a > 0).

Assume that v > 0 and E|u;|*" < oc. Then the ARCH LM test statistic based on regression
(16) on |u¢|?, has the following properties. As T — oo, for any p > 1,

(19) S(u?) = S(u") +op(1) =0,%B,T,3, + op(1).

In addition, if {u;} is an i.i.d. sequence, then B, =0, and

(20) TS(ul) =TS(u")+op(1) =p x>

Result (19) implies that testing for ARCH effects based on regression (16) is equivalent to
testing for the white noise for the series {|u|”}. Indeed, the matrix Iy, is positive definite,
and therefore its smallest and largest eigenvalues obey 0 < Apin < Az < 00. Notice that

B,Tp8,=~,I,"7,. and

B8, > 11Bpl*Amin,  ¥oly vy = |17l P Armbas

where || 3, || denotes the Euclidean norm of 3,,. Hence, || 3, || = 0 implies ||y, || = 0 and vice
versa which proves the above claim.

Theorem 2.1 implies that a test for ARCH effects in {w; } based on statistic T'S(u7) has the
same asymptotic size and power properties as a test based on 7'S(w”) applied on unobserved
u7. If the hypothesis Hy is not rejected, then this implies the absence of correlation in {|u:|”}
up to lag p. Conversely, the alternative H; is detected with a rate 7T'.

Notice that the value 8, =T, 17p appearing in (19) is the same as the "true" value of
the parameter 3, estimated by the OLS method in regression (14) when 7; is a white noise
sequence.

REMARK 1. If Assumption H is satisfied with v = 1, for example, which is the case for
deterministic weights h; = g(t/T"), where g is a continuous piecewise differentiable function
with a bounded derivative, then assumption (18) on the bandwidth H becomes

1) TV < H = o(T3*).
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Note that lower values of  imply narrower permitted intervals for bandwidth H. Given that v
is unknown, a theoretical recommendation for the choice of H is that it should be larger than
T'/2 and less than 73/4. In practice, we recommend trying different values for H, within
the interval T/2 to T3/4, to establish test robustness. This matter is further discussed in the
Monte Carlo study.

REMARK 2. The moment condition E|u;|>” < oo of Theorem 2.1 implies that testing for
ARCH effects based on regression (14) using u?, |us| or |us|'/? which corresponds to y =
2,1,1/2, requires the existence of E|us|5, E|us|® and E|us|*/2, respectively. If E|ug|?7+e <
oo for some € > 0, then (18) can be replaced by

TY? =0o(H), H=o(T~1/%)
We also suggest two methods to examine whether the unobserved time series {u;} in the

model (1) is a white noise sequence. The first approach is similar to testing for ARCH effects.
It amounts to fitting to u; an AR(p), p > 1 model

(22) ug = o + Prug—1 + ... + Bpus—p + Mt

and testing the hypothesis Hy and Hy on (1, ..., 8p) in (14). The test statistics 7S (u) and

T'S(w) in Theorem 2.2 correspond to the AR regression (22) on u; and u; = (/ﬁt)_lyt. They
satisfy the asymptotic results of Theorem 2.1 with and 3,,, I', defined as in (19) using

(23) Yk = cov(ug, ugp), 012) =var(upt1 — Brup — ... — Bpur).

THEOREM 2.2. Let{y;, t=1,....,T} beasin(1)and E|u,|> < co. Suppose that Assump-
tions M, H and (18) hold. Then statistics T'S(u) and T'S(u) based on the AR regression (22),
have the following properties.

Foranyp>1, asT — oo,

(24) S(w) = S(u) +op(1) =0,°B,TpB8, + op(1).
In addition, if {u} is an i.i.d. sequence, then 3, =0, and

(25) TS(w) =TS(u) +op(1l) =p X,

The same argument as used below Theorem 2.1, implies that the hypothesis Hy: f1 = ... =
Bp = 0 is equivalent to the absence of correlation up to lag p in {u;}.
Alternatively, absence of correlation in {u;} can be tested using the correlogram of resid-

uals Uy = (/ﬁt)_lyt. This important step of data analysis allows one to verify the model spec-
ification (1) for y; since standard tests for white noise based on y; might not be applicable.
For k=0,1, ..., denote

(26) rp=T"" ZthkH(at — ) (Ug—p — ),
Te=T"" Zf:k+1(ut — Bug)(ui—p, — Bug_y,).
THEOREM 2.3.  Suppose that assumptions of Theorem 2.2 are satisfied. Then, as T’ — oo,
(27) Tk =7k +op(1) = cov(ug,up) +op(l), k>0.
In addition, if {u;} is an i.i.d. sequence, then

(28) TY?5, =TY%7, + op(1) = N(0, (Eud)?) k> 1.
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Denote py = /7o, k =0,1,2,.... If {w;} is an i.i.d. sequence then (28) of Theorem 2.3
implies that

(29) T'2(B1, oo pm) =D N (0, L), m > 1.

This shows that using residuals %;, we can perform standard tests for the absence of correla-
tion in {u,} at individual lag k£ and Ljung-Box tests, for the cumulative lag m as if variables
{u:} were observed.

Notice that in our setting no ARCH effects in {u;} imply no correlation in {|u|”}. This
is a slightly weaker property than the i.i.d. assumption on {u;} under Hy. The latter property
leads to standard approximations (20) and (29) for the test statistics, which are not guaranteed
for a non i.i.d. white noise {u;}.

REMARK 3. In financial and economic applications, the common choice for volatility
modelling is a stationary GARCH type model. Given this, it is also relevant to test the hy-
pothesis

Hy: yy=w vs Hi: y = huy,

for absence of persistent component h; (h; = 1) in the model (1), where {u,} is a station-
ary sequence of uncorrelated random variables. In general, this is equivalent to testing mean
stability of series y7 = h? Eu? + h?(u; — Eu?). Tests for detection of alternatives with deter-
ministic h; were developed in [9].

3. Simulation Study. In this section, we use simulations to verify the theoretical proper-
ties of the test statistics 7'S (w?7) for ARCH effects in {u; }, and explore its finite-sample size
and power performance. In particular, we examine the impact of the three types of persistent
volatility h; (constant, deterministic, stochastic) and the choice of the bandwidth parameter
H on the size and power of the test, and how crucial the moment condition E|u;|37 < oo is.

We generate an array of samples

(30) yt:htut, Ut = O¢E¢, tzl,...,T,

where {&;} is an i.i.d. N(0,1) noise. For o7 we use stationary ARCH(1) and GARCH(1, 1)
models:

(31) o2 =1+pu? ,;, B=0,0.2,04, ARCH(1) model;
02 =1+02u? ;+0.702 ;, GARCH(1,1) model.

The case 8 = 0 leads to atz =1, or Hy, and

(32) Yt = huey.

We use (32) to study the empirical size of our test for ARCH effects in unobserved w; at lag
p, in particular, to determine whether the size of this test is robust to the choice of H. For a
persistent volatility component h;, with parameter v = 1, by Theorem 2.1, under (32),

TS(uY) ~TS(uY) ~ X2 if T =o(H), H=o(T"™).

Ideally, we expect both the test statistic 7°S(%7) based on residuals, and 7'S(u?) based on
Uy, to exhibit similar empirical size. Further, for 5 > 0 in ARCH(1) model or GARCH(1,1)
model in (30)-(31), a stationary volatility component is present, and then for the above choice
of H, we expect them to achieve similar empirical power, as shown in Theorem 2.1.

We set the significance level to o = 5% and conduct 5000 replications. We consider 7" =
200,400, 800, 1600, v = 2,1,1/2 and we conduct testing for ARCH effects on |u;|7 at lags
1,5 and 10 for vy =2,1,1/2.
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In the tables below, we examine the impact of bandwidth H and parameter ~ on testing.
The shaded grey range of H = [T%-%0 ... T079] denotes theoretically permissible values of
H for smoothness parameter v = 1. As a reference point, we include a third shaded line re-
porting the size and power for statistics 7'S(u?). Theoretically, as the sample size increases,
size and power in the shaded area should approach the benchmark.

We use three models for {y; }.

MODEL 1. We set hy = 1, and o2 follows (31).

This model does not involve a persistent time-varying volatility component. It includes a
stationary volatility component except for the case 8 = 0, where oy = 1 and y; = 3.

The left panel of Table 1 confirms that both tests 7'S(u?) and T'S(u?) for ARCH effects
at the lag p = 5 based on squares (y = 2) achieve similar empirical size and power when H
is chosen from the permitted range [7%-6, 707].

MODEL 2. We set hy =sin(27t/T) + 2, t =1,...,T, and o7 follows (31).

This model contains a persistent deterministic volatility component h;, which satisfies
Assumption H with parameter » = 1. For 8 = 0, the model y; = h;e; includes no stationary
volatility (ARCH effects) in u;. From the right panel of Table 1 we conclude, that overall the
empirical size and power of the test 7'S (%) are comparable to those of 7'S(u?) as long as
H ¢ [T%6, T07], but the use of a permissible bandwidth H plays an essential role here. In
real data, u? is not observed and the test 7’S(u?) cannot be performed. Not surprisingly, in
the model y; = hye; (8 = 0), the empirical size of the test 7'S(y?) applied on squares y? of
the data is close to 100%, i.e. it falsely suggests the presence of a stationary volatility in y;.

MODEL 3. We set hy = T_(d_1/2)|ld7t\ +1, t=1,...,T, where I is a non-stationary
ARFIMA(0, d, 0) process. We consider the values d =1.2,1.4,1.5, and a? follows (31).

Here, we assume that {h;} and {e;} are mutually independent. Such a stochastic persistent
process h; satisfies Assumption H with parameter v = d—1/2 > 1/2, see Example 1. Table 3
shows, that overall the performance of the test for ARCH effects on squares of residuals at the
lag p = 5 exhibits similar patterns as for Model 2, although the lower degree of persistence
of h; in Model 3 results in a somewhat smaller rate of detection of spurious presence of
stationary volatility in y; by T'S(y?).

In sum, to test for ARCH effects in {u;}, we have used the statistics S (q/ﬁ ) based on
residuals |u¢|7. We report testing results for the values v = 2, while the results for y =1,1/2
can be found in the Supplement. Testing results for ARCH effects at lags p = 1, 10 produce
similar patterns as for p = 5, and are available upon request. We report additional testing
results for errors &; ~ t(4), in the Supplement. They show that the lack of finite F|u;|>
moment has an impact on testing results.

Finally, in Figure 1 we explore the impact of bandwidth H on the size of the test by
plotting the MC average of the T'S(u?) test statistic for various values of H under the null
hypothesis. We consider data y; = hse; produced by Model 2 for 7' = 1600. From theory, the
Monte Carlo average of a well behaved test statistic should approach the number of degrees
of freedom p = EX;% marked by the black dashed line. We see that this is indeed the case for
bandwidths H € [T, T0-7], suggesting that such bandwidth values perform well in small
samples and meet the requirements of our theoretical analysis.
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Testing for ARCH effects on squares at the lag p = 5 in Model 1 and Model 2. Rejection frequencies (in %) at
the 5% significance level (8 = 0 size, 3 > 0 power).

Model 1 (with hy =1)

Model 2 (with deterministic h)

T H daa B=0 B=02 B=04 GARCH B=0 =02 B=04 GARCH
200 T0° W2 1298 1904 4882 7.22 1050 1796  49.14 8.02
7 490 2330 6082 2866 320 2442 6284 34.96
707 372 3014 6960 5242 764 4068 7492 66.44
708 360 3464 7432 6552 2510 60.12  84.08 83.34
u? 434 4030 7894 7112 434 4030 7896 77.12
yp 434 4030 7894 7712 7366 8678  93.62 95.22
400 7% W2 1318 4280 8926 3386 1210 4262 8930 35.12
e 480 5200 9412 76.14 358 5336 9434 79.00
707 362 6004 9608 9056 790 6878  96.86 95.10
708 380 6470  97.14 9494 4086  86.58  98.64 98.60
u? 468 6906 9760 9722 468  69.04  97.60 97.22
yi 468 6906 9760 9722 9540  99.14  99.80 99.92
8o 7% W2 1532 8058 9992 89.00 1442 80.62  99.92 89.58
706 560 8742 10000  99.38 474 8816  100.00 9952
7l 438 9138 10000  99.88 778 9388 10000  99.96
708 418 9296  100.00  99.92 60.80 9898  100.00  100.00
u? 474 9414 10000  99.98 474 9414 10000 99.98
yi 474 9414 10000  99.98 99.98 10000  100.00  100.00
1600 700 w2 1644  99.04 10000  99.96 1596 99.08  100.00 99.96
s 620 9972 10000  100.00 568 9972 100.00  100.00
707 508  99.82 10000  100.00 706 99.84 10000  100.00
708 516 99.84 10000  100.00 80.06  100.00 10000  100.00
u? 544 99.86 10000  100.00 544 9986  100.00  100.00
yi 544 9986 10000  100.00 10000 10000  100.00  100.00
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TABLE 2
Testing for ARCH effects on squares at the lag p =5 in Model 3. Rejection frequencies (in %) at the 5%
significance level (8 = 0 size, 8 > 0 power).

Model 3 (with stochastic h¢)

T H data 8=0 £5=0.2 =04

d=12 d=14 d=15 d=12 d=14 d=15 d=12 d=14 d=15

200 790 u% 11.20 11.80 12.14 19.12 19.48 19.38 49.26 49.00 49.14

70760 3.90 4.06 430 2340 2330 2336 6206 6140 6152
7070 3.92 3.82 3.68 3140 3000 2970 7122 7086  70.70
70-80 6.32 5.04 4.78 3868  37.14 3654 7726 7654 7638

u? 4.52 4.52 4.52 39.76 39.76 39.76 79.92 79.92 79.92
th 22.58 20.24 19.36 56.08 54.18 53.76 84.12 83.46 83.34

400 7990 42 1224 13.02 1310 4394 4390 4386 8996  90.02  89.88

70-60 4.08 4.58 4.68 5408 5334 5350  94.64 9454 9442
70.70 4.52 4.20 4.04 6370 6256 6222 9680  96.60  96.56
70-80 8.34 6.62 6.00 7102  69.42 6880 9792 9770  97.68

ut2 5.12 5.12 5.12 70.10 70.10 70.10 97.84 97.84 97.84
yt2 36.40 32.48 30.64 83.80 81.96 81.70 98.78 98.68 98.52

70°0 42 1422 1506 1530 8162 8134 8134 9992 9992  99.92

70-60 4.86 522 5.38 88.68 8830 8822 9998 9998  99.98
70.70 4.66 4.32 4.52 9258 9210  91.94 9998 9998  99.98
70-80 9.46 6.28 5.74 9522 9410  93.82 9998  99.98  99.98

u? 5.34 5.34 5.34 94.46 94.46 94.46 99.98 99.98 99.98
y? 51.20 45.04 43.28 98.02 97.68 97.46 99.98 99.98 99.98

7950 u% 15.44 15.94 16.10 99.28 99.26 99.24 100.00  100.00  100.00

70-60 5.32 5.64 5.92 9972  99.68  99.66  100.00 100.00  100.00
70.70 5.76 5.14 5.06 9986  99.84  99.80  100.00  100.00  100.00
70-80 11.98 7.16 6.22 99.92 9990  99.88  100.00  100.00  100.00

u% 5.28 5.28 5.28 99.88 99.88 99.88 100.00  100.00  100.00
ytZ 65.84 57.46 55.22 99.98 99.96 99.96 100.00  100.00  100.00
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Since the absence of a stationary volatility part can be detected, it is intriguing to conduct
a comparison of volatility forecasts for a specific case of the model (1):

(33) yt:ht€t7 tzl,...,T,

with a persistent non-parametric volatility var (y¢|F;—1) = h? and an i.i.d.(0, 1) noise {&;}.
This model does not includes a stationary volatility component o2, see (2). Our primary

2 17 = h3. of the volatility

h2T 1 outperforms the 1-step ahead forecast ﬁ?;T 1T formed from parametric GARCH, GJR,
SV, GARCH-t and APARCH volatility models denoted by ";" and defined in the Supplement.
In Monte Carlo simulations /7 is known. We use two volatility proxies, p; = h? and y?.

For the given volatility proxy p;, the best forecasting method j minimizes the average
quadratic loss

interest is to verify whether the kernel forecasting method h

T
(34) MSFE; = (T —Tp)™" Y (0o —h2yy)”,
t:T[)Jrl

over t € (Tp, T]. We set T = 1000 and Tj = 200. Forecasting of h? with the kernel predictor
h?‘ ¢ 1s performed with fixed bandwidths H = $0-60 1065 40.70 "and with a cross-validated
bandwidth Hcy; which minimises

(35) ST (ps -0,

over H =955 060 1075 where tq = 50.
To make comparisons across different forecasting methods, we use the benchmark
MSFEgarcu of the parametric GARCH(1, 1) volatility model and calculate the relative root

quadratic loss, RMSFE; = %

Tables 3 and 4 report the average value of the relative RMSFE; over 1000 replications for
data generating Models 2 and 3 of y;, and two proxies, p; = h? and y?. The smaller is the
entry (< 1), the better the forecast.

Table 3 reports RMSFE results where the forecasting performance is evaluated using
the "optimal" proxy p; = h?. The kernel forecasting methods produce the smallest values
of RMSFE and clearly outperform the parametric forecasting methods of volatility in both
Model 2 and 3, and the cross-validated bandwidth Hcy ; outperforms forecasts with a fixed
bandwidth. For comparison, we report RMSE for the kernel forecast with a feasible cross-
validated bandwidth H¢y , that minimises (35) with the commonly used volatility proxy
Di = y,?, see [26]. It works well for Model 2 but slightly less well for Model 3.

Table 4 reports results of the same experiments as Table 3, using the imperfect, but ob-
served, proxy p; = y?, see [24]. It is still noticeable that the kernel forecasts outperform
the parametric forecasting methods, but the difference becomes marginal. It is clear that the
choice of proxy for the cross-validation in empirical analysis is crucial. We use realised vari-
ance as a feasible volatility proxy in our empirical forecasting example below.
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TABLE 3
Comparison of forecasting methods. Table reports RMSFE with the (true) volatility proxy py = ht2-

Model 2 (with hy = deterministic) Model 3 (with hy = persistent, d =1.4)

H Kemel GJR SV  GARCH-t APARCH H Kemel GJR SV  GARCH-t APARCH
055 0776  1.009 1309  0.992 1.084 055 1021 1.041  1.626 1.008 1.095
060 0700 060 0887
1065 0,660 065 0790
970 0,668 070 0,738
075 0738 07 0742
Hey 0544 Hey o 0651
Hy 0664 Hiy 089

TABLE 4

Comparison of forecasting methods. Table reports RMSFE with the volatility proxy py = ytz .

Model 2 (with hy = deterministic) Model 3 (with hy = persistent, d =1.4)

H Kemel GJR SV  GARCH-t APARCH H Kemel GJR SV  GARCH-t APARCH
055 0988  1.001 1.026 1.000 1.005 955 1000 1.001 1.023 1.000 1.003
0-60 985 0-60 0997
10-65 0983 0-65  .995
070 0.984 970 0.995
075 0.986 975 0.995
Hey 0984 Hey 0997

4. An Empirical Example. In this section, we illustrate the practical applicability of
our testing methodology for the detection of stationary volatility.

We use weekly stock returns for a group of 254 companies in the S&P 500 over the period
Jan 1994 to Dec 2019, obtained from Bloomberg. After data cleaning, it contains 7" = 1340
observations. In particular, we split the historical weekly returns into three subperiods: the
pre-crisis period (Jan 1994 - Dec 2007), the period covering the global financial crisis (Jan
2005 - Dec 2012), and the post-crisis period (Jan 2011 - Dec 2019).

In line with the finance literature, we assume that weekly returns of an individual company
stock follow the model:

e = pt + Y, where  y; =1 — iy = hyug,

where iy = E[r|F;—1] is the conditional mean and y; is a white noise process. We test for
the presence or absence of stationary volatility o7 = var[r¢|F;_1] in u;. If ARCH effects in
uy are not detected, then r, = uy + hyey, where {&,} is an i.i.d. noise.

In Table 5, we report the proportion of stock returns (in %) exhibiting no ARCH effects,
according to our test, in u; (among 254 stocks). Testing for ARCH effects is based on resid-

uals |ug|" = (h})~t|y:|” where y; = ry — Jir, and conducted at the 5% significance level. To
obtain an estimate for 1;, we use the single index model iy =74 + 81 (R — 7f,), Where
Ry, is the market factor and 7y is the risk free rate. Specifically, we would like to under-
stand the impact of the choice for the bandwidth H, lag p, subperiods, and values of v on
testing. The shaded grey range of H = [T%-60 ... T979] denotes theoretically permissible
values of H for smoothness parameter v = 1.

The empirical testing results can be summarised as follows: Across lags 1,5,10, v =2,1
and three subperiods, in the recommended (shaded grey) range of H = [T°60 . . 7070,
the vast majority (~ 80%) of the stock returns have no ARCH effects. Further, in the more
volatile subperiod 2005 — 2012, the proportion of stock returns with no ARCH effects falls
slightly. However, when persistent volatility is not taken into account and testing is performed
directly on the powers of y;, the number of stock returns with no ARCH effects drops sharply.
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Table 5, shows clear robustness of the testing results across values v =1, 2, which is a
reassuring finding. Recall that estimation with v = 2 requires at least sixth moments of wuy,
whereas estimation with v = 1 requires at least three. We include v = 1, since by following
the methodology of [27], we find that the majority of the stock returns have finite fifth mo-
ments, but not sixth. More details on this, and empirical testing results for v = 1/2 can be
found in the Supplement.

Overall, these empirical results are in line with the Monte Carlo experiments and provide
clear evidence that stationary volatility might be considerably less pronounced in the data,
than previously thought.

TABLE 5
Proportion of stock returns with no ARCH effects. Testing based on squares (v = 2) and absolutes (v = 1), for
different bandwidths H, lags p, and subperiods as defined in the main text. Testing at the 5% significance level.
W estimated using the single index model.

Testing on squares (y = 2)

H data p=1 p=5 p=10
1994-2007 2005-2012  2011-2019  1994-2007 2005-2012  2011-2019  1994-2007 2005-2012 2011-2019

7050 2 9331 97.24 97.64 97.64 96.06 96.46 94.88 91.73 9291
70-55 89.76 94.88 96.85 94.49 96.85 97.24 96.85 96.06 98.03
70-60 86.61 90.55 95.67 90.55 92.13 96.06 9331 93.70 98.43
62 81.10 82.28 93.31 86.61 85.43 95.28 87.80 85.43 97.24
7070 76.77 74.02 92.52 77.95 72.44 92.13 77.17 71.26 93.31
7075 68.50 65.75 92.52 64.17 57.09 90.16 62.21 5472 91.73

v} 39.37 4291 78.35 22.05 33.47 80.32 20.87 29.53 77.17

Testing on absolutes (y = 1)

H data p=1 p=5 p=10
1994-2007 2005-2012  2011-2019  1994-2007 2005-2012 2011-2019  1994-2007 2005-2012 2011-2019

7050 Tyl 8976 94.49 94.49 88.58 84.25 86.22 80.32 72.44 69.69
70-55 86.61 93.70 93.31 90.95 91.34 90.16 89.76 37.80 83.07
70-60 81.50 87.80 94.09 87.40 89.37 93.70 86.61 87.80 89.37
O 73.62 80.71 91.73 80.71 83.47 94.09 84.25 82.68 92.91
7070 62.60 70.87 90.16 68.11 70.87 89.76 70.47 70.87 92.52
7075 53.15 59.06 89.37 51.18 56.30 88.58 52.76 53.54 90.55

[yl 12.60 30.71 72.05 236 24.41 71.65 1.97 18.11 72.05

Next, we consider the problem of forecasting of persistent volatility of the weekly log
returns of some major stock indices and exchange rate series using data from the database
‘Oxford-Man Institute’s realised library’ version 0.1, produced by [19], see also [26], over
the period from January 3, 1999 to December 23, 2007 (469 observations).

We consider the same forecasting methods of volatility as in the simulation study section.
In order for these forecasting methods to be applied on returns with persistent volatility as in
the model (33), we employ our test for ARCH effects from Section 2 on demeaned returns 7
of assets and select four stock indices and three exchange rates which returns do not exhibit
ARCH effects in squares. Instead of using a noisy proxy of squared returns for the volatility,
we use the proxy p; of "realised variance", see [24].

Table 6 presents the values of relative RMSFE; introduced in Section 3. Kernel prediction
uses cross-validated bandwidth Hcy ;. The quadratic loss and the cross-validated bandwidth
Hcy, are derived using the proxy of realised variance in (34) and (35). We set Ty = 200, tg =
50. The results suggest that for the majority of asset returns, the kernel forecasting method
with cross-validated bandwidth Hey , significantly outperforms stationary alternatives.
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TABLE 6
Comparison of the forecasting methods. Table reports RMSFE with the realised variance proxy py.

Asset Kernel GIR SV GARCH-t APARCH
Dow Jones 0.654 0.904 0.665 1.001 0.966
Nasdaq 100 0.696 1.238 1.086 1.137 1.311
Nikkei 250 0.831 1.008 0.971 0.996 1.117
S&P 500 0.705 0901 0.934 1.085 0.851
USD British pound 0989 1.038 1.116 1.002 1.160
USD Euro 0.915 1.013  1.043 1.000 1.042
USD Swiss franc 0.925 0986 0.886 1.006 0.998

5. Discussion. This paper contributes to the literature in three ways. First, we introduce
a setup for persistent processes, that can provide a general approximation to the volatility
process of a time series. Second, we develop a consistent uniform estimation theory for the
unobserved volatility processes, without strong parametric assumptions, and third, we sug-
gest a testing strategy that enables the separation of stationary volatility from its persistent
counterpart. To prove our main results, the uniform bounds for kernel type estimates obtained
in [17] and based on Bernstein inequalities for dependent random variables, were used.

Testing results on U.S. stock returns provides extensive support for the persistent volatility
paradigm, suggesting that the role of stationary conditional heteroskedasticity is not as out-
standing in the data, as was previously thought. In addition, forecasting results on persistent
volatility of log returns of stock indices and exchange rates provide evidence in favour of
using kernel forecasting methods.

There are a number of interesting avenues for future work, in particular, the extension of
our testing procedure to multivariate time series.

This is a distinct problem rather than a simple generalization of the univariate case. In
general, a multivariate model for a p x 1 process

yt:Htut, tzl,,T

can include a p x p matrix, H,, of persistent volatility and a stationary p x 1 white noise
process u¢. The objective would be to test whether components of this white noise exhibit
stationary conditional heteroskedasticity (ARCH effects). The estimation of H; that would
enable such testing could be undertaken using the work by [11].

Acknowledgements. The first author was supported by ESRC grant ES/P0O00703/1.

SUPPLEMENTARY MATERIAL

Supplement to: ''Choosing between persistent and Stationary volatility"
Provides proofs of all results given in the main paper and supplemental material for simula-
tion study and empirical exercise.
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This Supplement provides proofs of the results given in the text of the main paper. It is
organised as follows: Section 6 provides proofs of the main theorems. Section 7 contains aux-
iliary technical lemmas. Section 8 contains supplementary simulation material and Section 9
supplementary empirical material.

Formula numbering in this supplement includes the section number, e.g. (6.1), and ref-
erences to lemmas are signified as “Lemma 6.#", “Lemma 7.#", e.g. Lemma 6.1. Theorem
references to the main paper include section number and are signified, e.g. as Theorem 2.1,
while equation references do not include section number, e.g. (1), (2).

In the proofs, C stands for a generic positive constant which may assume different values
in different contexts.

6. Proof of Theorems 2.1, 2.2 and 2.3. This section contains the proofs of the results
of Section 2 of the main paper on the asymptotic properties of the test statistics 7'S(u”) and
TS (u?).

In the proof of Theorem 2.1 without loss of generality we assume that F|u;|” = 1. In
addition, we use the claim that {1}, ¢ =1, ..., T'} satisfies Assumption H which is verified the
next proposition.

PROPOSITION 6.1.  Let {h;, t =1,...,T} satisfy Assumption H with parameters v and
«.Then {h/, t =1, ..., T} satisfies Assumption H with parameters v and o* = v/ max(~y,1):

(6.1) b = hj| < (jt=31/T)"&;, t,i=1,...,T
and there exist ¢ > 0 such that
6.2) max Elexp(eléf; ")) <€, max Blexp(elh]|*)] <,

J=1y.0 =1,..,

where C' < oo does not depend on 7.

Proof of Proposition 6.1. By assumption (7) and (8), h; has the following properties:
(6.3) | = hjI < (It =j1/T)"&;, t.j=1,..T

1] < 9 <
(6.4) , max TE[eXp(c|§tJ| )] <C, tE?aXTE[eXp(c|ht| )] <C,

Ty 20ty

where C' < oo does not depend on 7. Therefore, h; satisfies the second claim in (6.2).

Keywords and phrases: ARCH effects, persistence, volatility, time-varying coefficient models, non-parametric
estimation.



Let v >1and 0 < a <z < y. Then, by the mean value theorem,
(' —2") <y Ny —=), if y>1,
<~a'V(y—z), if 0<y<1.
This together with (6.3) implies
(6.5) By = DY <y(h ™t + 1)) e — byl < (It = 1/T)"&55,
where £;; = y(h] ! + h}_l)ﬁtj < y(h{ + R} +2&;). Then (6.4) implies (6.2) for &;. U

Proof of Theorem 2.1. In Theorem 2.1 we analyse the Wald version of the test for the null
hypothesis of absence of ARCH effects in u;. First recall the definitions of S(u”) and S(w?).
Denote

T
ze = |uy|”, EZT_IZ%
=1

Given data w” = [z, 22, ..., 27|, we define the test statistic for testing Hy as follows:

6.6) S(u') =5,28,(X'X)B,, B,=((X'X)'X'Y, 2=(Y-XB,) (Y -XB,),

2=
where Y is a (T'— p) x 1 vector and X is a (1" — p) x p design matrix:

Y = (Zp-i-l — 2,y 2T —3)/,

1,1 T12 - Tlp Zp—Z Zp—1—Z.. 21— Z
X — 21 T22 ... T2p | | Zpr1—Z Zp—Z ... 22—Z
TT—p1 TT—p2 - TT—pp 27—1 —Z27—2 —Z ... 2T—p — %

Here Bp = (51, vy Ep)’ denotes the OLS estimate of regression coefficients in regression

2t = Bo + Pr2e—1+ ... + Bpzi—p + Nt
Similarly, let

—_

T
Z=lwl, Z=T') %,  where [u]"=(h]) " ul".
=1

Denote by ,E'}p = (Bl, - Ep)’ the OLS estimate of regression coefficients in

Zt = Bo + B1zi—1 + .. + BpZi—p + -

Then
- ~—2%" I\ 2 TIe\—1 I a2 U YA U vha
6.7) S(u7) = o, ,BP(X’X),BP, ,Bp = (X’X) XY, o, = (Y — X,Bp)’(Y — Xﬁp)
where
Y= (Ep-f—l —?, ey 2T —?)’,
55171 /fLQ iLP /Z\p —?f /Z\pfl _,? %\1 —?
X: 55271 @72 /fzp _ Ep-l—l_? EP—E 32—2:

LT—p1 XT—p,2 -+« TT—p,p 2T 1 — 2272 — 2 ... ZT—p — z



CHOOSING BETWEEN PERSISTENT AND STATIONARY VOLATILITY 3

Observe that we can write

(6.8) THX'X) = (9i)ij=1,.p0 T HX'Y)=1(g0j)j=1,.p» Where
9y =T~ iy (2t = 2) (21 = 7).

Similarly,

(6.9) TN X'X) = G)ij=t,0 T7HX'Y) = (Gos)j=1,.p» Where
95 =T iy Gii = 2) (B — 7).

The proof of Theorem 2.1 is based on Lemmas 6.2 and 6.3 below. Auxiliary results used to
prove these lemmas are placed in Section 7. Denote by

(6.10) Yk =cov(zk,20), k>0,

T
=T Y (2= Ez) (21 — Ezi),
t=k+1

the autocovariance and sample autocovariance functions of {z;}. Define

-1
Fp = (’Y‘i—j|)i,j=1,...,p7 7p = (71; ceey /yp),) Bp = Fp 7p7

- L 1
Fp - (V\i—ﬂ)i:j:l,wpv 7p - (717 "'77}7)/7 Bp = Fp ")/p
and set 02 = var(|up 1|7 — Bilup|” — ... = Bplua|).

To prove the theorem we will derive the following results: As T" — oo,

(6.11) T YX'X)=Tp+op(l), THX'YV)=7,+o0p(1),
(6.12) T HX'X)=T,+op(l), T HX'Y)=7,+op(1),
(6.13) Ty =pTp ¥y =rYp By By

(6.14) T2 —po,, T 'G.—pos.

If, in addition, {u,} is an i.i.d. sequence, then it holds

(6.15) TV2X'Y)=T7Y23, + op(1),
(6.16) TV2(X'Y)=T7"?3, + op(1),
6.17) 7725, - p N(0,I,70), 70 =var(z1).

In turn, properties (6.11), (6.12) and (6.13) follow by applying in (6.8) and (6.9) the asymp-
totic relations (6.18), (6.19) and (6.20), shown in Lemma 6.2.

The convergence (6.14) follows from the definitions of 812) and 5]27, using (6.11)-(6.14),
noting that =YY = Goo —p Y0, T-1Y'Y = goo — p 0, and using the equality 07 ="0—
27,8, + B, TpBy.

Subsequently, (6.15) and (6.16) follow from (6.21) and (6.22) of Lemma 6.2. Finally,
observe that the i.i.d. property of {u;} implies that {z;} is also an i.i.d. sequence. It remains
to note, that the validity of convergence (6.17) for an i.i.d. r.v. z; — Ez; is a well known fact.

From the definition of S (fﬁ ) and S(u?), given in (6.7) and (6.6), using relations (6.11)-
(6.14), we obtain

//B\p —P Bp:rgl"hn Bp —P ﬁpv
S(u) = S(u?) +op(1) = 0, B,T,8, + op(1),
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which proves the claim (19) of the theorem.
In addition, if {u;} is an i.i.d. sequence, then it holds that T, = voI,, and ag =~o. Then,
using (6.15)—(6.17), we obtain

G, 2(X'X) =7 " I,(1+0p(1)), 5,%(X'X) =7, I,(1+0p(1)),
_1/273 1/2 —1/23 1/2
17128, —p %/ "N(0.1,), T7°B, —py N (0.1,).
This together with the definitions of S(u7) and S(w?) implies
TS(u’)=TSu")+o0p(1) =p Xzy
which proves (20). This completes the proof of the theorem. [J

Proof of Theorems 2.2. The proof follows the same line of arguments as in Theorem 2.1. [J

Proof of Theorem 2.3. The claims (27) and (28) follow using a similar reasoning as in
the proof of (6.26) and (6.27) of Lemma 6.3, noting that for i.i.d. r.v.’s the convergence
TY%7, — N(0, (Eu?)?) is well-known. (]

LEMMA 6.2. (a) Suppose that {hy,u;} satisfy Assumptions M and H, and the bandwidth
H satisfies (18). Then fori,57=0,1,....p, as T — oo,

(6.18) Gij = Vji—j| +op(1),

(6.19) 9ij = Vji—j| +op(1),

(6.20) e —p Y, k>0.

(b) In addition, if {u;} is an i.i.d. sequence, then for j =1,...,p,
(6.21) TY%Go; = TY?3; + op(1),
(6.22) T'2g0; = T3, + op(1).

Proof of Lemma 6.2.
Proof of (6.18). It suffices to verify (6.18) for ¢ < j. Denote

T
(6.23) W=T"> (2-2)(Br—2), k=012,
t=k+1

Then setting k = j — i, we can write

T—i B T—i B B
9i=T" > G-2Gx—2=T" Y,  (G-2)GEr—2
t=p+1—i t=k+1+(p—j)
k+p—j T

=Ajoil =05 S =T'[> + > 1E-2)(Ex—2).

t=k+1  t=T—i+1
So,
(6.24) 9i5 =Vi—j| T Vi—j| = Ni—j1) — 0ij-

By (6.26) of Lemma 6.3, 7;_;| — 7}i—j| = op(1). On the other hand, straightforward use of
(7.1) and (7.3) of Lemma 7.1 implies that

(6.25) 5ij =O0p(T™Y),
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which together with (6.24) proves (6.18): g;j = 7};—j| + op(1).

Proof o/ji (6.19). Property (6.19) follows from the proof of (6.18) as a special case correpond-
ing to h = h}, which implies z; = z;.

Proof of (6.20). By Assumption M, {u;} is a stationary ergodic sequence, and we assume
that Ezrgj = E|ut\37 < o0o. Then the sequence w; = (zt — Ezt) (zt_k — Ezt_k) is stationary
and ergodic with F|w;| < oo, which implies that 7, — p Fwy, = cov(zx, 20) = V-
Proof of (6.21). By (6.24), (6.25) and (6.27), for j =1, ..., p,

T"%G0; = T'/*3; + 0p(1).
Proof of (6.22). This claim follows from (6.21) by setting ﬁ? =h). O

LEMMA 6.3. (a) Suppose that {h;,u;} satisfy Assumptions M and H, and the bandwidth
H satisfies (18). Then, as T — oo,

(6.26) Y — Yk =op(l), k>0.
(b) In addition, if {u;} is an i.i.d. sequence, then
(6.27) V=G =o0p(T7V?), k>1.
Proof of Lemma 6.3. Denote
T
(6.28) =T > (5—Exz)(Z-x—Ezy), k=0,1,2,..
t=k+1
Then

Ve — e = O — ) + Ok — %)
Thus, to prove (6.26), it suffices to show

(6.29) Y —k=op(l), k=1,

(6.30) e —Ar=op(l), k>0,

(6.31) 3 — Ao = op(1).

In turn, to prove (6.27), we show in addition that for an i.i.d. sequence {u;} it holds
(6.32) = A =op(TV?), k>1,

(6.33) =t =op(T™V?), k>1.

Proof of (6.29). Recall that E'z; = 1. We have,
(zt — Ezt)(Zek — Ezpr) — (2 — Ez) (20 — B2
={G —2) + (2 = DH Gk — ze-1) + (e = D} = (2 = D2k — 1)

=(Zr—2) @k — z—k) + (2t — 20) (-t — 1) + (2 = 1)(Ze—ip — 26—1)-

Hence,

(6.34) At — Yk =9S711+ ST2+ ST3,

where

(6.35) Sta=T" 1B —20) Bk — 2),

Sra=T" 301G — 2) (2 — 1),

Sra=T"' S i1 (2 = 1) Gimk — 2e-k)-
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To prove (6.29), it remains to show that St in (6.35) satisfy

(6.36) Sre=op(1), £=1,2,3.
Notice that

(6.37) % —z=(h]/h] — 1)
Therefore,

T
Sral ST Y |(hY /By = (/R = D)]zezi-,

t=k+1
T —_~
6.38 <mzT ! 22 mp:= max |h)/h) —1].
( ) >~ T tzl tct—k> T t:l,...,T| t/ t |

By (7.11) and (7.10) of Lemma 7.2, for some ¢ > 0,
(639)  mr<{ max (n)"H max [h] = h]|} = Op(1)Op(T™) = 0p(1).

=1l,... =1,...

By Assumption M, {u;} is a stationary sequence, and Ezz_j < Ez? = Elw|?" =
El|u1|* < co. Therefore, E[T~! Z?:k—&-l 22i_1) = E2? < co. Thus, by (6.38),

T

1STal <op(NT™' > 21z = o0p(1).
t=k+1

The proof of (6.36) for S72, St3 is similar to that for S7 ;. This completes the proof of
(6.29).

Proof of (6.30). We have,

(Z=2)Ek—2) — (2= 1)(Z-r — 1)
={&-D+1-2)HE--1)+1-2)} - (& -1 (E-r—1)
=E-1°+(1-2)Er -+ E -1 -2).

Notice that
T! Zthkﬂ(gt -)=EF-1)-T" Zf:l(/z\t - 1),
T Gs =) =G~ 1) =T Clg (B 1)
Hence,
W= =T G- - G- )G - 1) - G- DE-1}
=E-DHTNT k) -2)
(6.40) FE- DT G- DT S, G- D).

By Assumption M, {u;} is a stationary a-mixing sequence. Applying in (6.40) the bounds
(7.1) and (7.2) of Lemma 7.1, we obtain (6.30):

Y — 7 =op(l), k>0.

Proof of (6.31). By Assumption M, {u,} is a stationary a-mixing sequence. Using the equal-
ity a? — > = (a — b)? + (a — b)2b witha = Z; — 1, b=z — 1 we obtain

W-Ao=T Y {&E-1)2—(2—1)%}
=T 'S0 {(B - 2)+ (B — 2)2(2 — 1)}



CHOOSING BETWEEN PERSISTENT AND STATIONARY VOLATILITY 7

Using (6.37) and (6.39), we obtain

T T
A5 — ol <map (T sz) +2mp (T Zz’tfzt —1|)
t=1 t=1
T
=op()T™' ) (2f + 2|z — 1)) = 0p(1),

t=1
since B[22 + 2|z — 1|] = E[2? + 21]21 — 1|] < oo implies that E[T~* ZtT:l(th + 24|z —
1))] = E[2? + 21|21 — 1|] = O(1). This proves (6.31).

Proof of (6.32). By (6.34), to prove (6.32), it remains to show that

(6.41) Sre=op(T7Y?), (=1,2,3.

First we evaluate St 1. Using in the definition (6.35) of St the equality (6.37), we can
bound

T
1Spal ST 1> (0 = b)) (R — hi_ ) |20z k-
t=k+1

Applying Holders inequality with p; = py = p3 = 1/3, we obtain

T T T
Sl T Y B /0] = 1PYRY T /b = 1PN aze kPP
t=k+1 t=k+1 t=k+1

T T
6.42) < {77! Z BY /1] — 1Py T Z 2oz nPY3,

t=k+1 t=k+1
Denote
. T - T
sT0 = t:Hll,... T(hz)_l, st = 7! Z |h] — h])3, ST = 7! Z |zs2e—i |3
’ t=1 t=k+1
Then,
(6.43) |S71] < {53 057,1 12/ 51/,

In (7.11) of Lemma 7.2 it is shown that s7 o = Op(1), while by (7.13),

T
Espy=T""Y E[h] —hj[*=0p((H/T)* + H3/).
t=1

By the assumption of the theorem, {z;} are non-negative i.i.d. random variables, and Ez} <
oo. Therefore, Esro = E[z}2) ;] = (E[2}])? < oo, which implies that s72 = O,(1). This
together with (6.43) yields

(6.44) S71| = Op((H/T) + H™) = 0p(T~1/?),

where the last equality holds because of assumption (18) on H. So, St = op(T -1/ 2). This
proves (6.41) for St1.

Next we evaluate St 2. Write,

T
(6.45) Sra=T"" > (h/h] =1)G, (=2 (2 —1).
t=k+1



Write
—~ o~ ﬁ_h’Y
hi=hi+(h{ —=h})=h]/(1+z), 2 = thv :
t
Then
hy 1 2
=L = =1l-a+ &
hy 14+ 2, 142y
hy hy — h])?
:1—:Et+xt$§:1—$t+(t/\7t).
h{ h/hi

Then, by (6.45),

T T

h2 o h2 2
Sro=-T"" Y wG+T" Y %g
t=k-+1 t=k+1 hi by
=:1qr11+qT12.

To prove (6.41) for St 2, we verify that
(6.46) qre=op(T7V%), (=1,2.

In (7.14) of Lemma 7.2 it is shown E|qz,1| = o(T~'/2) which proves (6.46) for qr1.
Next, we bound g7 2. By Assumption H, h; > a > 0 a.s. Therefore, using Holders inequal-
ity with p; = 3/2, p2 = 1/3, we obtain the same type bound as in (6.42):

T T
laral <a”{T7H Y b /0] = 1PYR{TTE Y (G
t=k+1 t=k+1

Notice that for an i.i.d. sequence {u;} it holds E|G|® = Ez}E|z_y, — 1| = Bz} E|2_y, —
1 ]3 < 00. Therefore the same argument as we used to obtain the bound (6.44) for the r.h.s. of
(6.42) implies that

gr2=Op((H/T)* + H ') = op(T7/?),

under assumption (18) on H, which proves (6.46). This verifies (6.41) for S7 2. The proof of
(6.41) for St 3 is similar to the proof for S7 2. This completes the proof of (6.32).

Proof of (6.33) Using in (6.40) the bounds (7.1) and (7.2) of Lemma 7.1 we obtain
Ak =k = Op((H/T)" + H™Y2)%) + Oy (H/T)" + H™V)T ™) = 0p(T71/3).
This proves (6.33) and completes the proof of the Lemma 6.3. [.

7. Auxiliary results. This section contains auxiliary lemmas used in the proofs of Sec-
tion 6.

LEMMA 7.1. (a) Under assumptions of Lemma 6.2(a), for any fixed k > 1,
(7.1) Z-1=0p((H/T)" + H/?),
(7.2) S B =1 =0p(1), Eiirop |5 = 1= 0p(1).
(7.3) S G+ 2) = 0p(1), Eisg (G +23) = 0p(1).
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Proof of Lemma 7.1. Proof of (7.1). We have

T T
? = Zzt—l = Zzt—zt + T Z(Zt—l)
t=1 t=1 t=1

(7.4) = Qi1+ Q2.
We will show
(7.5) Qir=0p((H/T)" —l—H_l/Z), Qa1 = Op(T™1/?%)

which proves (7.1). We have,

(7.6)  |Qur|= ]Z R — 1)z < { max (m) nr- IZW 1) |2

t=1 t=1

<{ max (hﬂ’ 1}{T 12 — 1) }1/2{T IZ 2}1/2

{T IZ h’y }1/2

since maxt:L.,.7T(ﬁ)_1 = Op(1) by (7.11) of Lemma 7.2, noting that Ezt Ez? < o0

implies E[T~'S7 | 22] = O(1). By (7.12) of Lemma 7.2, we have E[(h] — h])?] <
C((H/T)* + H™') which yields

T
TN (k] — ) < C(H/T) +HY.

Hence,
A7) |Qurl=0p({(H/T)™ + HY2) = 0p((H/T)" + HP?),

which proves the first claim in (7.5).

Under Assumption M, {u;} is a stationary a-mixing sequence. Therefore, the sequence
{#; = |u |7} is also a stationary «-mixing sequence which satisfies the c-mixing Assumption
M, see Theorem 14.1 in [4]. Then, by Conclusion 2.2 in [3] (for more details see (A.11) in
[5]), the stationary a-mixing sequence z; — F'z; has the following property

oo
(7.8) > leov(zk, 20)| < oo
k=0
Therefore,
T T
EQ%T = Z —Ez)) =T Z cov(zk, 2j)
t=1 kj=1

o0
<71 Z lcov(zg, 20)| < cT 1,

k=—o00

which proves the second claim in (7.5). This completes the proof of (7.1).
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Proof of (7.2). We have

k
D -
t=1

IN
1

k
'gt—’_kgkl/QZ % 1/2
t=1
We can bound
(7.9) Zzt _Z B /h])2 P <{ max_ () 2}Zh27 2= 0p(1)
t=1

by (7.11) of Lemma 7.2, and noting that E[hf”zt] < E[h}")E[2z2] < cc. This proves the first
claim in (7.2). The proof of the second claim is similar.
Proof of (7.3). We can bound

k

Z(Zt+2t <k1/2{z }1/2+Zzt =0p(1)

t=1

by (7.9) which implies the first claim in (7.3). The proof of the second claim is similar. This
completes the proof of the lemma. []

LEMMA 7.2. (a) Under assumptions of Lemma 6.2(a),

(7.10) t_nllaxT|h2—ﬁ;7| —op(T™%), (36>0),
_—

(7.11) t:Hlli}fTht =0p(1),

(7.12) E(h] — )2 < C((H/T)? + HY),

where C' does not depend on t, H,T.
(b) In addition, if {u;} is an i.i.d. sequence, then

(7.13) Eh] — h]1F < C((H/T)® + H3/2),
(7.14) BT ST, b (B = b))z (a — 1)‘

= O(T_l/z), for k> 1,
where C' does not depend on t, H,T.

Proof of Lemma 7.2. Proof of (7.10). By definition,

T T
W =K7Y b gl = Kt bajegih] 2
Jj=1 J=1
Therefore,

(7.15) B =) = KT by gy (B — 1) z))

— - T
= K ! 23:1 bH,|t—j|(ht - h]’)zj - K; lh? Zj:l bH,|tfj|(Zj —-1)
=Pt — Tt

We will show that for some § > 0,

7.16 =0p(T™? =0p(T™?

(7.16) max |rg| =Op(T7°),  max [p|=0p(T),

=1l,... =1,...
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which implies (7.10)
First, notice that by Assumption H and Proposition 6.1,

(7.17) B = h1 < (It = 31/T) &y = (H/T) (|t = 4|/ H)" &,

where {&;;} and {h} } satisfy the condition (6.2) of existence of a finite exponential moment
with parameter a* > 0. Moreover, properties (11) of the kernel function K imply

(7.18) IIllaXTK;1 <CH™!, mtabu,t <C < o0,
t=1,...,

where C' does not depend on 7.
Denote

(7.19)  Rpy=H7'ST_ bypj(z — 1),

— T * * > v
Rp,=H IZ] 104y 4—j1%5>  Where bH7|t_j|:bH,|t_j‘(\t—]|/H).

Thus, we can bound

T T
(720)  |pel S K7 bpgegih] = Bz SCH ™ gy (It = 41/ T) 652
j=1 j=1

<C(H/T){ Jm?x ft,J}RTta

) 7

<C hiy Ry 4.
|7’t’_ {tgﬁ.}fT t} Tt

By (v) of Lemma C1 in the online supplement of [5], we can bound

(7.21) Joax by h = Op((logT)¥")), 1£?§T’§tj‘ — Op((log T)?/*").

Under assumption (18) on H, we have (H/T)” = O(T~°) for some § > 0. In view of (7.20)
and (7.21), to prove (7.16), it suffices to show that for some § > 0,

—6 1o
(7.22) Jmax |Re| = Op(T7°), t:ngfy?fT!Rt\ =Op(1).

We start with the first claim in (7.22). As we concluded above, {z;} is a stationary a-mixing
sequence which satisfies the a-mixing Assumption M, and we assume that F|z |3 < occ.
Under these assumptions, Corollary 6(b) of [5] implies that for any € > 0,

(7.23) _max_|R)|=Op (H™Y2\/logT + (HT)'/*H*1).

By assumption (18), we have that H > TY/2+a for some a > 0. For such H, the r.h.s. of (7.23)
is of order O p(T*‘S) for some & > 0 when ¢ is selected sufficiently small which proves (7.22)
for Rt.

To prove the second claim, write

— T * — T * .
(724)  Rpy=H '3, by (= 1)+ H V3 by =i+ 7o

First we evaluate 1 ;. By definition, the kernel weights b7, = = K*(|j|/H), where K*(x) =

K (z)|x|" satisfy properties (11) imposed on the kernel function K (z) with g replaced by
g — 1 > 3. Moreover,

(7.25) ! ZbH g <
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where C' < 0o does not depend on ¢,T'. Therefore, likewise as Ky |;|, the kernel weights

by 1t satisfy the conditions of Corollary 6(b) of [S] which, as in (7.23), implies

(7.26) max_|ry | =Op(H 12\ log T+ (HT)'3H*') = Op(T~°).

ERRRE

On the other hand, it is easy to verify that, as T' — oo,
7.27 =0(1).
(7.27) Jmax_rz¢| = O(1)

This implies
R _|_ max =0 +0(1)=0p(1
,Jax ] Tt]  Jnax |71 4] R |72, p(T™ ) (1) (1)

sy EEREE) 20y

which completes the proof of (7.22) and (7.10).

Proof of (7.11). Finally, by Assumption H, h; > a > 0 a.s. Thus,
.75 . 7 7 -5
Jmin Al = min (A = (b} = b)) > min kY — max |h]—h{|=a—Op(T")
by (7.10), which proves (7.11).

Proof of (7.12). By (7.15),

(7.28) (h] = B)? = (pr — 70)* < 209} + 7).
We will show that
(7.29) Ep? <C(H/T)¥, Er?<CH™',
which together with (7.28) proves (7.12).

We have

_ 2
Ep} = B(K; ' Y1 by (] — h))2)
(7.30) < KT bapibag s EL(BT = W) (BT = Bz,

Recall that {h;} and {2;} are mutually independent, and E[z;z;] < (EzZEz W2 =F22 <
oo. By Proposition 6.1,

by =13 < C(It = §1/T)" & 15, II;?,XE&,];,U <oo (forany k>1).

Therefore,
|E[(h{ — h])(h] — hl)zjz]| = |E[(h] — b)) (hi — h))|Elzjz]]

< C(|t = 41/T)(Jt = kI /T) E[&156,m] < C(It = j/T)" (1t — k|/T)",
where C does not depend on ¢, j, k, T". Hence, by (7.30),
Ep} < CZJTkzl e jt—j 0 j—k| ([t — 31/ T) (|t — k| /T)”

(7.31) C(H/T)*( 1ZbH|t )’

where C' does not depend on ¢, j, k,T', and by, = =bg,;(1j1/H)".
Together with (7.18) and (7.25), this 1mp11es the first claim in (7.29):

(7.32) Ep} <C(H/T)™( 1ZbH 1) < Cc(H/T)
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To bound E|r|?, notice that
_ 2
Elr | < KBl E| Y25 by (2 — 1)
< CK;2E[h]] Z] s—1 D jt—j| D e 5| COV (25, 25)-

By assumption, the sequences {h; } and {u; } are mutually independent, and max, <,<7 E[h)"] =
O(1). By (7.8), the covariance function cov(z;, z5) = cov(zj_s, 20) of {2} has the property:
23:1 lcov(zj—s,20)| <D g [cOV (2R, 20)| < 00. Therefore,

T
Br S OKT® Y by yleov(zya, o)
js=1

T T
SCK7N KT by 1D leov(zj—s 20)|}) <CK; ' < CH™,
j=1 s=1

by (7.18). This proves (7.29) for r? and completes the proof of (7.12).
Proof of (7.13). By (7.15),

(7.33) 0] = 1) P = lpe = ruf* < 3(Ipef + Ire).
We will show that
(7.34) Elp)? <C(H/T)¥, Er><CH?
These bounds together with (7.33) imply (7.13).

We have

_ T 3
E|pt‘3 < E(Kt ! Zj:l bH,ltfthtv - h;"zj)
— T
< KPS poimt Oa g b -k iz - BIIR — BI| B = B| B — B (1 Elzj2k2).

Notice that F[zjz2¢] < Ez} < co. Therefore the same argument as that we used to bound
the r.h.s. of (7.30) implies

(7.35) Elp* <C(H/T)Y (K" ZbH 1) S<c(H/T)
This proves the first claim in (7.34).
Next we bound E|r;|3. We have
_ 3
(7.36) Bl < KB E| S0 by gy (2 — D[

Observe that by Proposition 6.1, max; E[h;"] < co. To evaluate the r.h.s. of (7.36), we will
use the following bound. If an i.i.d. sequence {&;} has zero mean and E|&|P < oo for some
p > 2, then

T T
(7.37) BN dig[P <o )P
j=1 J=1

for any non-random d;’s, where C' < oo does not depend on d;’s and 71", see Corollary 2.5.1.
in [7]. Since the i.i.d. variables §; = z; — 1 have zero mean and by assumption, Ezj’ < 00,
then, by using (7.37) in (7.36), we obtain

(7:38) Blnf* < K (S0 02,

_ 3/2 — —
< CE;7 (ST buyy)? = CKPKY? <cH3,
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by (7.18). This verifies the second claim in (7.34) and completes the proof of (7.13).
Proof of (7.14). Denote (; = z4(z;— — 1) where k > 1. Write

ly;|" — b} =Nz — b} ={h] — h}} +{h](z; — 1)}.
Then

T
hi —h] =K ZbH,h&j\(‘yj"y —hy)
=1

T T
=K' b (B = b)) + KN b il (2 — 1)

j=1 J=1
=:dig+doy.
Hence, we obtain
T S b (B =BG
=71 ZthkH hy Yy GHAT ZthkH hy T daCe
= Q11+ Q27
We will show that
(739) ElQur|=o(T"?), ElQur|=0(H").

Under assumption (18), it holds H~! = o(T_1/2) which proves (7.14).
Notice that the sequence {h; "d; +} depends only on {h;}, and {ht} is independent of an
i.i.d sequence {u;}. Moreover, E[(;(s] = 0 fort # s, and EC; = E(¢? = E2{E(21 —1)* <

0. Recall that by Assumption H, min h? > a > 0 a.s..

Therefore,
T
EQir=T"7 Y E[h;"h;"dydy | E[GC)
t,s=k+1
T
=72 Z Eh;2d} JEG <a P E[]T™* > Eld7,).
t=k+1 t=k+1

The same argument is in the proof of the bound Ep? < C(H/T)?" in (7.29) implies that
EBd2, < C(H/T)>,
where C' does not ¢, 7. Hence, EQ%T < CT~YH/T)?, and therefore,
E|Qur| < (EQi)'? < CT™V2(H/T) = o(T~'?)

which proves the required bound in (7.39).
On the other hand, to evaluate E|Qs 7|, write

T T
Qor =T K" > by ujihy "G (2 — 1)

t=k+1j=1

T T T T
=T'K > Y LTRSS DY > ]

t=k-+1j=1: j>t+3k tmht1 j=1: j<t—3k
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+TRST Y > [

t=k+1j=1:|j—t|<3k
=Rir+Ror+ Rar.
We will show that
(7.40) E|Ryr|=0H), (=1,2,3,

which implies E|Qq 7| < CH ™! and proves (7.39) for Q2 7.
First we will evaluate ER%,T. Since {h;} and {u,} are mutually independent and u;’s are
i.i.d. random variables, then for any j >t + 3k, j' > t' + 3k,

B{hy "G (5 — D} "ol (2 — DY
— Blhy Wy W B GIE (2 — Dz — D] =0 it £¢ or j# f;
= Bl P WEIQIEN — V)i t=t, j=]

Hence,

ERir =T *K;* Z Z% Sl B E (2 — 1)°)

t=k+1 j=1

—2y, 2
< E[C}|E|(z —1)? J(max Efh, 1)) T2K; 2 Z Zb,t it
7]
t=k+1 j=1
Under assumption Ez{ < oo, E[(?] = E[23(21_ — 1)?] = E[2?]E[(21_r — 1)?] < 00, As-
sumption H implies 7; Y < a~27 < oo and max; E[h?v] < 00. Moreover, max; [by ;| < co.
Thus,

ER}; <CT~ 2Klz wa ) <CT'K7'<CcTT'H ' <CcH?,
t=k+1 j=1
in view of (7.18). Then E|R; 1| < (ER%T)*I/2 < CH~! which proves (7.40). The proof of

(7.40) for Ry r is similar to the proof for Ry 7.
Finally, using similar arguments as above, we obtain

T
ElRsr| <T'K; ' > Y by Elhy PR3 E|Ge(uf — 1)
t=k+1j=1:|j—t|<3k

< (max B W2 |G (uf — 1) (maxbyg ) K (0 +1) < CH Y,
J

)

which proves (7.40) for R3 7. This completes the proof of (7.14) and the lemma. [J
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8. Simulation Study. Supplementary material .

8.1. Supplement to Testing for ARCH effects. We consider Models 1-3 defined in the
main paper with Gaussian noise ;. In the main paper we study the performance of our test for
ARCH effects on squares (7 = 2). Tables 3 — 4 below report size and power of the test applied
on absolutes, v = 1. The shaded grey range of H = [T .. T07] denotes theoretically
permissible values of H for smoothness parameter v = 1. Respectively, Tables 5 — 6 contain
testing results for power transform, -y = 1/2, which show that the size and power of our test
in the shaded area are close to the reference values of size and power corresponding to testing
on |ug| and |us|'/2, as the sample size increases. Overall, for ¥ = 1, 1/2, we observe similar
size and power patterns as for v = 2. This suggests that testing is robust across the considered
values of 7.

Further, in Tables 7-8 we investigate the size and power of the test for ARCH effects in
Model 2, when &; ~ £(4). Such &; does not has finite sixth moment, but its fourth moment
is finite. Following our theoretical results, testing imposes condition that E|e;|>? < co. We
expected, testing that is based on v = 2 to be affected. From the left panel of Table 7 it is
easy to see that the test becomes undersized. As expected testing based on v =1,1/2 is not
affected, see Tables 7 (the right panel) and 8. Results for Models 1 and 2 when &, ~ t(4)
suggest similar patters and are available upon request.

Finally, in Figure 2 we examine the impact of the existence of the moment E|e;|>Y of the
noise on the distribution of the test statistic under the null hypothesis. We consider data y, =
hiet produced by Model 2 for 7' = 1600, when €; ~ ¢(4) is an i.i.d. noise. We plot the Monte
Carlo average of the 7'S () test statistic for various values of H. From theory, if E|e,|>" <
oo, then T'S (z/ﬁ ) ~ X?g for permissible values of H, and the Monte Carlo average of a well
behaved test statistic should approach EXIQ, = p (illustrated using the colour magenta). We
observe this for v = 1,1/2 and for bandwidths H € [T0-50 70-70] Testing with these values
of H meets the requirements of our theoretical analysis and performs well in small samples.
On the contrary, for v = 2 the size of our test in the left panel of Table 7 is affected by the
absence of the sixth moment, and the Monte Carlo average of the test statistic in Figure 2

drops below p = 5, suggesting the failure of the approximation 7S (z/ﬁ )~ Xf;-

8.2. Supplement to Forecasting of Volatility. In comparing performance of different
volatility forecasting methods in the main paper, we consider the following stationary volatil-
ity models for o in u; = o464 We set g, ~ i.i.d. N'(0,1) in all models except Model 4.

1. The stationary GARCH (1, 1) model of [1],
(8.1) ol =wtaul | +potq, t=1,...,T.
This model is the benchmark in our volatility forecasting.

2. The GJR-GARCH (1, 1) model of [8]:

ol =w+aul | +yul I (u1<0)+Bo?,, t=1,...,T.
This model enables simulation of the leverage effect, which can be important in forecast-
ing volatility.

3. The APARCH (1,1, 1) model of [6]:

o =w+a(ju| —yue1)’ + ol y, t=1,...,T.

It adds flexibility capturing volatility dynamics and asymmetries via parameter §.

4. The GARCH-t(1,1) of [2]. Tt uses (8.1) and assumes that ; follows Student ¢(v) distribu-
tion with v > 2 (unknown) degrees of freedom. It allows us to assess whether the choice
of an 4.i.d €; noise has impact on forecasting.
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5. The stochastic volatility (SV) model of [9]. The presence of two separate generating noises
provides to this model extra flexibility.

Parameters of these models are estimated using the quasi maximum likelihood method. Using
datayi, ..., ys—1 we estimate o2, for all five models j = 1, ..., 5 and define the corresponding
one-step ahead forecast of o7, 8]2.7 Hi_1» 38 8?#_1 with estimated parameters.

9. An Empirical Example. Supplementary material. Implementation of our test for
ARCH effects based on y-powers hinges on the assumption E|u;|>Y < oo, being satisfied. If
this condition is not satisfied, this can lead to size distortions, see the left panel of Table 7.

To investigate the number of finite moments of stock returns in our empirical example,
we consider the subperiod from Jan1994 to Dec2007. First, among 254 stock returns, we
select a subset S of returns that contain no stationary volatility component. For that, we fit to
a stock the model r; = py + y¢ = pe + hyuy and test for the absence of ARCH effects in wy,
using the absolute values (y = 1) of residuals 2, = (h;)~*(r; — Ji¢), at lag p = 5. Such testing
and thus, the set S = Sy, depends on H. Next, from each stock from Sy, we test for the
existence of a finite moment E'|u|*, k = 1,2, ..., 12 using specification (17) of Trapani’s test
in [10]. Table 1 reports the proportion (in %) of stock returns in S with finite k-th moment,
for each bandwidth value H.

From the table we can conclude that there exist four finite moments in the majority of the
returns from Sp , but not for six. This suggests that caution is needed when running a test for
ARCH effects on squares u? ( = 2) since the finite sixth moment of returns may not exist,
and illustrates the benefit of a test based on v =1 or 1/2, which involves a more relaxed
moment condition, E|u|3 < oo.

In Figure 1 we report the average values of the test statistic 7S (I/ﬁ ) for p =5 over stock
returns from Sy for different bandwidths H. According to our setting, the test statistic for
stock returns from Sy, is expected to have the property 7'S (Q/ff ) ~ X2 for some range of H if
the moment E|e;|> is finite and ARCH effects in u; are absent. The average for these values
of H should approach to ExZ = 5. Overall, for v = 1,1/2 the average is close to 5 for band-
widths H € [T-%5, T9%5]. This confirms indirectly that the moment E|s;|37 exists and the
approximation by X2 is valid for bandwidths H € [T9%5, T%%]. This range of bandwidths
also meets the theoretical requirements (18) of Theorem 2.1. Hence, these bandwidths should
be used in testing for ARCH effects in our empirical example.

Figure 1 also shows that for v = 2, the average of the test statistic falls below 5 and exhibits
similar patterns as the Monte Carlo average in the case where u; ~ ¢(4) and the sixth moment
does not exist, see Figure 2. This confirms our testing results above that the stock returns may
not have six finite moments. Hence, in our empirical exercise the powers v = 1,1/2 should
be used.

Finally, we check the robustness across the proportions of stock returns with no ARCH
effect, for different values of vy =2,1,1/2. Table 1 of the main paper reports the proportions
of stock returns with no ARCH effect using testing on powers (v = 2, 1) which requires
six and three finite moments of wu;, respectively. We need to check these proportions for
consistency across «y. Table 2 below reports the proportions on v = 1/2 which requires finite
3/2-th moments of u;. We see reasonable robustness of proportions with respect to v =1/2
and v =1, 2, which is a positive feature of the test.
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FIG 1. Average of T'S (l/ﬁ ) test statistic for various values of H under Hy), from the empirical application, using
the single index model for first subperiod 1994-2007.

TABLE 1
Proportion of stock returns with r-th finite moment E|G|” and E|y|™ in the subperiod [1994 — 2007).
Trapani’s test for finite moments is used. Testing at the 5% significance level. Estimation of hy based on
absolutes |y¢| and bandwidth H.

H data K= 1 2 3 4 5 6 7 8 9 10 11 12
70-50 Uy 100.00 100.00 100.00 99.56 70.67 9.78 844 533 356 8.00 489 3.56
70-55 100.00 100.00 100.00 98.70 63.20 9.52 693 649 693 260 519 433
el 100.00 100.00 100.00 98.65 63.06 12.61 7.66 6.76 4.05 495 4.05 3.60
o 100.00 100.00 100.00 98.54 5854 683 6.83 732 439 732 341 6.83
il 100.00 100.00 100.00 97.11 57.80 8.09 694 520 405 8.09 636 5.78
707 100.00 100.00 100.00 96.15 53.08 6.15 462 11.54 538 6.5 923 846

Yt 100.00 100.00 100.00 100.00 83.33 16.67 0.00 16.67 0.00 0.00 0.00 0.00
TABLE 2

Proportion of stock returns with no ARCH effects. Testing based on v = 1/2 powers, for different bandwidths H,
lags p, and subperiods as defined in the main text. Testing at the 5% significance level. ji estimated using the
single index model.

H data p=1 p=>5 p=10
1994-2007 2005-2012  2011-2019  1994-2007  2005-2012  2011-2019  1994-2007  2005-2012  2011-2019
7050 |y |1/2 90.55 94.49 92.91 87.01 81.50 81.89 75.20 68.11 66.93
7055 88.19 94.49 94.49 87.80 87.80 92.13 87.01 81.89 79.13
el 82.68 90.55 94.49 86.22 90.55 95.28 87.40 87.40 88.58
e 78.74 85.83 94.88 82.68 85.83 95.28 85.04 84.65 91.73
70-70 72.44 79.13 92.13 72.84 77.95 92,91 78.35 75.59 90.95
7075 61.42 68.50 90.95 57.09 64.57 90.55 57.87 62.21 90.16

\yt|1/2 16.14 39.76 74.80 3.54 31.89 71.26 3.94 28.35 70.87
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FIG 2. Average of TS(I/L'\Y) test statistic for various values of H under Hy, yt = hiey, e¢ ~t(4)

TABLE 3

Testing for ARCH effects on squares at the lag p =5 in Model 1 and Model 2. Rejection frequencies (in %) at

the 5% significance level (8 = 0 size, 8 > 0 power). e, ~ N (0,1)

Model 1 (with hy = 1)

Model 2 (with deterministic h¢)

T H daa =0 (=02 B=04 GARCH data f=0 p=02 B=04 GARCH
200 790 Ju 2288 2734 59.94 8.52 [ug] 20.58 2636  59.76 8.56
796 948 2472 6716 2438 626 2438  68.06 28.62
797 598 2792 7294 4694 588 3574 7876 60.98
708 520 3104 7670  60.04 2116 5912 8836 82.88
lug| 464 3470 8034 7362 lug| 464 3472 80.36 73.62
lyel 464 3470 8034 7362 lye] 8894 9556  98.72 97.46
400 700 Ju 2140 4636 9276 30.16 fug] 2050 4600  92.64 30.78
706 8.52 4906 9590  71.64 672 4940  96.10 7424
707 588 5444 9714 8844 560 63.02 9802 93.00
708 512 5856 97.84 9338 3412 8682 99.62 98.58
lug] 506 6182 9832 9626 lug] 506 6182 9832 96.26
ly| 506 6182 9832  96.26 lye] 9958 99.88 10000 100.00
800 79° Ju 2160 7856 9996  85.16 fug] 2114 7864  99.96 85.48
706 808 8442 9998  98.98 716 8468  99.98 99.06
707 524 8822 9998 99.74 518 9198 10000 99.92
798 466  89.80 9998  99.94 5120 9890  100.00 10000
lug] 446 9140 9998  99.94 lug] 446 9140  99.98 99.94
lye] 446 9140 9998  99.94 lye] 10000 100.00 10000  100.00
1600 705 fug] 2108 9882  100.00  99.94 Jug] 2094 9882  100.00  99.94
796 806 9942 10000  100.00 732 9938 10000 100.00
797 548 99.60 10000 100.00 520 99.80 10000  100.00
708 482 9972 10000  100.00 68.52  100.00  100.00  100.00
lug| 478 9974  100.00  100.00 lug| 478 9974 10000  100.00
lye] 478 9974 100.00  100.00 ly]  100.00  100.00  100.00  100.00
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TABLE 4

Testing for ARCH effects on absolutes at the lag p =5 in Model 3. Rejection frequencies (in %) at the 5%
significance level (8 = 0 size, 3 > 0 power). g4 ~ N (0,1).

Model 3 (with h; stochastic)

T H  data B=0 8=02 B=0.4

d=12 d=14 d=15 d=12 d=14 d=15 d=12 d=14 d=15

200 7990 [y 2132 2182 2212 2710 2724 2750  61.02  60.90 61.12
70-60 8.86 9.46 9.66 2544  25.12 2506  68.08  67.90 68.04

70-70 6.02 6.18 6.30 29.10 2810  27.88 7542  74.84 74.98

70-80 5.86 5.82 574 34.82 3342 3288 8028  79.36 79.38

lug| 570 570 570 3494 3494 3494 8184  81.84 81.84

lye] 2174 1944 1852 5338 5180  50.86  87.86  87.22 87.18

400 7050 [y 2076 2176 2202 4688  47.04 4694 9326  93.30 93.26
70-60 7.26 8.32 8.40 51.04 5046 5038  96.14  96.18 96.10

7070 5.06 5.32 5.62 5866  57.00 5646 9776  97.68 97.64

70-80 6.42 5.32 5.24 6626 6346 6270 9854  98.46 98.38

lug|  5.00 5.00 500 6378 6378 6378 9846  98.46 98.46

lye] 3594 3198 3048 8236 7976 7878  99.38  99.30 99.26

7050 [y 2038 2146 2152 7958 7974 79.64 9998  99.98 99.98

70-60 7.66 8.44 8.56 8590 8560 8564 9998  99.98 99.98

70-70 5.24 5.62 5.60 90.52  89.54 8932  100.00  100.00  100.00

70-80 7.42 5.34 5.20 9378 9226  91.90  100.00 100.00  100.00

lug| 512 5.12 512 9194 9194 9194 10000 100.00  100.00

lye| 4954 4322 4098  98.06  97.12 9682  100.00  100.00  100.00
7050 [y 2010 2102 2122 98.88  98.84 9886  100.00  100.00  100.00
70-60 7.24 8.14 8.14 99.44 9934 9934  100.00 100.00  100.00
70-70 5.82 5.74 5.90 99.66  99.62  99.60  100.00  100.00  100.00
70-80 9.58 6.36 5.98 99.80 9976  99.76  100.00  100.00  100.00
lug|  5.60 5.60 560  99.68  99.68  99.68  100.00  100.00  100.00
lye]  63.04 5522 5276 9996 9994 9994  100.00  100.00  100.00
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Testing for ARCH effects on squares at the lag p =5 in Model 1 and Model 2. Rejection frequencies (in %) at

the 5% significance level (8 = 0 size, 8 > 0 power). ¢ ~ N (0,1)

Model 1 (with by = 1)

Model 2 (with deterministic h¢)

T H  data B=0 B=02 B=04 GARCH data B=0 =02 =04 GARCH
200 T9°  |uy V2 2526 2564  50.18 8.36 lug|t/2 2370 2446  49.60 8.30
g 1034 1848  53.04 15.78 798 1752 53.88 17.52
i 642 1840  59.02 33.48 490 2286  65.08 46.54
708 556 1958  63.02 46.84 1422 4302 79.88 71.90
lue| /2 518 2232 67.32 61.16 lue|/2 518 2234 6734 61.16
V2 518 2232 67.32 61.16 lvelY/2 8328 9232 9750 95.00
400 TO5  |ugl/2 2356 3610 8344 17.96 luglt/2 2294 3596 8334 18.20
s 996 3364 8856 53.98 834 3356 8886 56.42
el 640 3652  91.68 76.84 478 4342 9380 84.40
708 524 3940  92.80 85.36 228 7272 9822 96.44
|2 472 4280 9418 90.42 |2 472 4280 9418 90.42
lyelV/2 472 4280 9418 90.42 lyel'/2 99.12 9976 100.00 99.98
800 TY9%  |wl/2 2310 6112 9948 66.30 lug|1/2 2286  60.92 99.48 66.48
o 936 6504  99.74 94.96 836 6564  99.80 95.28
i 622 7008  99.90 98.78 494 7632  99.94 99.42
708 536 7292 99.92 99.44 3360 9494  100.00 99.96
)/ 498 7566  99.92 99.74 lug| /2 498 7564  99.92 99.74
lyelV/2 498 7566  99.92 99.74 lye|¥/2 10000 100.00  100.00 100.00
1600 705 |uyl/2 2142 9250  100.00 99.42 lug|t/2 2124 9246  100.00 99.44
s 782 9532 10000  100.00 748 9538  100.00 100.00
i 550 9664 10000  100.00 490  97.80  100.00 100.00
708 506 9738 10000  100.00 4548  99.84  100.00 100.00
[u|¥2 488 9770 10000  100.00 lug|/2 488 9770  100.00 100.00
lye|Y2 488 9770  100.00  100.00 lye|¥2 10000  100.00  100.00 100.00
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TABLE 6
Testing for ARCH effects on v = 1/2-powers at the lag p = 5 in Model 3. Rejection frequencies (in %) at the 5%
significance level (8 = 0 size, 8 > 0 power). ey ~ N(0,1).

Model 3 (with h¢ stochastic)
T H data £5=0 £5=0.2 £5=04
d=12 d=14 d=15 d=12 d=14 d=15 d=12 d=14 d=15

200 T9%0 |ull/2 2504 2556 2572 2482 2532 2530 5082 5098  51.00

7060 1056 1140 1170 1874 1878  18.80  54.88 5448 5430
70.70 6.82 7.18 7.30 19.66 1926 1928 6068 6036  60.22
70-80 5.90 5.94 5.92 2274 2162 2122 6660 6502  64.86

lug|/2 586 5.86 586 2242 2242 2242 6806 6806  68.06
|2 1768 1582 1506 3974 3830 3736  77.68 7644 7598

400 7950 |y 1/2 2338 2388 2410 3572 3604 3610 8326 8328 8324

70-60 8.28 8.96 9.22 3404 3420 3422 8860  88.62  88.60
70-70 5.38 5.56 586 3996 3856 3818 9252 9206  92.02
70-80 5.92 5.22 5.08 47.02 4408 4342 9474 9418  94.04

lug| /2 524 5.24 524 4418 4418 4418 9476 9476 9476
/2 2944 2606 2470 6884 6592 6466 9752 9712 97.08

7950 |y |1/2 2186 2286 2292 6158 6178  61.88 9934 9932  99.32

7060 8.50 9.02 9.24 6598 6570 6558 9976 9976  99.72
70.70 5.40 5.86 5.90 73.02 7120 7100  99.92 9990  99.90
70-80 5.92 5.10 5.02 8024  77.12 7652 9998 9996  99.96

lug| /2 528 5.28 528 7652 7652 7652 9996 9996  99.96
|2 4172 3696 3486 9234 9046 90.00 10000  100.00  100.00

7950 |y, 1/2 2148 2232 2236 9192 9188  91.84  100.00  100.00  100.00
70-60 7.44 7.94 8.06 9524 9512 9518  100.00 100.00  100.00
70-70 5.54 5.56 562 9718 9658 9642  100.00  100.00  100.00
70-80 7.30 574 5.56 9844 9786  97.68  100.00  100.00  100.00

|ut|1/2 5.36 5.36 5.36 97.38 97.38 97.38 100.00  100.00  100.00
\yt\l/z 55.66 48.64 46.08 99.70 99.54 99.40 100.00  100.00  100.00
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Testing for ARCH effects on squares at the lag p = 5 in Model 2 (with deterministic hy). Rejection frequencies

(in %) at the 5% significance level (8 = 0 size, B > 0 power). e¢ ~ t(4).

Testing on squares (y = 2)

Testing on absolutes (7 = 1)

T H data B=0 pB=02 B=04 GARCH data B=0 B=02 B=04 GARCH
200 795 W2 248 1884  50.14 15.92 [ug] 1474 4528  84.08 19.78
706 .00 3134 6338 56.30 418 5232 89.92 69.58
Ll 318 4216 7020 79.16 384 6194 9356 91.52
708 892 5074  74.02 87.94 962 7202 9572 97.16
u} 498 4990  75.88 91.56 lug| 392 6694 9496 98.18
yP 2446 6162 7882 93.00 lye] 5386 90.64  98.56 99.28
400 795 W2 216 5042 8828 66.72 [ug] 1480 8226  99.38 80.94
70-6 144 6220  90.90 94.76 450 8760  99.84 99.20
700 408  69.66  91.62 98.54 424 9226  99.88 99.96
708 1052 7492  91.84 98.92 1502 9620  99.96 99.98
w608 7332 9112 98.98 lug| 444 9378  99.94 100.00
yi 3166 8160  92.16 99.12 lye| 8278 9970 99.96 100.00
goo 795 w2 192 8754  99.58 99.36 [uy] 1658  99.08  100.00 99.98
706 154 8930  99.16 99.96 524 99.60  100.00  100.00
gl 410 9022  98.14 99.96 430  99.80  100.00  100.00
708 1092 9130  97.54 99.94 18.88 9990 10000  100.00
u} 556 89.46  97.10 99.86 lug| 446 9992  100.00  100.00
y? 4024 9316  97.12 99.90 lye] 98.06 10000  100.00  100.00
1600 7°° w2 234 9958  100.00  100.00 [ug] 17.58 10000  100.00  100.00
70-6 212 9888 10000  100.00 608 10000 100.00  100.00
707 438 9796  99.66 100.00 476 10000  100.00  100.00
708 11.84 9736  99.36 100.00 2598 10000  100.00  100.00
w632 9662  98.84 100.00 lugl 508  100.00 100.00  100.00
yp 5324 9738  98.84 99.98 lye]  99.92 10000  100.00  100.00
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TABLE 8

Testing for ARCH effects on v = 1/2-powers at the lag p =5 in Model 2. Rejection frequencies (in %) at the 5%
significance level (8 = 0 size, B > 0 power). e¢ ~ t(4)

(1]
(2]
(3]

(4]
(5]

(6]
(7]
(8]
(9]

Model 2 (with h; deterministic)

T H data B=0 B=02 B=04 GARCH
200 T990 |y, 1/2 2356 4454  83.64 14.04
70-60 780 4670  88.92 60.40
70-70 456 5478  93.02 88.00
70-80 906 6828  96.08 96.04
lug| /2 450 5954 9450 97.60
/2 6496 9306  99.42 99.08
400 7990 /2 2246 7650 99.30 68.86
70-60 7.16 8236  99.74 98.42
70-70 454  88.0%8  99.92 99.88
7080 13.82 9516  99.98 99.96
)2 480 8956  99.98 100.00
lye|t/2 9336 99.94  100.00 100.00
800 790 |y 1/2 2252 9812  100.00 99.90
el 7.70  99.10  100.00 100.00
70-70 474  99.60  100.00 100.00
7080 1920  99.90  100.00 100.00

lue|Y/2 486 9976 100.00 100.00
|2 99.84  100.00  100.00 100.00

1600 7999 |y 1/2 2258  100.00  100.00 100.00
gl 7.92  100.00  100.00 100.00

gl 508  100.00  100.00 100.00

70-80 26.80  100.00  100.00 100.00

lue)'/2 526  100.00  100.00 100.00

lye|Y/2 10000 100.00  100.00 100.00
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