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This paper suggests a multiplicative volatility model where volatility is
decomposed into a stationary and a non-stationary persistent part. We pro-
vide a testing procedure to determine which type of volatility is prevalent
in the data. The persistent part of volatility is associated with a nonstation-
ary persistent process satisfying some smoothness and moment conditions.
The stationary part is related to stationary conditional heteroskedasticity. We
outline theory and conditions that allow the extraction of the persistent part
from the data and enable standard conditional heteroskedasticity tests to de-
tect stationary volatility after persistent volatility is taken into account. Monte
Carlo results support the testing strategy in small samples. The empirical ap-
plication of the theory supports the persistent volatility paradigm, suggesting
that stationary conditional heteroskedasticity is considerably less pronounced
than previously thought.

1. Introduction. Two important issues widely discussed in the statistical and finance
literature, over the last 25 years, are structural change and volatility modelling. Starting with
the seminal work of [12], volatility modelling has developed into a large topic of study. Most
work has produced volatility models that are stationary and allow for time variation in the
conditional variance. There are two important groups of parametric models used to model
volatility. The first group represents the conditional variance as a function of observables
and includes autoregressive conditional heteroskedasticity (ARCH) and generalised ARCH
(GARCH) models. The second group, where the conditional variance is treated as a latent
variable and may depend on more than one innovation processes, includes stochastic volatil-
ity models.

Empirical work though, has repeatedly concluded that volatility can exhibit extreme per-
sistence. Such persistence is not easily accommodated by stationary volatility models. The
challenge is revealed through the integrated GARCH effect, see e.g. [23], when parameter
estimates are observed to lie near the boundary of stationarity. This effect can be caused by
smooth or abrupt structural change in the unconditional variance over time. So it is possible
that once allowed for, volatility can be best characterised by persistent, and possibly non-
stationary processes. There is a growing literature that tries to characterise volatility using
parameter processes that allow for gradual change in the unconditional variance. First, we
succinctly summarise the main ways this problem is addressed in the literature, and then
present our main contributions.

The first line of recent research on structural change has focused on paradigms coming
from the statistical literature, such as the work of [25] and [6], where parameter processes
are smooth deterministic functions of time. [8] proposed the locally stationary time-varying
ARCH model, that is globally nonstationary. Along the same lines [28] proposed another
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model with deterministic smoothly varying parameters, where volatility is multiplicatively
decomposed into a stationary and nonstationary part. The assumption that a nonstationary
part could drive volatility, has recently permeated in standard ARCH (stationary) models as
well. Specifically, [13] and [4] propose using splines, [22] use the Fourier Flexible form of
[14] in their periodic volatility model, [20] consider the generalized GARCH model and, in
a series of papers [1] and [2], suggest to model volatility as a linear combination of logistic
functions.

While the above characterisations provide an avenue to describe and estimate stationary
and nonstationary volatility processes, there is no clear way to separate the two kinds of
volatility. Further, the above characterisations are either tied to parametric forms or assumed
to be smooth deterministic functions of time.

This paper makes a number of contributions. We suggest a multiplicative specification of a
volatility process that allows a stationary and a nonstationary part. The latter can potentially
account for the extreme persistence of volatility observed in data. We use ideas from the
recent literature on structural change to show how persistence, perhaps surprisingly, allows
kernel estimation of the unobserved stochastic persistent part of volatility without strong
parametric assumptions and the requirement to be a smooth, deterministic function of time,
see e.g. [25], [6], [21] and [28], among others. While smooth deterministic functions for
the persistent part of volatility are still allowed, including stochastic elements in persistent
volatility modelling can provide a richer representation of volatility.

Recent work by [16] shows that as long as a parameter process satisfies some smoothness
and moment or boundedness conditions, it can be stochastic but still estimable using a kernel
estimator. Such processes may adequately fit the observed behaviour of volatility, as they are
clearly more persistent than stationary processes. In fact, persistence is their most distinctive
characteristic. [17] essentially ask the following question: Assuming a decomposition of the
form yt = htut, for some observed process yt and unobserved stationary process ut, what
properties should ht have, so that h2t can be consistently estimated by, essentially, a rolling
window form, mean estimate of y2t ? They show that ht has to change slowly, in the sense that
|ht−hs| has to be small when t and s are close, and thus, stationary processes do not qualify.
A normalised random walk provides a canonical example for the sort of processes we have
in mind.

We demonstrate in this paper how the uniform consistent estimation of ht leads to a
strategy of separation between the stationary and persistent parts of volatility. Basically,
if the persistent part can be uniformly estimated, then the rescaled series of residualŝ|ut|γ = (ĥγt )

−1|yt|γ , γ > 0, can be used to test for ARCH effects (conditional heteroskedas-
ticity) or the presence of a stationary volatility in ut. If only persistent volatility is present,
standard ARCH tests will not detect ARCH effects in residuals. If the persistent part ht is ab-
sent, the normalisation by ĥγt will not distort the residuals and stationary volatility in ut will
be detected. Our specification allows for both the persistent and stationary parts of volatility
to co-exist. Moreover, they can be extracted from the data. After testing for ARCH effects
in ut, is performed, in a second step, a stationary volatility model can be fitted to ut. This
extension is beyond the scope of the current paper.

In this paper, we discuss, in detail, conditions needed for consistent estimation of the
persistent part, ht, of volatility and further, conditions that enable the use of standard ARCH
tests to separate persistent volatility from stationary volatility. We provide illustrative Monte
Carlo results that support our approach on testing, in small samples. We proceed and present
extensive empirical evidence clearly supporting the persistent volatility paradigm, suggesting
that stationary time varying conditional volatility is less pronounced than previously thought
and, further, conditional second moments of asset returns are very persistent and change
slowly.
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The remainder of this paper is organised as follows. Section 2 presents our statistical pro-
cedure and theoretical results. Section 3 contains the simulation study. Section 4 reports the
empirical results from implementing our testing strategy in financial data. Section 5 con-
cludes. Proofs are relegated to the Supplement. Below →D , →P stand for convergence in
distribution and probability.

2. Theoretical considerations. We consider the following white noise model for a se-
ries of uncorrelated random variables

(1) yt = htut, t= 1, . . . , T,

where {ut} is a stationary sequence of uncorrelated random variables with Eut = 0, Eu2t =
1, and ht > 0 is the persistent part of volatility (stochastic or deterministic). Formally, yt =
ytn, t = 1, ..., T and ht = htn, t = 1, ..., T are triangular arrays but it is unnecessary to add
the additional index in what follows. We assume that sequences {ut} and {ht} are mutually
independent. Then

cov(yt, ys) =E[hths]E[utus] = 0 for t 6= s.

First, we establish notions of persistent and stationary volatility. We will assume that ht is
measurable with respect to the information set Ft−1 at time t−1, and E(ut|Ft−1) = 0. Then,
the conditional variance of yt is defined by

(2) var (yt|Ft−1) = h2tE(u2t |Ft−1) = h2tσ
2
t .

To specify the properties of persistence for ht, we introduce below Assumption M. Overall,
the notion of persistence of ht simplifies to

(3) lim
T→∞

(h2t,T − h2t−1,T ) =P 0,

for any 1≤ t= tT ≤ T . For example, if ht is a deterministic function, the property (3) will
imply that the unconditional variance var(yt) = h2tEu

2
t changes smoothly when T increases.

Other processes, such as locally stationary and stochastic unit root processes, ht, satisfy this
property as well, as we discuss below. We refer to h2t as the persistent part of volatility.

There is a vast body of literature on modeling stationary volatility. We define the stationary
part of volatility as a conditional variance

σ2t = var (ut|Ft−1) ,

with respect to the information set Ft−1 at time t− 1. Here, both {σ2t } and {σ2t − σ2t−1} are
stationary processes and, thus, the persistence property σ2t − σ2t−1 = oP (1), does not hold.
The main two classes of stationary volatility models for σ2t are the autoregressive conditional
heteroskedastic ARCH and GARCH models and stochastic volatility models.

Our objective is to test whether the conditional variance var (yt|Ft−1) contains a stationary
component σ2t . A simple general specification of such a hypothesis is given by

(4) H0 : var (yt|Ft−1) = h2t vs H1 : var (yt|Ft−1) = h2tσ
2
t ,

where {σ2t } is a stationary sequence of dependent random variables. To construct a feasible
testing procedure, we further assume that, under H0, {ut} is a sequence of independent
identically distributed (i.i.d.) random variables and yt is generated according to the following
processes:

yt = htεt under H0,(5)

yt = htut, ut = σtεt under H1,
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where {εt} is an i.i.d. sequence with Eεt = 0, var(εt) = 1 and such that E(εt|Ft−1) = 0,
E(ε2t |Ft−1) = 1. This model specification implies (4).

According to the specification (5), {ut} is a white noise process. Essentially, a standard
test for ARCH effect is a white noise test, for the squared time series {u2t } and requires the
existence of six finite moments for ut. To relax this assumption, in this paper we consider
tests for ARCH effects, based on {|ut|γ}, γ > 0, which is basically a white-noise test for the
time series {|ut|γ}. The analysis covers the case γ = 2.

Since {ut} is not observed, we base our test for ARCH effects on the power transform of
residuals ̂|ut|γ where ̂|ut|γ = (ĥγt )

−1|yt|γ(6)

and ĥγt > 0 is an estimate of hγt . Such testing requires uniformly consistent estimation of
hγt by ĥγt and thus, stronger conditions on {ht, ut} are needed, than for consistent point
estimation of ht at time t. This is reflected in the Assumptions M and H, we make for ut and
ht. In particular, we impose the assumption of mutual independence between {h2t } and {u2t },
which clearly holds for a deterministic volatility factor ht.

Assumption M (α-mixing)

1. {ut} is a stationary white-noise ergodic sequence with Eut = 0, Eu2t = 1, Eutus = 0 for
t 6= s.

2. {ut} is α-mixing with mixing coefficients αk ≤ cφk, k ≥ 1, for some 0< φ< 1 and c > 0.

Assumption H (Smoothness)

1. For some ν ∈ (1/2,1],

|ht − hj | ≤C(|t− j|/T )ν , t, j = 1, ...., T, or(7)

|ht − hj | ≤ (|t− j|/T )νξtj ,

where C > 0 does not depend on t, T , and for some 0<α<∞, c > 0,

(8) max
t,j=1,...,T

E[exp(c|ξtj |α)]≤C <∞, max
t=1,...,T

E[exp(c|ht|α)]≤C <∞.

2. There exists a > 0 such that ht ≥ a > 0 a.s. for all t≥ 1.
3. {ht} and {ut} are mutually independent.

The model specification (1) abstracts from the general case of a time series with a specified
conditional mean. It is possible to generalize our test for ARCH effects to a time series with
a non-zero conditional mean

yt = µt + htut, µt =E (yt|Ft−1) , t= 1, . . . , T.

The smoothness condition (7) in Assumption H implies that the persistent component of
volatility, ht, drifts slowly in time, which essentially rules out abrupt or explosive behaviour
for ht. This assumption is widely used in the statistical and econometric literature. It allows
the use of both deterministic and stochastic time-varying processes ht and implies the persis-
tence property (3).

The deterministic specification ht = g(t/T ), t= 1, ..., T , where g(·) is a Lipschitz smooth
function with parameter 1/2< ν ≤ 1, i.e. |g(x)−g(y)| ≤C|x−y|ν , is a standard assumption
in the work of Dahlhaus on locally stationary processes (see, e.g. [6] or [7]). It implies |ht −
hs| ≤C(|t− s|/T )ν .
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The stochastic specification ht = T−ν |
∑t

j=1 vj |, t = 1, ..., T of ht, where {vj} is a sta-
tionary sequence with zero mean, was proposed by [16, 15, 17], to allow for a persistent
process ht that can be presented as non-stationary random walks, see Example 1 below.

A combination of the two, satisfying (7) with parameter ν can be summarised as

(9) ht = |T−ν(v1 + ...+ vt) + g(t/T )|+ a, t= 1, ..., T, (a > 0).

Our testing procedures will still work for the case of yt with a non-zero conditional mean; in
this case a first step estimator for the mean will be required, see e.g. [5].

EXAMPLE 1. Let {vj} be a stationary Gaussian ARFIMA(p, d, q) sequence with pa-
rameter d ∈ (0,1/2) and zero mean, see e.g. Chapter 7 in [18]. Then ht = T−ν

∣∣∑t
j=1 vj

∣∣,
t= 1, ..., T satisfies (7) of Assumption H with ν = 1/2 + d and α= 2. Indeed, for t > s,

|ht − hs|=
∣∣∣T−ν∣∣∑t

j=1 vj
∣∣− T−ν∣∣∑s

j=1 vj
∣∣∣∣∣

≤ T−ν |
∑t

j=s+1 vj | ≤ (|t− s|/T )ν |ξts|, ξts = (t− s)−ν
∑t

j=s+1 vj .

Here, ξts is a Gaussian variable, and by Proposition 3.3.1 in [18] and stationarity of {vj}, the
variance var(ξts) = var(ξt−s,0)→ v2 <∞ as t− j→∞. Hence, ξts and ht satisfy (8) with
α= 2.

2.1. Volatility estimation. To extract residuals ̂|ut|γ = (ĥγt )
−1|yt|γ , required for the test-

ing of ARCH effects, we need an estimate for hγt in |yt|γ = hγt |ut|γ . Without loss of gener-
ality we assume that ht is rescaled so that E|ut|γ = 1. We will show that in model (1), under
Assumptions H and M, hγt can be consistently estimated by a kernel type estimate

(10) ĥγt =K−1t

T∑
j=1

bH,|t−j||yj |γ , Kt =

T∑
j=1

bH,|t−j|, t= 1, ..., T,

where bH,|t−j| =K(|t− j|/H) are kernel weights. K(·) is assumed to be a non-negative and
bounded function, with piecewise bounded derivative, and H is a bandwidth parameter that
satisfies H = o(T ), as T →∞. Commonly used examples of K(x) include:

K(x) = (1/2)I(|x| ≤ 1), flat kernel,

K(x) = (3/4)(1− x2)I(|x| ≤ 1), Epanechnikov kernel,

K(x) = (1/
√
2π)e−x

2/2, Gaussian kernel.

The first two kernel functions have finite support, whereas the Gaussian kernel has infinite
support. We further assume that on its support,

K(x)≤C(1 + xg)−1, |(d/dx)K(x)| ≤C(1 + xg)−1, x≥ 0 with g > 4, C > 0.(11)

Under this setup, in Lemma 7.2 in the Supplement we show the pointwise consistency of this
estimate:

(12) |ĥγt − h
γ
t |=Op

(
(H/T )ν +H−1/2

)
.

Similar results for vector autoregressive models were derived in [17]. In Lemma 7.2, using
the results of [11], we establish the uniform convergence

(13) max
t=1,...,T

|ĥγt − h
γ
t |= oP (1).

This uniform convergence result will prove useful in our testing procedure for the distinction
between the persistent and stationary parts of volatility, that follows.
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2.2. Testing. In this subsection we outline how our strategy to discriminate between the
persistent and stationary components of volatility works under (1), where ut is not observed.
Basically, it will be seen that the test of hypothesis (4) reduces to a white noise test for
{|ut|γ}. First, we briefly summarise the basic tests for ARCH effects when a white noise
time series {ut} is observed.

The Lagrange Multiplier (LM) test by [12] is the most commonly used standard ARCH
test to detect autoregressive conditional heteroskedasticity (or stationary volatility) in {ut}.
We simply fit to u2t an AR(p), p≥ 1, model

(14) u2t = β0 + β1u
2
t−1 + ...+ βpu

2
t−p + ηt,

where β0 > 0 and test the following null hypothesis:

(15) H0 : β1 = β2 = . . .= βp = 0 vs H1 : βj 6= 0 for some j = 1, ..., p.

The null hypothesis H0 implies absence of correlation in the first p lags of the series {u2t }
and vice versa. Basically, this ARCH LM test is equivalent to testing for absence of autocor-
relation in {u2t }.

The test statistic of the ARCH LM test by [12] is defined as TR2, where T is the sample
size and R2 is the coefficient of determination of the AR regression (14). Under H0, when
{ut} is an i.i.d. sequence with finite fourth moment, the LM statistic follows asymptotically
a χ2

p distribution. Further tests, such as the Wald and Likelihood ratio, have been shown to be
asymptotically equivalent to the LM test.

Through testing, the literature mainly addresses two distinct problems: the misspecifica-
tion of the conditional mean, see e.g. the discussion in [3], and the correct specification of the
volatility process. Our work naturally falls in the second category by addressing the question
of whether allowing for a persistent component ht in (1), provides a better specification for
the volatility process. By ARCH effects in {ut} we mean the presence of correlation in a
sequence {|ut|γ}, where γ > 0 is selected in advance. We will test for ARCH effects in the
unobserved component ut of yt = htut in (1) by fitting to |ut|γ an AR(p), p≥ 1 model

(16) |ut|γ = β0 + β1|ut−1|γ + ...+ βp|ut−p|γ + ηt

and then testing the hypothesis (15) on β1, .., βp. We replace the unobserved variables |ut|γ
by residuals ̂|ut|γ = (ĥγt )

−1|yt|γ ,(17)

where ĥγt is the kernel estimate (10) of the γ-power hγt of the persistent factor ht of volatility.
Our aim is to show that asymptotically, it is equivalent to test for ARCH effects using the
residuals ûγ =

[
|̂u1|γ , |̂u2|γ , . . . , |̂uT |γ

]′, instead of uγ =
[
|u1|γ , |u2|γ , . . . , |uT |γ

]′.
In addition, such an equivalence implies that the residuals, ût = ĥ−1t yt obtained using ĥt

with γ = 1, should behave as a white noise. In Theorems 2.2 and 2.3 we show that both the
ARCH LM test based on regression on ut and the correlogram of û1, ..., ûT can be used to
test for absence of correlation in {ut}.

The ARCH test using regression (14) for powers, |ut|γ obtained in Theorem 2.1, shows
that, that if a stationary process σ2t (co-)drives the volatility via ut, then the normalisation by
ĥγt in (17) will not corrupt the properties of testing.

In our setup and for p≥ 1, we consider TS
(
uγ
)
= TR2, the test statistic where R2 is the

coefficient of determination of the AR regression (16) based on uγ , and TS
(
ûγ
)
= TR̂2

where R̂2 is based on the residuals, ûγ , as described above. The formulas of S
(
uγ
)

and
S
(
ûγ
)

are given in (6.6) and (6.7) of the Supplement.
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The following Theorem proven in the Supplement, gives a sufficient condition for LM test
for ARCH effects to be asymptotically valid when applied to ûγ , instead of uγ .

Denote by γk = cov(|uk|γ , |u0|γ), k ≥ 0 the covariance function of a stationary sequence
{|ut|γ}, γ > 0, and define the p× p matrix Γp and p× 1 vector γp by setting

Γp =
(
γ|j−k|

)
j,k=1,...,p

, γp =
(
γ1, ..., γp)

′.

Denote by βp the p× 1 vector of parameters (β1, ..., βp) which will appear in testing under
the alternative hypothesis H1 and set

βp = (β1, ..., βp)
′ = Γ−1p γp, σ2p = var(|up+1|γ − β1|up|γ − ...− βp|u1|γ).

Notice that the existence of Γ−1p follows from Lemma 3.1(i) in [10] because the stationary
sequence {u2t } has bounded a spectral density. The latter follows from the absolute summa-
bility of the covariance function γk, see (7.8) in the Supplement.

Recall notation ν of the smoothness parameter of ht appearing in (7).

THEOREM 2.1. Let {yt, t = 1, ..., T}, follow (1), Assumptions H and M hold, and H
satisfies

(18) T 1/2+a ≤H = o(T 1−(1/4ν)) (for some a > 0).

Assume that γ > 0 and E|ut|3γ <∞. Then the ARCH LM test statistic based on regression
(16) on |ut|γ , has the following properties. As T →∞, for any p≥ 1,

(19) S(ûγ) = S(uγ) + oP (1) = σ−2p β
′
pΓpβp + oP (1).

In addition, if {ut} is an i.i.d. sequence, then βp = 0, and

(20) TS(ûγ) = TS(uγ) + oP (1)→D χ
2
p.

Result (19) implies that testing for ARCH effects based on regression (16) is equivalent to
testing for the white noise for the series {|ut|γ}. Indeed, the matrix Γp is positive definite,
and therefore its smallest and largest eigenvalues obey 0 < λmin ≤ λmax <∞. Notice that
β′pΓpβp = γ

′
pΓ
−1
p γp, and

β′pΓpβp ≥ ||βp||2λmin, γ ′pΓ
−1
p γp ≥ ||γp||2λ−1max,

where ||βp|| denotes the Euclidean norm of βp. Hence, ||βp||= 0 implies ||γp||= 0 and vice
versa which proves the above claim.

Theorem 2.1 implies that a test for ARCH effects in {ut} based on statistic TS(ûγ) has the
same asymptotic size and power properties as a test based on TS(uγ) applied on unobserved
uγ . If the hypothesisH0 is not rejected, then this implies the absence of correlation in {|ut|γ}
up to lag p. Conversely, the alternative H1 is detected with a rate T .

Notice that the value βp = Γ−1p γp appearing in (19) is the same as the "true" value of
the parameter βp estimated by the OLS method in regression (14) when ηt is a white noise
sequence.

REMARK 1. If Assumption H is satisfied with ν = 1, for example, which is the case for
deterministic weights ht = g(t/T ), where g is a continuous piecewise differentiable function
with a bounded derivative, then assumption (18) on the bandwidth H becomes

(21) T 1/2+a ≤H = o(T 3/4).
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Note that lower values of ν imply narrower permitted intervals for bandwidthH . Given that ν
is unknown, a theoretical recommendation for the choice of H is that it should be larger than
T 1/2 and less than T 3/4. In practice, we recommend trying different values for H , within
the interval T 1/2 to T 3/4, to establish test robustness. This matter is further discussed in the
Monte Carlo study.

REMARK 2. The moment conditionE|ut|3γ <∞ of Theorem 2.1 implies that testing for
ARCH effects based on regression (14) using u2t , |ut| or |ut|1/2 which corresponds to γ =
2,1,1/2, requires the existence of E|ut|6, E|ut|3 and E|ut|3/2, respectively. If E|ut|3γ+ε <
∞ for some ε > 0, then (18) can be replaced by

T 1/2 = o(H), H = o(T 1−(1/4ν)).

We also suggest two methods to examine whether the unobserved time series {ut} in the
model (1) is a white noise sequence. The first approach is similar to testing for ARCH effects.
It amounts to fitting to ut an AR(p), p≥ 1 model

(22) ut = β0 + β1ut−1 + ...+ βput−p + ηt

and testing the hypothesis H0 and H1 on (β1, ..., βp) in (14). The test statistics TS(u) and
TS(û) in Theorem 2.2 correspond to the AR regression (22) on ut and ût = (ĥt)

−1yt. They
satisfy the asymptotic results of Theorem 2.1 with and βp, Γp defined as in (19) using

(23) γk = cov(uk, u0), σ2p = var(up+1 − β1up − ...− βpu1).

THEOREM 2.2. Let {yt, t= 1, ..., T} be as in (1) andE|ut|3 <∞. Suppose that Assump-
tions M, H and (18) hold. Then statistics TS(u) and TS(û) based on the AR regression (22),
have the following properties.

For any p≥ 1, as T →∞,

(24) S(û) = S(u) + oP (1) = σ−2p β
′
pΓpβp + oP (1).

In addition, if {ut} is an i.i.d. sequence, then βp = 0, and

(25) TS(û) = TS(u) + oP (1)→D χ
2
p.

The same argument as used below Theorem 2.1, implies that the hypothesis H0 : β1 = ...=
βp = 0 is equivalent to the absence of correlation up to lag p in {ut}.

Alternatively, absence of correlation in {ut} can be tested using the correlogram of resid-
uals ût = (ĥt)

−1yt. This important step of data analysis allows one to verify the model spec-
ification (1) for yt since standard tests for white noise based on yt might not be applicable.

For k = 0,1, ..., denote

r̂k = T−1
∑T

t=k+1(ût − û)(ût−k − û),(26)

r̃k = T−1
∑T

t=k+1(ut −Eut)(ut−k −Eut−k).

THEOREM 2.3. Suppose that assumptions of Theorem 2.2 are satisfied. Then, as T →∞,

r̂k = r̃k + oP (1) = cov(uk, u0) + oP (1), k ≥ 0.(27)

In addition, if {ut} is an i.i.d. sequence, then

T 1/2r̂k = T 1/2r̃k + oP (1)→N (0, (Eu21)
2) k ≥ 1.(28)
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Denote ρ̂k = r̂k/r̂0, k = 0,1,2, .... If {ut} is an i.i.d. sequence then (28) of Theorem 2.3
implies that

(29) T 1/2(ρ̂1, ..., ρ̂m)→D N (0, Im), m≥ 1.

This shows that using residuals ût, we can perform standard tests for the absence of correla-
tion in {ut} at individual lag k and Ljung-Box tests, for the cumulative lag m as if variables
{ut} were observed.

Notice that in our setting no ARCH effects in {ut} imply no correlation in {|ut|γ}. This
is a slightly weaker property than the i.i.d. assumption on {ut} under H0. The latter property
leads to standard approximations (20) and (29) for the test statistics, which are not guaranteed
for a non i.i.d. white noise {ut}.

REMARK 3. In financial and economic applications, the common choice for volatility
modelling is a stationary GARCH type model. Given this, it is also relevant to test the hy-
pothesis

H0 : yt = ut vs H1 : yt = htut,

for absence of persistent component ht (ht = 1) in the model (1), where {ut} is a station-
ary sequence of uncorrelated random variables. In general, this is equivalent to testing mean
stability of series y2t = h2tEu

2
t +h2t (ut−Eu2t ). Tests for detection of alternatives with deter-

ministic ht were developed in [9].

3. Simulation Study. In this section, we use simulations to verify the theoretical proper-
ties of the test statistics TS(ûγ) for ARCH effects in {ut}, and explore its finite-sample size
and power performance. In particular, we examine the impact of the three types of persistent
volatility ht (constant, deterministic, stochastic) and the choice of the bandwidth parameter
H on the size and power of the test, and how crucial the moment condition E|ut|3γ <∞ is.

We generate an array of samples

(30) yt = htut, ut = σtεt, t= 1, ..., T,

where {εt} is an i.i.d. N(0,1) noise. For σ2t we use stationary ARCH(1) and GARCH(1,1)
models:

σ2t = 1+ βu2t−1, β = 0,0.2,0.4, ARCH(1) model;(31)

σ2t = 1+ 0.2u2t−1 + 0.7σ2t−1, GARCH(1,1) model.

The case β = 0 leads to σ2t = 1, or H0, and

(32) yt = htεt.

We use (32) to study the empirical size of our test for ARCH effects in unobserved ut at lag
p, in particular, to determine whether the size of this test is robust to the choice of H . For a
persistent volatility component ht, with parameter ν = 1, by Theorem 2.1, under (32),

TS(ûγ)∼ TS(uγ)∼ χ2
p if T 0.5 = o(H), H = o(T 0.75).

Ideally, we expect both the test statistic TS(ûγ) based on residuals, and TS(uγ) based on
ut, to exhibit similar empirical size. Further, for β > 0 in ARCH(1) model or GARCH(1,1)
model in (30)-(31), a stationary volatility component is present, and then for the above choice
of H , we expect them to achieve similar empirical power, as shown in Theorem 2.1.

We set the significance level to α= 5% and conduct 5000 replications. We consider T =
200,400,800,1600, γ = 2,1,1/2 and we conduct testing for ARCH effects on |ut|γ at lags
1, 5 and 10 for γ = 2,1,1/2.



10

In the tables below, we examine the impact of bandwidth H and parameter γ on testing.
The shaded grey range of H = [T 0.60, . . . , T 0.70] denotes theoretically permissible values of
H for smoothness parameter ν = 1. As a reference point, we include a third shaded line re-
porting the size and power for statistics TS(uγ). Theoretically, as the sample size increases,
size and power in the shaded area should approach the benchmark.

We use three models for {yt}.

MODEL 1. We set ht = 1, and σ2t follows (31).

This model does not involve a persistent time-varying volatility component. It includes a
stationary volatility component except for the case β = 0, where σt = 1 and yt = εt.

The left panel of Table 1 confirms that both tests TS(û2) and TS(u2) for ARCH effects
at the lag p= 5 based on squares (γ = 2) achieve similar empirical size and power when H
is chosen from the permitted range [T 0.6, T 0.7].

MODEL 2. We set ht = sin(2πt/T ) + 2, t= 1, ..., T , and σ2t follows (31).

This model contains a persistent deterministic volatility component ht, which satisfies
Assumption H with parameter ν = 1. For β = 0, the model yt = htεt includes no stationary
volatility (ARCH effects) in ut. From the right panel of Table 1 we conclude, that overall the
empirical size and power of the test TS(û2) are comparable to those of TS(u2) as long as
H ∈ [T 0.6, T 0.7], but the use of a permissible bandwidth H plays an essential role here. In
real data, u2t is not observed and the test TS(u2) cannot be performed. Not surprisingly, in
the model yt = htεt (β = 0), the empirical size of the test TS(y2) applied on squares y2t of
the data is close to 100%, i.e. it falsely suggests the presence of a stationary volatility in yt.

MODEL 3. We set ht = T−(d−1/2)|Id,t|+ 1, t= 1, ..., T , where Id,t is a non-stationary
ARFIMA(0, d,0) process. We consider the values d= 1.2,1.4,1.5, and σ2t follows (31).

Here, we assume that {ht} and {εt} are mutually independent. Such a stochastic persistent
process ht satisfies AssumptionH with parameter ν = d−1/2> 1/2, see Example 1. Table 3
shows, that overall the performance of the test for ARCH effects on squares of residuals at the
lag p= 5 exhibits similar patterns as for Model 2, although the lower degree of persistence
of ht in Model 3 results in a somewhat smaller rate of detection of spurious presence of
stationary volatility in yt by TS(y2).

In sum, to test for ARCH effects in {ut}, we have used the statistics S(ûγ) based on
residuals ̂|ut|γ . We report testing results for the values γ = 2, while the results for γ = 1,1/2
can be found in the Supplement. Testing results for ARCH effects at lags p= 1,10 produce
similar patterns as for p = 5, and are available upon request. We report additional testing
results for errors εt ∼ t(4), in the Supplement. They show that the lack of finite E|ut|3γ
moment has an impact on testing results.

Finally, in Figure 1 we explore the impact of bandwidth H on the size of the test by
plotting the MC average of the TS(ûγ) test statistic for various values of H under the null
hypothesis. We consider data yt = htεt produced by Model 2 for T = 1600. From theory, the
Monte Carlo average of a well behaved test statistic should approach the number of degrees
of freedom p=Eχ2

p marked by the black dashed line. We see that this is indeed the case for
bandwidths H ∈ [T 0.6, T 0.7], suggesting that such bandwidth values perform well in small
samples and meet the requirements of our theoretical analysis.
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FIG 1. Average of TS(ûγ) test statistic for various values of H under H0, yt = htεt.

TABLE 1
Testing for ARCH effects on squares at the lag p= 5 in Model 1 and Model 2. Rejection frequencies (in %) at
the 5% significance level (β = 0 size, β > 0 power).

Model 1 (with ht = 1) Model 2 (with deterministic ht)

T H data β = 0 β = 0.2 β = 0.4 GARCH β = 0 β = 0.2 β = 0.4 GARCH

200 T 0.5 û2t 12.98 19.04 48.82 7.22 10.50 17.96 49.14 8.02
T 0.6 4.90 23.30 60.82 28.66 3.20 24.42 62.84 34.96
T 0.7 3.72 30.14 69.60 52.42 7.64 40.68 74.92 66.44
T 0.8 3.60 34.64 74.32 65.52 25.10 60.12 84.08 83.34

u2t 4.34 40.30 78.94 77.12 4.34 40.30 78.96 77.12
y2t 4.34 40.30 78.94 77.12 73.66 86.78 93.62 95.22

400 T 0.5 û2t 13.18 42.80 89.26 33.86 12.10 42.62 89.30 35.12
T 0.6 4.80 52.00 94.12 76.14 3.58 53.36 94.34 79.00
T 0.7 3.62 60.04 96.08 90.56 7.90 68.78 96.86 95.10
T 0.8 3.80 64.70 97.14 94.94 40.86 86.58 98.64 98.60

u2t 4.68 69.06 97.60 97.22 4.68 69.04 97.60 97.22
y2t 4.68 69.06 97.60 97.22 95.40 99.14 99.80 99.92

800 T 0.5 û2t 15.32 80.58 99.92 89.00 14.42 80.62 99.92 89.58
T 0.6 5.60 87.42 100.00 99.38 4.74 88.16 100.00 99.52
T 0.7 4.38 91.38 100.00 99.88 7.78 93.88 100.00 99.96
T 0.8 4.18 92.96 100.00 99.92 60.80 98.98 100.00 100.00

u2t 4.74 94.14 100.00 99.98 4.74 94.14 100.00 99.98
y2t 4.74 94.14 100.00 99.98 99.98 100.00 100.00 100.00

1600 T 0.5 û2t 16.44 99.04 100.00 99.96 15.96 99.08 100.00 99.96
T 0.6 6.20 99.72 100.00 100.00 5.68 99.72 100.00 100.00
T 0.7 5.08 99.82 100.00 100.00 7.06 99.84 100.00 100.00
T 0.8 5.16 99.84 100.00 100.00 80.06 100.00 100.00 100.00

u2t 5.44 99.86 100.00 100.00 5.44 99.86 100.00 100.00
y2t 5.44 99.86 100.00 100.00 100.00 100.00 100.00 100.00
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TABLE 2
Testing for ARCH effects on squares at the lag p= 5 in Model 3. Rejection frequencies (in %) at the 5%
significance level (β = 0 size, β > 0 power).

Model 3 (with stochastic ht)

T H data β = 0 β = 0.2 β = 0.4

d= 1.2 d= 1.4 d= 1.5 d= 1.2 d= 1.4 d= 1.5 d= 1.2 d= 1.4 d= 1.5

200 T 0.50 û2t 11.20 11.80 12.14 19.12 19.48 19.38 49.26 49.00 49.14
T 0.60 3.90 4.06 4.30 23.40 23.30 23.36 62.06 61.40 61.52
T 0.70 3.92 3.82 3.68 31.40 30.00 29.70 71.22 70.86 70.70
T 0.80 6.32 5.04 4.78 38.68 37.14 36.54 77.26 76.54 76.38

u2t 4.52 4.52 4.52 39.76 39.76 39.76 79.92 79.92 79.92
y2t 22.58 20.24 19.36 56.08 54.18 53.76 84.12 83.46 83.34

400 T 0.50 û2t 12.24 13.02 13.10 43.94 43.90 43.86 89.96 90.02 89.88
T 0.60 4.08 4.58 4.68 54.08 53.34 53.50 94.64 94.54 94.42
T 0.70 4.52 4.20 4.04 63.70 62.56 62.22 96.80 96.60 96.56
T 0.80 8.34 6.62 6.00 71.02 69.42 68.80 97.92 97.70 97.68

u2t 5.12 5.12 5.12 70.10 70.10 70.10 97.84 97.84 97.84
y2t 36.40 32.48 30.64 83.80 81.96 81.70 98.78 98.68 98.52

800

T 0.50 û2t 14.22 15.06 15.30 81.62 81.34 81.34 99.92 99.92 99.92
T 0.60 4.86 5.22 5.38 88.68 88.30 88.22 99.98 99.98 99.98
T 0.70 4.66 4.32 4.52 92.58 92.10 91.94 99.98 99.98 99.98
T 0.80 9.46 6.28 5.74 95.22 94.10 93.82 99.98 99.98 99.98

u2t 5.34 5.34 5.34 94.46 94.46 94.46 99.98 99.98 99.98
y2t 51.20 45.04 43.28 98.02 97.68 97.46 99.98 99.98 99.98

1600

T 0.50 û2t 15.44 15.94 16.10 99.28 99.26 99.24 100.00 100.00 100.00
T 0.60 5.32 5.64 5.92 99.72 99.68 99.66 100.00 100.00 100.00
T 0.70 5.76 5.14 5.06 99.86 99.84 99.80 100.00 100.00 100.00
T 0.80 11.98 7.16 6.22 99.92 99.90 99.88 100.00 100.00 100.00

u2t 5.28 5.28 5.28 99.88 99.88 99.88 100.00 100.00 100.00
y2t 65.84 57.46 55.22 99.98 99.96 99.96 100.00 100.00 100.00
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Since the absence of a stationary volatility part can be detected, it is intriguing to conduct
a comparison of volatility forecasts for a specific case of the model (1):

(33) yt = htεt, t= 1, . . . , T,

with a persistent non-parametric volatility var (yt|Ft−1) = h2t and an i.i.d.(0,1) noise {εt}.
This model does not includes a stationary volatility component σ2t , see (2). Our primary
interest is to verify whether the kernel forecasting method ĥ2T+1|T := ĥ2T of the volatility

h2T+1 outperforms the 1-step ahead forecast ĥ2j;T+1|T formed from parametric GARCH, GJR,
SV, GARCH-t and APARCH volatility models denoted by "j" and defined in the Supplement.
In Monte Carlo simulations h2t is known. We use two volatility proxies, pt = h2t and y2t .

For the given volatility proxy pt, the best forecasting method j minimizes the average
quadratic loss

(34) MSFE j = (T − T0)−1
T∑

t=T0+1

(
pt − ĥ2j;t|t−1

)2
,

over t ∈ (T0, T ]. We set T = 1000 and T0 = 200. Forecasting of h2t with the kernel predictor
ĥ2t|t−1 is performed with fixed bandwidths H = t0.60, t0.65, t0.70, and with a cross-validated
bandwidth HCV,t which minimises

(35)
t∑

s=t−t0

(
ps − ĥ2s|s−1

)2
over H = t0.55, t0.60, ...., t0.75 where t0 = 50.

To make comparisons across different forecasting methods, we use the benchmark
MSFEGARCH of the parametric GARCH(1,1) volatility model and calculate the relative root
quadratic loss, RMSFEj =

(MSFE j)1/2

(MSFEGARCH)1/2
.

Tables 3 and 4 report the average value of the relative RMSFEj over 1000 replications for
data generating Models 2 and 3 of yt, and two proxies, pt = h2t and y2t . The smaller is the
entry (< 1), the better the forecast.

Table 3 reports RMSFE results where the forecasting performance is evaluated using
the "optimal" proxy pt = h2t . The kernel forecasting methods produce the smallest values
of RMSFE and clearly outperform the parametric forecasting methods of volatility in both
Model 2 and 3, and the cross-validated bandwidth HCV,t outperforms forecasts with a fixed
bandwidth. For comparison, we report RMSE for the kernel forecast with a feasible cross-
validated bandwidth H∗CV,t that minimises (35) with the commonly used volatility proxy
p∗t = y2t , see [26]. It works well for Model 2 but slightly less well for Model 3.

Table 4 reports results of the same experiments as Table 3, using the imperfect, but ob-
served, proxy pt = y2t , see [24]. It is still noticeable that the kernel forecasts outperform
the parametric forecasting methods, but the difference becomes marginal. It is clear that the
choice of proxy for the cross-validation in empirical analysis is crucial. We use realised vari-
ance as a feasible volatility proxy in our empirical forecasting example below.
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TABLE 3
Comparison of forecasting methods. Table reports RMSFE with the (true) volatility proxy pt = h2t .

Model 2 (with ht = deterministic) Model 3 (with ht = persistent, d= 1.4)

H Kernel GJR SV GARCH-t APARCH H Kernel GJR SV GARCH-t APARCH

t0.55 0.776 1.009 1.309 0.992 1.084 t0.55 1.021 1.041 1.626 1.008 1.095
t0.60 0.700 t0.60 0.887
t0.65 0.660 t0.65 0.790
t0.70 0.668 t0.70 0.738
t0.75 0.738 t0.75 0.742
HCV 0.544 HCV 0.651
H∗CV 0.664 H∗CV 0.894

TABLE 4
Comparison of forecasting methods. Table reports RMSFE with the volatility proxy pt = y2t .

Model 2 (with ht = deterministic) Model 3 (with ht = persistent, d= 1.4)

H Kernel GJR SV GARCH-t APARCH H Kernel GJR SV GARCH-t APARCH

t0.55 0.988 1.001 1.026 1.000 1.005 t0.55 1.000 1.001 1.023 1.000 1.003
t0.60 0.985 t0.60 0.997
t0.65 0.983 t0.65 0.995
t0.70 0.984 t0.70 0.995
t0.75 0.986 t0.75 0.995
HCV 0.984 HCV 0.997

4. An Empirical Example. In this section, we illustrate the practical applicability of
our testing methodology for the detection of stationary volatility.

We use weekly stock returns for a group of 254 companies in the S&P 500 over the period
Jan 1994 to Dec 2019, obtained from Bloomberg. After data cleaning, it contains T = 1340
observations. In particular, we split the historical weekly returns into three subperiods: the
pre-crisis period (Jan 1994 - Dec 2007), the period covering the global financial crisis (Jan
2005 - Dec 2012), and the post-crisis period (Jan 2011 - Dec 2019).

In line with the finance literature, we assume that weekly returns of an individual company
stock follow the model:

rt = µt + yt, where yt = rt − µt = htut,

where µt = E[rt|Ft−1] is the conditional mean and yt is a white noise process. We test for
the presence or absence of stationary volatility σ2t = var[rt|Ft−1] in ut. If ARCH effects in
ut are not detected, then rt = µt + htεt, where {εt} is an i.i.d. noise.

In Table 5, we report the proportion of stock returns (in %) exhibiting no ARCH effects,
according to our test, in ut (among 254 stocks). Testing for ARCH effects is based on resid-
uals ̂|ut|γ = (ĥγt )

−1|yt|γ where yt = rt − µ̂t, and conducted at the 5% significance level. To
obtain an estimate for µt, we use the single index model µt = rf,t + β1(Rm,t − rf,t), where
Rm,t is the market factor and rf,t is the risk free rate. Specifically, we would like to under-
stand the impact of the choice for the bandwidth H , lag p, subperiods, and values of γ on
testing. The shaded grey range of H = [T 0.60, . . . , T 0.70] denotes theoretically permissible
values of H for smoothness parameter ν = 1.

The empirical testing results can be summarised as follows: Across lags 1,5,10, γ = 2,1
and three subperiods, in the recommended (shaded grey) range of H = [T 0.60, . . . , T 0.70],
the vast majority (∼ 80%) of the stock returns have no ARCH effects. Further, in the more
volatile subperiod 2005− 2012, the proportion of stock returns with no ARCH effects falls
slightly. However, when persistent volatility is not taken into account and testing is performed
directly on the powers of yt, the number of stock returns with no ARCH effects drops sharply.
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Table 5, shows clear robustness of the testing results across values γ = 1, 2, which is a
reassuring finding. Recall that estimation with γ = 2 requires at least sixth moments of ut,
whereas estimation with γ = 1 requires at least three. We include γ = 1, since by following
the methodology of [27], we find that the majority of the stock returns have finite fifth mo-
ments, but not sixth. More details on this, and empirical testing results for γ = 1/2 can be
found in the Supplement.

Overall, these empirical results are in line with the Monte Carlo experiments and provide
clear evidence that stationary volatility might be considerably less pronounced in the data,
than previously thought.

TABLE 5
Proportion of stock returns with no ARCH effects. Testing based on squares (γ = 2) and absolutes (γ = 1), for
different bandwidths H , lags p, and subperiods as defined in the main text. Testing at the 5% significance level.
µt estimated using the single index model.

Testing on squares (γ = 2)

H data p= 1 p= 5 p= 10

1994-2007 2005-2012 2011-2019 1994-2007 2005-2012 2011-2019 1994-2007 2005-2012 2011-2019

T 0.50 û2t 93.31 97.24 97.64 97.64 96.06 96.46 94.88 91.73 92.91
T 0.55 89.76 94.88 96.85 94.49 96.85 97.24 96.85 96.06 98.03
T 0.60 86.61 90.55 95.67 90.55 92.13 96.06 93.31 93.70 98.43
T 0.65 81.10 82.28 93.31 86.61 85.43 95.28 87.80 85.43 97.24
T 0.70 76.77 74.02 92.52 77.95 72.44 92.13 77.17 71.26 93.31
T 0.75 68.50 65.75 92.52 64.17 57.09 90.16 62.21 54.72 91.73

y2t 39.37 42.91 78.35 22.05 33.47 80.32 20.87 29.53 77.17

Testing on absolutes (γ = 1)

H data p= 1 p= 5 p= 10

1994-2007 2005-2012 2011-2019 1994-2007 2005-2012 2011-2019 1994-2007 2005-2012 2011-2019

T 0.50 |̂ut| 89.76 94.49 94.49 88.58 84.25 86.22 80.32 72.44 69.69
T 0.55 86.61 93.70 93.31 90.95 91.34 90.16 89.76 87.80 83.07
T 0.60 81.50 87.80 94.09 87.40 89.37 93.70 86.61 87.80 89.37
T 0.65 73.62 80.71 91.73 80.71 83.47 94.09 84.25 82.68 92.91
T 0.70 62.60 70.87 90.16 68.11 70.87 89.76 70.47 70.87 92.52
T 0.75 53.15 59.06 89.37 51.18 56.30 88.58 52.76 53.54 90.55

|yt| 12.60 30.71 72.05 2.36 24.41 71.65 1.97 18.11 72.05

Next, we consider the problem of forecasting of persistent volatility of the weekly log
returns of some major stock indices and exchange rate series using data from the database
‘Oxford-Man Institute’s realised library’ version 0.1, produced by [19], see also [26], over
the period from January 3, 1999 to December 23, 2007 (469 observations).

We consider the same forecasting methods of volatility as in the simulation study section.
In order for these forecasting methods to be applied on returns with persistent volatility as in
the model (33), we employ our test for ARCH effects from Section 2 on demeaned returns rt
of assets and select four stock indices and three exchange rates which returns do not exhibit
ARCH effects in squares. Instead of using a noisy proxy of squared returns for the volatility,
we use the proxy pt of "realised variance", see [24].

Table 6 presents the values of relative RMSFEj introduced in Section 3. Kernel prediction
uses cross-validated bandwidth HCV,t. The quadratic loss and the cross-validated bandwidth
HCV,t are derived using the proxy of realised variance in (34) and (35). We set T0 = 200, t0 =
50. The results suggest that for the majority of asset returns, the kernel forecasting method
with cross-validated bandwidth HCV,t , significantly outperforms stationary alternatives.
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TABLE 6
Comparison of the forecasting methods. Table reports RMSFE with the realised variance proxy pt.

Asset Kernel GJR SV GARCH-t APARCH

Dow Jones 0.654 0.904 0.665 1.001 0.966
Nasdaq 100 0.696 1.238 1.086 1.137 1.311
Nikkei 250 0.831 1.008 0.971 0.996 1.117
S&P 500 0.705 0.901 0.934 1.085 0.851
USD British pound 0.989 1.038 1.116 1.002 1.160
USD Euro 0.915 1.013 1.043 1.000 1.042
USD Swiss franc 0.925 0.986 0.886 1.006 0.998

5. Discussion. This paper contributes to the literature in three ways. First, we introduce
a setup for persistent processes, that can provide a general approximation to the volatility
process of a time series. Second, we develop a consistent uniform estimation theory for the
unobserved volatility processes, without strong parametric assumptions, and third, we sug-
gest a testing strategy that enables the separation of stationary volatility from its persistent
counterpart. To prove our main results, the uniform bounds for kernel type estimates obtained
in [17] and based on Bernstein inequalities for dependent random variables, were used.

Testing results on U.S. stock returns provides extensive support for the persistent volatility
paradigm, suggesting that the role of stationary conditional heteroskedasticity is not as out-
standing in the data, as was previously thought. In addition, forecasting results on persistent
volatility of log returns of stock indices and exchange rates provide evidence in favour of
using kernel forecasting methods.

There are a number of interesting avenues for future work, in particular, the extension of
our testing procedure to multivariate time series.

This is a distinct problem rather than a simple generalization of the univariate case. In
general, a multivariate model for a p× 1 process

yt =Htut, t= 1, ..., T

can include a p × p matrix, Ht, of persistent volatility and a stationary p × 1 white noise
process ut. The objective would be to test whether components of this white noise exhibit
stationary conditional heteroskedasticity (ARCH effects). The estimation of Ht that would
enable such testing could be undertaken using the work by [11].
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SUPPLEMENTARY MATERIAL

Supplement to: "Choosing between persistent and Stationary volatility"
Provides proofs of all results given in the main paper and supplemental material for simula-
tion study and empirical exercise.
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This Supplement provides proofs of the results given in the text of the main paper. It is
organised as follows: Section 6 provides proofs of the main theorems. Section 7 contains aux-
iliary technical lemmas. Section 8 contains supplementary simulation material and Section 9
supplementary empirical material.

Formula numbering in this supplement includes the section number, e.g. (6.1), and ref-
erences to lemmas are signified as “Lemma 6.#", “Lemma 7.#", e.g. Lemma 6.1. Theorem
references to the main paper include section number and are signified, e.g. as Theorem 2.1,
while equation references do not include section number, e.g. (1), (2).

In the proofs, C stands for a generic positive constant which may assume different values
in different contexts.

6. Proof of Theorems 2.1, 2.2 and 2.3. This section contains the proofs of the results
of Section 2 of the main paper on the asymptotic properties of the test statistics TS(uγ) and
TS(ûγ).

In the proof of Theorem 2.1 without loss of generality we assume that E|ut|γ = 1. In
addition, we use the claim that {hγt , t= 1, ..., T} satisfies Assumption H which is verified the
next proposition.

PROPOSITION 6.1. Let {ht, t = 1, ..., T} satisfy Assumption H with parameters ν and
α. Then {hγt , t= 1, ..., T} satisfies Assumption H with parameters ν and α∗ = α/max(γ,1):

(6.1) |hγt − h
γ
j | ≤ (|t− j|/T )νξ∗tj , t, j = 1, ..., T

and there exist c > 0 such that

(6.2) max
t,j=1,...,T

E[exp(c|ξ∗tj |α
∗
)]≤C, max

t=1,...,T
E[exp(c|hγt |α

∗
)]≤C,

where C <∞ does not depend on T .

Proof of Proposition 6.1. By assumption (7) and (8), ht has the following properties:

|hγt − h
γ
j | ≤ (|t− j|/T )νξtj , t, j = 1, ..., T(6.3)

max
t,j=1,...,T

E[exp(c|ξtj |α)]≤C, max
t=1,...,T

E[exp(c|ht|α)]≤C,(6.4)

where C <∞ does not depend on T . Therefore, hγj satisfies the second claim in (6.2).

Keywords and phrases: ARCH effects, persistence, volatility, time-varying coefficient models, non-parametric
estimation.
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Let γ ≥ 1 and 0< a≤ x < y. Then, by the mean value theorem,

(yγ − xγ)≤ γyγ−1(y− x), if γ ≥ 1,

≤ γa1−γ(y− x), if 0< γ < 1.

This together with (6.3) implies

(6.5) |hγt − h
γ
j | ≤ γ(h

γ−1
t + hγ−1j )|ht − hj | ≤ (|t− j|/T )νξ∗tj ,

where ξ∗tj = γ(hγ−1t + hγ−1j )ξtj ≤ γ(hγt + hγj + 2ξγtj). Then (6.4) implies (6.2) for ξ∗tj . �

Proof of Theorem 2.1. In Theorem 2.1 we analyse the Wald version of the test for the null
hypothesis of absence of ARCH effects in ut. First recall the definitions of S(uγ) and S(ûγ).
Denote

zt = |ut|γ , z = T−1
T∑
t=1

zt.

Given data uγ = [z1, z2, . . . , zT ], we define the test statistic for testing H0 as follows:

S(uγ) = σ̃−2p β̃
′
p(X

′X)β̃p, β̃p = (X ′X)−1X ′Y, σ̃2p = (Y −Xβ̃p)′(Y −Xβ̃p),(6.6)

where Y is a (T − p)× 1 vector and X is a (T − p)× p design matrix:

Y = (zp+1 − z, ..., zT − z)′,

X =


x1,1 x1,2 ... x1,p
x2,1 x2,2 ... x2,p
... ... ... ...

xT−p,1 xT−p,2 ... xT−p,p

=


zp − z zp−1 − z ... z1 − z
zp+1 − z zp − z ... z2 − z

... ... ... ...
zT−1 − z zT−2 − z ... zT−p − z

.

Here β̃p = (β̃1, ..., β̃p)
′ denotes the OLS estimate of regression coefficients in regression

zt = β0 + β1zt−1 + ...+ βpzt−p + ηt.

Similarly, let

ẑt = ̂|ut|γ , ẑ = T−1
T∑
t=1

ẑt, where ̂|ut|γ = (ĥγt )
−1|yt|γ .

Denote by β̂p = (β̂1, ..., β̂p)
′ the OLS estimate of regression coefficients in

ẑt = β0 + β1ẑt−1 + ...+ βpẑt−p + ηt.

Then

S(ûγ) = σ̂−2p β̂
′
p(X̂

′X̂)β̂p, β̂p = (X̂ ′X̂)−1X̂ ′Ŷ , σ̂2p = (Ŷ − X̂β̂p)′(Ŷ − X̂β̂p)(6.7)

where

Ŷ = (ẑp+1 − ẑ, ..., ẑT − ẑ)′,

X̂ =


x̂1,1 x̂1,2 ... x̂1,p
x̂2,1 x̂2,2 ... x̂2,p
... ... ... ...

x̂T−p,1 x̂T−p,2 ... x̂T−p,p

=


ẑp − ẑ ẑp−1 − ẑ ... ẑ1 − ẑ
ẑp+1 − ẑ ẑp − ẑ ... ẑ2 − ẑ

... ... ... ...

ẑT−1 − ẑ ẑT−2 − ẑ ... zT−p − ẑ

.
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Observe that we can write

T−1(X ′X) = (gij)i,j=1,...,p, T−1(X ′Y ) = (g0j)j=1,...,p, where(6.8)

gij = T−1
∑T

t=p+1(zt−i − z)(zt−j − z).
Similarly,

T−1(X̂ ′X̂) = (ĝij)i,j=1,...,p, T−1(X̂ ′Ŷ ) = (ĝ0j)j=1,...,p, where(6.9)

ĝij = T−1
∑T

t=p+1(ẑt−i − ẑ)(ẑt−j − ẑ).
The proof of Theorem 2.1 is based on Lemmas 6.2 and 6.3 below. Auxiliary results used to
prove these lemmas are placed in Section 7. Denote by

γk = cov(zk, z0), k ≥ 0,(6.10)

γ̃k = T−1
T∑

t=k+1

(
zt −Ezt

)(
zt−k −Ezt−k

)
,

the autocovariance and sample autocovariance functions of {zt}. Define

Γp = (γ|i−j|)i,j=1,...,p, γp = (γ1, ..., γp)
′, βp = Γ−1p γp;

Γ̃p = (γ̃|i−j|)i,j=1,...,p, γ̃p = (γ̃1, ..., γ̃p)
′, β̃p = Γ̃

−1
p γ̃p

and set σ2p = var(|up+1|γ − β1|up|γ − ...− βp|u1|γ).
To prove the theorem we will derive the following results: As T →∞,

T−1(X̂ ′X̂) = Γ̃p + oP (1), T−1(X̂ ′Ŷ ) = γ̃p + oP (1),(6.11)

T−1(X ′X) = Γ̃p + oP (1), T−1(X ′Y ) = γ̃p + oP (1),(6.12)

Γ̃p→p Γp, γ̃p→P γp, β̃p→ βp,(6.13)

T−1σ̂2p→P σ
2
p, T−1σ̃2p→P σ

2
p.(6.14)

If, in addition, {ut} is an i.i.d. sequence, then it holds

T−1/2(X̂ ′Ŷ ) = T−1/2γ̃p + oP (1),(6.15)

T−1/2(X ′Y ) = T−1/2γ̃p + oP (1),(6.16)

T−1/2γ̃p→D N (0,Ipγ0), γ0 = var(z1).(6.17)

In turn, properties (6.11), (6.12) and (6.13) follow by applying in (6.8) and (6.9) the asymp-
totic relations (6.18), (6.19) and (6.20), shown in Lemma 6.2.

The convergence (6.14) follows from the definitions of σ̂2p and σ̃2p , using (6.11)-(6.14),
noting that T−1Ŷ ′Ŷ = ĝ00→P γ0, T−1Y ′Y = g00→P γ0, and using the equality σ2p = γ0−
2γ ′pβp +β

′
pΓpβp.

Subsequently, (6.15) and (6.16) follow from (6.21) and (6.22) of Lemma 6.2. Finally,
observe that the i.i.d. property of {ut} implies that {zt} is also an i.i.d. sequence. It remains
to note, that the validity of convergence (6.17) for an i.i.d. r.v. zt −Ezt is a well known fact.

From the definition of S(ûγ) and S(uγ), given in (6.7) and (6.6), using relations (6.11)-
(6.14), we obtain

β̂p→P βp = Γ−1p γp, β̃p→P βp,

S(ûγ) = S(uγ) + oP (1) = σ−2p β
′
pΓpβp + oP (1),
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which proves the claim (19) of the theorem.
In addition, if {ut} is an i.i.d. sequence, then it holds that Γp = γ0Ip and σ2p = γ0. Then,

using (6.15)–(6.17), we obtain

σ̂−2p (X̂ ′X̂) = γ−20 Ip(1 + oP (1)), σ̃−2p (X̃ ′X̃) = γ−20 Ip(1 + oP (1)),

T−1/2β̂p→D γ
1/2
0 N (0,Ip), T−1/2β̃p→D γ

1/2
0 N (0,Ip).

This together with the definitions of S(ûγ) and S(uγ) implies

TS(ûγ) = TS(uγ) + oP (1)→D χ
2
p,

which proves (20). This completes the proof of the theorem. �

Proof of Theorems 2.2. The proof follows the same line of arguments as in Theorem 2.1. �

Proof of Theorem 2.3. The claims (27) and (28) follow using a similar reasoning as in
the proof of (6.26) and (6.27) of Lemma 6.3, noting that for i.i.d. r.v.’s the convergence
T 1/2r̃k→N (0, (Eu21)

2) is well-known. �

LEMMA 6.2. (a) Suppose that {ht, ut} satisfy Assumptions M and H, and the bandwidth
H satisfies (18). Then for i, j = 0,1, ..., p, as T →∞,

ĝij = γ̃|i−j| + oP (1),(6.18)

gij = γ̃|i−j| + oP (1),(6.19)

γ̃k→P γk, k ≥ 0.(6.20)

(b) In addition, if {ut} is an i.i.d. sequence, then for j = 1, ..., p,

T 1/2ĝ0j = T 1/2γ̃j + oP (1),(6.21)

T 1/2g0j = T 1/2γ̃j + oP (1).(6.22)

Proof of Lemma 6.2.
Proof of (6.18). It suffices to verify (6.18) for i≤ j. Denote

γ̂k = T−1
T∑

t=k+1

(
ẑt − ẑ

)(
ẑt−k − ẑ

)
, k = 0,1,2, ....(6.23)

Then setting k = j − i, we can write

ĝij = T−1
T−i∑

t=p+1−i
(ẑt − z)(ẑt−k − ẑ) = T−1

T−i∑
t=k+1+(p−j)

(ẑt − ẑ)(ẑt−k − ẑ)

= γ̂|j−i| − δij , δij = T−1[

k+p−j∑
t=k+1

+

T∑
t=T−i+1

](ẑt − ẑ)(ẑt−k − ẑ).

So,

ĝij = γ̃|i−j| + (γ̂|i−j| − γ̃|i−j|)− δij .(6.24)

By (6.26) of Lemma 6.3, γ̂|i−j| − γ̃|i−j| = oP (1). On the other hand, straightforward use of
(7.1) and (7.3) of Lemma 7.1 implies that

δij =OP (T
−1),(6.25)
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which together with (6.24) proves (6.18): ĝij = γ̃|i−j| + oP (1).
Proof of (6.19). Property (6.19) follows from the proof of (6.18) as a special case correpond-
ing to ĥγt = hγt , which implies ẑt = zt.
Proof of (6.20). By Assumption M, {ut} is a stationary ergodic sequence, and we assume
that Ez3t = E|ut|3γ <∞. Then the sequence ωt =

(
zt −Ezt

)(
zt−k −Ezt−k

)
is stationary

and ergodic with E|ωt|<∞, which implies that γ̃k→P Eωk = cov(zk, z0) = γk.
Proof of (6.21). By (6.24), (6.25) and (6.27), for j = 1, ..., p,

T 1/2ĝ0j = T 1/2γ̃j + oP (1).

Proof of (6.22). This claim follows from (6.21) by setting ĥγt = hγt . �

LEMMA 6.3. (a) Suppose that {ht, ut} satisfy Assumptions M and H, and the bandwidth
H satisfies (18). Then, as T →∞,

γ̂k − γ̃k = oP (1), k ≥ 0.(6.26)

(b) In addition, if {ut} is an i.i.d. sequence, then

γ̂k − γ̃k = oP (T
−1/2), k ≥ 1.(6.27)

Proof of Lemma 6.3. Denote

γ̂∗k = T−1
T∑

t=k+1

(
ẑt −Ezt

)(
ẑt−k −Ezt−k

)
, k = 0,1,2, ....(6.28)

Then

γ̂k − γ̃k = (γ̂∗k − γ̃k) + (γ̂k − γ̂∗k).
Thus, to prove (6.26), it suffices to show

γ̂∗k − γ̃k = oP (1), k ≥ 1,(6.29)

γ̂k − γ̂∗k = oP (1), k ≥ 0,(6.30)

γ̂∗0 − γ̃0 = oP (1).(6.31)

In turn, to prove (6.27), we show in addition that for an i.i.d. sequence {ut} it holds

γ̂∗k − γ̃k = oP (T
−1/2), k ≥ 1,(6.32)

γ̂k − γ̂∗k = oP (T
−1/2), k ≥ 1.(6.33)

Proof of (6.29). Recall that Ezt = 1. We have,

(ẑt −Ezt)(ẑt−k −Ezt−k)− (zt −Ezt)(zt−k −Ezt−k)

= {(ẑt − zt) + (zt − 1)}{(ẑt−k − zt−k) + (zt−k − 1)} − (zt − 1)(zt−k − 1)

= (ẑt − zt)(ẑt−k − zt−k) + (ẑt − zt)(zt−k − 1) + (zt − 1)(ẑt−k − zt−k).
Hence,

γ̂∗k − γ̃k = ST,1 + ST,2 + ST,3,(6.34)

where

ST,1 = T−1
∑T

t=k+1(ẑt − zt)(ẑt−k − zt−k),(6.35)

ST,2 = T−1
∑T

t=k+1(ẑt − zt)(zt−k − 1),

ST,3 = T−1
∑T

t=k+1(zt − 1)(ẑt−k − zt−k).
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To prove (6.29), it remains to show that ST,` in (6.35) satisfy

ST,` = oP (1), `= 1,2,3.(6.36)

Notice that

ẑt − zt = (hγt /ĥ
γ
t − 1)zt.(6.37)

Therefore,

|ST,1| ≤ T−1
T∑

t=k+1

∣∣(hγt /ĥγt − 1)(hγt−k/ĥ
γ
t−k − 1)

∣∣ztzt−k
≤m2

T T
−1

T∑
t=1

ztzt−k, mT := max
t=1,...,T

|hγt /ĥ
γ
t − 1|.(6.38)

By (7.11) and (7.10) of Lemma 7.2, for some δ > 0,

mT ≤ { max
t=1,...,T

(ĥγt )
−1}{ max

t=1,...,T
|hγt − ĥ

γ
t |}=OP (1)OP (T

−δ) = oP (1).(6.39)

By Assumption M, {ut} is a stationary sequence, and Eztzt−k ≤ Ez2t = E|ut|2γ =

E|u1|2γ <∞. Therefore, E[T−1
∑T

t=k+1 ztzt−k] =Ez21 <∞. Thus, by (6.38),

|ST,1| ≤ op(1)T−1
T∑

t=k+1

ztzt−k = oP (1).

The proof of (6.36) for ST,2, ST,3 is similar to that for ST,1. This completes the proof of
(6.29).
Proof of (6.30). We have,

(ẑt − ẑ)(ẑt−k − ẑ)− (ẑt − 1)(ẑt−k − 1)

= {(ẑt − 1) + (1− ẑ)}{(ẑt−k − 1) + (1− ẑ)} − (ẑt − 1)(ẑt−k − 1)

= (ẑ − 1)2 + (1− ẑ)(ẑt−k − 1) + (ẑt − 1)(1− ẑ).
Notice that

T−1
∑T

t=k+1(ẑt − 1) = (ẑ − 1)− T−1
∑k

t=1(ẑt − 1),

T−1
∑T

t=k+1(ẑt−k − 1) = (ẑ − 1)− T−1
∑T

t=T−k+1(ẑt − 1).

Hence,

γ̂k − γ̂∗k = T−1
∑T

t=k+1{(ẑ − 1)2 − (ẑ − 1)(ẑt−k − 1)− (ẑt − 1)(ẑ − 1)}

= (ẑ − 1)2{T−1(T − k)− 2)

+(ẑ − 1){T−1
∑k

t=1(ẑt − 1) + T−1
∑T

t=T−k+1(ẑt − 1)}.(6.40)

By Assumption M, {ut} is a stationary α-mixing sequence. Applying in (6.40) the bounds
(7.1) and (7.2) of Lemma 7.1, we obtain (6.30):

γ̂k − γ̂∗k = oP (1), k ≥ 0.

Proof of (6.31). By Assumption M, {ut} is a stationary α-mixing sequence. Using the equal-
ity a2 − b2 = (a− b)2 + (a− b)2b with a= ẑt − 1, b= zt − 1 we obtain

γ̂∗0 − γ̃0 = T−1
∑T

t=1{(ẑt − 1)2 − (zt − 1)2}

= T−1
∑T

t=1{(ẑt − zt)2 + (ẑt − zt)2(zt − 1)}.
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Using (6.37) and (6.39), we obtain

|γ̂∗0 − γ̃0| ≤m2
T

(
T−1

T∑
t=1

z2t
)
+ 2mT

(
T−1

T∑
t=1

zt|zt − 1|
)

= oP (1)T
−1

T∑
t=1

(z2t + zt|zt − 1|) = oP (1),

since E[z2t + zt|zt − 1|] = E[z21 + z1|z1 − 1|] <∞ implies that E[T−1
∑T

t=1(z
2
t + zt|zt −

1|)] =E[z21 + z1|z1 − 1|] =O(1). This proves (6.31).

Proof of (6.32). By (6.34), to prove (6.32), it remains to show that

ST,` = oP (T
−1/2), `= 1,2,3.(6.41)

First we evaluate ST,1. Using in the definition (6.35) of ST,1 the equality (6.37), we can
bound

|ST,1| ≤ T−1
T∑

t=k+1

∣∣(hγt − ĥγt )(hγt−k − ĥγt−k)∣∣ztzt−k.
Applying Hölders inequality with p1 = p2 = p3 = 1/3, we obtain

|ST,1| ≤ T−1{
T∑

t=k+1

|hγt /ĥ
γ
t − 1|3}1/3{

T∑
t=k+1

|hγt−k/ĥ
γ
t−k − 1|3}1/3{

T∑
t=k+1

|ztzt−k|3}1/3

≤ {T−1
T∑

t=k+1

|hγt /ĥ
γ
t − 1|3}2/3{T−1

T∑
t=k+1

|ztzt−k|3}1/3.(6.42)

Denote

sT,0 = max
t=1,...,T

(ĥγt )
−1, sT,1 = T−1

T∑
t=1

|hγt − ĥ
γ
t |3, sT,2 = T−1

T∑
t=k+1

|ztzt−k|3.

Then,

|ST,1| ≤ {s3T,0sT,1}2/3 s
1/3
T,2 .(6.43)

In (7.11) of Lemma 7.2 it is shown that sT,0 =OP (1), while by (7.13),

EsT,1 = T−1
T∑
t=1

E|hγt − ĥ
γ
t |3 =OP

(
(H/T )3ν +H−3/2

)
.

By the assumption of the theorem, {zt} are non-negative i.i.d. random variables, and Ez3t <
∞. Therefore, EsT,2 = E[z3t z

3
t−k] = (E[z31 ])

2 <∞, which implies that sT,2 = Op(1). This
together with (6.43) yields

|ST,1|=OP
(
(H/T )2ν +H−1

)
=OP (T

−1/2),(6.44)

where the last equality holds because of assumption (18) on H . So, ST,1 = oP (T
−1/2). This

proves (6.41) for ST,1.

Next we evaluate ST,2. Write,

ST,2 = T−1
T∑

t=k+1

(hγt /ĥ
γ
t − 1)ζt, ζt = z2t (zt−k − 1).(6.45)
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Write

ĥγt = hγt + (ĥγt − h
γ
t ) = hγt (1 + xt), xt =

ĥγt − h
γ
t

hγt
.

Then

hγt

ĥγt

=
1

1+ xt
= 1− xt +

x2t
1 + xt

= 1− xt +
hγt

ĥγt

x2t = 1− xt +
(ĥγt − h

γ
t )

2

ĥγt h
γ
t

.

Then, by (6.45),

ST,2 =−T−1
T∑

t=k+1

xtζt + T−1
T∑

t=k+1

(ĥ2t − h2t )2

ĥ2th
2
t

ζt

= : qT,1 + qT,2.

To prove (6.41) for ST,2, we verify that

qT,` = oP (T
−1/2), `= 1,2.(6.46)

In (7.14) of Lemma 7.2 it is shown E|qT,1|= o(T−1/2) which proves (6.46) for qT,1.
Next, we bound qT,2. By Assumption H, ht ≥ a > 0 a.s. Therefore, using Hölders inequal-

ity with p1 = 3/2, p2 = 1/3, we obtain the same type bound as in (6.42):

|qT,2| ≤ a−2γ{T−1
T∑

t=k+1

|hγt /ĥ
γ
t − 1|3}2/3{T−1

T∑
t=k+1

|ζt|3}1/2.

Notice that for an i.i.d. sequence {ut} it holds E|ζt|3 = Ez3tE|zt−k − 1|3 = Ez31E|z1−k −
1|3 <∞. Therefore the same argument as we used to obtain the bound (6.44) for the r.h.s. of
(6.42) implies that

qT,2 =OP
(
(H/T )2ν +H−1

)
= oP (T

−1/2),

under assumption (18) on H , which proves (6.46). This verifies (6.41) for ST,2. The proof of
(6.41) for ST,3 is similar to the proof for ST,2. This completes the proof of (6.32).

Proof of (6.33) Using in (6.40) the bounds (7.1) and (7.2) of Lemma 7.1 we obtain

γ̂k − γ̂∗k =Op
(
(H/T )ν +H−1/2)2

)
+Op

(
((H/T )ν +H−1/2)T−1

)
= oP (T

−1/2).

This proves (6.33) and completes the proof of the Lemma 6.3. �.

7. Auxiliary results. This section contains auxiliary lemmas used in the proofs of Sec-
tion 6.

LEMMA 7.1. (a) Under assumptions of Lemma 6.2(a), for any fixed k ≥ 1,

ẑ − 1 =OP
(
(H/T )ν +H−1/2

)
,(7.1) ∑k

t=1 |ẑt − 1|=Op(1),
∑T

t=T−k+1 |ẑt − 1|=Op(1).(7.2) ∑k
t=1(ẑt + ẑ2t ) =Op(1),

∑T
t=T−k+1(ẑt + ẑ2t ) =Op(1).(7.3)
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Proof of Lemma 7.1. Proof of (7.1). We have

ẑ − 1 = T−1
T∑
t=1

(ẑt − 1) = T−1
T∑
t=1

(ẑt − zt) + T−1
T∑
t=1

(zt − 1)

=:Q1,T +Q2,T .(7.4)

We will show

Q1,T =OP
(
(H/T )ν +H−1/2

)
, Q2,T =OP (T

−1/2)(7.5)

which proves (7.1). We have,

|Q1,T |= T−1
∣∣∣ T∑
t=1

(hγt /ĥ
γ
t − 1)zt

∣∣∣≤ { max
t=1,...,T

(ĥγt )
−1}T−1

T∑
t=1

|ĥγt − h
γ
t |zt(7.6)

≤ { max
t=1,...,T

(ĥγt )
−1}{T−1

T∑
t=1

(ĥγt − h
γ
t )

2}1/2{T−1
T∑
t=1

z2t }1/2

=OP (1){T−1
T∑
t=1

(ĥγt − h
γ
t )

2}1/2,

since maxt=1,...,T (ĥ
γ
t )
−1 = OP (1) by (7.11) of Lemma 7.2, noting that Ez2t = Ez21 <∞

implies E[T−1
∑T

t=1 z
2
t ] = O(1). By (7.12) of Lemma 7.2, we have E[(ĥγt − hγt )

2] ≤
C
(
(H/T )2ν +H−1

)
which yields

E
[
T−1

T∑
t=1

(ĥγt − h
γ
t )

2
]
≤C

(
(H/T )2ν +H−1

)
.

Hence,

|Q1,T |=OP
(
{(H/T )2ν +H−1}1/2

)
=OP

(
(H/T )ν +H−1/2

)
,(7.7)

which proves the first claim in (7.5).
Under Assumption M, {uj} is a stationary α-mixing sequence. Therefore, the sequence

{zj = |uj |γ} is also a stationary α-mixing sequence which satisfies the α-mixing Assumption
M , see Theorem 14.1 in [4]. Then, by Conclusion 2.2 in [3] (for more details see (A.11) in
[5]), the stationary α-mixing sequence zt −Ezt has the following property

∞∑
k=0

|cov(zk, z0)|<∞.(7.8)

Therefore,

EQ2
2,T =E

(
T−1

T∑
t=1

(zt −Ezt)
)2

= T−2
T∑

k,j=1

cov(zk, zj)

≤ T−1
∞∑

k=−∞
|cov(zk, z0)| ≤CT−1,

which proves the second claim in (7.5). This completes the proof of (7.1).
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Proof of (7.2). We have
k∑
t=1

|ẑt − 1| ≤
k∑
t=1

ẑt + k ≤ k1/2(
k∑
t=1

ẑt
2)1/2.

We can bound
k∑
t=1

ẑt
2 =

k∑
t=1

(hγt /ĥ
γ
t )

2z2t ≤ { max
t=1,...,T

(ĥγt )
−2}

k∑
t=1

h2γt z
2
t =OP (1)(7.9)

by (7.11) of Lemma 7.2, and noting that E[h2γt z
2
t ]≤E[h2γt ]E[z2t ]<∞. This proves the first

claim in (7.2). The proof of the second claim is similar.
Proof of (7.3). We can bound

k∑
t=1

(ẑt + ẑt
2)≤ k1/2{

k∑
t=1

ẑt
2}1/2 +

k∑
t=1

ẑt
2 =OP (1)

by (7.9) which implies the first claim in (7.3). The proof of the second claim is similar. This
completes the proof of the lemma. �

LEMMA 7.2. (a) Under assumptions of Lemma 6.2(a),

max
t=1,...,T

|hγt − ĥ
γ
t |= oP (T

−δ), (∃δ > 0),(7.10)

max
t=1,...,T

ĥ−1t =OP (1),(7.11)

E(ĥγt − h
γ
t )

2 ≤C
(
(H/T )2ν +H−1

)
,(7.12)

where C does not depend on t,H,T .

(b) In addition, if {ut} is an i.i.d. sequence, then

E|ĥγt − h
γ
t |3 ≤C

(
(H/T )3ν +H−3/2

)
,(7.13)

E
∣∣∣T−1∑T

t=k+1 h
−γ
t (ĥγt − h

γ
t )zt(zt−k − 1)

∣∣∣(7.14)

= o
(
T−1/2

)
, for k ≥ 1,

where C does not depend on t,H,T .

Proof of Lemma 7.2. Proof of (7.10). By definition,

ĥγt =K−1t

T∑
j=1

bH,|t−j||yj |γ =K−1t

T∑
j=1

bH,|t−j|h
γ
j zj .

Therefore,

hγt − ĥ
γ
t = K−1t

∑T
j=1 bH,|t−j|(h

γ
t − h

γ
j zj)(7.15)

= K−1t
∑T

j=1 bH,|t−j|(h
γ
t − h

γ
j )zj −K

−1
t hγt

∑T
j=1 bH,|t−j|(zj − 1)

=: pt − rt.

We will show that for some δ > 0,

max
t=1,...,T

|rt|=OP (T
−δ), max

t=1,...,T
|pt|=OP (T

−δ),(7.16)
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which implies (7.10)
First, notice that by Assumption H and Proposition 6.1,

|hγt − h
γ
j | ≤ (|t− j|/T )νξtj = (H/T )γ(|t− j|/H)νξtj ,(7.17)

where {ξtj} and {hγt } satisfy the condition (6.2) of existence of a finite exponential moment
with parameter α∗ > 0. Moreover, properties (11) of the kernel function K imply

max
t=1,...,T

K−1t ≤CH−1, max
t
bH,t ≤C <∞,(7.18)

where C does not depend on T .
Denote

RT,t =H−1
∑T

j=1 bH,|t−j|(zj − 1),(7.19)

R′T,t =H−1
∑T

j=1 b
∗
H,|t−j|zj , where b∗H,|t−j| = bH,|t−j|(|t− j|/H)ν .

Thus, we can bound

|pt| ≤K−1t
T∑
j=1

bH,|t−j||h
γ
t − h

γ
j |zj ≤CH

−1
T∑
j=1

bH,|t−j|(|t− j|/T )νξt,jzj(7.20)

≤ C(H/T )ν{ max
t,j=1,..,T

ξt,j}R′T,t,

|rt| ≤ C{ max
t=1,..,T

ht}RT,t.

By (v) of Lemma C1 in the online supplement of [5], we can bound

(7.21) max
1≤t≤T

hγt =OP
(
(logT )2/α

∗
)
)
, max

1≤t,j≤T
|ξtj |=OP

(
(logT )2/α

∗)
.

Under assumption (18) on H , we have (H/T )ν =O(T−δ) for some δ > 0. In view of (7.20)
and (7.21), to prove (7.16), it suffices to show that for some δ > 0,

max
t=1,...,T

|Rt|=OP (T
−δ), max

t=1,...,T
|R′t|=OP (1).(7.22)

We start with the first claim in (7.22). As we concluded above, {zj} is a stationary α-mixing
sequence which satisfies the α-mixing Assumption M , and we assume that E|z1|3 <∞.
Under these assumptions, Corollary 6(b) of [5] implies that for any ε > 0,

(7.23) max
t=1,...,T

|Rt|=OP
(
H−1/2

√
logT + (HT )1/3Hε−1).

By assumption (18), we have thatH ≥ T 1/2+a for some a > 0. For suchH , the r.h.s. of (7.23)
is of order OP (T−δ) for some δ > 0 when ε is selected sufficiently small which proves (7.22)
for Rt.

To prove the second claim, write

R′T,t =H−1
∑T

j=1 b
∗
H,|t−j|(zj − 1) +H−1

∑T
j=1 b

∗
H,|t−j| =: r1,t + r2,t.(7.24)

First we evaluate r1,t. By definition, the kernel weights b∗H,|t| =K∗(|j|/H), where K∗(x) =
K(x)|x|ν satisfy properties (11) imposed on the kernel function K(x) with g replaced by
g− 1≥ 3. Moreover,

H−1
T∑
j=1

b∗H,|t−j| ≤C,(7.25)
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where C <∞ does not depend on t, T . Therefore, likewise as KH,|j|, the kernel weights
b∗H,|t| satisfy the conditions of Corollary 6(b) of [5] which, as in (7.23), implies

(7.26) max
t=1,...,T

|r1,t|=OP
(
H−1/2

√
logT + (HT )1/3Hε−1)=OP (T

−δ).

On the other hand, it is easy to verify that, as T →∞,

(7.27) max
t=1,...,T

|r2,t|=O(1).

This implies

max
t=1,...,T

|R′T,t|= max
t=1,...,T

|r1,t|+ max
t=1,...,T

|r2,t|=OP (T
−δ) +O(1) =OP (1)

which completes the proof of (7.22) and (7.10).

Proof of (7.11). Finally, by Assumption H, ht ≥ a > 0 a.s. Thus,

min
t=1,...,T

ĥγt = min
t=1,...,T

(
hγt − (hγt − ĥ

γ
t )
)
≥ min
t=1,...,T

h2t − max
t=1,...,T

|hγt − ĥ
γ
t | ≥ a−OP (T−δ)

by (7.10), which proves (7.11).

Proof of (7.12). By (7.15),

(hγt − ĥ
γ
t )

2 = (pt − rt)2 ≤ 2(p2t + r2t ).(7.28)

We will show that

Ep2t ≤C(H/T )2ν , Er2t ≤CH−1,(7.29)

which together with (7.28) proves (7.12).
We have

Ep2t =E
(
K−1t

∑T
j=1 bH,|t−j|(h

γ
t − h

γ
j )zj

)2
≤K−2t

∑T
j,k=1 bH,|t−j|bH,|t−k|E[(hγt − h

γ
j )(h

γ
t − h

γ
k)zjzk].(7.30)

Recall that {ht} and {zt} are mutually independent, and E[zjzk]≤ (Ez2kEz
2
j )

1/2 = Ez21 <
∞. By Proposition 6.1,

|hγt − h
γ
j | ≤C(|t− j|/T )

νξγ,tj , max
tj

Eξkγ,tj <∞ (for any k ≥ 1).

Therefore,∣∣E[(hγt − h
γ
j )(h

γ
t − h

γ
k)zjzk]

∣∣= ∣∣E[(hγt − h
γ
j )(h

γ
t − h

γ
k)]E[zjzk]

∣∣
≤C(|t− j|/T )ν(|t− k|/T )2νE[ξγ,tjξγ,tk]≤C(|t− j|/T )ν(|t− k|/T )ν ,

where C does not depend on t, j, k,T . Hence, by (7.30),

Ep2t ≤ C
∑T

j,k=1 bH,|t−j|bH,|t−k|(|t− j|/T )ν(|t− k|/T )ν

≤ C(H/T )2ν
(
K−1t

T∑
j=1

b∗H,|t−j|
)2
,(7.31)

where C does not depend on t, j, k,T , and b∗H,|j| = bH,|j|(|j|/H)ν .
Together with (7.18) and (7.25), this implies the first claim in (7.29):

Ep2t ≤C(H/T )2ν
(
K−1t

T∑
j=1

b∗H,|t−j|
)2 ≤C(H/T )2ν .(7.32)
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To bound E|rt|2, notice that

E|rt|2 ≤K−2t E[h2γt ]E
∣∣∑T

j=1 bH,|t−j|(zj − 1)
∣∣2

≤ CK−2t E[h2γt ]
∑T

j,s=1 bH,|t−j|bH,|t−s|cov(zj , zs).

By assumption, the sequences {ht} and {ut} are mutually independent, and max1≤t≤T E[h2γt ] =
O(1). By (7.8), the covariance function cov(zj , zs) = cov(zj−s, z0) of {zt} has the property:∑T

s=1 |cov(zj−s, z0)| ≤
∑∞

k=−∞ |cov(zk, z0)|<∞. Therefore,

Er2t ≤ CK−2t
T∑

j,s=1

bH,|t−j||cov(zj−s, z0)|

≤ CK−1t
(
K−1t

T∑
j=1

bH,|t−j|{
T∑
s=1

|cov(zj−s, z0)|}
)
≤CK−1t ≤CH−1,

by (7.18). This proves (7.29) for r2t and completes the proof of (7.12).

Proof of (7.13). By (7.15),

|hγt − ĥ
γ
t |3 = |pt − rt|3 ≤ 3(|pt|3 + |rt|3).(7.33)

We will show that

(7.34) E|pt|3 ≤C(H/T )3ν , E|rt|3 ≤CH−3/2.
These bounds together with (7.33) imply (7.13).

We have

E|pt|3 ≤E
(
K−1t

∑T
j=1 bH,|t−j||h

γ
t − h

γ
j |zj

)3
≤K−3t

∑T
j,k,`=1 bH,|t−j|bH,|t−k|bH,|t−`|E[|hγt − h

γ
j | |h

γ
t − h

γ
k | |h

γ
t − h

γ
` |]E[zjzkz`].

Notice that E[zjzkz`] ≤ Ez31 <∞. Therefore the same argument as that we used to bound
the r.h.s. of (7.30) implies

E|pt|3 ≤ C(H/T )3ν
(
K−1t

T∑
j=1

b∗H,|t−j|
)3 ≤C(H/T )3ν .(7.35)

This proves the first claim in (7.34).
Next we bound E|rt|3. We have

E|rt|3 ≤K−3t E[h3γt ]E
∣∣∑T

j=1 bH,|t−j|(zj − 1)
∣∣3.(7.36)

Observe that by Proposition 6.1, maxtE[h3γt ]<∞. To evaluate the r.h.s. of (7.36), we will
use the following bound. If an i.i.d. sequence {ξt} has zero mean and E|ξt|p <∞ for some
p≥ 2, then

E
∣∣ T∑
j=1

djξj
∣∣p ≤C( T∑

j=1

d2j
)p/2(7.37)

for any non-random dj’s, where C <∞ does not depend on dj’s and T , see Corollary 2.5.1.
in [7]. Since the i.i.d. variables ξj = zj − 1 have zero mean and by assumption, Ez3j <∞,
then, by using (7.37) in (7.36), we obtain

E|rt|3 ≤ CK−3t
(∑T

j=1 b
2
H,|t−j|

)3/2(7.38)

≤ CK−3t
(∑T

j=1 bH,|t−j|
)3/2

=CK−3t K
3/2
t ≤CH−3/2,
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by (7.18). This verifies the second claim in (7.34) and completes the proof of (7.13).
Proof of (7.14). Denote ζt = zt(zt−k − 1) where k ≥ 1. Write

|yj |γ − hγt = hγj zj − h
γ
t = {h

γ
j − h

γ
t }+ {h

γ
j (zj − 1)}.

Then

ĥγt − h
γ
t =K−1t

T∑
j=1

bH,|t−j|(|yj |γ − h
γ
t )

=K−1t

T∑
j=1

bH,|t−j|(h
γ
j − h

γ
t ) +K−1t

T∑
j=1

bH,|t−j|h
γ
j (zj − 1)

= : d1,t + d2,t.

Hence, we obtain

T−1
∑T

t=k+1 h
−γ
t (ĥγt − h

γ
t )ζt

= T−1
∑T

t=k+1 h
−γ
t d1,tζt+T−1

∑T
t=k+1 h

−γ
t d2,tζt

=Q1,T +Q2,T .

We will show that

E|Q1,T |= o(T−1/2), E|Q2,T |=O
(
H−1

)
.(7.39)

Under assumption (18), it holds H−1 = o(T−1/2) which proves (7.14).
Notice that the sequence {h−γt d1,t} depends only on {ht}, and {ht} is independent of an

i.i.d sequence {ut}. Moreover, E[ζtζs] = 0 for t 6= s, and Eζ2j =Eζ21 =Ez21E(z1−k− 1)2 <

∞. Recall that by Assumption H, mint h
2
t ≥ a > 0 a.s..

Therefore,

EQ2
1,T = T−2

T∑
t,s=k+1

E[h−γt h−γs d1,td1,ts]E[ζtζs]

= T−2
T∑

t=k+1

E[h−2γt d21,t]Eζ
2
t ≤ a−2γE[ζ21 ]T

−2
T∑

t=k+1

E[d21,t].

The same argument is in the proof of the bound Ep2t ≤C(H/T )2ν in (7.29) implies that

Ed21,t ≤C(H/T )2ν ,

where C does not t, T . Hence, EQ2
1,T ≤CT−1(H/T )2ν , and therefore,

E|Q1,T | ≤ (EQ2
1,T )

1/2 ≤CT−1/2(H/T )ν = o(T−1/2)

which proves the required bound in (7.39).
On the other hand, to evaluate E|Q2,T |, write

Q2,T = T−1K−1t

T∑
t=k+1

T∑
j=1

bH,|t−j|h
−γ
t ζth

γ
j (zj − 1)

= T−1K−1t

T∑
t=k+1

T∑
j=1: j>t+3k

[...] + T−1K−1t

T∑
t=k+1

T∑
j=1: j<t−3k

[...]
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+T−1K−1t

T∑
t=k+1

T∑
j=1: |j−t|≤3k

[...]

=R1,T +R2,T +R3,T .

We will show that

E|R`,T |=O(H−1), `= 1,2,3,(7.40)

which implies E|Q2,T | ≤CH−1 and proves (7.39) for Q2,T .
First we will evaluate ER2

1,T . Since {ht} and {ut} are mutually independent and ut’s are
i.i.d. random variables, then for any j > t+ 3k, j′ > t′ + 3k,

E[{h−γt ζth
γ
j (zj − 1)}{h−γt′ ζt′h

γ
j′(zj′ − 1)}]

=E[h−γt hγj h
−γ
t′ h

γ
j′ ]E[ζt′ζt]E[(zj − 1)(zj′ − 1)] = 0 if t 6= t′ or j 6= j′;

=E[h−2γt h2γj ]E[ζ2t ]E[(zj − 1)2] if t= t′, j = j′.

Hence,

ER2
1,T = T−2K−2t

T∑
t=k+1

T∑
j=1

b2|t−j|E[h−2γt h2γj ]E[ζ2t ]E[(zj − 1)2]

≤E[ζ21 ]E[(z1 − 1)2](max
t,j

E[h−2γt h2γj ])T−2K−2t

T∑
t=k+1

T∑
j=1

b2|t−j|.

Under assumption Ez31 <∞, E[ζ21 ] = E[z21(z1−k − 1)2] = E[z21 ]E[(z1−k − 1)2] <∞, As-
sumption H implies h−2γt ≤ a−2γ <∞ and maxj E[h2γj ]<∞. Moreover, maxj |bH,|j||<∞.
Thus,

ER2
1,T ≤CT−2K−1t

T∑
t=k+1

(K−1t

T∑
j=1

bH,|t−j|)≤CT−1K−1t ≤CT−1H−1 ≤CH−2,

in view of (7.18). Then E|R1,T | ≤ (ER2
1,T )

−1/2 ≤CH−1 which proves (7.40). The proof of
(7.40) for R2,T is similar to the proof for R1,T .
Finally, using similar arguments as above, we obtain

E|R3,T | ≤ T−1K−1t
T∑

t=k+1

T∑
j=1:|j−t|≤3k

bH,|t−j|E[h−2t h2j ]E|ζt(u2t − 1)|

≤ (max
t,k

E[h−2t h2j ])E|ζ1(u21 − 1)|(max
j
bH,|j|)K

−1
t (6k+ 1)≤CH−1,

which proves (7.40) for R3,T . This completes the proof of (7.14) and the lemma. �
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8. Simulation Study. Supplementary material .

8.1. Supplement to Testing for ARCH effects. We consider Models 1-3 defined in the
main paper with Gaussian noise εt. In the main paper we study the performance of our test for
ARCH effects on squares (γ = 2). Tables 3 – 4 below report size and power of the test applied
on absolutes, γ = 1. The shaded grey range of H = [T 0.60, . . . , T 0.70] denotes theoretically
permissible values of H for smoothness parameter ν = 1. Respectively, Tables 5 – 6 contain
testing results for power transform, γ = 1/2, which show that the size and power of our test
in the shaded area are close to the reference values of size and power corresponding to testing
on |ut| and |ut|1/2, as the sample size increases. Overall, for γ = 1, 1/2, we observe similar
size and power patterns as for γ = 2. This suggests that testing is robust across the considered
values of γ.

Further, in Tables 7-8 we investigate the size and power of the test for ARCH effects in
Model 2, when εt ∼ t(4). Such εt does not has finite sixth moment, but its fourth moment
is finite. Following our theoretical results, testing imposes condition that E|εt|3γ <∞. We
expected, testing that is based on γ = 2 to be affected. From the left panel of Table 7 it is
easy to see that the test becomes undersized. As expected testing based on γ = 1,1/2 is not
affected, see Tables 7 (the right panel) and 8. Results for Models 1 and 2 when εt ∼ t(4)
suggest similar patters and are available upon request.

Finally, in Figure 2 we examine the impact of the existence of the moment E|εt|3γ of the
noise on the distribution of the test statistic under the null hypothesis. We consider data yt =
htεt produced by Model 2 for T = 1600, when εt ∼ t(4) is an i.i.d. noise. We plot the Monte
Carlo average of the TS(ûγ) test statistic for various values of H . From theory, if E|εt|3γ <
∞, then TS(ûγ)∼ χ2

p for permissible values of H , and the Monte Carlo average of a well
behaved test statistic should approach Eχ2

p = p (illustrated using the colour magenta). We
observe this for γ = 1,1/2 and for bandwidths H ∈ [T 0.60, T 0.70]. Testing with these values
of H meets the requirements of our theoretical analysis and performs well in small samples.
On the contrary, for γ = 2 the size of our test in the left panel of Table 7 is affected by the
absence of the sixth moment, and the Monte Carlo average of the test statistic in Figure 2
drops below p= 5, suggesting the failure of the approximation TS(ûγ)∼ χ2

p.

8.2. Supplement to Forecasting of Volatility. In comparing performance of different
volatility forecasting methods in the main paper, we consider the following stationary volatil-
ity models for σ2t in ut = σtεt. We set εt ∼ i.i.d. N (0,1) in all models except Model 4.

1. The stationary GARCH (1,1) model of [1],

(8.1) σ2t = ω+ αu2t−1 + βσ2t−1, t= 1, . . . , T.

This model is the benchmark in our volatility forecasting.
2. The GJR-GARCH (1,1) model of [8]:

σ2t = ω+ αu2t−1 + γu2t−1I (ut−1 < 0) + βσ2t−1, t= 1, . . . , T.

This model enables simulation of the leverage effect, which can be important in forecast-
ing volatility.

3. The APARCH (1,1,1) model of [6]:

σδt = ω+ α (|ut−1| − γut−1)δ + βσδt−1, t= 1, . . . , T.

It adds flexibility capturing volatility dynamics and asymmetries via parameter δ.
4. The GARCH-t (1,1) of [2]. It uses (8.1) and assumes that εt follows Student t(ν) distribu-

tion with v > 2 (unknown) degrees of freedom. It allows us to assess whether the choice
of an i.i.d εt noise has impact on forecasting.
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5. The stochastic volatility (SV) model of [9]. The presence of two separate generating noises
provides to this model extra flexibility.

Parameters of these models are estimated using the quasi maximum likelihood method. Using
data y1, ..., yt−1 we estimate σ2t−1 for all five models j = 1, ...,5 and define the corresponding
one-step ahead forecast of σ2t , σ̂2j,t|t−1, as σ̂2j;t−1 with estimated parameters.

9. An Empirical Example. Supplementary material. Implementation of our test for
ARCH effects based on γ-powers hinges on the assumption E|ut|3γ <∞, being satisfied. If
this condition is not satisfied, this can lead to size distortions, see the left panel of Table 7.

To investigate the number of finite moments of stock returns in our empirical example,
we consider the subperiod from Jan1994 to Dec2007. First, among 254 stock returns, we
select a subset S of returns that contain no stationary volatility component. For that, we fit to
a stock the model rt = µt + yt = µt + htut and test for the absence of ARCH effects in ut,
using the absolute values (γ = 1) of residuals ût = (ĥt)

−1(rt− µ̂t), at lag p= 5. Such testing
and thus, the set S = SH , depends on H . Next, from each stock from SH , we test for the
existence of a finite moment E|ut|κ, κ= 1,2, ...,12 using specification (17) of Trapani’s test
in [10]. Table 1 reports the proportion (in %) of stock returns in S with finite k-th moment,
for each bandwidth value H .

From the table we can conclude that there exist four finite moments in the majority of the
returns from SH , but not for six. This suggests that caution is needed when running a test for
ARCH effects on squares u2t (γ = 2) since the finite sixth moment of returns may not exist,
and illustrates the benefit of a test based on γ = 1 or 1/2, which involves a more relaxed
moment condition, E|ut|3 <∞.

In Figure 1 we report the average values of the test statistic TS(ûγ) for p= 5 over stock
returns from SH for different bandwidths H . According to our setting, the test statistic for
stock returns from SH , is expected to have the property TS(ûγ)∼ χ2

5 for some range of H if
the moment E|εt|3γ is finite and ARCH effects in ut are absent. The average for these values
of H should approach to Eχ2

5 = 5. Overall, for γ = 1,1/2 the average is close to 5 for band-
widths H ∈ [T .55, T 0.65]. This confirms indirectly that the moment E|εt|3γ exists and the
approximation by χ2

5 is valid for bandwidths H ∈ [T 0.55, T 0.65]. This range of bandwidths
also meets the theoretical requirements (18) of Theorem 2.1. Hence, these bandwidths should
be used in testing for ARCH effects in our empirical example.

Figure 1 also shows that for γ = 2, the average of the test statistic falls below 5 and exhibits
similar patterns as the Monte Carlo average in the case where ut ∼ t(4) and the sixth moment
does not exist, see Figure 2. This confirms our testing results above that the stock returns may
not have six finite moments. Hence, in our empirical exercise the powers γ = 1,1/2 should
be used.

Finally, we check the robustness across the proportions of stock returns with no ARCH
effect, for different values of γ = 2,1,1/2. Table 1 of the main paper reports the proportions
of stock returns with no ARCH effect using testing on powers (γ = 2, 1) which requires
six and three finite moments of ut, respectively. We need to check these proportions for
consistency across γ. Table 2 below reports the proportions on γ = 1/2 which requires finite
3/2-th moments of ut. We see reasonable robustness of proportions with respect to γ = 1/2
and γ = 1,2, which is a positive feature of the test.



18

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
3

4

5

6

7

8

9

10

FIG 1. Average of TS(ûγ) test statistic for various values of H under H0, from the empirical application, using
the single index model for first subperiod 1994-2007.

TABLE 1
Proportion of stock returns with κ-th finite moment E|ût|κ and E|yt|κ in the subperiod [1994− 2007].
Trapani’s test for finite moments is used. Testing at the 5% significance level. Estimation of ht based on
absolutes |yt| and bandwidth H .

H data κ= 1 2 3 4 5 6 7 8 9 10 11 12

T 0.50 ût 100.00 100.00 100.00 99.56 70.67 9.78 8.44 5.33 3.56 8.00 4.89 3.56
T 0.55 100.00 100.00 100.00 98.70 63.20 9.52 6.93 6.49 6.93 2.60 5.19 4.33
T 0.60 100.00 100.00 100.00 98.65 63.06 12.61 7.66 6.76 4.05 4.95 4.05 3.60
T 0.65 100.00 100.00 100.00 98.54 58.54 6.83 6.83 7.32 4.39 7.32 3.41 6.83
T 0.70 100.00 100.00 100.00 97.11 57.80 8.09 6.94 5.20 4.05 8.09 6.36 5.78
T 0.75 100.00 100.00 100.00 96.15 53.08 6.15 4.62 11.54 5.38 6.15 9.23 8.46

yt 100.00 100.00 100.00 100.00 83.33 16.67 0.00 16.67 0.00 0.00 0.00 0.00

TABLE 2
Proportion of stock returns with no ARCH effects. Testing based on γ = 1/2 powers, for different bandwidths H ,
lags p, and subperiods as defined in the main text. Testing at the 5% significance level. µt estimated using the
single index model.

H data p= 1 p= 5 p= 10

1994-2007 2005-2012 2011-2019 1994-2007 2005-2012 2011-2019 1994-2007 2005-2012 2011-2019

T 0.50 ̂|ut|1/2 90.55 94.49 92.91 87.01 81.50 81.89 75.20 68.11 66.93
T 0.55 88.19 94.49 94.49 87.80 87.80 92.13 87.01 81.89 79.13
T 0.60 82.68 90.55 94.49 86.22 90.55 95.28 87.40 87.40 88.58
T 0.65 78.74 85.83 94.88 82.68 85.83 95.28 85.04 84.65 91.73
T 0.70 72.44 79.13 92.13 72.84 77.95 92.91 78.35 75.59 90.95
T 0.75 61.42 68.50 90.95 57.09 64.57 90.55 57.87 62.21 90.16

|yt|1/2 16.14 39.76 74.80 3.54 31.89 71.26 3.94 28.35 70.87
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FIG 2. Average of TS(ûγ) test statistic for various values of H under H0, yt = htεt, εt ∼ t(4)

TABLE 3
Testing for ARCH effects on squares at the lag p= 5 in Model 1 and Model 2. Rejection frequencies (in %) at
the 5% significance level (β = 0 size, β > 0 power). εt ∼N (0,1)

Model 1 (with ht = 1) Model 2 (with deterministic ht)

T H data β = 0 β = 0.2 β = 0.4 GARCH data β = 0 β = 0.2 β = 0.4 GARCH

200 T 0.5 |̂ut| 22.88 27.34 59.94 8.52 |̂ut| 20.58 26.36 59.76 8.56
T 0.6 9.48 24.72 67.16 24.38 6.26 24.38 68.06 28.62
T 0.7 5.98 27.92 72.94 46.94 5.88 35.74 78.76 60.98
T 0.8 5.20 31.04 76.70 60.04 21.16 59.12 88.36 82.88

|ut| 4.64 34.70 80.34 73.62 |ut| 4.64 34.72 80.36 73.62
|yt| 4.64 34.70 80.34 73.62 |yt| 88.94 95.56 98.72 97.46

400 T 0.5 |̂ut| 21.40 46.36 92.76 30.16 |̂ut| 20.50 46.00 92.64 30.78
T 0.6 8.52 49.06 95.90 71.64 6.72 49.40 96.10 74.24
T 0.7 5.88 54.44 97.14 88.44 5.60 63.12 98.02 93.00
T 0.8 5.12 58.56 97.84 93.38 34.12 86.82 99.62 98.58

|ut| 5.06 61.82 98.32 96.26 |ut| 5.06 61.82 98.32 96.26
|yt| 5.06 61.82 98.32 96.26 |yt| 99.58 99.88 100.00 100.00

800 T 0.5 |̂ut| 21.60 78.56 99.96 85.16 |̂ut| 21.14 78.64 99.96 85.48
T 0.6 8.08 84.42 99.98 98.98 7.16 84.68 99.98 99.06
T 0.7 5.24 88.22 99.98 99.74 5.18 91.98 100.00 99.92
T 0.8 4.66 89.80 99.98 99.94 51.20 98.90 100.00 100.00

|ut| 4.46 91.40 99.98 99.94 |ut| 4.46 91.40 99.98 99.94
|yt| 4.46 91.40 99.98 99.94 |yt| 100.00 100.00 100.00 100.00

1600 T 0.5 |̂ut| 21.08 98.82 100.00 99.94 |̂ut| 20.94 98.82 100.00 99.94
T 0.6 8.06 99.42 100.00 100.00 7.32 99.38 100.00 100.00
T 0.7 5.48 99.60 100.00 100.00 5.20 99.80 100.00 100.00
T 0.8 4.82 99.72 100.00 100.00 68.52 100.00 100.00 100.00

|ut| 4.78 99.74 100.00 100.00 |ut| 4.78 99.74 100.00 100.00
|yt| 4.78 99.74 100.00 100.00 |yt| 100.00 100.00 100.00 100.00
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TABLE 4
Testing for ARCH effects on absolutes at the lag p= 5 in Model 3. Rejection frequencies (in %) at the 5%
significance level (β = 0 size, β > 0 power). εt ∼N (0,1).

Model 3 (with ht stochastic)

T H data β = 0 β = 0.2 β = 0.4

d= 1.2 d= 1.4 d= 1.5 d= 1.2 d= 1.4 d= 1.5 d= 1.2 d= 1.4 d= 1.5

200 T 0.50 |̂ut| 21.32 21.82 22.12 27.10 27.24 27.50 61.02 60.90 61.12
T 0.60 8.86 9.46 9.66 25.44 25.12 25.06 68.08 67.90 68.04
T 0.70 6.02 6.18 6.30 29.10 28.10 27.88 75.42 74.84 74.98
T 0.80 5.86 5.82 5.74 34.82 33.42 32.88 80.28 79.36 79.38

|ut| 5.70 5.70 5.70 34.94 34.94 34.94 81.84 81.84 81.84
|yt| 21.74 19.44 18.52 53.38 51.80 50.86 87.86 87.22 87.18

400 T 0.50 |̂ut| 20.76 21.76 22.02 46.88 47.04 46.94 93.26 93.30 93.26
T 0.60 7.26 8.32 8.40 51.04 50.46 50.38 96.14 96.18 96.10
T 0.70 5.06 5.32 5.62 58.66 57.00 56.46 97.76 97.68 97.64
T 0.80 6.42 5.32 5.24 66.26 63.46 62.70 98.54 98.46 98.38

|ut| 5.00 5.00 5.00 63.78 63.78 63.78 98.46 98.46 98.46
|yt| 35.94 31.98 30.48 82.36 79.76 78.78 99.38 99.30 99.26

800

T 0.50 |̂ut| 20.38 21.46 21.52 79.58 79.74 79.64 99.98 99.98 99.98
T 0.60 7.66 8.44 8.56 85.90 85.60 85.64 99.98 99.98 99.98
T 0.70 5.24 5.62 5.60 90.52 89.54 89.32 100.00 100.00 100.00
T 0.80 7.42 5.34 5.20 93.78 92.26 91.90 100.00 100.00 100.00

|ut| 5.12 5.12 5.12 91.94 91.94 91.94 100.00 100.00 100.00
|yt| 49.54 43.22 40.98 98.06 97.12 96.82 100.00 100.00 100.00

1600

T 0.50 |̂ut| 20.10 21.02 21.22 98.88 98.84 98.86 100.00 100.00 100.00
T 0.60 7.24 8.14 8.14 99.44 99.34 99.34 100.00 100.00 100.00
T 0.70 5.82 5.74 5.90 99.66 99.62 99.60 100.00 100.00 100.00
T 0.80 9.58 6.36 5.98 99.80 99.76 99.76 100.00 100.00 100.00

|ut| 5.60 5.60 5.60 99.68 99.68 99.68 100.00 100.00 100.00
|yt| 63.04 55.22 52.76 99.96 99.94 99.94 100.00 100.00 100.00
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TABLE 5
Testing for ARCH effects on squares at the lag p= 5 in Model 1 and Model 2. Rejection frequencies (in %) at
the 5% significance level (β = 0 size, β > 0 power). εt ∼N (0,1)

Model 1 (with ht = 1) Model 2 (with deterministic ht)

T H data β = 0 β = 0.2 β = 0.4 GARCH data β = 0 β = 0.2 β = 0.4 GARCH

200 T 0.5 ̂|ut|1/2 25.26 25.64 50.18 8.36 ̂|ut|1/2 23.70 24.46 49.60 8.30
T 0.6 10.34 18.48 53.04 15.78 7.98 17.52 53.88 17.52
T 0.7 6.42 18.40 59.02 33.48 4.90 22.86 65.08 46.54
T 0.8 5.56 19.58 63.02 46.84 14.22 43.02 79.88 71.90

|ut|1/2 5.18 22.32 67.32 61.16 |ut|1/2 5.18 22.34 67.34 61.16
|yt|1/2 5.18 22.32 67.32 61.16 |yt|1/2 83.28 92.32 97.50 95.00

400 T 0.5 ̂|ut|1/2 23.56 36.10 83.44 17.96 ̂|ut|1/2 22.94 35.96 83.34 18.20
T 0.6 9.96 33.64 88.56 53.98 8.34 33.56 88.86 56.42
T 0.7 6.40 36.52 91.68 76.84 4.78 43.42 93.80 84.40
T 0.8 5.24 39.40 92.80 85.36 22.28 72.72 98.22 96.44

|ut|1/2 4.72 42.80 94.18 90.42 |ut|1/2 4.72 42.80 94.18 90.42
|yt|1/2 4.72 42.80 94.18 90.42 |yt|1/2 99.12 99.76 100.00 99.98

800 T 0.5 ̂|ut|1/2 23.10 61.12 99.48 66.30 ̂|ut|1/2 22.86 60.92 99.48 66.48
T 0.6 9.36 65.04 99.74 94.96 8.36 65.64 99.80 95.28
T 0.7 6.22 70.08 99.90 98.78 4.94 76.32 99.94 99.42
T 0.8 5.36 72.92 99.92 99.44 33.60 94.94 100.00 99.96

|ut|1/2 4.98 75.66 99.92 99.74 |ut|1/2 4.98 75.64 99.92 99.74
|yt|1/2 4.98 75.66 99.92 99.74 |yt|1/2 100.00 100.00 100.00 100.00

1600 T 0.5 ̂|ut|1/2 21.42 92.50 100.00 99.42 ̂|ut|1/2 21.24 92.46 100.00 99.44
T 0.6 7.82 95.32 100.00 100.00 7.48 95.38 100.00 100.00
T 0.7 5.50 96.64 100.00 100.00 4.90 97.80 100.00 100.00
T 0.8 5.06 97.38 100.00 100.00 45.48 99.84 100.00 100.00

|ut|1/2 4.88 97.70 100.00 100.00 |ut|1/2 4.88 97.70 100.00 100.00
|yt|1/2 4.88 97.70 100.00 100.00 |yt|1/2 100.00 100.00 100.00 100.00
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TABLE 6
Testing for ARCH effects on γ = 1/2-powers at the lag p= 5 in Model 3. Rejection frequencies (in %) at the 5%
significance level (β = 0 size, β > 0 power). εt ∼N (0,1).

Model 3 (with ht stochastic)

T H data β = 0 β = 0.2 β = 0.4

d= 1.2 d= 1.4 d= 1.5 d= 1.2 d= 1.4 d= 1.5 d= 1.2 d= 1.4 d= 1.5

200 T 0.50 ̂|ut|1/2 25.04 25.56 25.72 24.82 25.32 25.30 50.82 50.98 51.00
T 0.60 10.56 11.40 11.70 18.74 18.78 18.80 54.88 54.48 54.30
T 0.70 6.82 7.18 7.30 19.66 19.26 19.28 60.68 60.36 60.22
T 0.80 5.90 5.94 5.92 22.74 21.62 21.22 66.60 65.02 64.86

|ut|1/2 5.86 5.86 5.86 22.42 22.42 22.42 68.06 68.06 68.06
|yt|1/2 17.68 15.82 15.06 39.74 38.30 37.36 77.68 76.44 75.98

400 T 0.50 ̂|ut|1/2 23.38 23.88 24.10 35.72 36.04 36.10 83.26 83.28 83.24
T 0.60 8.28 8.96 9.22 34.04 34.20 34.22 88.60 88.62 88.60
T 0.70 5.38 5.56 5.86 39.96 38.56 38.18 92.52 92.06 92.02
T 0.80 5.92 5.22 5.08 47.02 44.08 43.42 94.74 94.18 94.04

|ut|1/2 5.24 5.24 5.24 44.18 44.18 44.18 94.76 94.76 94.76
|yt|1/2 29.44 26.06 24.70 68.84 65.92 64.66 97.52 97.12 97.08

800

T 0.50 ̂|ut|1/2 21.86 22.86 22.92 61.58 61.78 61.88 99.34 99.32 99.32
T 0.60 8.50 9.02 9.24 65.98 65.70 65.58 99.76 99.76 99.72
T 0.70 5.40 5.86 5.90 73.02 71.20 71.00 99.92 99.90 99.90
T 0.80 5.92 5.10 5.02 80.24 77.12 76.52 99.98 99.96 99.96

|ut|1/2 5.28 5.28 5.28 76.52 76.52 76.52 99.96 99.96 99.96
|yt|1/2 41.72 36.96 34.86 92.34 90.46 90.00 100.00 100.00 100.00

1600

T 0.50 ̂|ut|1/2 21.48 22.32 22.36 91.92 91.88 91.84 100.00 100.00 100.00
T 0.60 7.44 7.94 8.06 95.24 95.12 95.18 100.00 100.00 100.00
T 0.70 5.54 5.56 5.62 97.18 96.58 96.42 100.00 100.00 100.00
T 0.80 7.30 5.74 5.56 98.44 97.86 97.68 100.00 100.00 100.00

|ut|1/2 5.36 5.36 5.36 97.38 97.38 97.38 100.00 100.00 100.00
|yt|1/2 55.66 48.64 46.08 99.70 99.54 99.40 100.00 100.00 100.00
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TABLE 7
Testing for ARCH effects on squares at the lag p= 5 in Model 2 (with deterministic ht). Rejection frequencies
(in %) at the 5% significance level (β = 0 size, β > 0 power). εt ∼ t(4).

Testing on squares (γ = 2) Testing on absolutes (γ = 1)

T H data β = 0 β = 0.2 β = 0.4 GARCH data β = 0 β = 0.2 β = 0.4 GARCH

200 T 0.5 û2t 2.48 18.84 50.14 15.92 |̂ut| 14.74 45.28 84.08 19.78
T 0.6 1.00 31.34 63.38 56.30 4.18 52.32 89.92 69.58
T 0.7 3.18 42.16 70.20 79.16 3.84 61.94 93.56 91.52
T 0.8 8.92 50.74 74.02 87.94 9.62 72.02 95.72 97.16

u2t 4.98 49.90 75.88 91.56 |ut| 3.92 66.94 94.96 98.18
y2t 24.46 61.62 78.82 93.00 |yt| 53.86 90.64 98.56 99.28

400 T 0.5 û2t 2.16 50.42 88.28 66.72 |̂ut| 14.80 82.26 99.38 80.94
T 0.6 1.44 62.20 90.90 94.76 4.50 87.60 99.84 99.20
T 0.7 4.08 69.66 91.62 98.54 4.24 92.26 99.88 99.96
T 0.8 10.52 74.92 91.84 98.92 15.02 96.20 99.96 99.98

u2t 6.08 73.32 91.12 98.98 |ut| 4.44 93.78 99.94 100.00
y2t 31.66 81.60 92.16 99.12 |yt| 82.78 99.70 99.96 100.00

800 T 0.5 û2t 1.92 87.54 99.58 99.36 |̂ut| 16.58 99.08 100.00 99.98
T 0.6 1.54 89.30 99.16 99.96 5.24 99.60 100.00 100.00
T 0.7 4.10 90.22 98.14 99.96 4.30 99.80 100.00 100.00
T 0.8 10.92 91.30 97.54 99.94 18.88 99.90 100.00 100.00

u2t 5.56 89.46 97.10 99.86 |ut| 4.46 99.92 100.00 100.00
y2t 40.24 93.16 97.12 99.90 |yt| 98.06 100.00 100.00 100.00

1600 T 0.5 û2t 2.34 99.58 100.00 100.00 |̂ut| 17.58 100.00 100.00 100.00
T 0.6 2.12 98.88 100.00 100.00 6.08 100.00 100.00 100.00
T 0.7 4.38 97.96 99.66 100.00 4.76 100.00 100.00 100.00
T 0.8 11.84 97.36 99.36 100.00 25.98 100.00 100.00 100.00

u2t 6.32 96.62 98.84 100.00 |ut| 5.08 100.00 100.00 100.00
y2t 53.24 97.38 98.84 99.98 |yt| 99.92 100.00 100.00 100.00
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TABLE 8
Testing for ARCH effects on γ = 1/2-powers at the lag p= 5 in Model 2. Rejection frequencies (in %) at the 5%
significance level (β = 0 size, β > 0 power). εt ∼ t(4)

Model 2 (with ht deterministic)

T H data β = 0 β = 0.2 β = 0.4 GARCH

200 T 0.50 ̂|ut|1/2 23.56 44.54 83.64 14.04
T 0.60 7.80 46.70 88.92 60.40
T 0.70 4.56 54.78 93.02 88.00
T 0.80 9.06 68.28 96.08 96.04

|ut|1/2 4.50 59.54 94.50 97.60
|yt|1/2 64.96 93.06 99.42 99.08

400 T 0.50 ̂|ut|1/2 22.46 76.50 99.30 68.86
T 0.60 7.16 82.36 99.74 98.42
T 0.70 4.54 88.08 99.92 99.88
T 0.80 13.82 95.16 99.98 99.96

|ut|1/2 4.80 89.56 99.98 100.00
|yt|1/2 93.36 99.94 100.00 100.00

800 T 0.50 ̂|ut|1/2 22.52 98.12 100.00 99.90
T 0.60 7.70 99.10 100.00 100.00
T 0.70 4.74 99.60 100.00 100.00
T 0.80 19.20 99.90 100.00 100.00

|ut|1/2 4.86 99.76 100.00 100.00
|yt|1/2 99.84 100.00 100.00 100.00

1600 T 0.50 ̂|ut|1/2 22.58 100.00 100.00 100.00
T 0.60 7.92 100.00 100.00 100.00
T 0.70 5.08 100.00 100.00 100.00
T 0.80 26.80 100.00 100.00 100.00

|ut|1/2 5.26 100.00 100.00 100.00
|yt|1/2 100.00 100.00 100.00 100.00
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