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Dictionary learning was introduced for sparse image representation. Today, it is a corner-
stone of image classification. We propose a novel dictionary learning method to recognise
images of handwritten numbers. Our focus is to maximise the sparse-representation and
discrimination power of the class-specific dictionaries. We, for the first time, adopt a
new feature space, i.e., histogram of oriented gradients (HOG), to generate dictionary col-
umns (atoms). The HOG features robustly describe fine details of hand-writings. We design
an objective function followed by a minimisation technique to simultaneously incorporate
these features. The proposed cost function benefits from a novel class-label penalty term
constraining the associated minimisation approach to obtain class-specific dictionaries.
The results of applying the proposed method on various handwritten image databases in
three different languages show enhanced classification performance � 98%ð Þ compared
to other relevant methods. Moreover, we show that combination of HOG features with dic-
tionary learning enhances the accuracy by 11% compared to when raw data are used.
Finally, we demonstrate that our proposed approach achieves comparable results to that
of existing deep learning models under the same experimental conditions but with a frac-
tion of parameters.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Handwritten number recognition is a sub-stage of the well-known Optical Character Recognition (OCR) technology. It is
considered as a well-established pattern recognition problem which is traditionally addressed separately from handwritten
alphabetical character recognition. This can be due to the importance of numeral values in our daily interactions, such as
financial transactions, as well as complexity of mixed alphabetical-and-numeral character recognition. A typical OCR system
includes: 1) text localisation on the input image, 2) line/character segmentation, and 3) character recognition [1]. The key
role of OCR systems in our daily life is more revealing as nowadays we need to process various sources such as bank notes,
ianoush.
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exam papers, and medical prescriptions, electronically. The importance of yielding high recognition accuracy of handwritten
numbers in real-world applications, such as bio-metric authentication, financial systems, medical prescriptions, cell type
classification, and postal mail sorting motivates us to design an efficient handwritten numbers recognition system. Another
application where such systems are highly beneficial is in automated evaluation of homework, exam papers, which is
becoming a necessity in e-learning platforms. Models with low accuracy are not suitable for real-world applications due
to being unreliable [2,3]. Consequently, recognition of handwritten numbers (as opposed to printed numbers) from scanned
documents has remained a challenging and interesting research theme within the field of computer vision and pattern
recognition [4,5]. This becomes more challenging when handwritten numbers recognition in languages other than English
(as addressed in this study) is of concern.

A generic handwritten recognition system uses machine learning to interpret and recognise the received handwritten text
from different sources. Traditional recognition systems comprise two major stages: feature extraction and classification. The
first stage transforms the input data into an informative and interpretable space while reducing the data dimensions. The
second stage assigns class labels to the extracted features. Various techniques have been proposed for handwritten numbers
classification where the main challenge is to learn efficient and comprehensive models capable of handling a diverse range of
handwritten styles.

Pattern recognition is widely utilised in many applications from chest X-ray image classification to human recognition.
Recent methods attempted to address the classification of handwritten numbers by combining neural networks, e.g.
LeNet-5 and support vector machine (SVM), to gain better results. Other related methods, include utilising HOG and SVM
to extract key features from input images followed by number classification. For example, in [6], HOG and Gabor filters were
used as descriptors for feature extraction from Arabic words, leading to promising results using a k-nearest neighbour (kNN)
classifier. HOG focuses on the structure of an object and can extract the gradient and orientation of edges in a given image. It
was initially proposed for human detection and object localisation [7], however, it has shown great influence for feature
extraction from text images and handwritten numbers [8]. Nevertheless, the efficacy of this powerful feature descriptor
has not been thoroughly studied in this context, particularly for Chinese handwritten numbers.

The fast pacing developments of deep learning techniques have led to an increased tendency to embedding these in hand-
written numbers recognition. A deep unsupervised network was proposed in [9] to learn invariant image representation
from unlabeled data. The network architecture comprised a cascade of convolutional layers trained sequentially to represent
multiple levels of features. In another work [10], Bengali handwritten number detection was performed using a deep struc-
ture called region proposal networks (RPN). Two major limitations of using deep learning methods for handwritten number
recognition are the need for a relatively large annotated dataset and hardware requirements, e.g., GPUs (graphics processing
units). Nevertheless, despite several works on Chinese handwritten characters recognition [11,12], there are no reported
works on the performance of deep learning for Chinese handwritten numbers. This may be partly due to lack of a user-
friendly and compact database of Chinese handwritten numbers. In this study, the recently published open-source Chinese
handwritten dataset at Newcastle University1 is considered.

Dictionary learning is another learning-based approach widely used for image representation, super-resolution, denoising
and classification [13–15]. These have shown promising performance in image classification via providing a precise charac-
terisation for any given image class using a dictionary matrix that describes key features of any sample in the same class [16].
Using a dictionary, all samples in a class can be represented as a sparse linear combination of the dictionary columns which
allows a greater degree of discrimination. Nevertheless, finding a relevant and appropriate feature space for learning such
dictionaries has remained a major challenge.

In this paper, we propose a novel method for handwritten numbers recognition based on dictionary learning. Our method
is an extension of dictionary pair learning (DPL) [17] through using class labels and HOG features. It generates two types of
synthesis and analysis dictionaries to classify handwritten numbers images. Our contributions in this paper are:

� Instead of using raw image pixels, we, for the first time, propose to use HOG descriptors to obtain class-specific dictionar-
ies for handwritten recognition application. The motivation for opting for HOG is its robustness demonstrated in digit/
character recognition applications. Although the significance of using statistical features in dictionary learning has
already been implied [18] (for example in face recognition [19]), no HOG-based classification, built upon the DPL method,
was proposed for recognition of handwritten numbers.

� We configure a novel penalty term by embedding class labels into our proposed cost function, which has a closed-form
mathematical expression. This penalty term includes a label matrix and a coefficients matrix associated with each class.

� We provide mathematical derivations for minimising the cost function based on an alternating minimisation approach.
The proposed technique provides an optimum trade-off between the grouping effect and the sparsity of coefficients with-
out using ill-posed regularisers.

� To quantitatively evaluate the classification performance, we apply relevant deep neural network architectures in addi-
tion to other well-established dictionary learning methods to handwritten databases in three different languages.
1 https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831/1
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2. Dictionary learning for image classification

Most conventional dictionary learning methods involve two key steps in which their performances are highly interdepen-
dent; sparse coding and dictionary update.2 A naive way of building dictionaries is to stack all the training data into a matrix
(the so-called dictionary). However, this approach leads to large and redundant dictionaries. Thus, many studies use machine
learning techniques for obtaining dictionaries by extracting a low-dimensional feature domain from the training data. The main
aim of these techniques is to determine a dictionary with approximately independent atoms. The utilised learning process, how-
ever, depends on the structure and nature of the input images. The efficiency of a dictionary is also dependent on the total num-
ber of coefficients containing in the associated sparse vectors. These sparse vectors together with dictionary atoms act as a coder
for effective approximation of the data of interest. This idea can be extended from data representation to data classification, i.e.,
learning class-specific dictionaries.

Dictionary learning for classification has been utilised in face recognition [16] and brain signal separation [20]. A well-
established work on dictionary learning for image classification is the sparse representation classifier (SRC) [16]. This tech-
nique uses sparse representation and learns dictionaries for classification of images in the pixel domain. It is increasingly
being extended and used for a wide variety of image analysis, representation and classification tasks. To improve the clas-
sification accuracy, salient features were extracted from deformable objects, e.g., face images, in [21]. Then, two image
enhancement and representation steps were combined to achieve a new sparse representation domain. In [22], a two-
phase test sample representation method was proposed for face recognition. The method seeks to represent a test sample
image as a linear combination of all the training samples looking for ‘‘M-Nearest Neighbours”. In fact, a bank of training sam-
ples approach is fast and simple but not as accurate as those based on dictionary learning. A recently developed supervised
dictionary learning approach constructs image classes using a shared dictionary and discirmintave class models [23]. One
limitation associated with the above technique is its reduced capabilities in processing a large number of classes, i.e., large
dictionary, due to the increased potentials of producing similar columns with high correlations. To efficiently scale up dic-
tionary learning for increased number of classes, some researchers suggest to merge similar atoms in any given dictionary by
optimising a customised objective function [24]. This procedure optimises the structure of the dictionary by reducing the
mutual information among its atoms. In other words, this mechanismminimises the mutual information loss among the his-
togram of dictionary atoms across all the components of the data of interest. The main drawback of this approach is high
computational cost of the feature merging stage which makes them impractical for large-scale classification problems.

Traditional dictionary learning methods merely rely on synthesis dictionaries in which the input data is in a sparse latent
subspace. Meanwhile, K-singular value decomposition (K-SVD) is one of the well-recognised synthesis-based dictionary
learning methods. A SVD-based method, which is called label consistent K-SVD (LC-KSVD), was introduced in [25], and later
extended in [26]. LC-KSVD seeks the sparse coding problem by learning a discriminative dictionary using a modified cost
function compared to that in K-SVD. Synthesis dictionaries can well preserve the local structures of the data. In contrast,
analysis dictionaries rely on the assumption that the input data can be converted into a latent sparse subspace using the
learned dictionary. Analysis dictionary can produce sparse representation of data via a simple data transformation, i.e., linear
projection (simple dot product), without applying ‘0/‘1 minimisation which is considered computationally expensive oper-
ations due to their non-convex nature.3 For instance, an analysis discriminative dictionary learning has been proposed in [27]
to process two-dimensional images. The method imposes a sparse ‘2;1-norm constraint on the coding coefficients and attempts
to learn dictionaries, representations, and linear classifiers as discriminant as possible. Recently, dictionary pair learning (DPL)
approach was introduced, where both analysis (for generating discriminative code using linear projection), and synthesis (for
image reconstruction) dictionaries were employed [17]. It benefits from an analysis-synthesis dictionary pair that avoids the
need for utilising ‘0-norm or ‘1-norm minimisation. DPL has shown promising performance on face recognition application over
state-of-the-art techniques. In [28], a discriminative sparse representation learning was proposed as an extension to DPL. Nota-
bly, this method preserves the local structures of the coding coefficients within each class by offering a structured reconstruc-
tion paradigm. In this study, the classification performance was evaluated on several face and scene datasets where promising
results were reported. Another extension of DPL was proposed in [29] for pattern classification. The focus of this work is on
classification of noisy images. The authors proposed a coding coefficient discriminant term to enhance discrimination power.
To mitigate the influence of existing noise in input images, a low-rank constraint was introduced on each synthesis sub-
dictionary. The authors evaluated the performance of their method using face and scene datasets.

Some recent works have addressed combination of dictionary learning and deep learning. Deep dictionary learning was
proposed in [30] for building deeper architectures using the layers of dictionary learning. A method called deep micro-
dictionary learning plus coding network was proposed in [31] which mainly includes standard deep neural network layers,
such as pooling, fully, connected, and input/output. However, the deep learning architecture is augmented by replacing fun-
damental convolutional layers with a novel compound dictionary learning and coding layers. In [32], scalability and speed of
deep learning were combined with dictionary learning to significantly reduce the number of parameters. This convolutional
dictionary learning based auto-encoder was proposed for natural exponential-family distributions such as image denoising
and neural spiking data analysis. A multi-layer dictionary learning network with added skip dense connections was proposed
2 By definition, a sparse vector has few non-zero components. The quality of the learned dictionaries, i.e., the degree of the independence within the columns,
directly affects the sparsity of the coefficients. Sparser coefficients with the smallest reconstruction error are preferred.

3 Mathematically, p-norm of vector x is defined as xk kp ¼ P jxijp
� �1=p
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for image classification [33]. The method offered a robust classification performance across several applications. Under a
combined dictionary-and-deep learning approach in [34], a self-expressive adaptive locality preserving framework was pro-
posed for object classification. The focus of this approach is to capture salient features from the samples. This approach used
normalised block-diagonal coefficients to preserve the locality of the codes and salient features during the learning process.
Promising results on face and natural scenes classification were reported. In [35], a transfer learning algorithm based on dis-
criminative Fisher embedding and adaptive maximum mean discrepancy (AMMD) constraints was proposed. The method
aimed to compensate for the drawback of general transfer learning algorithms where the interclass differences and intraclass
similarities across domains are ignored. To this end, the label information of source domain and part of target domain were
combined. Then, a model was constructed using atoms and profiles, which can adaptively minimise the distribution differ-
ences between source domain and target domain. The experiments on five public image dataets were implemented and
promising results were achieved.
3. Proposed approach

In an earlier work, we applied DPL method to classify brain activities during hand movement tasks from electroen-
cephalogram (EEG) signals [20]. In [20], some statistical features of the input data were used to obtain class-specific dic-
tionaries. Later, we extended DPL method by injecting incoherence within the dictionary columns (the so-called InDPL
method), where Chinese handwritten numbers were classified [36]. According to the literature and our investigations, select-
ing a proper feature space has a significant effect on the degree of discrimination in the learned dictionaries. The main novel
ideas in this study are to 1) use HOG features (a strong image descriptor) as input to the dictionary learning process and 2)
embed class labels in form of a mathematical constraint within a new cost function. The proposed method consists of four
major steps: 1) pre-processing, 2) HOG feature extraction, 3) dictionary learning, and 4) classification. The first step is pre-
processing, which includes binarisation, cropping, and resizing, and aims at enhancing the quality of raw images and prepar-
ing them for the next step. In the second step, the orientation histograms of edge intensity from pixels within local neigh-
bourhoods are calculated to extract key HOG features. Then, the obtained HOG feature vectors are fed into the dictionary
learning block to perform the necessary operations for obtaining the class-specific dictionaries. It is worth to mention that
the entire procedure is carried out in two training and testing phases, and the classification task is performed only at testing
phase on unseen image data. A self-explanatory representation of the proposed method outlining different steps in both
phases is shown in Fig. 1.
3.1. Image databases

We used two Chinese handwriting numbers databases to analyse the effectiveness of our method. The first one is an open
source database, published in association with our recent work in [36]. The database includes 15,000 images of handwritten
numbers of size 64� 64, written by 100 Chinese nationals studying at Newcastle University, UK. During data collection, the
participants were asked to write 15 Chinese numbers given in Fig. 2a, 10 times. Another independent Chinese handwritten
numbers database, which consists of 5,100 handwritten numbers from 34 persons, was also used to analyse this method.
Each subject in this dataset wrote 10 times the 15 numbers illustrated in Fig. 2b.

In addition to the above Chinese databases, Arabic (MADBase4), English (USPS5), Persian (HODA6), and Urdu handwritten
numbers (fromMNIST-MIX7) were considered as case studies. MADBase consists of 70,000 numbers written by 700 persons that
each person wrote 10 times each number from 0–9. Similarly, USPS database consists of 7,291 training samples and 2007 test
samples of numbers 0–9 in form of grayscale images. Also, HODA database includes 60,000 training samples and 20,000 test
sample. Urdu handwritten numbers taken from MNIST-MIX database includes approximately 6,600 training and 1,400 test
images of size 28� 28. Sample images of these databases are represented in Figs. 2c, 2d, 2e, and 2f.
3.2. Image pre-processing

In the pre-processing step, raw RGB images (e.g. Fig. 3A) are transformed into gray-scale space. In order to enhance the
image contrast between background and foreground, a global image threshold is found using Otsu’s technique [37]. This pro-
cess is followed by converting the grayscale image into binary form, as shown in Fig. 3B. Then, the redundant background
pixels, near image borders, are cropped by vertical and horizontal sweeping of the entire image. As a result of this process,
the actual number is centered within a predefined bounding box as shown in Fig. 3C. In the final stage, the pre-processed
images are down-sampled to 32� 32 pixels which is applied to equalise the dimensions of input images and to avoid unnec-
essary computational burden (Fig. 3D).
4 http://datacenter.aucegypt.edu/shazeem/
5 https://git-disl.github.io/GTDLBench/datasets/usps_dataset/
6 https://github.com/amir-saniyan/HodaDatasetReader
7 https://github.com/jwwthu/MNIST-MIX
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Fig. 1. Block diagram of the proposed method. Black solid and blue dashed lines, respectively, illustrate the flow of training and testing phases.

Fig. 2. Sample images from three different handwritten numbers databases and their equivalent English values.

R. Ameri, A. Alameer, S. Ferdowsi et al. Information Sciences 609 (2022) 489–506
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Fig. 3. Pre-processing sequence for an example Chinese handwritten image (number 100). (A) raw gray-scale image with size 64� 64; (B) binarised image
after applying Otsu’s thresholding method; (C) cropped and centered image; (D) resized image to 32� 32. Note that the images have been negated for
better visualisation.
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3.3. Feature extraction

The HOG descriptor focuses on the structure of an object and calculates the occurrences of gradient orientation in loca-
lised portions of the input image. By gradient, we mean small changes of pixels intensities in both vertical (v) and horizontal
(h) directions [38]. The HOG feature extraction process includes three major steps: 1) calculating the gradient of every single
pixel in both image directions Gh;Gvð Þ in a small neighbourhood: this is done by partitioning the input image into small
square (3� 3) patches and counting the occurrences of gradient directions using the central difference technique. 2) Deter-
mining the magnitude and orientation of each pixel value: the simplest way to do this is by following the Pythagoras
theorem:
Gradient Magnitude ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

h þ G2
v

q

Gradient Orientation ¼ tan�1 Gh=Gvð Þ
ð1Þ
And 3) creating an image histogram to show the frequency distribution of any object in the image. This process is per-
formed hierarchically by representing the values and directions of the HOG features for several image blocks. These blocks
are then combined and normalised into a single output image according to the minimum and maximum contrasts in the
image. The output is then vectorised and concatenated into the training matrix. In Fig. 4, an example for Chinese number
‘7’ is illustrated. As seen from this figure, the HOG approach has extracted all existing directions and orientations.
Fig. 4. The result of the HOG features for a sample number. (A) Input image (number 7); (B) the extracted HOG features.
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3.4. Labeled projective dictionary pair learning

In a handwritten recognition problem, the dictionaries are basically language-dependent. During the training phase, one
dictionary is obtained per class (i.e., per handwritten number). For example, Chinese and English handwritten numbers
require 15 and 10 dictionaries, respectively. Atoms of a dictionary represent a coarse-to-fine feature space dedicated to that
specific class. Therefore, all possible directions, edges, curves, and shapes in a handwritten number, are translated into a dic-
tionary matrix through an iterative process. A cost function is configured to confine the learning space of the dictionaries to
their associated classes. The obtained dictionaries are finally used to classify a new test handwritten image. Dictionary pair
learning technique was originally designed to obtain a synthesis dictionary as well as an analysis dictionary for every class
during training phase [17]. Here, we enhance this approach in two ways. Firstly, we embed the HOG features (as described
above) into the system hierarchy to create more representative and discriminant dictionaries. Secondly, we introduce the
prior knowledge of the class labels as a new term in the proposed cost function. The proposed procedure is mathematically
described in the following.

Let us present all the input pre-processed images which are collated for training by matrix Y ¼ Y1;Y2; � � � ;YQ½ �, in which

Yq 2 Rn�k encompasses the samples of q-th class (out of total Q classes), n is the training vectors’ length (i.e. vectorised

images), and k represents the number of training vectors for q-th class. We define analysis dictionary by P 2 Rm� Q�nð Þwhere
m and Q � nare the number of rows and columns, respectively. The value ofm is selected empirically which is set tom ¼ 240
in our study. The Similarly, we have the synthesis dictionary denoted by D 2 Rn� Q�mð Þwhich contains structural information
about different classes. Given the training matrix and analysis dictionary, the sparse coefficient matrix can be expressed as
A ¼ PY . Considering the aforementioned notations, a generic dictionary learning and classification problem can be concretely
expressed via:
< P�;D� >¼ argminP;DkY � DPYk2F þW D; P;Yð Þ ð2Þ
where the term kY � DPYk2Fdenotes the reconstruction error. Frobenius norm of a matrix X is defined as

Xk kF ¼
PP jxijj2

� �1=2
. The crucial task here is to design an appropriate penalty function, W, that drives (2) to a successful

classification. We consider three important factors to successfully form the cost function with the following objectives: 1)
obtaining a sparse representation of the coefficients PY; 2) learning class-specific dictionaries, and 3) minimising the classi-
fication error. In what follows, we propose a new design for W to meet the aforementioned criteria, i.e. having a discrimina-
tion power in addition to minimising the classification error. Then, a recurrent alternating approach is proposed to minimise
the proposed objective function and find suitable dictionaries for each class.

To further investigate the role of synthesis and analysis dictionaries, let us expand D ¼ D1;D2 � � � ;Dq; � � � ;DQ
� �

and
P ¼ P1; P2; � � � Pq; � � � ; PQ

� �
where Dq 2 Rn�mand Pq 2 Rm�n represent the sub-dictionaries associated to q-th class. In order to

obtain class-specific dictionaries, and thus discriminate between the classes, Pqshould merely convey features from q-th
class. At the same time, it should contain no features from the rest of the classes (q0). This property can be mathematically
expressed as:
PqYq0 	 0;where q0– q and 1 6 q0; q 6 Q : ð3Þ

where Yq0 includes all samples but those from class q, and PqYq0 	 0 means that the analysis dictionary associated to class q

should solely be able to represent samples from class q. Such discriminability can be reformulated by kPiYik2F and added to
the reconstruction error in (4). The matrix Yi denotes the complementary data matrix to Yi, meaning that it encompasses
samples of all classes except those from i-th class:
XQ

i¼1

kYi � DiPiYik2F þ k1kPiYik2F : ð4Þ
Although (4) can enforce the synthesis dictionaries to be discriminant, it does not utilise this feature in the analysis dic-
tionaries. Since the class labels are available during training phase, we propose to inject these information into the cost func-
tion on analysis dictionaries. To do this, a linear predictive term, i.e., f Y;Wð Þ ¼ WY , is added to (4) in order to enforce analysis
dictionaries to provide a higher level of discrimination. This effectively injects the classification error into the minimisation
problem (i.e. cost function). Let Hbe the binary label matrix corresponding to training samples Y, and Wdenotes classifier
parameters. To estimate P�;D�;W� the following minimisation problem is proposed:
argminP;D;W

XQ

i¼1

kYi � DiPiYik2F þ k1kPiYik2F þ k2kHi �WiPiYik2F

s:t: kdjk22 6 1 for j ¼ 1;2; � � �m
ð5Þ
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where H ¼ H1;H2 � � � ;Hq; � � � ;HQ
� �

and Hq 2 RQ�kstands for the matrix that keeps the labels for training sample Yqwhich
belong to q-th class. Also, dj refers to j-th column of the corresponding dictionary D. Matrix H has a block-diagonal structure
composed of sub-matrices Hq. All components of Hq are zero except q-th row which are all ones. This is to maximise the
effect of q-th class, and minimise the influence of the remaining classes during the learning process. Additionally, H would
always be a binary matrix regardless of the language used. It is merely generated based on the size and labels of the training
set, and the total number of classes (Q). For clarity, sample snapshot of an H for a 15-class problem with 10 training samples
in every class (i.e., Q ¼ 15 and k ¼ 10) is given in Fig. 5.

Eq. (5) is generally non-convex and cannot be simultaneously solved for all variables. However, if we replace A ¼ PY into
(5), the objective function will be converted to (6), where P�;D�;W�, and A� can be calculated using an alternate minimisation
technique:
Fig. 5.
and bla
argminP;D;W ;A

XQ

i¼1

kYi � DiAik2F þ k1kPiYik2F þ k2kHi �WiAik2F

þk3kPiYi � Aik2F s:t:kdjk22 6 1

ð6Þ
In this equation, k1; k2and k3are positive scalars as regularisation parameters which are set empirically. The constraint on

dictionary columns, i.e., kdjk22 6 1, is considered to keep all the dictionary columns normalised during the algorithm itera-
tions. This will constrain the energy of each atom to avoid the trivial solution, i.e., D ¼ 0. In order to solve (6) in all variables,
alternating direction method of multipliers (ADMM) can be adopted where only one variable is found at a time, while other
variables are kept unchanged. Such procedure is implemented for all variables based on the following steps.

Step 1: In order to find A that satisfies (6), we only consider 1st, 3rd, and 4th terms, fixing Di;Wi; Pi, and minimise:
A� ¼ argminA

XQ

i¼1

kYi � DiAik2F þ k2kHi �WiAik2F þ k3kPiYi � Aik2F : ð7Þ
Since (7) only involves Frobenius norms, its gradient, with respect to Ai, can be simply obtained. So, minimisation of (7) is
achieved by tending the gradient to zero and estimating:
A� ¼ DT
i Di þWT

i Wi þ k3I
� ��1

DT
i Yi þ k2W

T
i Hi þ k3PiYi

� �
ð8Þ
Step 2: The same settings, carried out in previous step, is applied for Pi where all variables except P is considered fixed and
only 2nd and 4th terms in (6) are included in the calculations:
P� ¼ argminP

XQ

i¼1

k1kPiYik2F þ k3kPiYi � Aik2F : ð9Þ
And then by taking the gradient with respect to Pi and equating it to zero we get:
P� ¼ k3YiY
T
i þ k1Yi Yi

T þ cI
� ��1

k3AiY
T
i

� �
ð10Þ
where c is a very small positive scalar to avoid zero division.
Sample snapshot of binary matrix H for a 15-class problem with 10 training samples per each class. The size of this matrix is 15� 150. White bars
ck regions correspond to 1’s and 0’s, respectively.
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Step 3: Since Wi appears only in the 3rd term in (6), its value can be simply estimated using the following expression:
W�
i ¼ AiA

T
i þ cI

� ��1
HiA

T
i

� �
: ð11Þ
Step 4: Finally, by fixing P;A;Wand applying ADMM [39] we can estimate dictionaries D:
D rþ1ð Þ ¼ minD

XQ

i¼1

kYi � DiAik2F þ qkDi � S rð Þ
i þ T rð Þ

i k2F

S rþ1ð Þ ¼ minS

XQ

i¼1

qkD rþ1ð Þ
i � S rð Þ

i þ T rð Þ
i k2F s:t:kSik 6 1

T rþ1ð Þ ¼ T rð Þ þ D rþ1ð Þ
i � S rþ1ð Þ

i :

ð12Þ
The pseudo-code of the proposed method is summarised in Algorithm1. The algorithm terminates after elapsing a fixed
number of epochs or when the value of objective function reaches a pre-defined threshold and does not reduce further as the
epochs evolve.
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3.5. Classification

After completion of the training phase with the labeled handwritten images, our model parameters including class-
specific dictionaries P and D as well as the weights matrix (also referred as the transformation matrix) W are obtained. In
testing phase, an unseen handwritten image is entered into the pipeline, shown in Fig. 1. Assume x to be the HOG output
in vectorised form, the corresponding class can be simply found via:
Class xð Þ ¼ argminikx� DiPik2F þ kHi �WiPixk2F :

Eq. (13) is executed for all i ¼ 1; � � � ;Q and the output is recorded as the predicted class of the input image.

4. Experimental results

In order to assess the effectiveness and performance of the proposed method we conducted extensive experiments with
handwritten images in different languages. The classification results of the proposed method on two independent Chinese
handwritten numbers databases, one Arabic and one English handwritten numbers database are presented and compared
with state-of-the-art methods. Finally, the classification accuracy of the proposed method is compared and analysed with
those obtained using conventional deep learning models. In all experiments, scalars m; k1; k2and k3were independently
drawn based on performing 10-fold cross-validation on the training sub-set. We employed random initialisation for both
Dand Pfor every class. The obtained parameters through this procedure are used to initialise A0and W0as given by Eqs. (8)
and (11).
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4.1. Recognition performance

To investigate the robustness of the proposed method with Chinese handwritten database under various settings, we con-
sidered three different cross-validation procedures: between-subjects, within-subjects, and conventional. Between-subjects
cross-validation is designed to explore how robust our learned model against each individual’s handwriting style is. For this
purpose, we considered all data from one subject in the database as test sub-set, while data of other subjects were consid-
ered as training sub-set. This process was sequentially repeated for every subject. In the within-subject cross-validation, the
aim was to evaluate the recognition performance when the writings of all subjects are included during the training phase. To
do this, we put aside one sample image from each subject for the testing phase while all the remaining samples were used for
training. This process was repeated 10 times, and the results were averaged. Finally, in conventional cross-validation, no pri-
ority was given to the subjects and we performed random 10-fold cross-validation on all the handwritten images in the
database.

In Table 1, the achieved classification scores for the proposed method with Chinese handwritten number database are
provided. According to this table, LpDPL outperforms (by 3.8%, in average) the classification results reported in [36] where
InDPL was applied under the same conditions. This is an indication that the proposed penalty terms here, i.e. classification
labels as well as the proposed novel HOG features, significantly enhanced the performance of the class-specific dictionaries.
To investigate the influence of using HOG features in the proposed method, we ran our method under the same experimental
environment, i.e., parameters and data, without using the HOG features. The achieved classification accuracy reduced by
� 11%. This experiment highlighted the significant impact of HOG features in this context.

To compare the performance of the dictionary learning for classification against the classic k-nearest neighbour (kNN)
approach, an experiment was conducted under three different conditions, i.e., conventional, within-subject and between-
subject cross validations. Fig. 6 depicts average classification accuracy when LpDPL, DPL [17] and kNN were applied on Chi-
nese handwritten numbers database. As seen from Fig. 6, both LpDPL and DPL significantly outperform kNN which confirms
the strength of dictionary learning-based approaches for pattern classification. It is noteworthy to mention that HOG fea-
tures were used for classification in both LpDPL and DPL for this experiment. Hence, LpDPL achieves slightly higher accuracy
against DPL which implies the improvement due to adding class labels as a penalty term into the cost function.

To observe fine details of classification performance, the resultant confusion matrix, when LpDPL applied, is given in
Fig. 7. The results are depicted for all databases and languages considered in our study. It can be noticed that the developed
method performs consistently well on all databases (look at the diagonal elements). For most cases, the number of misclas-
sified images remained below 10. The poorest classification occurred between Chinese numbers ‘10’ and ‘1000’ (Fig. 7a),
respectively. This is believed to be because of the obvious semantical similarities exist between these numbers (Fig. 2a).
Table 1
Classification accuracy of LpDPL and InDPL [36] with Chinese handwritten database under three types of cross-validations, i.e., conventional, within-subject,
and between-subjects.

Method Conventional Within-subject Between-subjects

LpDPL 98:53% 98:56% 98:07%
InDPL [36] 93:00% 93:13% 97:53%

Fig. 6. Classification performance for three methods, i.e., LpDPL, DPL, and kNN, under three cross-validation settings.
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Fig. 7. Confusion matrix illustration as a result of applying LpDPL on different handwritten database under conventional cross-validation. The diagonal
values indicate the number of correctly classified images, and off-diagonal elements represent incorrectly classified images corresponding to each target
class.
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From Fig. 7c, the lowest performance with English language (USPS database) is reported for numbers ‘3’ and ’8’ due to their
similarities.

We also compared the performance of the proposed method with existing dictionary leaning methods such as SRC [16],
DLSI (dictionary learning with structure incoherence) [40], LCKSVD1 [26], LCKSVD2 [26], JDDRDL (joint discriminative
dimensionality reduction and dictionary learning) [41], CRC (collaborative representation classification) [42], ESRC (ex-
tended sparse representation classification) [43], SSRC (superposed sparse representation classification) [44] and DPL (with
the proposed HOG features) [17], under conventional cross validation setting. In this analysis, we used all four databases, i.e.,
two independent Chinese handwritten, one Arabic and one English sets. Also, four well-known evaluation metrics, i.e., Accu-
racy, recall, Precision and F1Score, are calculated and reported in this table. As seen from the results in Table 2, LpDPL out-
performs other well-established techniques. Overall, the highest recorded performance was obtained for LpDPL with all
databases. Among these methods, ESRC and SSRC have shown comparable performance with LpDPL. This reveals the effec-
tiveness of the proposed hierarchy, i.e., the combination of the added penalty terms and HOG features.

As reviewed in Section I, HOG features have recently shown to be suitable descriptors for Arabic words too [6]. Therefore,
we expected the proposed method performs well with Arabic handwritten numbers as it relies on HOG features for dic-
tionary learning and classification. The results given in Table 2 support the effectiveness of using HOG features for dictionary
learning with Arabic handwritten database. For further comparison, we also applied a convolutional neural network (CNN),
named LeNet-5, to Arabic numbers MADBase [45]. It has scored 88% classification accuracy; this indicates that our method
outperform the latter in a large margin (�10%). Among all other methods listed in Table 2, LpDPL achieved higher accuracy.
Our experimental results on different languages confirm the generalisation of the proposed method for handwritten data-
bases in other languages. Another interesting finding that can be revealed by comparing results of Tables 1 and 2 is that
HOG features has more tangible effects on Chinese numbers (than Arabic) which have complicated textures involving many
line orientations. It is also noteworthy to mention that no significant changes in parameters were required for applying
LpDPL to Arabic numbers.

To further evaluate system performance, we applied the proposed method on an English handwritten numbers database.
According to the obtained results with USPS database, represented in Table 2, the proposed method outperforms existing
relevant techniques where highest average accuracy of 97.17 % has achieved for LpDPL.
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Table 2
Comparison of classification performance for popular dictionary learning methods on two Chinese handwritten databases; simplified and traditional, English
(USPS), Arabic (MADBase), Persian (HODA), and Urdu (MNIST-MIX) databases.

Simplified database (Chinese) Traditional database (Chinese)

Method Accuracy Recall Precision F1Score Accuracy Recall Precision F1Score

SRC [16] 90:97% 90:93% 91:71% 91:32% 87:47% 87:47% 88:26% 87:86%
DLSI [40] 97:80% 97:79% 97:85% 97:82% 97:58% 97:58% 97:60% 97:59%
LCKSVD1 [25] 95:23% 95:23% 95:31% 95:26% 90:65% 90:65% 90:59% 90:62%
LCKSVD2 [26] 95:24% 95:23% 92:31% 95:27% 90:67% 90:67% 90:60% 90:62%
DPL [17] 98:36% 98:36% 98:37% 98:37% 97:82% 97:82% 97:84% 97:83%
JDDRDL [41] 97:19% 97:20% 97:25% 97:22% 95:08% 95:08% 95:08% 95:08%
CRC [42] 96:06% 96:06% 96:09% 96:08% 95:74% 95:74% 95:76% 95:75%
ESRC [43] 98:86% 98:86% 98:86% 98:86% 97:80% 97:80% 97:79% 97:80%
SSRC [44] 98:39% 98:39% 98:41% 98:40% 96:47% 96:47% 96:47% 96:47%
LpDPL 98:54% 98:54% 98:55% 98:55% 97:82% 97:82% 97:86% 97:84%

USPS (English) MADBase (Arabic)

Method Accuracy Recall Precision F1Score Accuracy Recall Precision F1Score

SRC [16] 81:81% 81:80% 82:72% 82:26% 90:97% 90:93% 91:71% 91:32%
DLSI [40] 96:10% 96:10% 96:14% 96:12% 97:62% 97:62% 97:64% 97:63%
LCKSVD1 [25] 91:25% 91:25% 91:27% 91:26% 96:49% 96:49% 96:48% 96:49%
LCKSVD2 [26] 91:10% 91:10% 91:11% 91:10% 96:49% 96:49% 96:48% 96:49%
DPL [17] 96:68% 96:68% 96:72% 96:70% 98:21% 98:21% 98:22% 98:22%
JDDRDL [41] 95:36% 95:36% 95:54% 95:45% 97:85% 97:85% 95:86% 95:86%
CRC [42] 95:60% 95:60% 95:65% 95:63% 97:20% 97:20% 97:24% 97:22%
ESRC [43] 93:75% 93:75% 93:81% 93:78% 97:60% 97:60% 97:60% 97:60%
SSRC [44] 97:24% 97:24% 97:24% 97:24% 98:00% 98:00% 98:08% 98:04%
LpDPL 97:17% 97:16% 97:17% 97:17% 98:71% 98:71% 98:71% 98:71%

HODA (Persian) MNIST-MIX (Urdu)

Method Accuracy Recall Precision F1Score Accuracy Recall Precision F1Score

SRC [16] 82:69% 82:69% 84:35% 83:51% 85:32% 83:33% 83:65% 83:48%
DLSI [40] 97:30% 97:30% 97:42% 97:36% 89:03% 88:94% 88:93% 88:93%
LSKSVD1 [25] 91:15% 91:15% 91:62% 91:39% 87:48% 88:45% 89:05% 88:75%
LSKSVD2 [26] 91:15% 91:15% 91:58% 91:37% 87:74% 88:04% 88:42% 88:22%
DPL [17] 98:46% 98:46% 98:46% 98:46% 95:23% 95:45% 95:23% 95:34%
JDDRDL [41] 95:38% 95:38% 95:46% 95:42% 92:87% 92:36% 91:28% 91:81%
CRC [42] 93:08% 93:08% 93:50% 93:29% 90:52% 90:52% 91:13% 90:82%
ESRC [43] 98:08% 98:08% 98:20% 98:13% 94:34% 95:16% 95:61% 95:38%
SSRC [44] 98:84% 98:84% 98:91% 98:88% 96:23% 96:23% 96:96% 96:59%
LpDPL 98:85% 98:85% 98:89% 98:87% 98:87% 98:04% 98:11% 98:08%
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4.2. LpDPL versus deep learning

While the core mechanism of two learning-based methods, i.e., dictionary learning and deep learning, are different, it is
worthwhile to analyse and compare their performances. Since deep learning is also widely used for classification problems,
we considered several well-framed deep learning models, namely, MobileNetV2 [46], GoogLeNet [47], and SqueezeNet [48],
to run with our Chinese handwritten database. The main limitation of using deep learning is the need for large training data-
set. To maximise the performance of these models and present a fair comparison, we deployed fully-optimised versions of
these platforms which were already trained on the large well-known ImageNet database [49]. Furthermore, a CNN-based
method, with majority of parameters derived from the convolutional layer and the fully connected layer, was tested [50].
The results showed that the average classification accuracy when deep learning models were used are comparable with that
of LpDPL (98:53%). More specifically, the following classification accuracies have been achieved: MobileNetV2 (98:55%),
GoogleNet (99:83%), SqueezeNet (98:53%), and CNN (97:95%). Among these results, GoogleNet has recorded the highest
accuracy. Moreover, the obtained results reveal that the proposed approach is more robust in recognising complex Chinese
handwritten characters, e.g., number 9 and number 12; in comparison with the deep learning models. This can be observed
by inspecting the confusion matrices provided in Fig. 8 for these three deep neural networks.

4.3. Optimisation performance

We investigate the optimisation performance of the proposed LpDPL method by reporting the results of two relevant
experiments. Fig. 9a depicts the recorded trend in the value of objective function in (6) through 10 epochs. The proposed
algorithm converges very fast while presenting a monotonic reduction rate in the value of objective function. One important
parameter that affects the optimisation performance is the dictionary size m (number of columns in the synthesis dictionary
D). To explore its impact, an analysis was conducted using the same experimental environment, however, with different val-
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Fig. 8. The confusion matrices obtained after applying three different deep learning models on Chinese handwritten database.
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ues of m. The recorded classification accuracy for conventional 10-fold cross-validation using both DPL and LpDPL methods is
illustrated in Fig. 9b. This figure shows that the highest and most consistent accuracy with LpDPL is achieved at around
m ¼ 340. Therefore, we adopt this value for dictionary size through all of the experiments in this study.
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Fig. 9. Optimisation performance; A) value of objective function in Eq. (6) versus varying number of epochs; B) Variation in classification accuracy for DPL
and LpDPL methods versus different dictionary sizes.

Fig. 10. Classification accuracy (%) of LpDPL versus variations of the parameters (a) k1, (b) k2, (c) k3, (d) c.
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According to DPL [17], the major computational burden in training phase of DPL is on updating the analysis dictionary P
which requires an expensive matrix conversion via (10). In the proposed LpDPL algorithm, the same conditions hold, except

an extra penalty term with the solution through (11). The added complexity due to this new term is O m3 þ Qmkþ Qm2
� �

which is in the same order as computing other parameters, i.e., D and A, and hence negligible. In the testing phase, the clas-
sification using LpDPL and DPL has the same complexity O Qmkð Þ.
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Fig. 11. Classification accuracy (%) of LpDPL versus variations of the parameters (a) k1; k2, (b) k1; k3, (c) k1; c, (d) k2; k3, (e) c; k2, and (f) c; k3.
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4.4. Parameter sensitivity study

In order to assess the robustness of the proposed method, we recorded the recognition performance of LpDPL over the
variations of key parameters in Algorithm 1, i.e., k1; k2; k3 and c. For this purpose, at each experiment, we fine-tuned the value

of one parameter in the range 10�3;103
h i

, while keeping other parameters fixed. Fig. 10 and Fig. 11 demonstrate the recog-
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nition accuracy (%) of LpDPL versus variations of these parameters on simplified Chinese handwritten numbers. In particular,
we have the following observations from these figures: When k1 > 10�1, LpDPL slightly suffers a performance drop due to
overweighting the discrimination factor. Interestingly, increasing contribution of class labels information (i.e. increasing
k2) improves the performance. However, the performance drops for very large values, i.e., k2 > 102. LpDPL experiences a sig-
nificant performance degradation when k3 > 102. We believe this is due to significant reduction of the contributions of dis-
crimination power and class-label information when such a large k2 is selected. We also observe that when c > 100, LpDPL’s
performance starts to drop (Fig. 11d). This is because c is purposed to avoid zero division in (10). Therefore, a large c leads to
an inaccurate dictionary P. Overall, we observed that LpDPL is not sensitive to the parameters’ variations within a broad
range.

4.5. On real-time implementation

In this study, all the simulations related to dictionary learning were conducted and implemented in MATLAB (R2018a)
environment on a machine equipped with core i7 processor with speed 2.20 GHz, and 8 GB of RAM. However, the deep learn-
ing experiments were implemented on a different machine equipped with Ubuntu 18.04 and MATLAB (R2019b) software,
equipped with NVIDIA GeForce RTX 2080 Ti.

Dictionary learning step, which is regraded as an offline process, is solely implemented during the training phase. How-
ever, the feature extraction and classification steps are performed during both training (off-line) and the testing (in real-
time) phases. The average computation times of performing these steps were very small, i.e., 0:64ms (for feature extraction)
and 0:24ms (for classification) per image, without relying on costly GPUs. This allows the proposed method to run using
lightweight and low-cost embedded hardware, such as a Raspberry PI, whereby this is not practical for deep learning-
based methods.
5. Conclusions

In this paper, a novel dictionary learning technique, termed labeled projective dictionary pair learning, was proposed. The
core advantage of using synthesis-analysis dictionary pair is to omit intractable ‘0=‘1-norm calculation for sparse represen-
tation. More importantly, by utilising HOG features and adding available class labels as penalty term into the dictionary
learning hierarchy, a robust pattern recognition model was achieved. We tested the proposed system with two Chinese
handwritten numbers databases in addition to Arabic and English handwritten databases. The numerical results and com-
parison analyses with state-of-the-art methods verified robust classification performance of the proposed method. It is note-
worthy to mention that no major differences in the model are required when different languages are used. When a new
language is to be trained with LpDPL, dictionary size (n) and number of dictionaries (Q) should be adjusted depending on
the images size and number of classes, respectively. The class labels (H) should also be selected according to the associated
training set. Furthermore, as Figs. 10 and 11 suggest, the algorithm performs robustly against changes of various parameters.
Hence, no significant variations are required with different languages. Unlike deep neural network models, our proposed
technique runs locally on general-purpose computers without need for cloud servers or GPU devices; two standard resources
which are essential to run deep learning models. Well-framed deep models used in study, i.e., SqueezeNet, GoogLeNet, and
MobileNetV2, comprises of 1.24, 3.5, and 7 million tuned parameters, respectively, while the proposed method only requires
8 parameters to be fine-tuned.

There are three major research streams that we aim to pursue in the future: 1) combining deep learning and dictionary
learning (particularly with DPL due to using a pair of synthesis-analysis dictionaries) for the purpose of handwritten num-
bers recognition, 2) exploring and extending the applicability of the proposed approach for a generic handwritten character
recognition problem, and 3) optimising the implementation of the proposed method towards a real-time recognition system
convertible to a mobile app.
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