Research Repository

Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state

Suggett, DJ and Moore, CM and Hickman, AE and Geider, RJ (2009) 'Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state.' Marine Ecology Progress Series, 376. pp. 1-19. ISSN 0171-8630

Full text not available from this repository.


Introduction of active chlorophyll a fluorescence protocols, in particular fast repetition rate (FRR) fluorometry, to oceanography and limnology 15 yr ago has enabled rapid assessment of photosynthetic physiology in situ. The FRR protocol generates simultaneous measurements of Photosystem II (PSII) effective absorption cross sections (termed σPSII) and photochemical efficiency (termed Fv/Fm). Both Fv/F m and σPSII measurements have been utilised to examine the effects of physiological stress on the photosynthetic apparatus of phytoplankton in an ever growing number of fluorescence-based studies. However, it is now becoming clearer that in situ values of Fv/Fm and σPSII also contain taxonomic information. Here, we present a synthesis of previously unpublished and published data, which show that F v/Fm and σPSII vary principally with broad-scale changes in community structure. These patterns observed in situ conform to trends observed in laboratory-grown cultures of a range of phytoplankton taxa. The magnitudes of variability in Fv/Fm and σPSII driven by changes in phytoplankton community structure often exceed that induced by nutrient limitation (as determined from controlled nutrient addition experiments). An exception to this general trend occurs in high-nutrient, low-chlorophyll a (HNLC) regions, where strong phenotypic changes in Fv/Fm and σPSII have been repeatedly demonstrated on relief of iron limitation. Overall, FRR fluorescence measurements of both Fv/Fm and σPSII in natural populations represent a combination of the taxonomic 'signature' (values of Fv/Fm and σPSII determined by the taxa present) within the phytoplankton community that is further modified according to the (photo-) physiological status. As such, fluorescence-based investigations of mixed populations must account for potential variations in phytoplankton community structure before interpretations of physiological status are made. © Inter-Research 2009.

Item Type: Article
Uncontrolled Keywords: Fast repetition rate; Fluorescence; PSII; Effective absorption cross section; Photochemical efficiency; Phytoplankton; Nutrient stress
Subjects: G Geography. Anthropology. Recreation > GC Oceanography
Q Science > QH Natural history > QH301 Biology
Divisions: Faculty of Science and Health
Faculty of Science and Health > Life Sciences, School of
SWORD Depositor: Elements
Depositing User: Elements
Date Deposited: 04 Aug 2011 10:18
Last Modified: 15 Jan 2022 00:26

Actions (login required)

View Item View Item