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Abstract—Effective recognition of communication jamming is
of vital importance in improving wireless communication sys-
tem’s anti-jamming capability. Motivated by the major challenges
that the jamming data sets in wireless communication system
are often small and the recognition performance may be poor,
we introduce a novel jamming recognition method based on
distributed few-shot learning in this paper. Our proposed method
employs a distributed recognition architecture to achieve the
global optimization of multiple sub-networks by federated learn-
ing. It also introduces a dense block structure in the sub-network
structure to improve network information flow by the feature
multiplexing and configuration bypass to improve resistance to
over-fitting. Our key idea is to first obtain the time-frequency
diagram, fractional Fourier transform and constellation diagram
of the communication jamming signal as the model-agnostic
meta-learning network input, and then train the distributed
network through federated learning for jamming recognition.
Simulation results show that our proposed method leads to
excellent recognition performance with a small data set.

Index Terms—Jamming recognition, federated learning, few-
shot learning, model-agnostic meta-learning.

I. INTRODUCTION

W IRELESS communication systems need to deal with
increasingly complex jamming environments [1]-[4].

Reliable transmission may be difficult to attain when a variety
of jamming signals are present. Anti-jamming is possible
by first carrying out jamming recognition which aims to
understand and distinguish different types of communication
jamming. The question at the centre is how to identify the
jamming type accurately and rapidly [5]. Towards this end,
machine learning has been widely adopted in recent years
for efficient jamming recognition [6]. In particular, distributed
machine learning based jamming recognition has attracted
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growing research interest owing to its salient advantages, such
as accommodation of massive nodes, wide-range distribution
jamming, reliability and robustness of recognition performance
[7]-[9].

Jamming recognition in wireless communication mainly
focuses on the selection of feature parameters and the design of
classifiers. From the perspective of efficient machine learning,
it is essential to reduce the computational complexity in feature
calculation. Various characteristics of communication jamming
in both time- and frequency- domains were analyzed in [10],
upon which two classifiers of neural network and decision
tree were designed to realize jamming recognition. In [11], a
broadband communication jamming recognition method based
on graphs and neural networks was proposed. Short-time
Fourier transform modulus were used as the network input,
whereas a double hidden layer network was used to achieve
jamming recognition. Convolutional neural networks (CNN)
for the classification of wireless modulation signals was pro-
posed in [12] to automatically extract signal features, leading
to improved recognition performance than traditional feature
extraction methods. Afterwards, a variety of deep learning
networks for modulation recognition have been proposed in
[13]. With the aid of real CNN and complex CNN, real residual
network and complex residual network, four novel jamming
recognition methods based on deep learning network have
been developed in [14].

Despite a rich body of literature in machine learning based
jamming recognition, it is often difficult to obtain a large
amount of data for training in industrial signal processing. A
promising direction in recent years is to use few-shot learning
(FSL), which contains only a limited number of samples
with supervised information. To list a few, a single-sample
learning method based on the generative adversarial net (GAN)
has been developed in [15] to achieve efficient distribution
of the sampled data. For regular expression, the residual
paired network was used to measure the similarity between
sample pairs. Furthermore, a single-sample learning method
was proposed in [16] by using siamese network [17]- [18].
Two CNNs were used to extract the input image features, map
them to a one-dimensional vector, judge the distance between
the sample pairs through the distance function, and then select
the sample label with the smallest distance as the classification
results. In [19], a matching network has been adopted in the
long and short-term memory (LSTM) network to map samples
to a low-dimensional feature space, after which the similarity
of the labeled samples is calculated.

That said, to the best of our knowledge, very few works are
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known on the applications of FSL in jamming recognition. It
is noted that the goal of FSL is to learn a model that can
quickly adapt to new tasks with only a small amount of data
and the number of training iterations. To this end, model-
agnostic meta-learning (MAML) has attracted significant re-
search attention owing to its strength on small-sample learning
problems, in which the training and testing of meta-learning
use small-sample tasks as the basic unit, and only small-
sample data is used in the training and testing phases. By ex-
ploiting small samples of unlabeled data and high-dimensional
characteristics of jamming signals in wireless communication,
we propose a novel jamming recognition framework based on
distributed FSL networks. The main contributions of this work
are summarized as follows:

• To eliminate the redundancy between related information
in unsupervised methods, we introduce an intelligent
representation of the smooth pseudo Wegener-willie dis-
tribution (SPWVD), fractional Fourier transform (FRFT)
and constellation diagram for efficient processing of com-
munication jamming signals. Such a representation not
only has the least cross-term interference, high resolution
and high classification accuracy for signals at different
times or frequencies, but can also substantially suppress
the effect of signal noise.

• Through our proposed sub-network model based on
MAML, we show that the features of jamming signals
can be extracted automatically to overcome the disad-
vantages of traditional manual feature extraction. Our
proposed multiple agents combine a small amount of new
information with their prior knowledge to attain enhanced
generalization performance and improved recognition ac-
curacy, and at the same time, avoid overfitting to new
data.

• We employ federated learning for learning and recog-
nition in distributed networks, aiming to improve the
reliability of communication interference identification.
On the premise of meeting data privacy and security
requirements, we show that sub-networks can use their
own data more efficiently and accurately.

• Compared with existing methods, our numerical experi-
ments indicate that the proposed structure can automat-
ically achieve FSL. Moreover, the communication jam-
ming signals recognition performance can be improved
without affecting the wireless transmission performance.

The remainder of this paper is organized as follows. First,
we introduce the system model in Section II. In Section
III, we present an intelligent representation of communica-
tion jamming signals. We propose intelligent recognition of
communication jamming based on sub-network learning and
federated learning in Section IV and Section V, respectively.
Simulation studies are given in Section VI. Finally, Section
VII concludes the whole paper.

II. SYSTEM MODEL

In this paper, we consider a system model containing a
transmission network with multiple sub-nodes. Each node
has an independent sub-network model and jamming sample

Sub node1

Fusion Center

Sub node 2 Sub node N

Fig. 1. System model of communication jamming recognition in distributed
network.

database, as shown in Fig. 1. In the training process, a central
node is selected from all edge nodes as the fusion center, who
is responsible for parameter fusion and output coordination to
complete federated learning. Each sub-node is equipped with
the same sub-network model based on MAML. The parameters
of all sub-networks are {w1, w2, . . . , wN}, the loss of sub-
networks is {loss (w1) , loss (w2) , . . . , loss (wN )}, the global
parameter at the center node is w, and the global loss function
is loss (w). In this system model, a distributed network based
on federated learning is used to achieve global optimization
and obtain the output model. In the each sub-node, the received
signal y(t) can be expressed as

y(t) = x(t) + J (t) (1)

where x(t) denotes the useful signal and J(t) represents com-
munication jamming. Communication jamming is a class of
electronic jamming that hinders the information transmission
in wireless communication [20]. Based on the jamming effect,
communication jamming may be categorized as suppressive
jamming and deceptive jamming. Suppressive jamming is to
send a noise-like energy signal to occupy the entire frequency
spectrum of the target signal at all times. Deceptive jamming
means that one party successfully pretends to be the other
party and obtains illegal benefits by forging data or signals.

Typical suppressive jamming includes single-tone jamming,
multi-tone jamming, noise frequency modulation (FM) jam-
ming, noise band jamming, linear FM (LFM) jamming, etc.
Single-tone jamming is the simplest form of jamming, which
can be expressed as

J (t) = A exp (j (2πfct+ φ)) , (2)

where A represents the jamming signal amplitude, fc stands
for the carrier frequency, and φ denotes the initial phase.
Multi-tone jamming is composed of multiple single-tone jam-
ming, i.e.,

J (t) =
M∑

m=1

Am exp (j (2πfmt+ φm)), (3)
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where Am,fm and φm denote the amplitude, carrier frequency
and initial phase of the first single-tone jamming, respectively.
Noise band jamming causes the noise energy to be distributed
within a certain bandwidth, which is expressed as

J (t) = Un (t) exp (j (2πfct+ φ)) , (4)

where Un (t) is the white noise with zero mean and variance
σ2
n. The amplitude of noise FM jamming remains unchanged,

and its frequency changes due to modulation noise. Therefore,
FM jamming can be expressed as

J (t) = A exp

(
j

(
2πfct+ kfm

∫ t

0

ξ (t′) dt′
))

, (5)

where kfm is the frequency modulation coefficient, ξ (t)
denotes the modulated Gaussian noise with zero mean and
the variance σ2

n of 1. The linear frequency modulation (LFM)
jamming refers to jamming with continuous linear changes in
frequency over time, which can be expressed as

J (t) = A exp
[
j
(
2πfct+ πkt2 + φ

)]
, (6)

where k the modulation slope.
For a direct-spread communication system (DS-SS), when

the jamming signal consists of the useful signal’s spreading
code and carrier frequency, the jamming signal may seriously
affect the operation of the communication system. However, it
is very difficult to obtain the spreading code to accurately syn-
chronize the signal. DS-SS signal carrier modulation usually
adopts phase shift keying modulation. Because this modulation
can suppress the carrier of the transmitted signal, it is difficult
for the jamming to achieve carrier frequency targeted jamming,
while the sender can use more power to transmit information,
which can achieve the highest transmission efficiency within a
certain bandwidth. Random binary code modulation jamming
uses a pseudo-random code that has certain correlation with
the adopted spreading code, which can also achieve good
jamming effects when the synchronization is good. In this
work, we are interested in the tackling of BPSK jamming
which can be expressed as

J (t) = s (t) cos (2πfct+ φ) , (7)

where s (t) = A
∑
n
ang (t− nTs). A stands for the jamming

amplitude, an ∈ {−1, 1}, g (t) the raised cosine roll-off
pulse whose pulse width is Ts. When the symbol rate is
less than the true symbol rate, BPSK jamming reduces to
BPSK narrowband jamming (BPSK-NBJ) or BPSK broadband
jamming (BPSK-WBJ).

III. INTELLIGENT REPRESENTATION OF COMMUNICATION
JAMMING SIGNALS

When one uses the jamming signal sequence directly as
inputs, a large number of samples may be required for training.
To avoid overfitting, feature extraction of the jamming signal
is often carried out in order to highlight the difference between
jamming signals, accelerate network convergence and improve
recognition performance. For intelligent representation, the
time-frequency diagram [21], FRFT [22] and constellation

Fig. 2. Time-frequency diagram of communication jamming signals.

diagram of the jamming signal are extracted and then su-
perimposed into a three-channel data set as network input.
The constellation diagram is mainly used to identify deceptive
jamming and suppressive jamming, the fractional Fourier
transform is mainly used to identify LFM jamming, whilst the
time-frequency diagram is mainly used to identify suppressive
jamming.

Wegener-willie distribution (WVD) is a Cohen-like bilinear
transformation that can describe the energy distribution of a
signal on the time-frequency plane. Since WVD is a quadratic
nonlinear transformation, serious cross-term jamming may
occur. The cross-term jamming can be suppressed by the
windowing method to smooth the frequency domain, so that
the smooth pseudo WVD (SPWVD) can be obtained. Mathe-
matically, this can be expressed as

SPWJ
(t, f) =

∫ +∞
−∞ h (τ) ∗[∫ +∞

−∞ g (u− τ)J
(
t+ τ

2

)
J∗ (t− τ

2

)
e−j2πfτdu

]
dτ

,

(8)
where SPWJ (t, f) denotes the SPWVD of the jamming signal,
h(τ) the time window function, g(u − τ) stands for the
frequency window function, and J(t) the jamming signal. The
SPWVD of single-tone jamming is shown in Fig. 2 (a), which
consists of a horizontal line. Multi-tone jamming is composed
of multiple horizontal lines as shown in Fig. 2 (b). Noise
FM jamming is shown in Fig. 2 (c), which was a 1 MHz
bandwidth, and the energy distribution in the bandwidth is
rather messy. The LFM jamming is shown in Fig. 2 (d), where
the frequency changes linearly with time, as a diagonal line
in the time-frequency diagram.

FRFT may be regarded as a representation method on the
fractional Fourier domain formed by the signal in the time-
frequency plane and the coordinate axis is rotated counter-
clockwise at any angle around the origin. The representation
of the signal in the fractional Fourier domain combines the
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Fig. 3. FRFT diagram of communication jamming signals.

information of the signal in the time domain and the fre-
quency domain at the same time, so it is considered to be
a time-frequency analysis method and has a good focus on
linear frequency modulation signal. FRFT maps the energy
distribution of a signal on the ordinary time-frequency plane
to the distribution on the FRFT plane. The FRFT plane co-
ordinate axis is obtained by rotating the time-frequency plane
counterclockwise by a certain angle. The FRFT calculation
method of the jamming signal J(t) is

Xp (u) = F p [J ] (u) =

∫ +∞

−∞
J (t)Kp (t, u)dt, (9)

where F p is the FRFT operator and the kernel function
Kp (t, u) is

Kp (t, u) = {Aαe
j(t2 cotα/2−ut cscα+u2 cotα/2)

α ̸= nπ/δ (t− u) , α = 2nπ/δ (t+ u) , α = (2n+ 1)π
(10)

Here, Aα =
√
(1− j cotα) /2π, α = pπ/2 represents

the rotation angle of the time-frequency plane. FRFT is the
expansion of a signal on a set of orthogonal chirp bases. With
the help of FRFT to focus on the linear frequency sweep
signal, the linear frequency sweep jamming signal can be well
identified from other jamming signals. When extracting this
feature, we need to continuously adjust the value p to obtain
the fractional transformation matrix of the jamming signal as

XJ = [Xp1
(u) , · · ·Xpi

(u) · · ·XpN
(u)] , (11)

where Xpi (u) represents the fractional Fourier transform of
order pi. The FRFT of LFM jamming is shown in Fig. 3. From
Fig. 3 (b), it can be seen that the energy of the LFM jamming
gathers into a very high peak at p=0.31, while other jamming
signals FRFT is shown in Fig. 3 (a), the energy distribution is
relatively stray. Therefore, FRFT can identify LFM jamming
from other jamming signals.

The constellation diagram contains rich modulation infor-
mation, which is mainly used to identify suppressed jamming
signals from deceptive jamming signals. The random binary

code jamming constellation diagram is shown in Fig. 4 (a),
whereas the constellation diagram of single-tone jamming is
shown in Fig. 4 (b). The signal points are symmetrically
scattered around the unit circle, and the constellation diagrams
of multi-tone jamming and part of the frequency band noise
jamming are more spurious, which are shown in Fig. 4 (c) and
Fig. 4 (d). From Fig. 4, it can be seen that the signal points are
scattered around the center of the circle. Therefore, deceptive
jamming can be identified from suppressive jamming by using
the constellation diagram.

According to the above intelligent representation, the jam-
ming signal features can be expressed as

γ = [SPWJ
(t, f), XJ (u) , SJ ] (12)

where SPWJ (t, f) represents the SPWVD transform, XJ (u)
stands for the FRFT, and SJ is the constellation diagram of
the jamming signal.

IV. SUB-NETWORK BASED ON MODEL-AGNOSTIC
META-LEARNING

A. DenseNet Network Structure

Densely Connected Convolutional Networks (DenseNet) has
a major advantage of overcoming stereotypical thinking of
widening and deepening the network. The use of feature
multiplexing and configuration bypass greatly reduces the
scale of network parameters, helping reduce the chance of
gradient disappearance for faster network convergence, and
has a good regularization effect and anti-overfitting ability.

DenseNet is mainly composed of a dense block and a
transition layer which is shown in Fig. 5. Assume that xi

is the output of the i-th layer in the dense block, and Hi(·)
stands for the nonlinear transformation function of the i-th
layer, which consists of batch normalization (BN), activation
function ReLU, and convolutional layer Conv. The different
network layers inside the dense block adopt the form of dense
connection, i.e., the input of the i-th layer is a stack of the
output of the i-1-th layer and the outputs of all layers in
between. Then, xi can be expressed as

xi = Hi ([x0, x1, · · · , xi−1]) , (13)

where [·] represents the splicing of feature maps. The number
of channels output of Hi(·) is a fixed value k, and then the
i-th layer network will have k0 + k × (i − 1) feature maps,
k0 is the number of channels in the input layer, and k denotes
growth rate, which is generally smaller.

The transition layer is used to connect two dense blocks,
whose function is to adjust the size of the feature map. The
transition layer is generally composed of a 1×1 convolutional
layer and a pooling layer with a step size of 2. The number of
intelligent representations output by the transition layer is θm,
where m is the number of intelligent representations output by
the previous dense block of the transition layer, and 0 < θ ≤ 1
is the compression factor. When θ is less than 1, the transition
layer can reduce the combination of network parameters and
features.

Drawing on the idea of dense blocks in DenseNet, this paper
introduces a network model including multiple dense blocks
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Fig. 4. Constellation diagram of communication jamming signals.

Fig. 5. Network structure based on DenseNet.

and transition layers for communication jamming recognition.
The proposed structure is shown in Fig. 6, for a network of
128× 128× 3 jamming signal feature map. The feature map
first passes through a 7 × 7 convolutional layer with a step
size of 2, and a 4×4 maximum pooling layer with a step size
of 2. Then the output enters the first dense block. The 3 × 3
convolutional layers with a step size of 1 are used in the dense
block to keep the feature map size unchanged, and the growth
rate of the dense block is 8. The number of convolution kernels
used by the convolution layer is 8. Then, it passes through
three transition layers and two dense blocks to reach the fully
connected layer, and finally uses the normalized exponential
function softmax to obtain the recognition results.

B. Model-agnostic Meta-learning

When the number of training samples is small, traditional
network training methods are no longer adaptable, which may
lead to serious overfitting. MAML is an excellent model-
independent meta-learning method that can solve the problem
of overfitting [23]- [25]. The purpose of using MAML is
to get a better initialization parameter of the communication
jamming recognition model, and to complete the training of
the next task using this parameter. Meanwhile, the samples
in each task are divided into support set and query set. The
training process is shown in Fig. 7.

MAML firstly initializes the main network parameters ϕ0,
then selects some samples from the collected communication
jamming samples to form the training task m, and copies the
main network parameters to get the unique network θ̂m of the
m task. MAML uses the support set of task m to optimize

Task m

b c

a

d
e

h

f
gTask n

Fig. 6. MAML training flowchart.

the unique network of the task, get query set’s loss lm
(
θ̂m

)
based on θ̂m, and calculate the gradient of lm(θ̂m) to θ̂m.
Using the gradient and the learning rate of the main network
αmeta, it updates the main network parameters to obtain ϕ1

as

ϕ1 = ϕ0 − αmeta∇lm
(
θ̂m

)
. (14)

Finally, it selects the next training task to perform the same
update operation on the main network.

From the above, the training steps of MAML network are
summarized in Algorithm 1.

Algorithm 1 Sub-network training based on MAML
1: Select N training tasks and several test tasks from the

communication jamming samples;
2: Build the main network for communication jamming

recognition, and initialize the parameter ϕ0;
3: Iterative training of communication jamming recognition

network;
4: Select training task m, copy the main network and its

parameters θ̂m = θ0;
5: Use the support set of task m to optimize and update θ̂m

once based on the learning rate αm of task m;
6: Use the query set of the m task to calculate the loss

lm(θ̂m), and calculate the gradient of lm(θ̂m) to θ̂m for
θ̂m optimization;

7: Use the gradient obtained in Step 4 to multiply the
learning rate αmeta of the main network to update θ0 to
obtain ϕ1;

8: Select a new training task and repeat Step 4 to Step 7;
9: Use the support set of the test task to tune the recognition

network, and use the query set of the test task to evaluate
the performance of the recognition network.

The network uses the cross entropy function to calculate the
loss, which can be expressed as

lossi(w) =

N∑
i=1

yi ln (ŷi) , (15)

where N represents the length of the network output vector,
yi stands for the actual value, and ŷi denotes the predicted
value.
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V. DISTRIBUTED LEARNING BASED ON FEDERATED
LEARNING

Due to the sensitivity of communication jamming data,
jamming samples may be collected and stored in multiple loca-
tions. Jamming samples cannot be directly uploaded through
the network for network training. Due to this, a distributed
network is constructed to train local samples by federated
learning to achieve global optimization without exchanging
samples [26]- [28].

A. Global Loss Function

Federated learning needs to train the local sub-network, and
all sub-networks use the local data set to perform one or more
rounds of updated network parameters wi, which are sent to
the central node through the communication network. The
central node aggregates the received sub-network parameters
through certain aggregation rule to obtain the global parameter
w, then the global parameters are sent to each sub-network to
update training. Federated learning can obtain the global loss
function at the central node by

loss (w) =

N∑
i=1

lossi (w)×Di

N∑
i=1

Di

, (16)

where lossi(w) denotes the loss of the i-th sub-network on the
global parameters using the local sample set, Di the size of
the local sample set, and N the total number of sub-networks.
The global loss function may not be obtained directly at the
central node, and the transmission network needs to be used
to send the loss of each sub-network to the central node.

Different from conventional training, MAML uses the query
set to update the main network parameters with the gradient
of the current task sub-network, instead of directly using
the gradient of the support set to update. This means that
MAML pays more attention to recognizing the potential of the
network, rather than its performance based on local samples.
Task-driven training method of MAML gives the recognition
network the ability to acquire prior knowledge, and focuses on
the characteristics of the recognition network’s potential for
unknown jamming recognition, which maximizes the training
benefits of each jamming signal sample, and is more in line
with the difficulties faced by few-shot learning problem.

B. Distributed Gradient Descent

The ultimate goal of federated learning is to find a global
network parameter w∗ that minimizes the global loss function
loss(w) by

w∗ = argmin loss (w) . (17)

We use the distributed gradient descent method [29]- [31] to
minimize the global loss function, and set the local model
parameter of each sub-node to wi(t), where t = 0, 1, 2, . . . , N
represents the number of training iterations. When t = 0, all
sub-network parameters are initialized to the same parameter
wi(0). When t > 0, wi(t) is calculated based on the param-
eters of the previous iteration and the local loss function. In

Algorithm 2 Distributed network training based on federated
learning

1: Construct a distributed network for jamming recognition,
establish multiple sub-networks Submodeli, where i rep-
resents the i-th sub-network, and initialize wf , wi(0) and
w̃i(0) as the same parameters;

2: For the i-th network, use (18) to perform a partial update
to obtain wi(t), where t represents the number of partial
updates;

3: Judge whether the current partial update times is an integer
multiple of τ . If yes, proceed to Step 4 and Step 5;
otherwise proceed to Step 6;

4: Send all sub-networks to the central node, perform global
aggregation and send global parameters to the sub-nodes
w̃i(t) = w(t);

5: Obtain all loss functions and use (19) to update the output
network parameters;

6: Update all w̃i(t) for all sub-nodes, and let w̃i(t) = wi(t);

7: Repeat from Step 2 and Step 6 until the training is over
and get the final global network parameters wf .

this way, the process of gradient descent on the local data set
and parameters is locally updated. The central node performs
global aggregation after several local updates as

w (t) =

∑N
i=1 Diwi (t)

D
. (18)

In the each training iteration, the sub-network will perform
a local update, and then a global aggregation step may be
performed. w̃i(t) represents the parameters of the sub-network
at node i after possible global aggregation. In the t iteration,
if there is no global aggregation, then w̃i(t) = wi(t); if global
aggregation is performed, then w̃i(t) ̸= wi(t). For the i-th
sub-network, the local update rule is

wi(t) = w̃i(t− 1)− η∇lossi(w̃i(t− 1)). (19)

After obtaining the global loss function, the central node uses
the global loss function as a criterion to judge the current
global parameters, and updates the output parameters as

wf = argminw∈{wf ,w(t)}loss (w) . (20)

Federated learning repeats the above procedures continu-
ously to protect the privacy of the sub-network samples [32]-
[34]. Assuming that the sub-node network performs a global
aggregation after τ -step local update, the final output model
parameter is wf , the training steps of federated learning are
summarized in Algorithm 2.

In conclusion, the main procedures of the proposed com-
munication jamming intelligent recognition method based on
few-shot learning is summarized in Algorithm 3.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we conduct simulation to validate the per-
formance of the proposed intelligent recognition scheme. In
our simulation, we employed Python for network construc-
tion and training. The training environment is Python 3.6,
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Algorithm 3 Communication jamming intelligent recognition
based on few-shot learning

1: Use (11) to intelligently representation the received com-
munication jamming signal, and extract its time-frequency
distribution, FRFT and constellation diagram as network
input;

2: Build a distributed network and a sub-network model
based on model-agnostic meta-learning;

3: Train the distributed network by using federated learning,
and use (19) to obtain the global optimal output model
wf to complete the jamming type recognition.

the operating system is Linux, the computing framework is
Pytorch, and GPU (GeForce GTX 3080TI) has been used
for training acceleration. Seven types communication jamming
signals, including single-tone jamming, multi-tone jamming,
noise band jamming, noise FM jamming, LFM jamming,
BPSK narrowband jamming, and BPSK wideband jamming
were considered [35]- [36]. Under the assumption of perfect
sampling synchronization, the sampling frequency is 10 MHz
and the carrier frequency and initial phase of each type of
jamming are randomly set. The number of tones of multi-tone
jamming is 4, the bandwidth factor of Noise band jamming
is randomly set from 0.1 to 0.7 (the bandwidth factor is
the ratio of the jamming bandwidth to the bandwidth of the
receiver), frequency modulation coefficient of FM jamming is
randomly set from 0.125 Hz/s to 0.933 Hz/s, the modulation
slope of LFM jamming is set randomly among 1.953 9.766
Hz/s and 0.35 roll-off coefficient is used for BPSK jamming.
Each jamming signal was generated with 100 samples at
each jamming-to-noise ratio (JNR) as training data, and 400
samples were generated as test data. In this paper, the JNR is
defined as [37]

GJNR = 10 lg(PJ/PN ), (21)

where PJ is the jamming signal power, PN stands for the
noise power.

A. Recognition Performance Based on Sub-network Learning

The dense block growth rate is set to 8. The parameters
are initialized with “kaiming". 1 The MAML main network
learning rate is 0.0002. The subtask learning rate is 0.04.
The batch size is set to 105. The performance of various
jamming recognition is shown in Fig. 8, which shows that
the recognition rate of various types of jamming increases
with the JNR. When the JNR is 2 dB, the recognition rate of
various types of jamming reaches more than 90%. When the
JNR is increased to 4 dB, the recognition rate of various types
of jamming is close to 100%. Thus, the MAML-based sub-
network model proposed in this paper can effectively identify
various types of communication jamming under small sample
conditions.

In order to evaluate the influence of the dense block growth
rate on the recognition performance of the sub-network, the

1Pytorch framework uses the kaiming normal distribution to initialize the
convolutional layer parameters by default.

growth rates are set to 2, 4, 8, 16, and 32 while other
parameters remain unchanged. As shown in Fig. 9, the average
recognition rate improves with the increase of the growth
rate. The performances of the growth rates of 4, 8, and 16
are close to each other, which has a significant performance
improvement over the growth rate of 2. The performance of
the growth rate of 8 is the best. When the growth rate increases
to 32, there is certain performance improvement at low JNR,
but significant performance degradation occurs at higher JNR.
Thus, increasing the growth rate of dense blocks can improve
network performance to certain extent, but an excessively high
growth rate will cause over-fitting problem.

To examine the influence of frequency offset changes on
the recognition performance, the frequency offset is set to 10
kHz, 20 kHz, 40 kHz, respectively. In Fig. 10, it is easy to see
that the jamming recognition accuracy curve under different
frequency offsets increases with JNR. The accuracy rate rises
to 90% when the JNR is 1 dB, and the accuracy rate is close to
100% when JNR is 3 dB. From the above, we can see that our
proposed identification method is robust to frequency offset.

To study the influence of Rayleigh fading channels on
the recognition performance, the jamming signal channel is
set as Rayleigh fading channel [38], [39] and the Doppler
frequencies are set to 10 Hz, 20 Hz, and 30 Hz, respectively.
From Fig. 11, we can see that the jamming recognition
accuracy curve over Rayleigh fading channels increases with
the JNR increase. When JNR is 1dB, the accuracy rate rises
to 80%. When the JNR is 4 dB, the accuracy rate is close to
90%, so the proposed method is effective over Rayleigh fading
channels.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT COMMUNICATION JAMMING

RECOGNITION METHODS.

Methods -4dB 0dB 4dB 8dB 12dB
Proposed 84.64% 97.21% 99.25% 99.29% 99.18%
[12] 83.54% 86.74% 95.46% 95.84% 96.30%
[14] 84.00% 97.10% 98.43% 98.14% 99.14%

In order to verify the influence of the number of training
samples on the recognition performance, the JNR is 10dB and
the number of training samples for each type of jamming sig-
nal is set to 25, 50, 100, 200, 400, respectively. A comparative
experiment is performed on the MAML-based sub-network
model, the recognition performance of the proposed method,
[12] and [14] are shown in Fig. 12. One can observe that
the performances of the three recognition methods all increase
with the increase of the number of training samples. When the
sample size is 25, [14] is best, the performance of the proposed
method is slightly lower than that of [14], and the performance
of [12] is the worst. When the number of training samples
is 100 or 200, the performance of the proposed method is
better than [12] and [14]. When the sample size is 400, the
performance of the three methods is relatively close.

Next, we compare recognition performances of different
recognition methods, the proposed method in this paper is
compared with the methods in [12] and [14]. The commu-
nication jamming types are single-tone jamming, multi-tone
jamming, LFM jamming, partial frequency band jamming,
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Fig. 7. Recognition performance of sub-network model based on MAML.
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Fig. 8. Recognition performance of sub-network with different growth rates.

and noise FM jamming. The number of training samples
for each signal under each JNR is 400, and the comparison
results are shown in Table I. As can be seen from the Tab.
1, The recognition performance of the proposed method is
higher than that in [12] and [14] at low JNR. At high
JNR, the recognition performance of the proposed method
is higher than that of the other two methods. The proposed
method has better performance under different JNRs. In the
feature extraction section, the computational complexity of
the proposed method and [14] are both O(N2 log2 N), and
the computational complexity of [12] is O(N log2 N). The
computational complexity of the proposed method is higher
than that of [12], but the recognition performance is better
than that of [12]. Under the same GPU hardware acceleration
conditions, the offline training time of the MAML-based sub-
network model is 913.87s, the offline training time of [12] is
1009.51s, and the offline training time of [14] is 3656.42s.
From the above, we can be seen that the training time of the
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Fig. 9. Recognition performance of sub-network with different frequency
offsets.
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Fig. 10. Recognition performance of sub-network over Rayleigh fading
channels.

sub-network model based on MAML is slightly lower than
that of [12], and the training time of [14] is much higher
than that of other methods. Overall, the proposed method has
better recognition performance than [12] and [14] under small
samples condition.

B. Recognition Performance Based on Distributed Learning

The number of sub-nodes is 3. The global aggregation
interval is 4. The recognition performance of the distributed
network is presented in Fig. 13. As shown in Fig. 13, we can
observe that the recognition performance of various jamming
signals improves with JNR. When JNR=0 dB, the recognition
performance reaches more than 90%, and the recognition
performance is close to 100% when JNR=4 dB. The recogni-
tion performance of BPSK narrowband jamming and BPSK
wideband jamming is close, the performance of noise FM
jamming is poor at low JNR, and the performance of single-



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 9

25 50 100 200 400
JNR(dB)

0

10

20

30

40

50

60

70

80

90

100
A

v
er

ag
e 

re
co

g
n

it
io

n
 r

at
e(

1
0

0
%

)

Subnet Model based on MAML
[14]
[12]

Fig. 11. Recognition performance comparison based on sub-network with
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Fig. 12. Recognition performance based on distributed network.

tone jamming recognition is the best. We can see that the
distributed network can indirectly learn the samples of all sub-
training sets, and could effectively recognize communication
jamming signals. Compared with the recognition performance
of sub-network in Fig. 8, the distributed network not only
improves the recognition performance, but also enhances the
stability of the network model.

In order to evaluate the recognition performance of the
number of sub-networks based on distributed network, the
number of sub-nodes is set to 1, 2, 3, and 4 for simulations, and
the results are shown in Fig. 14. From Fig. 14, it can be found
that when the number of sub-networks is 2, the performance is
improved to compared with only one sub-network. When the
number of sub-networks is 3 and 4, the performance is very
close, and the performance is slightly better than the number
is 2. From the above, the increase number of sub-networks
will improve the recognition performance to a certain extent,
but the performance improvement is limited when the number
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Fig. 13. Recognition performance of distributed network with the number
of sub-networks.
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Fig. 14. Recognition performance of distributed network with different
sample imbalance.

of sub-networks increases to a certain number.
To study the impact of the imbalance in the number of

jamming samples on the network performance, the number
of child nodes is 3, and six of the seven jamming types
are not replaced as missing types. Each node selects two
missing types, and sets the number of missing type training
samples to 20%, 40%, 60%, and 80% of the non-missing
categories, respectively. The simulation results are shown in
Fig. 15. In the case of unbalanced samples, the recognition
performance increases with the JNR, and recognition rate is
reaching 90% when JNR=2 dB. When the missing type is only
20% of the normal sample size, the recognition performance
is significantly lower than others. When the sample size is
40%, the recognition performance is slightly lower than the
performance when the sample size is 60% and 80%. From Fig.
15, we can see that the distributed network has the ability to
adapt to the imbalance of the sample.
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VII. CONCLUSIONS

To carry out FSL of communication jamming signals in
distributed networks, we have proposed an intelligent recog-
nition framework in this paper. Through intelligent represen-
tation of communication jamming signals, we have obtained
smooth pseudo Wegener-willie distribution, fractional Fourier
transform and constellation diagram. We have introduced a
sub-network model based on model-independent meta-learning
and a distributed network training method based on federated
learning. Finally, extensive simulation studies have been car-
ried out to verify the effectiveness of the proposed framework.
Simulation results have shown that our proposed framework
exhibits an excellent recognition performance for FSL based
distributed networks, whilst significantly outperforming the
existing methods. In addition, our proposed method is robust
and effective with the different frequency offsets and fading
channels.
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