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Abstract

Motivation: Data normalization is an essential step to reduce technical variation within and between arrays. Due to
the different karyotypes and the effects of X chromosome inactivation, females and males exhibit distinct methyla-
tion patterns on sex chromosomes; thus, it poses a significant challenge to normalize sex chromosome data without
introducing bias. Currently, existing methods do not provide unbiased solutions to normalize sex chromosome
data, usually, they just process autosomal and sex chromosomes indiscriminately.

Results: Here, we demonstrate that ignoring this sex difference will lead to introducing artificial sex bias, especially
for thousands of autosomal CpGs. We present a novel two-step strategy (interpolatedXY) to address this issue,
which is applicable to all quantile-based normalization methods. By this new strategy, the autosomal CpGs are first
normalized independently by conventional methods, such as funnorm or dasen; then the corrected methylation val-
ues of sex chromosome-linked CpGs are estimated as the weighted average of their nearest neighbors on auto-
somes. The proposed two-step strategy can also be applied to other non-quantile-based normalization methods, as
well as other array-based data types. Moreover, we propose a useful concept: the sex explained fraction of variance,
to quantitatively measure the normalization effect.

Availability and implementation: The proposed methods are available by calling the function ‘adjustedDasen’ or
‘adjustedFunnorm’ in the latest wateRmelon package (https://github.com/schalkwyk/wateRmelon), with methods
compatible with all the major workflows, including minfi.

Contact: xzhai@essex.ac.uk or Ischal@essex.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

based correction (Dedeurwaerder et al., 2011), Beta MlIxture
Quantile normalization (Teschendorff et al., 2013) and noob
(Triche et al., 2013) are all within-array normalization methods

1 Introduction

DNA methylation microarrays, such as Infinium

HumanMethylation450 BeadChip (Bibikova et al., 2011) and
Infinium MethylationEPIC BeadChip (Moran et al., 2016), provide
cost-effective and high-throughput measurements of the methylation
status over half a million CpG sites across the genome will continue
to be the first choice by most DNA methylation-related large cohort
studies in the near future. Although whole-genome bisulfite sequenc-
ing is recognized as the gold standard to measure the methylation
patterns across the human genome, the high costs and technical
complexity still pose significant challenges that prevent application
to large-scale samples (Villicafia and Bell, 2021). Data normaliza-
tion is an important prerequisite step to reduce unwanted technical
variation. Currently, several normalization methods are available
for DNA methylation microarray samples. Among them, peak-
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however they do not reduce between-array variation. In contrast,
dasen (Pidsley ez al., 2013) and funnorm (Fortin ez al., 2014) are the
two most widely used between-array normalization methods, which
were reported to be able to effectively reducing the variation be-
tween samples. Dasen in the wateRmelon package utilizes quantile
normalization to normalize methylated and unmethylated intensities
separately, and also addresses Types I and II probes separately. Prior
to the normalization steps, there are linear regression procedures in
dasen to reduce the density distribution difference between Types I
and II probes (Pidsley et al., 2013). The functional normalization
employed by funnorm is also an extension to quantile normalization
that removes variation explained by a set of selected covariates. In
funnorm, the covariates are set as the first two principal components
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of the control probes, and linear regression is used to determine the
proportion of variation explained by the covariates (Fortin et al.,
2014).

Females have two copies of the X chromosome, while males
have one X chromosome and one Y chromosome. To compensate
for the different dosages of the X chromosome genes, one X
chromosome in female cells is randomly subjected to inactivation in
each cell lineage, with most parts of the inactive X being highly
methylated (Cotton et al., 2015; Lyon, 1961; Sharp et al., 2011). As
a result of this, the mean methylation values of the X chromosomes
between sexes are very different (Grant et al., 2022; McCarthy
etal.,2014; Wang et al., 2021). The distinct methylation patterns of
sex chromosomes between females and males raise a great challenge
to unbiasedly normalize sex chromosome data. The existing
between-array normalization methods do not provide good solu-
tions for normalizing sex chromosome data. For example, dasen
ignores this issue and normalizes autosomes and sex chromosomes
together, while funnorm is designed to normalize male samples and
female samples separately for X chromosomes and Y chromosomes.
Some DNA methylation-related studies simply remove those probes
mapped to the X and Y chromosomes prior to the normalization
step and do not include them in the downstream analysis. All these
strategies come with their own drawbacks, either through losing
some potentially interesting and biologically relevant signals from
sex chromosomes or by introducing systematic technical differences
between sexes.

Here, we first demonstrate that the existing normalization meth-
ods used to handle probes mapped on the X and Y chromosomes
lead to introducing artificial sex bias into the normalized data.
Then, we present a novel two-step strategy, which is designed to
unbiasedly normalize both autosome data and sex chromosome
data, is applicable to all quantile-based normalization methods.

2 Materials and methods

2.1 Datasets

Two main datasets (Table 1) were used in this study. The first data-
set includes 1195 individuals from the Understanding Society: UK
Household Longitudinal Survey (UKHLS). Details about this
UKHLS dataset are described by Gorrie-Stone et al. (2019). In brief,
DNA methylation levels in whole blood within 489 male and 686 fe-
male healthy individuals were measured by EPIC array. The UKHLS
dataset is available under request from the European Genome-
phenome Archive under accession EGAS00001002836 (https:/
www.ebi.ac.uk/ega/home). Since funnorm was developed and tested
on 450k array samples, in this study we produce subsets from
GSE142512 (Johnson et al., 2020) to evaluate funnorm.
GSE142512 includes 87 individuals with Type 1 diabetes (T1D) and
87 individuals without T1D. The peripheral blood samples were col-
lected from the subjects between 1 and 5 time points, with DNA
methylation levels measured by either 450k or EPIC array, further
details were documented by Johnson ez al. (2020). We randomly
selected 16450k samples (12 males and 4 females) from
GSE142512 as the dataset one which is used to evaluate the per-
formance of funnorm on small size dataset, and randomly selected
48450k samples (23 males and 25 females) as dataset two to test
funnorm’s performance on relatively larger size dataset. For repro-
ducibility, the sample IDs in the two subset datasets are listed in
Supplementary Table S1. GSE142512 is publicly available from
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/).

Table 1. Characteristics of the datasets used in this study

2.2 DNA methylation data process
The DNA methylation raw data (IDAT files) were read into R by ei-
ther using iadd2 function in bigmelon or read.metharray.exp func-
tion in minfi. The methylation level of any given CpG locus is
measured by its beta value which is defined as:
p=(M)/(M+ U+ 100), where M is methylated intensity and U is
unmethylated intensity for a given CpG loci. Basic quality control
steps were performed to identify outliers, as recommended by
Gorrie-Stone et al. (2019). Further, the reported sexes of samples
were checked against the predicted sexes from DNA methylation
data by using the estimateSex function in watermelon package
(Pidsley et al., 2013), which predicts sex by comparing the methyla-
tion levels on sex chromosomes (Wang et al., 2021). The original
dasen normalization is performed by calling the dasen function with
default settings in the watermelon package, the original funnorm
normalization is performed by calling the preprocessFunnorm with
default settings in the minfi package (Fortin et al., 2016), which is
actually applies #oob method (Triche ef al., 2013) as a first step for
background correction and then perform the functional
normalization.

All analyses were performed using R 3.6.0 under Linux
environment.

2.3 A two-step strategy to unbiasedly normalize DNA

methylation samples

The framework of the interpolatedXY strategy is illustrated in
Figure 1. The explicit procedures of the proposed new strategy to
unbiasedly normalize both autosomal CpGs and sex chromosome-
linked CpGs are as follows:

1. Step one: normalize the autosomal CpGs by one of the conven-
tional normalization methods, such as funnorm or dasen. It
should be noted, the probes mapped to sex chromosomes should
not be included in this step to avoid potential influence.

2. Step two: infer the corrected values of sex chromosome-linked
CpGs by looking for their nearest neighbors on autosomes, this
is achieved by linear interpolation, here is the very efficient
implementation:

a. Sort the corrected values of autosomal CpGs and build a
function F which reflects correspondence of the rank of a
CpG to its corrected value: Corrected_value; = F(rank;).

b. Sort and get the ranks of autosomal CpGs based on their
raw values.

c. Estimate the ranks of sex chromosome-linked CpGs by
linear interpolation on the rank distribution from the
procedure b.

d. Put the inferred ranks of sex chromosome-linked CpGs into
the function F to get their final corrected values.

The above steps are ideally performed on raw signal intensities
(M and U) and on each probe type (IGrn, IRed and II in funnorm, I
and II in dasen) individually. After that, the normalized intensities
can be converted into beta values as: f = (M)/(M + U + 100). We
name this strategy as interpolatedXY. When dasen is used to nor-
malize autosomal CpGs in the first step, we call this new normaliza-
tion method as ‘interpolatedXY adjusted dasen’. Similarly,
‘interpolatedXY adjusted funnorm’ refers to another new normal-
ization method in which the functional normalization is applied in
the first step.

Name Array type Samples (female/male) Age range (years) Source
Dataset one 450k 16 (4/12) 0.8-13.6 GSE142512
Dataset two 450k 48 (25/23) 0.8-14.1 GSE142512
UKHLS EPIC 1195 (686/489) 28-98 UKHLS
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Fig. 1. Overview of the interpolatedXY framework. Raw intensities are extracted from IDAT files or intensity text files, then, the raw intensities of methylated and unmethy-
lated signals are processed separately by the interpolatedXY procedure. Above all, chromosome annotation is performed on all probes to separate the raw input intensities into
autosome-linked signals and sex chromosome-linked signals. These autosomes linked intensity signals are then normalized by a conventional normalization method, such as
dasen or funnorm. These sex chromosomes linked intensity signals are corrected as approximations of their nearest neighbors on autosomes, this is achieved by: (i) obtaining
their approximate rankings by linear interpolation on the raw intensity distribution of autosomes mapped probes; (ii) constructing a mapping function which deduces the cor-
rected intensity value from its intensity rank by linear interpolation on the corrected intensities of autosome mapped probes. Finally, the corrected beta values are deduced

from the corrected intensities signals

2.4 Performance evaluation for the interpolation

approach

The proposed new approach infers the corrected values of sex chromo-
some-linked CpGs by linear interpolation on autosomal CpGs. To in-
vestigate whether the inferred data are accurate and reliable, we need
a gold standard to evaluate the estimation accuracy. Females and
males have very different methylation patterns on sex chromosomes,
that is the main reason that we avoid normalizing female samples and
male samples together, with autosomes and sex chromosomes treated
indiscriminately. However, when the targeted dataset includes only
unisexual samples (only females or only males), then the sex chromo-
somes should be normalized together with other autosomes.

Inspired by this, we designed single-sex groups: one that includes
only female samples and the second that consists of only male samples.
First, the two groups are both normalized by conventional methods
(e.g. dasen and funnorm) with the sex chromosomes being treated as
general autosomes, thus the corrected values of those sex chromosome-
linked CpGs could serve as the golden references (i.e. expected values).
Second, by our proposed interpolation approach, we infer the corrected
values of sex chromosome-linked CpGs by interpolating on the normal-
ized values of the autosomal CpGs. Last, the interpolated values are
compared with their corresponding reference values. Root mean
squared error (RMSE), which is sensitive to outliers, is used here to
measure the deviations from the inferred values to their expected values:

where ; is the methylation beta value of the ith CpG, f; represents
the expected methylation beta value of the ith CpG, m represents
the total number of CpGs studied.

2.5 Evaluation of the technical sex biases

The original dasen performs quantile normalization with autosomal
CpGs and sex chromosome CpGs processed together even when the
dataset to be normalized is composed of both females and males. To
investigate whether such an approach would introduce artificial sex
biases, we compared the normalization results of the UKHLS dataset
generated by the original dasen and the interpolatedXY adjusted
dasen.

The human methylome is not constant but responsive to many
internal and external factors, such as genetic backgrounds and envir-
onmental factors (van Dongen et al., 2016). As a result, the overall
variance of the measured methylation values across all the CpG sites
in the studied population can be described as:

m

11 —
Viotal = ;;; Z (/)),',' - ﬁ,-)z (2)

j=1

Where V., represents the total variance of the studied samples,
n is the total number of all samples, 1 is the total number of studied
CpGs, f;j represents the methylation beta value of the jth CpG in the
ith sample, F/ represents the mean methylation beta value of the jth
CpG across all samples. Theoretically, we can then split the overall
variance into the following two parts:

1
Viotal = Vbiologiczzl + Viechnical = ;Z(V’) (3)
i=1

The first part Vp,oogicar represents variance caused by meaningful
biological reasons, such as cell types, age, gender, health status and
other reasonable factors. The second part Vi, .puicar represents vari-
ance resulting from technical issues, such as batch effect, random
fluctuation and other unknown issues.
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Vbiological = Vcell,ype + Vage + Viex + Vothers (4)

Vtechnical = Vbatch + andom + Vunlznown (5)

Sex is one of the major biological factors which influences the
methylation status of many autosomal CpGs, as a result, hundreds
of autosomal CpGs have been reported showing significant different
methylation levels between sexes (Grant et al., 2022; McCarthy
et al., 2014; Yousefi et al., 2015). The fraction of variances which
are explained by sex can be deduced as follows:

_ Vs ex
Vtotal

—1_ Nfemales Vtotal,in,females + Mnales Vtotal,in,males
(nfema/es + nmales) Vtotal

FS{:‘X
(6)

Ideally, a good normalization method should be able to not only
greatly reduce the variances that are resulted from technical issues
(Viechnical)s but also need to keep variances which have meaningful
biological reasons (Vpioiogicar). This means, after the normalization
process, the overall variance should be reduced significantly while
the sex explained fraction of variance should be increased. In this
article, to study the potential sex bias introduced by the mix normal-
ization method dasen, we compared the mean variance and the frac-
tion of sex explained variances of the methylation values of CpGs
after no normalization (raw beta values), dasen normalization and
interpolatedXY adjusted dasen normalization within the three
chromosome groups (i.e. autosomes, X chromosomes and Y
chromosomes).

2.6 Artifactual sex differences

If the conventional mixed normalization approaches do introduce
systematic artificial sex biases into the autosomal CpGs, then some
autosomal CpGs could be falsely sex-associated. Epigenome-wide
association studies (EWAS) are commonly used to systematically as-
sess the association between DNA methylation levels at genetic loci
across the genome and a phenotype of interest. In this study, we
apply EWAS to identify sex-associated CpG sites and then compare
the EWAS results resulted from different pre-process approaches.

To perform EWASs for sex, the champ.dmp function in champ
package (Tian et al., 2017), which utilizes linear regression and F-
test to identify differentially methylated positions is applied in this
study to identify sex-associated CpGs. After Bonferroni multiple
comparison correction, those CpG sites with P-value < 0.05 were
selected as significantly sex-associate. For simplicity and better com-
parison, we do not include age, cell type proportions and other cova-
riates within the EWASs.

2.7 Comparison of the original funnorm and the

interpolatedXY adjusted funnorm

Funnorm is reported to be suitable for normalizing methylation data
with substantial global differences. The main difference between the
original funnorm and the proposed interpolatedXY adjusted fun-
norm is how to normalize the methylation values of sex chromo-
some-linked CpGs. The original funnorm is designed to normalize X
chromosomes separately and differently with Y chromosomes, as
well as processes female samples and male samples separately. In
contrast, the interpolatedXY adjusted funnorm does not require
prior sex annotations and process both genders equally, which gen-
erates the corrected values of sex chromosome-linked CpGs by inter-
polation on the normalized values of autosomal CpGs.

To compare the normalization effects on sex chromosome data
between the original funnorm and the adjusted funnorm, we studied
both the density distributions and the variances of the methylation
values of CpG sites after no normalization (raw beta values), fun-
norm normalization and adjusted funnorm normalization within
three chromosome groups (i.e. autosomes, X chromosomes and Y
chromosomes) in two 450k datasets. The first dataset (dataset one)
includes 12 male samples and 4 female samples, while the second

dataset (dataset two) contains 23 male samples and 25 female
samples.

3 Results

3.1 Estimation using the interpolation approach
We first investigated the performance of the interpolation approach
employed by the interpolatedXY adjusted funnorm method. The
deviations from the inferred values by the interpolation approach to
their corresponding reference values are measured by RMSE. As it
can be seen from Figure 2, the resulting RMSEs are all very small,
especially for those in both X chromosomes and male Y chromo-
somes: the mean RMSE of X chromosome-linked CpGs is 1.15e—05
(SD=8.7e—06) in females and is 1.11e—05 (SD =4.8e—06) in male
samples, while the mean RMSE of estimations for male Y chromo-
somes is 6.61e—06 (SD=3.2e—06). Though the RMSEs of
Y chromosome-linked CpGs in females are slightly higher (mean-
=8.98¢—04, SD=6.0e—04), they are still very subtle. With the
knowledge that females do not carry Y chromosomes, and those
observed signal intensities result from background noises and non-
specific hybridization, there is no need to look much into the methy-
lation values of female Y chromosomes. In the same way, we could
observe similar performances of the interpolation approach
employed by the interpolatedXY adjusted dasen method
(Supplementary Fig. S1).

In summary, the above results demonstrate the proposed inter-
polation approach provides accurate and robust estimations for the
corrected values of sex chromosome-linked CpGs.

3.2 Artificial sex biases are introduced into autosomal

CpGs by the conventional mixed normalization method
The first round of the UKHLS dataset (Gorrie-Stone et al., 2019)
includes 1175 whole blood samples whose DNA methylation levels
were measured using the EPIC array. After quality control, 685 fe-
male samples and 486 male samples were kept for this analysis. To
study the normalization effects, the variance of beta values with
three different pre-processing methods (no-normalization, dasen
and interpolatedXY adjusted dasen) are compared within three dif-
ferent chromosome groups (i.e. autosomes, X chromosomes and Y
chromosomes) separately. As shown in Figure 3, both dasen and
adjusted dasen significantly (Wilcoxon signed-rank test, P-value <
2.2e—16) reduce the variance in all three chromosome groups. For
instance, the mean variance of autosomes in both sexes decreased
from around 0.0025 in non-normalized beta values to about 0.0018
after either dasen or adjusted dasen normalization. The beta values

1e-03
Chr
e chrX
4 chrY
CUIJ) 1e-04-
=
o Sex
L]
I A
.~ Female
1e-05 9, ® Male
:o..:o ;&?
L[] A
A, A
A
QK\‘* o‘(\d\ 0\\‘\( o\\d
\‘\a\e/ ,&\e/ $0\®/ ,6\0/
¢ <

Fig. 2. Difference between interpolated values and expected values within the
adjusted funnorm. RMSEs are grouped in four categories: male X chromosomes, fe-
male X chromosomes, male Y chromosomes and female Y chromosomes. Female
samples are in red colour and male samples are in blue colour. Dots represent X
chromosomes, while triangles represent Y chromosomes (A color version of this fig-
ure appears in the online version of this article.)
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Fig. 3. Variance comparisons in the UKHLS dataset. Boxplots comparing the vari-
ance of methylation beta values with three different pre-processing methods (i.e. no
normalization, dasen normalization and adjusted dasen normalization) in auto-
somes (A), X chromosomes (B) and Y chromosomes (C). Females and males are
dealt with separately

density plots also demonstrate that both dasen and adjusted dasen
greatly reduce the distribution variation (e.g. Supplementary Fig.
S2). However, the difference in normalization effects between dasen
and adjusted dasen is not significant from the variance level.

Table 2 describes the sex explained fraction of variance between
three methods in three chromosome categories. We can see that the
sex explained variance in sex chromosomes by the three methods all
exceeds 70%, while it accounts to only around 0.5% in autosomes.
That is in line with our expectation, as sex is a dominant factor caus-
ing difference in methylation levels of sex chromosomes, while the
majority of autosomal CpGs are not influenced by sex. Interestingly,
the sex explained fraction of variance of raw beta values in auto-
somes is 0.34%, it rises to 0.45% after normalizing by the adjusted
dasen, indicating the adjusted dasen method retained the meaningful
biological difference when reducing technical variances (Fig. 3A).
However, the sex explained variance is much higher (0.57%) by
normalizing with the original dasen, can we conclude that the ori-
ginal dasen is better than the adjusted dasen to retain meaningful
biological difference? On the contrary, these results indicate the ori-
ginal dasen has introduced artificial sex bias into to the normalized
data. Combining the facts that only autosomal CpGs were included
to compute the variance, and the difference in normalizing the auto-
somal CpGs between the two methods is that the correction of auto-
somal CpGs is affected by the enrolling of sex chromosome data
within the original dasen procedures, but not influenced within the
adjusted dasen method. We can conclude that the observed higher
fraction (sex explained fraction of variance in autosomes) with the
original dasen normalization is partly driven by the involvement of
sex chromosome data, and this higher figure (i.e. than the adjusted
dasen) indicates that technical sex biases have been introduced into
to autosomal CpGs by the original dasen.

3.3 Confirmation of the introduced sex biases

We performed EWASs of sex based on autosomal beta values of
UKHLS samples with three different pre-processing: no normaliza-
tion, dasen normalization and interpolatedXY adjusted dasen nor-
malization. The identified number of sex significant (Bonferroni P-
value < 0.05) differentially methylated positions (saDMPs) are
shown in Figure 4.

As illustrated in the Venn diagram (Fig. 4A), there are 10778
CpG sites been identified as saDMPs in the raw data, with 96.7% of
them (10427) also been captured after adjusted dasen normaliza-
tion. In addition, compared to raw data, the adjusted dasen ap-
proach enables the identification of another 4201 saDMPs. Once
again, these results demonstrate that while the adjusted dasen great-
ly reduces the variation of beta values (Fig. 3A), it preserves the
meaningful biological differences.

We found a total of 32 929 saDMPs after the original dasen nor-
malization, which is more than three times the number with no nor-
malization or 2.25 times the number with adjusted dasen

normalization. Even so, 1600 CpGs which are identified by both no
normalization and adjusted dasen normalization, are missed by the
original dasen method. When comparing the dasen and adjusted
dasen (Fig. 4B), there are 12021 saDMPs shared between the two
methods. Interestingly, among the 20 908 dasen-specific saDMPs,
96.0% of them (20070) have higher methylation values in males
than that in females. On the contrary, 2318 out of the 2607 adjusted
dasen-specific saDMPs (88.9%) show higher methylation values in
females than males. Again, with the fact that the interpolatedXY
adjusted dasen only differs from the original dasen by not enrolling
sex chromosome data when normalizing the autosomal data, the
above results suggest the original dasen did introduce artificial sex
biases into autosomal CpGs by making the methylation values of
many CpGs slightly higher in male samples and lower in female
samples. This explains why nearly all the dasen-specific saDMPs
have higher methylation values in male samples, and there are more
than two thousand CpG sites which have higher methylation values
in female samples that were identified as significant saDMPs by the
adjusted dasen approach but missed by the original dasen.

3.4 InterpolatedXY adjusted funnorm provides better
normalization results for sex chromosome-linked CpGs

than the original funnorm

Since the original funnorm has two different designs to deal with dif-
ferent size datasets, we compared the normalization effects between
the original funnorm and the interpolatedXY adjusted funnorm in
two datasets. The adjusted funnorm does not differ from the original
funnorm in normalizing the autosomal CpGs, so the corrected val-
ues of autosome data from the two methods are the same, we can
thus observe identical results for autosomal CpGs by the two meth-
ods (Figs 4C and 5B, Table 3, Supplementary Fig. S3B and C and
Table S2).

For the X chromosome-linked CpGs, when applied to small
datasets, whose number of female samples or male samples is <10,
such as dataset one, funnorm is designed to normalize female X
chromosomes and male X chromosomes together by the functional
normalization. Compared to the non-normalized raw beta values,
the density distributions of the corrected data generated by funnorm
turn out to be much discordant in both female samples and male
samples (Fig. SE). On the contrary, after the adjusted funnorm nor-
malization, the density distributions become more consistent in both
sexes (Fig. SF). We can also observe the same trends from the bar
plots in Figure 6B, the original funnorm greatly increases the vari-
ance in both sex groups, while the adjusted funnorm keeps the vari-
ance low. Furthermore, the sex explained fraction of variance was
reduced to 82.8% by the original funnorm, which is 92.7% in raw
data and 93.0% after the adjusted funnorm normalization
(Table 2). Taken together, the above results indicate that the origin-
al funnorm is actually adding technical variation into the methyla-
tion data of X chromosomes for those small sample size datasets.

When applied to larger datasets, such as in the case of dataset
two, funnorm performs separate functional normalizations on fe-
male X chromosomes and male X chromosomes, with the underly-
ing consideration that females and males have very different
methylation patterns on X chromosomes. When comparing the nor-
malization effects between the original funnorm and the adjusted
funnorm based on dataset two, we did not observe any significant
differences in the methylation profiles of X chromosomes
(Supplementary Figs S3, S4 and Table S2).

For the Y chromosome-linked CpGs, the original funnorm does
not use the functional normalization as it does on other chromo-
somes, such as autosomes. Instead, only quantile normalization is
employed by the original funnorm to normalize the Y chromosome
data, and with female samples and male samples processed separate-
ly. This may explain why the sex explained variance within the ori-
ginal funnorm is much higher (i.e. 97.7%) than that in the raw data
(i.e. 88.5%) and adjusted funnorm (i.e. 89.1%) (Supplementary
Table S2). We can also observe similar trend from Table 3. These
results suggest the separate normalization strategy employed by the
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Table 2. The fraction of variance explained by sex in the UKHLS dataset with no normalization (raw), dasen normalization, interpolatedXY
adjusted dasen normalization and interpolatedXY adjusted funnorm normalization

Fraction of variance Raw Dasen

explained by sex (%)

Adjusted dasen Adjusted funnorm

Autosomes 0.34 0.57 0.45 0.46
X chromosome 73.18 77.24 77.57 76.93
Y chromosome 85.34 87.64 87.50 88.82
A Raw B 25000 2500 2318
(10,778) 20000 20070 2000
15000 1500
1000
10000
500 289
5000 |
838 0
0 Higher in Higher in
Higherin  Higher in females males
females males
8827 Adjusted dasen
20808 Dasen
6966
5055
5000
Adjusted dasen Dasen 2500
(14,628) (32,929) 0

Higher in Higher in
females males

Fig. 4. EWAS results of UKHLS dataset. (A) The Venn diagram shows the number of unique and shared saDMPs between three approaches: no normalization (raw), dasen nor-
malization and adjusted dasen normalization. (B) The Euler diagram describes the number of unique and shared saDMPs between dasen normalization and adjusted dasen nor-
malization, with the three bar plots showing the number of CpGs which have higher methylation values in females (red) or males (blue) in three categories separately (A color

version of this figure appears in the online version of this article.)

original funnorm will increase the difference between the two sex
groups, and thus introduce artificial technical bias.

3.5 Comparison between the interpolatedXY adjusted

funnorm and interpolatedXY adjusted dasen

We have demonstrated that the fraction of variance explained by
sex is very useful to measure the normalization effects for different
methods and have also shown that the adjusted the dasen and the
adjusted funnorm are both superior than their original versions.
Then we compared their normalization effects on a large healthy
population: the UKHLS dataset (7= 1171). The results are shown in
Table 2, the first obvious observation is that both the adjusted dasen
and the adjusted funnorm clearly increased the fraction of variance
explained by sex in all chromosome groups (i.e. autosomes, X
chromosome and Y chromosome) than the raw data, demonstrating
that the use of either normalization method is beneficial and worth-
while. As compared to the two adjusted normalization methods, we
can see their effects are comparable in the studied dataset (Table 2):
the adjusted funnorm marginally outperforms the adjusted dasen in
normalizing the autosome data (0.46% versus 0.45%) and Y
chromosome data (88.82% versus 87.5%), while the adjusted dasen
is slightly better in normalizing the X chromosome data (77.57%
versus 76.93%).

4 Discussion

We have described a two-step sex-unbiased data normalization
strategy for normalizing DNA methylation microarray samples,

which can be applied into almost all quantile-based normalization
methods, such as dasen and funnorm. By this strategy, the auto-
somal CpGs are normalized independently and separately from the
sex chromosome CpGs, while the corrected values of sex chromo-
somes CpGs are estimated as the weighted average of the corrected
methylation values of their nearest neighbor atusosomal CpGs.

The two steps are necessary. Since the average methylation levels
of CpGs on X chromosome in females are very different from that in
males, normalizing them together with the autosomal CpGs, espe-
cially by the quantile-based methods, will introduce technical biases
for both autosomes and sex chromosomes. By comparing the nor-
malization effects of the original dasen and the interpolatedXY
adjusted dasen, we confirmed that the technical sex biases were
introduced into the autosomal CpGs by the mix normalization ap-
proach (original dasen)—with the sex explained fraction of variance
in autosomes rising to 0.57% from 0.44% in the adjusted dasen nor-
malized data. We further propose a rational explanation for this
(Fig. 7): within the quantile normalization steps in dasen, there are
procedures to sort and return ranks for all the probes, as the mean
methylation values of the most X chromosome-linked CpGs in
females are higher than nearly half of the autosomal CpGs, whereas
the methylation values of the corresponding positions in males are
relatively low, thus the quantile normalization algorithm used to
make all studied samples fit into a same distribution creating a sys-
tematic negative shift for many autosomal CpGs (their methylation
values are lower than most X chromosome-linked CpGs) in females
and a systematic positive shift for those CpGs in males. As a result
of this, when we perform EWAS to look for autosomal sex-
associated CpGs, the original dasen approach identified more than
two times the number as identified by the adjusted dasen or non-
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Fig. 5. Comparisons in methylation beta value density distributions for dataset one.
The three columns list results from raw data (left column: A, D and G), funnorm
normalized data (middle column: B, E and H) and the adjusted funnorm normalized
data (right column: C, F and I). The three rows show density distributions of auto-
somal CpGs (first row), X chromosome-linked CpGs (second row) and Y chromo-
some-linked CpGs (third row). Red lines represent females and blue lines represent
males (A color version of this figure appears in the online version of this article.)

Table 3. The fraction of variance explained by sex in the dataset
one (n=16) with no normalization (raw), funnorm normalization
and interpolatedXY adjusted funnorm normalization

Fraction of variance explained by ~Raw Funnorm Adjusted funnorm
sex (%)

Autosomes 9.48 10.93 10.93
X chromosome 92.68 82.82 92.99
Y chromosome 91.48 97.09 93.89
A B C
.. 0005 X
0.006
0.00150 0008 +
' 5]
0.00125
0.003 0.0041
§ 0.00100
g ' 0.002
= 0.002+
0.00075
0.001 .
=
0.00050
Female  Male Female Male Female Male

type ‘ raw ‘ funnorm ‘ adjusted funnorm

Fig. 6. Variance comparisons in the dataset one. Boxplots comparing the variance of
methylation beta values with three different pre-processing methods (i.e. no normaliza-
tion, dasen normalization and adjusted dasen normalization) in autosomes (A), X chro-
mosomes (B) and Y chromosomes (C). Females and males are dealt with separately

normalized data. Moreover, 96.0% of the dasen-specific saDMPs
show higher methylation values in male samples than in female sam-
ples, in contrast, the majority of the 2607 CpGs missed by the ori-
ginal dasen but identified by the adjusted dasen have higher
methylation values in female samples than male samples.

Estimation of the corrected values for sex chromosomes CpGs
by looking at their nearest neighbors on autosomes is made both
possible and reliable by the fact that DNA methylation microarrays
simultaneously measure over half a million CpG sites across the

Reference distribution

«
ase
‘chal‘cs Males ~ Dasen ‘ ‘
1 ——
[}
et
| | / CR N
a
0 P, s, H aes
Autosomes prx
Adjusted dasen —
aee

— L J

Y

Beta values

Sorted raw data Normalised data

Fig. 7. A simplified schematic diagram illustrates the difference in the normalization
process between the original dasen and the interpolatedXY adjusted dasen. The ori-
ginal dasen normalizes autosomes and sex chromosomes together, the mean methy-
lation values of most X chromosome-linked CpGs in females are higher than nearly
half of the autosomal CpGs, whereas the values of the corresponding locus in males
are relatively very low, thus the quantile normalization algorithm employed by
dasen to make all studied samples fit into a same distribution creating a systematic
shift for many autosomal CpGs in two sexes. The adjusted dasen manages to avoid
such an issue by doing quantile normalization in autosomes separately and inde-
pendently with sex chromosomes, and infer the corrected values of sex chromo-
somes by interpolating on autosomes. Red denotes female sample and blue denotes
male sample, the long bar represents sorted autosomal CpGs and the short bar rep-
resents sorted X chromosome-linked CpGs (A color version of this figure appears in
the online version of this article.)

genome, and only a relatively small portion (i.e. 2.3% in EPIC and
2.4% in 450K) is mapped on the sex chromosomes. Here in this
study, we have demonstrated that the linear interpolation approach
provides both accurate and robust estimations for the sex chromo-
some data, with the mean RMSE < 1.2e—35.

Funnorm is favored for normalizing methylation data with sub-
stantial global differences, such as cancer samples (Fortin et al.,
2014). With the consideration that females and males have distinct
methylation patterns for sex chromosomes, funnorm has very expli-
cit rules to normalize X chromosomes and Y chromosomes differ-
ently. Within the functional normalization in funnorm, there is a
regression step to infer the explainable technical variants based on
control probes. The authors may have considered the regression
models would be less accurate in the circumstance of only few sam-
ples, so funnorm is designed to perform functional normalizations
on female X chromosomes and male X chromosomes together when
the number of either female samples or male samples is <10. Our
results in Section 3.4 have clearly shown that such a mix normaliza-
tion approach is destructive to the methylation profiles of X chro-
mosomes in both females and males. Though to do functional
normalization on females and males separately is a way to avoid
such an issue, it may also introduce potential systematic technical
bias between the two separate groups.

For the Y chromosome-linked CpGs, the original funnorm does
not actually perform the functional normalization as it does on other
chromosomes, instead it performs only quantile normalizations on
Y chromosomes, and processes female samples and male samples
separately. As the proposed interpolatedXY adjusted funnorm could
provide near-perfect estimations for corrected values generated by
functional normalization, it could be particularly useful for studies
that focus on sex chromosomes DNA methylation data, especially
when the methylation difference between the studied groups that are
known to be very different. Moreover, by the adjusted funnorm
method, the corrected values of sex chromosome-linked CpGs are
produced by linear interpolating on the distribution of autosomal
CpGs, so in theory, they are more comparable with the autosomal
CpGs.
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In this article, we not only present a novel two-step strategy to
unbiasedly normalize DNA methylation microarray samples, but
also provide a useful concept—the fraction of variance explained by
sex, to quantitively measure the normalization effect. Sex is an im-
portant biological factor that not only determines the methylation
status of sex chromosomes, but also influences many autosomal
CpGs. A good candidate normalization method should not only be
able to greatly reduce the technical variation between samples, but
also should preserve the meaningful variation that has biological
reasons (e.g. sex). Even though quantile normalization has been
widely employed by several DNA methylation normalization meth-
ods, such as SWAN (Maksimovic et al., 2012), dasen (Pidsley et al.,
2013) and funnorm (Fortin et al., 2014). There are still concerns
about whether the use of between-array normalization methods
could bring enough benefits to counterbalance the potential impair-
ment of data quality (Dedeurwaerder et al., 2014). Here, in this
study, we demonstrated that the interpolatedXY adjusted dasen and
the interpolatedXY adjusted funnorm are two good normalization
method candidates, they are able to not only greatly reduce technical
variation but also retain the meaningful biological difference, which
will be very useful for large cohort EWAS projects.

We believe that the proposed novel two-step strategy may
have wider application outside of DNA methylation microarrays
and could even be applied in more broader technologies such as
RNA-Seq.

5 Conclusion

The proposed two-step strategy of interpolatedXY allows for the
normalization of autosomal data and sex chromosome data without
bias. The two steps are necessary and reliable, the interpolatedXY
approach infers the normalized methylation beta values of sex
chromosome-linked CpGs with deviation (RMSE) of around
1.15¢—05 to their expected values. With the introducing of the
interpolatedXY, the adjusted dasen and the adjusted funnorm both
show superior performance than their original versions, i.e. the
adjustedDasen avoids the risk of introducing sex bias into the auto-
somal data when normalizing mixed-sex samples compared to the
original dasen; the adjustedFunnorm reduces artificial sex bias in the
sex chromosome data as compared to the original funnom. In add-
ition, the sex explained variance analysis reveals the two between-
array normalization methods, dasen and funnorm, both enable
retaining the meaningful biological difference while reducing tech-
nical variation.
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