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Abstract—In radar sensing and communications, designing
Doppler resilient sequences (DRSs) with low ambiguity function
for delay over the entire signal duration and Doppler shift
over the entire signal bandwidth is an extremely difficult task.
However, in practice, the Doppler frequency range is normally
much smaller than the bandwidth of the transmitted signal, and it
is relatively easy to attain quasi-synchronization for delays far less
than the entire signal duration. Motivated by this observation, we
propose a new concept called low ambiguity zone (LAZ) which is
a small area of the corresponding ambiguity function of interest
defined by the certain Doppler frequency and delay. Such an
LAZ will reduce to a zero ambiguity zone (ZAZ) if the maximum
ambiguity values of interest are zero. In this paper, we derive a
set of theoretical bounds on periodic LAZ/ZAZ of unimodular
DRSs with and without spectral constraints, which include the
existing bounds on periodic global ambiguity function as special
cases. These bounds may be used as theoretical design guidelines
to measure the optimality of sequences against Doppler effect. We
then introduce four optimal constructions of DRSs with respect
to the derived ambiguity lower bounds based on some algebraic
tools such as characters over finite field and cyclic difference sets.

Index Terms—Radar Sensing and Communications, Ambiguity
Function, Low Ambiguity Zone, Theoretical Bounds, Doppler
Resilience, Spectral Constraints, High Mobility Communications,
Optimal Sequences.

I. INTRODUCTION

A. Background

In recent years, integrated sensing and communication
(ISAC) systems capable of simultaneously performing
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sensing and communication tasks while sharing the same
hardware and bandwidth resources have attracted increasing
research attention [1]. A typical application scenario of
ISAC is for connected autonomous vehicles where multiple
sensors and communication devices are jointly deployed to
measure/track/exchange certain key system information such
as speed, vibration, approaching target distance. These ISAC
systems enjoy mutually enhanced radar and communication
functions compared to a single radar or communication
system. Specifically, rapid and high-resolution radar sensing
result can be attained by utilizing some important information
(e.g., geographical locations, carrier frequency and bandwidth,
moving speeds and routes) acquired by the communication
module. Also, the communication quality can be improved, for
example, by adjusting the antenna directions for more accurate
beamforming or by better compensating the Doppler estimated
from the radar sensing result.

That said, legacy sensing and wireless communication
systems have been studied as separate research entities. A
sensing system often operates in an environment which is
corrupted by noise and may consist of a variety of clutters.
Thus, two primary goals of any sensing system are to attain
enhanced parameter estimation and target resolution. The
parameter estimation of a target includes information related
to its size, motion, and location [2]. The ability of one or more
sensors to distinguish different targets that are very close is
characterized by target resolution. On the other hand, wireless
communication systems are required to provide certain
minimum quality-of-services (QoSs) to meet the user demands
in various applications [3]. Thanks to the advancement in
digital circuit technology, most of the system functions of
integrated radar sensing and communication applications can
be realized using adaptive and configurable software systems
while keeping the same RF front-end architecture [4]. From
the waveform design point of view, there are four main types
of ISAC schemes [1], [5]: 1) coexistence schemes, which
utilize independent waveforms for each functionality (sensing
or communication); 2) communications waveform-based
approaches, where communication signals such as orthogonal
frequency-division multiplexing (OFDM) and orthogonal
time-frequency-space (OTFS) are used for sensing; 3) radar
waveform-based schemes, in which digital messages are
embedded into radar waveforms; and 4) joint waveform design
approaches, which achieve the joint sensing-communication
system by deploying dedicated dual-function waveforms. This
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Fig. 1: A diagram of an ISAC system.

paper is mainly concerned with the radar waveform-based
ISAC scheme in which the waveforms exhibiting strong
resilience to Doppler are needed.

By generating appropriate waveforms, one may change
radar waveforms from pulse to pulse, and employ the
waveform itself as a means of embedding communication
symbols [5], [6], [7], e.g., code shift-keying (CSK) where each
waveform corresponds to a code representing a communication
symbol. Implementing such a CSK scheme requires careful
waveform design to ensure that their auto- and cross-
ambiguity function (AF) should be as small as possible, so
as to attain high-resolution radar sensing performance. From
the communications perspective, one needs to deal with the
notorious Doppler effect incurred by high mobility especially
in high frequency bands [8]. Thus, it is of strong interest
to study the fundamental limits and systematic constructions
of sequences which are robust to Doppler. Such sequences
having low AF values are called Doppler-resilient sequences
(DRSs) [9]. Throughout this work, sometimes, they may also
be referred to as the ISAC waveforms.

B. Motivation

As illustrated in Figure 1, both sensing and communication
systems are integrated in a single hardware platform, with
the same waveform and the same transmitter. Consider
a joint sensing-communication platform equipped with a
number of transmit antennas arranged as a uniform linear
array. The sensing receiver employs an array of receive
antennas with an arbitrary linear configuration, while the
communication receivers are assumed to be located in the
direction known to the transmitter. The information data
rate is mainly determined by the radar pulse repetition
frequency (PRF), whether the system uses a phased-array or
multiple-input, multiple-output (MIMO) configuration, and the
permissible incremental changes in radar waveform structure
and bandwidth. Note that an AF represents the time response
of a filter matched to a signal when the signal is received
with a delay and a Doppler shift [10]. A good AF may be
represented by a spike that peaks at the origin and extremely
small values in other delay-Doppler areas. A waveform with
such AF property gives rise to excellent parameter estimation

and favourable resolution between neighboring targets in
the region. However, designing DRSs with such globally
low ambiguity function is an extremely difficult task. In
many practical applications [9], [11], [12], [13], the Doppler
frequency range can be much smaller than the bandwidth of
the transmitted signal, and it may not be necessary to consider
the whole signal duration. As shown in Figure 1, the three
targets can be distinguished effectively if the AF has very
low sidelobes in the region of interest. Such a small region
with low/zero ambiguity function values is called low/zero
ambiguity zone (LAZ/ZAZ) in this paper.

The concept of LAZ/ZAZ, explicitly quantifies the local
region of interest, i.e., the low/zero ambiguity zone (as a design
parameter). To derive the related theoretical bounds with
respect to the quantified local zone and provide theoretical
design guidance to such DRSs, it is essential to understand
the the tradeoff between the sequence length, the set size,
and the maximum ambiguity function value. In the literature,
theoretical bounds and optimal constructions of sequences
with low/zero correlation properties have been extensively
investigated [14]. By contrast, the theoretical limits on AF
are much more complicated due to the two-dimensional shifts
in delay-Doppler domain. To the best of our knowledge, only
Ding et al. generalized the maximum AF lower bound in [15].
Moreover, very few works are known on DRSs meeting the
derived bound in [15]. Although there are some works on
sensing and communications such as [16], [17], [18], [19]
which mainly focus on the design, analysis and optimization
of practical ISAC systems, a comprehensive study on the
fundamental limits of ISAC waveforms is missing.

Besides, the design of ISAC waveforms needs to take into
account of the availability and contiguousness of the spectrum.
As spectrum may be underutilized most of the time, it is
likely for secondary users to reuse certain spectrum holes
in an opportunistic manner for improved spectrum utilization
efficiency [20]. Specifically, the idle spectrum resources can be
detected by spectrum sensing and then allocated to secondary
users with minimum interference to the primary ones.
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C. Contributions and Organization

The main contributions of this paper are summarized as
follows.

• To provide more signal design freedom, i.e. more
desirable sequences (waveforms) for integrated sensing
and communication systems, a new concept called
LAZ/ZAZ, corresponding to a small area of interest
defined by the maximum Doppler frequency and the
maximum delay is proposed. Further, theoretical bounds
on periodic LAZ of unimodular DRSs with respect
to the zone size of LAZ/ZAZ, the sequence length,
and the number of sequences are derived. It is shown
that the obtained bounds include the existing bounds
on periodic global ambiguity function as special cases.
The theoretical bound on LAZ/ZAZ shows that one
can improve the Doppler resistance at the expense of
appropriate delay resistance, or vice versa.

• To investigate the impact of spectral constraints, i.e.,
non-contiguous spectral bands, on sequence design,
theoretical bounds on periodic LAZ/ZAZ of unimodular
DRSs with spectral constraints are derived as well. It is
also shown that these bounds include the existing periodic
global bounds as special cases. The results indicate that
theoretical bounds on ZAZ are consistent under spectral
constraints or non-spectral constraints.

• To validate the LAZ/ZAZ concepts and the above
theoretical bounds, four systematic constructions of DRSs
with and without spectral constraints, which are optimal
with respect to the derived bounds, are presented, based
on some algebraic tools such as characters over finite field
and cyclic difference sets.

The remainder of this paper is organized as follows. A new
concept called low/zero ambiguity zone (LAZ and ZAZ) is
introduced, as shown in Section II. In Section III, we introduce
some famous correlation bound of traditional sequence and
some known DRSs. In Section IV, we aim to derive four types
of lower bounds on periodic LAZ/ZAZ of unimodular DRSs
with and without spectral constraints. These bounds are tight
in the sense that they can be achieved with equality by some
optimal DRSs, which are presented in Section V and Section
VI. Some examples and potential applications of LAZ/ZAZ
DRSs are provided in Section VII.

II. AMBIGUITY FUNCTION AND LOW/ZERO AMBIGUITY
ZONE

AF, defined as a two dimensional delay-Doppler correlation
function of the transmitting signals, plays a central role in
waveform design and performance evaluation. The mainlobe
width, sidelobe level, and ambiguity peaks of an AF have
direct impact on the range resolution, sidelobe interference,
and ambiguity characteristics.

There are two types of AF: aperiodic AF and periodic AF.
In the literature, an AF delay may range the whole signal
duration T (or full period in the case of periodic AF), and the
AF Doppler shift may span the whole signal bandwidth 1/T .
In general, the ideal aperiodic/periodic AF should exhibit a
single sharp peak at the origin (which is the nominal delay

and Doppler for that matched filter), and small values close
to zero elsewhere (thumbtack shape). However, as the volume
underneath an AF square is a constant [10], if the AF value
is lowered in certain area of the delay-Doppler plane, it may
rise somewhere else. To cope with such scenarios and to more
efficiently design the desired signals, this paper proposes a new
concept called LAZ, corresponding to a small area of interest
defined by the maximum Doppler frequency and the maximum
delay (instrumented range).

With the aid of massive MIMO, the communication rate
of ISAC system can be improved greatly [5]. Let us assume
that the received signal model at receiver n due to the signal
transmitted from transmitter m is

yn,m(t) = αn,msm (t− τn,m) ej2πfn,mt + zn,m(t), (1)

where τn,m, fn,m and αn,m represent the time delay, Doppler
shift and reflection coefficients, respectively, corresponding to
the path between the m-th transmitter and the n-th receiver,
and zn,m(t) denotes the noise. After passing through the
matched filter bank, the core of signal processing is the
calculation of AF. For a pair of DRSs (a,b) of length N ,
the discrete aperiodic cross AF is defined as follows:

ÃF a,b(τ, ν) =



N−1−τ∑
t=0

a(t)b∗(t+ τ)ej2πνt/N ,

0 ≤ τ ≤ N − 1;
N−1∑
t=−τ

a(t)b∗(t+ τ)ej2πνt/N ,

1−N ≤ τ < 0;

0, |τ | ≥ N.
(2)

Specially, the aperiodic cross AF shall become periodic cross
AF when the summation variable t = 0 to N−1 (modulo N ),
that is,

AFa,b(τ, ν) =

N−1∑
t=0

a(t)b∗(t+ τ)ej2πνt/N , (3)

where τ, ν are called time- and Doppler- shifts, respectively,
|τ |, |ν| ∈ ZN , j =

√
−1 and the summation t + τ is

modulo N . If a = b, we call it auto-ambiguity function
denoted by AFa(τ, ν). This article will focus on investigating
periodic AF with the aid of certain algebraic tools. The
maximum ambiguity magnitude of DRS family S is defined
as θmax = max{θA, θC}, where the maximal auto-ambiguity
magnitude

θA = max
{
|AFa(τ, ν)| : a ∈ S, (0, 0) 6= (|τ |, |ν|) ∈ ZN × ZN

}
,

(4)
and the maximal cross-ambiguity magnitude

θC = max
{
|AFa,b(τ, ν)| : a 6= b ∈ S, 0 ≤ |τ | < N, 0 ≤ |ν| < N

}
.

(5)
The ambiguity magnitude of DRS family S of size M over a region

Π ⊆ (−N,N)× (−N,N) can be defined as

FΠ(S) = max
{
|AFa,b(τ, ν)| : a,b ∈ S and (τ, ν) ∈ Π,

(0, 0) 6= (τ, ν) ∈ Π if a = b
}
.

(6)

Such a DRS set with maximum ambiguity magnitude θmax = FΠ(S)
over region Π is denoted by (N,M, θmax, |Π|)-S, where |Π| is the
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ZAAZ

global area

Fig. 2: Illustration of a ZAAZ of one sequence.

ZCAZ

global area

Fig. 3: Illustration of a ZCAZ between two sequences.

area of Π. In particular, we sometimes drop off Π and denote the DRS
set by (N,M, θmax)-S if we consider global ambiguity function with
Π = (−N,N)× (−N,N). It is noted that conventional correlation
function is a special case of the ambiguity function when ν = 0.
In wireless communications and radar sensing, low ambiguity is
expected at any given delay and Doppler shift in order to detect
and identify targets and achieve information transmission between
devices. However, designing such codes with low ambiguity function
for delay over whole signal duration and Doppler shift over whole
signal bandwidth is an extremely difficult task. Obviously finding
DRSs with LAZ characteristics is a relatively feasible task. In fact,
one can even design DRSs having periodic zero ambiguity zone. Now
we give a formal definition of periodic low/zero ambiguity zone.

Definition 1: Let S be a set consisting of M distinct sequences of
period N , for a small nonnegative real number θ, the periodic low
ambiguity zone with maximum ambiguity magnitude θ for sequence
set S is defined as

Πθ(S) =
{

Π : FΠ(S) ≤ θ
}
. (7)

In practice, the LAZ is required as large as possible. With this goal
in mind, define

Πmax =
{

Π ∈ Πθ(S) : |Π| = max{|A| : A ∈ Πθ(S)}
}
, (8)

such a sequence set is denoted by (N,M, θ,Πmax) DRS set.
Specially, if θ = 0, that corresponds to the periodic zero ambiguity
zone. Similarly, aperiodic LAZ and (N,M, θ̃,Πmax) aperiodic DRS
set can be defined.

An ideal ambiguity function may be represented by a spike that
peaks at the origin and takes zero everywhere. Such an ambiguity
function provides perfect resolution between neighboring targets
regardless of how close they are to each other. An ideal ambiguity
function does not exist due to the bound to be derived in this paper.
Yet, similar to the existing sequences with zero correlation zone
(ZCZ) [21], it is possible to construct a set of sequences which
possess zero auto-ambiguity zone (ZAAZ) and zero cross-ambiguity
zone (ZCAZ), as illustrated in Fig. 2 and Fig. 3.

III. A REVIEW OF CELEBRATED CORRELATION BOUNDS
AND DRSS

A conventional correlation is a one-dimensional function of
time-shifts. Let us define the (periodic) cross-correlation function
between sequences a = [a(0), a(1), · · · , a(N − 1)] and b =
[b(0), b(1), · · · , b(N − 1)] with period N as

Ra,b(τ) =

N−1∑
t=0

a(t)b∗(t+ τ), (9)

where a and b are complex unit sequences, and t+ τ is calculated
over modulo N . If a = b, the cross-correlation function of a and b
reduces to the auto-correlation function of a, denoted by Ra(τ). Let
S be a set consisting of M distinct complex unit sequences of period
N . Then the maximal auto-correlation magnitude of S is defined as

λA = max{|Ra(τ)| : a ∈ S, 0 < |τ | < N}. (10)

Similarly, the maximal cross-correlation magnitude of S is defined
as

λC = max{|Ra,b(τ)| : a 6= b ∈ S, 0 ≤ |τ | < N}. (11)

Moreover, the maximal correlation magnitude of S is defined as

λmax = max{λA, λC}. (12)

The set S is called a complex unimodular (N,M, λmax) sequence
family of period N with the family size M and the maximum
correlation λmax. In [22], Welch developed a lower bound on λmax

given by

λmax ≥ N
√

M − 1

NM − 1
. (13)

In 1979, Sarwate [23] established a trade-off of λA and λC , i.e.,

N − 1

N(M − 1)
·
(
λ2
A

N

)
+

(
λ2
C

N

)
≥ 1. (14)

These bounds are important guidelines for conventional sequence
design in which Doppler is not a major concern. A number of optimal
conventional sequence sets with respect to these bounds have been
reported in the literature (see [24], [25], [26], [27] and references
therein). Based on the Welch bound, Tang and Fan derived the
following set size upper bound of zero correlation zone sequences
which are useful in quasi-synchronous code-division multiple-access
(QS-CDMA) systems: MZcz ≤ N, where

Zcz = max
{
T : Ra,b(τ) = 0 for 0 < |τ | < T or τ = 0

and a 6= b, ∀ a,b ∈ S
}
.

(15)

So far, many families of ZCZ sequence sets have been reported in
the literature [28], [29], [30], [31].

It is noted that traditional sequence design generally assumes the
availability of a contiguous spectral band, meaning that the sequence
energy can be allocated to all the carriers of such a spectral band.
Such a design paradigm may not be able to carry on anymore due to
the increasingly congested spectrum. Recently, significant research
attention has been paid on sequence design over non-contiguous
spectrum bands. Liu et al. developed in [20] a series of periodic and
aperiodic-correlation lower bounds for spectral constrained sequences
(SCSs) by carrying out convex optimization in the frequency domain.
Specifically, consider Ci = [Ci(0), Ci(1), . . . , Ci(N − 1)] which is
the frequency domain dual of an SCS with energy N , i.e., |Ci(f)|2 =
0, if f ∈ Ω, where Ω ⊆ {0, 1, . . . , N − 1} is called the spectral
constraint set which consists of all the forbidden carrier indices.
For a frequency-domain DRS dual set C = {C0,C1, · · · ,CM−1},
we assume |Ω| = N − L, where L denotes the number of all the
admissible carriers over which active power transmission are allowed.
The maximum periodic correlation magnitude of an (N,M, λmax)
SCS family S satisfies the following lower bound1

λmax ≥ N

√
N(M − 1) +N − L

L(NM − 1)
. (16)

1This is essentially (44) of [20].
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The above bound reduces to the well-known Welch bound when the
number of forbidden carriers is set to zero, i.e., L = N . In 2013,
Ding et al. generalized the Welch bound for DRS sets [15]. Formally,
for any (N,M, θmax) DRS set S, one has

θmax ≥ N
√

NM − 1

N2M − 1
. (17)

The study of DRSs has been attracting increasing research
attention in recent years. Ding et al. proposed a class of sequences
which asymptotically meets the Welch bound for DRSs in [15].
With the aid of additive character and multiplicative character over
finite field, Wang and Gong constructed several families of polyphase
sequences having low ambiguity amplitudes [32], [33], [34]. Schmidt
provided a direct proof for the Wang-Gong construction by the Weil
bound of hybrid character sums [35]. Using the theory of finite-unit
norm tight frames, Benedetto and Donatelli computed the ambiguity
amplitudes of the Frank-Zadoff-Chu sequences in [36]. In addition,
there are many researches to shape local or global ambiguity function
by optimization algorithm in the literature ([37], [38], [39] and
references therein).

Whilst each of the above DRSs is designed with the availability of
a contiguous spectral band, we are also concerned with DRSs which
are subject to certain spectral hole constraints (SHSs). In modern
communication and radar systems operating in congested white
space, an SHS often occurs when certain non-contiguous carriers
are not allowed for active power allocation. A sequence satisfying
an SHS is called a spectrally-constrained sequence (SCS). In [40],
correlation lower bounds and constructions of SCSs are studied in the
context of non-contiguous orthogonal frequency division multiplexing
(OFDM) systems. These bounds are extended and generalized by Liu
et al. to single- and multi- channel SCSs in [20]. Moreover, two
classes of optimal unimodular SCSs whose spectral hole positions
are cyclic difference sets are proposed. Recently, a new optimal
SCS set with comb-like spectral hole positions is developed in [41].
Popovic constructed a family of SCSs with flexible parameters based
on modulatable constant-amplitude zero-autocorrelation (CAZAC)
sequences [42]. Despite these extensive research attempts, SCSs
which exhibit Doppler resilience have not been reported, to the best
of our knowledge.

IV. BOUNDS ON PERIODIC LAZ/ZAZ OF UNIMODULAR
DRS SETS

A. Lower Bound of DRSs with LAZ/ZAZ
Unimodular DRSs, in which each sequence is polyphase consisting

of complex-valued elements with absolute value of one, are highly
desirable in many communication systems for maximum power
transmission efficiency. Before the context of the derivations of the
main theorem, we present below a lemma to show some properties of
ambiguity function for unimodular DRS family. Proofs of all lemmas
are presented in the appendix.

Lemma 1: For any unimodular DRS u, we have

|AFu(0, ν)| = 0, for ν 6= 0. (18)

Now we present our main theorem and a simple derivation by
forming a “fat” matrix which consists of all the possible time- and
Doppler- shifted versions of sequences. Such a derivation sheds some
light for obtaining the other bounds in this paper.

Theorem 1: (Main Theorem) For any (N,M, θmax, |Π|)
unimodular DRS set S, where Π = (−Zx, Zx) × (−Zy, Zy), we
have

θmax ≥
N√
Zy

√
MZxZy/N − 1

MZx − 1
. (19)

Specially, if θmax = 0, it reduces to

MZxZy ≤ N. (20)

Therefore, the area of ZAZ Πmax subjects to

|Πmax| ≤
4N

M
. (21)

Proof: Let S = {ui : 1 ≤ i ≤ M} with ui = [ui(0), ui(1),
. . . , ui(N − 1)]. Define the following matrix from the obtained
DRSs as U(Zx,Zy) =

[
U

(Zx,Zy)
1 ,U

(Zx,Zy)
2 , . . . ,U

(Zx,Zy)

M

]
, where

U
(Zx,Zy)
j =

[
U

(Zx)
j (0),U

(Zx)
j (1), . . . ,U

(Zx)
j (Zy − 1)

]
, and

U
(Zx)
j (νi) =

uj(0) uj(1)e
j2πνi
N . . .uj(Zx − 1)e

j2πνi(Zx−1)
N

uj(1)e
j2πνi
N uj(2)e

j2π2νi
N . . . uj(Zx)e

j2πνiZx
N

...
...

. . .
...

uj(N − 1)e
j2πνi(N−1)

N uj(0) . . .uj(Zx − 2)e
j2πνi(Zx−2)

N


(22)

Note that the following identity holds:

‖ UH
(Zx,Zy)U(Zx,Zy) ‖2F=‖ U(Zx,Zy)U

H
(Zx,Zy) ‖2F , (23)

where ‖ · ‖F stands for the Frobenius norm, and (·)H denotes the
transpose conjugate operator. The right-hand side term of the equation
(23) is equal to

N(MZxZy)2

+

N−1∑
l 6=m=0

∣∣∣∣∣∣
M∑
j=1

Zy−1∑
νi=0

Zx−1∑
τ=0

uj(l + τ)u∗j (m+ τ)e
j2πνi(l−m)

N

∣∣∣∣∣∣
2

.

(24)

Hence,
‖ U(Zx,Zy)U

H
(Zx,Zy) ‖2F≥ N(MZxZy)2. (25)

On the other hand, the left-hand side term of (23) can be expanded
as follows:
M∑
j=1

Zx−1∑
τ=1−Zx

Zy−1∑
ν=1−Zy

(
Zx − |τ |

)(
Zy − |ν|

) ∣∣AFuj (τ, ν)
∣∣2

+

M∑
j,k=1
j 6=k

Zx−1∑
τ=1−Zx

Zy−1∑
ν=1−Zy

(
Zx − |τ |

)(
Zy − |ν|

) ∣∣AFuj ,uk (τ, ν)
∣∣2 .
(26)

Based on Lemma 1, we have

M∑
j=1

Zy−1∑
ν=1−Zy

Zx
(
Zy − |ν|

) ∣∣AFuj (0, ν)
∣∣2

= MZxZy
∣∣AFuj (0, 0)

∣∣2 = MZxZyN
2.

(27)

Therefore, we obtain

MZxZyN
2 +MZxZy(MZxZy−Zy)θ2

max ≥ N(MZxZy)2. (28)

The result then follows.
As a special case, some known bounds can be derived from

Theorem 1, we give the following corollary to illustrate.
Corollary 1: With the same notations as before.
• When Zx = Zy = N , a lower bound of global ambiguity is

given as

θmax ≥
√
N. (29)

In addition, we can get the Sarwate bound of DRS set as follows

(N − 1)θ2
A

(MN − 1)N
+

(M − 1)θ2
C

MN − 1
≥ 1. (30)

• When Zy = 1, (4) reduces to the Tang-Fan-Matsufuji bound
for ZCZ sequences in [28].
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Remark 1: The global ambiguity function lower bound in (17) is
also a special case of Theorem 1, which can be derived from (23),
(26), (82) without the action of Lemma 1. However, (29) in Corollary
1 is strictly tighter than the lower bound in (17). Such a lower bound
has not been reported before, to the best of our knowledge. In the
next section of this paper, we will show that this lower bound is tight
in the sense that one can construct an infinite family of sequences
meeting the equality of (29).

B. Lower Bound for SCSs with LAZ/ZAZ

We aim to derive a lower bound of SCSs with LAZ/ZAZ in this
subsection. Firstly, we present the ambiguity function in frequency
domain based on the symmetric discrete Fourier transform, i.e.,

A(f) =
1√
N

N−1∑
t=0

a(t)e−j2πft/N ,

a(t) =
1√
N

N−1∑
f=0

A(f)ej2πft/N ,

(31)

where A denotes the frequency domain dual sequence of a in (3).
Similarly, we define B for the sequence b. Therefore, we have

AFa,b(τ, ν) =

N−1∑
f=0

A(f − ν)B∗(f)e−j2πfτ/N , (32)

where |τ |, |ν| ∈ ZN . Let us consider the frequency domain dual
sequence Cj = [Cj(0), . . . , Cj(N − 1)] of a SCS cj with L ≤ N
admissible carriers. That is,

|Cj(f)|2 =

{
N
L
, f 6∈ Ω;

0, otherwise.
(33)

From now on, by substituting Cj for uj , we will analyze ambiguity
function in the frequency domain with the technique in the proof
of Theorem 1. Unlike the aforementioned cases, the derivation of
lower bound of SCSs with LAZ is more complex. This is because
the right-hand side term of (23) is hard to determine, and we only
have

‖ U(Zx,Zy)U
H
(Zx,Zy) ‖2F≥

N−1∑
f=0

 M∑
j=1

Zx

Zy−1∑
ν=0

|Cj(ν + f)|2
2

.

(34)

Based on the above analysis, we present a lower bound for SCSs
with LAZ as follows.

Theorem 2: For any (N,M, θmax, |Π|) SCS set S, where Π =
(−Zx, Zx)× (−Zy, Zy), we have

θ2
max ≥

N(MZxZy −N)

MZxZy − 1
. (35)

Specially, if θmax = 0, it reduces to

MZxZy ≤ N. (36)

Therefore, the area of ZAZ Πmax also subjects to

|Πmax| ≤
4N

M
. (37)

Proof: Based on Cauchy-Schwarz inequality and (34), we have

‖ U(Zx,Zy)U
H
(Zx,Zy) ‖2F≥

1

N
·N

N−1∑
f=0

 M∑
j=1

Zx

Zy−1∑
ν=0

|Cj(ν + f)|2
2

≥ 1

N

N−1∑
f=0

M∑
j=1

Zx

Zy−1∑
ν=0

|Cj(ν + f)|2
2

=
1

N

 M∑
j=1

Zx

Zy−1∑
ν=0

N−1∑
f=0

|Cj(ν + f)|2
2

= N(MZxZy)2.
(38)

It is similar with the proof of Theorem 1, based on (23) and (26),
we have

MZxZyN
2 +MZxZy(MZxZy − 1)θ2

max ≥ N(MZxZy)2. (39)

Hence,

θ2
max ≥

N(MZxZy −N)

MZxZy − 1
. (40)

Remark 2: As far as we know, [40] is the only known work which
considered the lower bound of SCS with LCZ. Specifically, it may
be seen as a special case of our derived bound in Theorem 2. By
setting Zy = 1, (34) becomes

N−1∑
f=0

(
M∑
j=1

Zx|Cj(f)|2
)2

=
N2(MZx)2

L
. (41)

Then, by (23) and (26), we have

MZxN
2 +MZx(MZx − 1)λ2

max ≥
N2(MZx)2

L
. (42)

Hence,

λ2
max ≥

N2(MZx − L)

L(MZx − 1)
, (43)

which is the lower bound in [40].
When Zx = Zy = N , equations (23)-(26) still hold and the

right-hand side term of (23) reduces to N(MN2)2. In this case,
the left-hand side term of (23) can be estimated by the property of
correlation for SCS family in [20] as follows

N−1∑
τ=0

∣∣AFcj ,ck (τ, 0)
∣∣2 = N

N−1∑
f=0

|Cj(f)|2 |Ck(f)|2 =
N3

L
, (44)

which is independent of j, k. Then we have

N(MN2)2 ≤MN2

(
N3

L
+N(N − 1)θ2

A

)
+M(M − 1)N2

(
N3

L
+N(N − 1)θ2

C

)
.

(45)

Hence,

θ2
max ≥

N2(L− 1)

L(N − 1)
. (46)

Associative with the lower bound of correlation for SCS family again,
we obtain the global ambiguity lower bound of SCSs as follows.

Theorem 3: For any (N,M, θmax) SCS set S, we have

θA ≥ max

{
N

√
N − L
L(N − 1)

, N

√
L− 1

L(N − 1)

}
(47)

and

θC ≥ max

{
N√
L
,N

√
L− 1

L(N − 1)

}
. (48)
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C. Lower bound of DRSs with aperiodic LAZ
Similar to the proof of Theorem 1 for periodic LAZ, we

can obtain the following lower bound of aperiodic ambiguity
function for LAZ based on (23)-(28). The key point is to
replace [uj(0), uj(1)e

j2πνi
N , · · · , uj(N − 1)e

j2πνi(N−1)
N ]T with

[uj(0), uj(1)e
j2πνi
N , . . . , uj(N−1)e

j2πνi(N−1)
N ,01×(Zx−1)]

T in the
derivation.

Theorem 4: For any (N,M, θ̃max, |Π|) unimodular DRS set S,
where Π = (−Zx, Zx)× (−Zy, Zy), we have

θ̃2
max ≥ N2 MZxZy −N − Zx + 1

(N + Zx − 1) (MZx − 1)Zy
. (49)

Remark 3: When Zy = 1, the bound of (49) is exactly the
Tang-Fan-Matsufuji bound for aperiodic correlation function derived
in [43].

V. TWO CLASSES OF OPTIMAL DOPPLER RESILIENT
SEQUENCES

A. Characters and exponential sums over finite fields
In this subsection, we present a brief introduction to the characters

sum and Weil bound which are important tools for the constructions
of our proposed DRSs. Throughout this work, we assume that p is
a prime and n is a positive integer. Let q = pn and Fq denote the
finite field with q elements. Let Tr(·) be the absolute trace function
from Fq to Fp which is defined by

Tr(x) = x+ xp + · · ·+ xp
n−1

, x ∈ Fq. (50)

An additive character of Fq is a nonzero function χ from Fq to the
set of complex numbers with absolute value of 1 such that χ(x+y) =
χ(x)χ(y) for any pair (x, y) ∈ F2

q . For each a ∈ Fq , the function

χa(x) = ωTr(ax)
p , x ∈ Fq, (51)

defines an additive character of Fq , where ωp is a primitive p-th
complex root of unity. When a = 0, χ0(x) = 1 for all x ∈ Fq ,
and is called the trivial additive character of Fq . Let us recall the
following:

Lemma 2: [44] Let χ be a nontrivial additive character of Fq and
f(x) ∈ Fq[x] with deg(f) = d > 1 and gcd(d, q) = 1. Then∣∣∣∣∣∣

∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ 6 (d− 1)
√
q. (52)

B. Optimal unimodular Doppler-resilient sequences
The concept of cubic sequence was first proposed in 1980

by Alltop to construct sequence family with good correlation
properties. Although each cubic sequence does not have zero periodic
autocorrelation sidelobes, the cubic sequence family meets the Welch
bound in terms of its maximum periodic cross-correlation function.
Formally, for a positive integer N , a cubic sequence family U is
defined as follows:

Construction 1: Define U = {uj : 0 ≤ j ≤ N − 1}, where
uj = {uj(0), uj(1), . . . , uj(N − 1)}, and

uj(t) = ωt
3+jt
N . (53)

It is proved that the maximum periodic cross correlation magnitude
of a cubic sequence family nearly achieves the Welch bound for any
prime N ≥ 5 in [25]. Next, we consider a generic cubic sequence,
which is defined as

ua,b,c(t) = ωat
3+bt2+ct

N , (54)

where a, b, c ∈ ZN with a 6= 0. We will show that each generic
cubic sequence also possesses low cross ambiguity function, if N is

an odd prime number greater than 4. To proceed, let us present the
following Lemma which is useful for our subsequent proof.

Lemma 3: Let VN (x, y) =
N−1∑
t=0

ωxt
2+yt

N , where x, y are integers,

N is an odd integer and g = gcd(x,N), then

|VN (x, y)|2 =

{
Ng; g | y,
0; otherwise.

(55)

Theorem 5: Let N = p be an odd prime. The distribution of the
cross-ambiguity function between ua1,b1,c1 and ua2,b2,c2 on family
U is given as follows,

|AF (τ, ν)| =


p; if a1 = a2, p | x, p | y,√
p; if a1 = a2, p - x,

0; if a1 = a2, p | x, p - y,
≤ 2
√
p; if a1 6= a2.

(56)

where {
x = b1 − 3a2τ − b2,
y = c1 − 3a2τ

2 − 2b2τ − c2 + ν.
(57)

Proof: Based on the definition of ambiguity function, we have

|AF (τ, ν)| =

∣∣∣∣∣
p−1∑
t=0

ω(a1−a2)t3+xt2+yt
p

∣∣∣∣∣ , (58)

where x, y are defined in (57).
If a1 = a2, this theorem holds from Lemma 3. Otherwise, let

f(t) = (a1 − a2)t3 + xt2 + yt and χ = χ1, based on Lemma 2, we
have ∣∣∣∣∣

p−1∑
t=0

ω(a1−a2)t3+xt2+yt
p

∣∣∣∣∣ ≤ 2
√
p, where a1 − a2 6= 0. (59)

The result then follows.
Theorem 6: The generic cubic sequence is optimal with respect to

the ambiguity lower bound in Corollary 1.
Proof: Let N = p, by Theorem 5 in this paper, we know

|AFua,b,c(τ, ν)| =

 p; τ = ν = 0,
0; τ = 0, ν 6= 0,√
p; otherwise.

(60)

Hence, the maximum ambiguity magnitude θmax of the cubic
sequence set satisfies θmax =

√
N. Then the result follows.

Remark 4: To the best of our knowledge, the generic cubic
sequence is the first known optimal unimodular sequence meeting the
ambiguity lower bound in equation (29). However, the lowest cross
ambiguity between distinct cubic sequences is close to 2

√
p. Whether

there exists a DRS set, with more than one sequence, reaching the
novel bound is still unknown.

C. Optimal unimodular sequences with zero ambiguity zone
We consider certain quadratic phase CAZAC sequences which

have found many applications in radar sensing, communications,
coding theory, and signal processing. Specifically, for any integer
N , a quadratic phase sequence u : ZN → C is defined by
u(t) = ωat

2+bt
N , 0 ≤ t ≤ N − 1. When N is odd, gcd(a,N) = 1

leads to the general Wiener waveform, which is a famous CAZAC
sequence.

Since the quadratic phase sequence can be seen as a special case
of the general cubic sequence if the coefficient of cubic term is zero.
The distribution of p-periodic quadratic phase sequence is at most
three-valued based on Theorem 5. For any positive integer N , the
auto-ambiguity and ZAZ of N -periodic quadratic phase sequence
are proposed subsequently.

Theorem 7: The auto-ambiguity function of sequence u with
u(t) = ωat

2+bt
N is given as follows,

|AFu(τ, ν)| =
{
N ; ν ≡ 2aτ mod N,
0; otherwise.

(61)
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Proof: The above identity follows by

|AFu(τ, ν)| =
N−1∑
t=0

ω
(ν−2aτ)t
N . (62)

Theorem 8: Let r = gcd (2a,N), if r > 1, the maximum zero
auto-ambiguity zone of quadratic phase sequences is given below:

Π =

(
−N
r
,
N

r

)
× (−r, r) , (63)

which is optimal with respect to the ambiguity lower bound in
equation (5) .

Proof: By Theorem 7, we observe the peak points of
auto-ambiguity function near the origin are (N

r
, 0) and (h, r), where

2a
r
·h ≡ 1 mod N

r
. Since r | y for any peak points (x, y), there does

not exist non-zero ambiguity function value in the region Π. Note
that the area of Π is N and this completes the proof.

Theorem 7 and Theorem 8 indicate that each quadratic phase
sequence has a zero auto-ambiguity zone. Next, we propose a
construction of quadratic phase sequence family with optimal zero
ambiguity zone.

Construction 2: With the same notations as above, let bi = ib N
M
c,

define a sequence family S with integer M as S = {si : 0 ≤ i ≤
M − 1}, where si = [si(0), si(1), · · · , si(N − 1)], is given by

si(t) = ωat
2+bit

N , 0 ≤ t ≤ N − 1. (64)

Then we obtain an (N,M, 0, 4b N
M
c) unimodular DRS set S, which

is optimal with respect to the ambiguity lower bound in equation (4)
if M | N .

Proof: By Theorem 7, we observe that the zero ambiguity zone
of S is in the area of

Π =

(
−N
r
,
N

r

)
× (−r, r) . (65)

Similar to Theorem 7, the peak points (τ, ν) of cross-ambiguity
between si and sj satisfy v ≡ 2aτ − bi + bj mod N . Hence, no
peak points exist in the area of

(
−mini6=j{bi−bj}

r
,

mini6=j{bi−bj}
r

)
×

(−r, r). If M | N , the area of Π is 4N
M

and this completes the proof.

VI. OPTIMAL SCSS WITH DOPPLER RESILIENCE

In this section, we construct an optimal SCS with respect to the
bound in Theorem 3 using cyclic difference sets. First, we give the
definition of cyclic difference set as follows.

For any subset D = {d0, d1, . . . , dn−1} ∈ ZN , the difference
function of D is defined as dD(ε) = |(ε+D)∩D|, ε ∈ ZN . Then
D is said to be an (N,n, d) cyclic difference set if and only if dD(ε)
takes on the value d for N−1 times when ε ranges over the nonzero
elements of ZN .

Construction 3: Let D be an (N,n, 1) cyclic difference set, a
frequency domain sequence C with N −n spectrum holes is defined
as

C(f) =

{ √
N
n

(−1)f ; f ∈ D,
0; otherwise.

(66)

Then the time domain dual sequence c is given as

c(t) =
1√
N

N−1∑
f=0

C(f)ej2πft/N . (67)

Lemma 4: The distribution of auto-ambiguity function value for
the time domain dual sequence c is given as follows,

|AFc(τ, ν)| =


N ; τ = 0, ν = 0,
N
√
n−1
n

; τ 6= 0, ν = 0,
N
n

; otherwise.
(68)

Theorem 9: The normalized time domain dual sequence c in
Construction 3 is an optimal SCS with respect to the bound in
Theorem 3.

Proof: Based on the property of cyclic difference set, we have
n(n − 1) = d(N − 1) = N − 1. Therefore, the lower bound of
Theorem 3 reduces to max{N

√
n−1
n

, N
n
}, and this completes the

proof.
Finally, we present a simple construction of SCS family based

on orthogonal sequence family whose maximum ambiguity value
achieves the lower bound in Theorem 2.

Construction 4: Let O = {Oi : i = 0, 1, . . . , N − 1} is
an orthogonal unimodular sequence family with period N in the
frequency domain. Let k be an integer, define a sequence family
with period kN as {Ti : i = 0, 1, . . . , N − 1}, where Ti =
[Ti(0), Ti(1), · · · , Ti(kN − 1)] is given by

Ti(f) =

{ √
kOi(

f
k

); if f ≡ 0 mod k,
0; otherwise.

(69)

Let ti be the time domain dual sequence of Ti, and T = {ti : i =
0, 1, . . . , N − 1}. Then we obtain a (kN,N, 0, 4k) Doppler-resilient
SCS set T with zero ambiguity zone, which is optimal with respect
to the bound in Theorem 2.

Proof: Based on the definition of ambiguity function, we have

|AFti,tj (τ, ν)| =

 k
N−1∑
f=0

Oi(f − ν
k

)O∗j (f)ωfτN ; k | ν,

0; otherwise.
(70)

Hence, Zy ≥ k. Since O is an orthogonal sequence family, we have

|AFti,tj (τ, 0)| = 0, for i 6= j, (71)

so Zx ≥ 1. Therefore, NZxZy ≥ kN . By recalling the Theorem 2
completes the proof.

VII. EXAMPLES AND POTENTIAL APPLICATIONS

A. Examples of optimal DRSs with periodic ZAZ and LAZ
In this section, we present four examples to illustrate our proposed

constructions.
Example 1: Let N = 32, M = 2 and 0 ≤ t ≤ 31, define

u(t) = e
j2π(2t2)

32 and v(t) = e
j2π(2t2+16t)

32 . (72)

The ambiguity function value of S = {u,v} is given in Fig.
4, where each point refers to an ambiguity peak point and zero
otherwise. The ZAZ of the sequence family is (−4, 4) × (−4, 4),
which is optimal with respect to the bound in Theorem 1.

-10 -8 -6 -4 -2 0 2 4 6 8 10

Delay

-8

-6

-4

-2

0

2

4

6

8

D
o
p
p
le

r

auto-AF

cross-AF
ZAZ=ZCAZ=(-4,4)×(-4,4)

ZAAZ=(-8,8)×(-4,4)

Fig. 4: ZAZ of the sequence family S in Example 1.

Example 2: Let p = 31 and 0 ≤ t ≤ 30, define

u(t) = e
j2πt3

31 and v(t) = e
j2π(t3+15t)

31 , (73)



9

Fig. 5: Auto-ambiguity function of sequence u in Example 2.
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Fig. 6: LAZ of sequence set S in Example 2.

then the magnitude of auto-ambiguity function value of sequence u
is the same as v, which is presented in Fig. 5.

Specifically,

|AFu(τ, ν)| =

 31; τ = ν = 0,
0; τ = 0, ν 6= 0,√

31; otherwise,
(74)

which is optimal with respect to (29) in Corollary 1. In addition,
sequences u and v form a (31, 2,

√
31, (−31, 31)×(−15, 15)) DRS

set S, the low ambiguity zone is presented in Fig. 6.
Example 3: Let D = {4, 5, 8, 10} be a (13, 4, 1) cyclic difference

set with N = 13, then

C(f) =

[
0, 0, 0, 0,

√
13

4
,−
√

13

4
, 0, 0,

√
13

4
, 0,

√
13

4
, 0, 0

]
.

(75)
The magnitude of auto-ambiguity function value of corresponding
time domain sequence c is shown in Fig. 7. Specially,

|AFc(τ, ν)| =

 13; τ = 0, ν = 0,
13
√

3/4; τ 6= 0, ν = 0,
13/4; otherwise,

(76)

which is optimal with respect to the bound in Theorem 3.
Example 4: Let N = 8,M = 2, define

T1 =
√

2 · [1, 0, 1, 0, 1, 0, 1, 0] (77)

and
T2 =

√
2 · [1, 0,−1, 0, 1, 0,−1, 0]. (78)

The magnitude of auto-ambiguity function value of corresponding
time domain sequence family T is shown in Fig. 8. The ZAZ is
(−2, 2) × (−2, 2) which is optimal with respect to the bound of
Theorem 2.

Fig. 7: Auto-ambiguity function of sequence u in Example 3.
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Fig. 8: ZAZ of the sequence family T in Example 4.

B. Examples of DRSs with aperiodic LAZ
In general, it is more difficult to study the aperiodic AF than

periodic one, and is very challenging to obtain DRSs with aperiodic
AF via algebraic and combinatorial method. However, one can obtain
DRSs with aperiodic LAZ based on some optimization algorithms as
reported in [38], [39], [45]. In the following, to illustrate the existence
of DRSs with aperiodic LAZ, we give an example based on the
heuristic algorithm in [46].

Example 5: Let s be a binary sequence of length 128 given by

s =[−+−−+ +−+−+ + + + + +−−−+−−+ +

−+−−−+ +−+−+ + + + + +−−+ +−+−
−−−+−+ + +−−+−−−−−+ +−+−++

+ +−−+−−−+−+ + +−−+−+ + + + +−
+−−+ + +−+ + +−−+−+ + + + +−−+−
+ + +−+ + + + +−−−+],

(79)

where + and − denote 1 and −1 respectively. The magnitude of
auto-ambiguity function value of s is shown in Fig. 9 and the
aperiodic LAZ is (−4, 4)× (−4, 4).

C. Potential applications
There are three types of sensing code signal design, corresponding

to three different ISAC systems [1], [47], i.e.

Fig. 9: Aperiod LAZ of the sequence s in Example 5.
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1) Communication-centric design (communications signal-based
), such as OFDM/OTFS signals, spread-spectrum signals,
Protocol-oriented design. The performance metric for such
signal design include correlation function, PAPR, SINR, etc.

2) Radar-centric design (radar signal-based), such as CW
signals, Pulsed signals, FMCW, SFCW, Phase-coded radar
signals, PTM-GCP, NS-GCP, etc. The performance metric for
radar-centric signal design is mainly AF, other metric include,
mutual information (MI), CRLB, etc.

3) Joint design normally involves solving a joint optimization
problem to balance radar and communication performance,
relying on prior channel state knowledge. In joint design, the
objective function and the constraints can use various metric and
their combinations, for communications, and for radar sensing.

The DRSs with periodic/aperiodic LAZ/ZAZ characteristics
discussed in this paper can be applied to radar-centric ISAC systems,
which can embed data bits into radar signals by modifying the radar
signal to incorporate digital modulations, or by index modulation
(IM) to send data bits via the indices of certain radar parameters
(MIMO, FAR), although the data rate in this ISAC system is normally
limited. For this radar-centric design, it is very important for the
radar sensing signal to have superior ambiguity function. In many
cases, the maximum tolerable Doppler shift is much smaller than the
sensing signal bandwidth; further, it is not necessary to consider the
maximum unambiguous distance range. Thus one may only need to
consider a small area of interests near-origin zone, i.e. the low or zero
ambiguity zone (LAZ/ZAZ). In fact, the proposed new LAZ/ZAZ
concepts, the derived theoretical bounds and the presented DRSs
with periodic LAZ/ZAZ are the main contributions of this paper. The
discussed DRSs with periodic/aperiodic LAZ/ZAZ characteristics can
find potential applications in ISAC systems under the frameworks
developed in [5], [7], [12], [13].

The first potential application is to implement the dual functions of
radar and communication by embedding information in our obtained
sequences. In [5] and [7], for example, a distinctive Gold/Kasami
sequence is sent to represent a communication symbol through code
keying, whereas the resultant pseudo-random communication signals
are used as radar waveform. It is pointed out in [5] and [7] that the
data rate and the sensing performance are determined by the size and
periodic AF of the employed sequence family, respectively. Under this
framework, the sequence family constructed in Section V can also be
used to implement the dual functions of radar and communication.
Specially, we give a simple comparison of the sequence family
U generated by Construction 1 with the Gold/Kasami sequence
families. For certain sequence length N , the sizes of Gold sequence
family, Kasami sequence family and the proposed family U are
N+1,

√
N + 1 and N−1, respectively2. Therefore, compared to the

Gold sequence family (resp., Kasami sequence family) with almost
the same length, the proposed sequence family U can support almost
the same (resp., larger) date rate when they are employed under the
framework developed in [7]. Besides, the proposed sequence family
U enjoys excellent periodic AF, thus leading to potential improved
sensing performance.

A second potential application is for enhanced preamble and
sensing waveform in future vehicular communication-radar systems,
under the frameworks developed in [12], [13]. For communications,
such sequences can be used as preambles to achieve the tasks of
synchronization and channel estimation due to their good correlation
properties. On the other hand, they can also be employed to construct
radar waveforms for improving sensing, thanks to their very low AF
sidelobe in a local region. Following this framework, our proposed
sequences can also be used to perform the dual functions of radar
and communications.

2N = 22k+1 − 1 for Gold sequence family, N = 22k − 1 for Kasami
sequence family, and N is a prime for U . Hence, we choose approximate
period for comparison.

VIII. CONCLUSION

In this paper, in order to meet very low ambiguity function
requirement within a small area of interest defined by the certain
Doppler frequency and delay, and to design the desired optimal
signals for sensing and communication systems, a new concept called
low ambiguity zone, as well as zero ambiguity zone, was proposed.
Based on the new concept, we derived four lower bounds on periodic
LAZ/ZAZ of unimodular DRSs with and without spectral constraints.
These bounds may be used as benchmarks to measure the Doppler
resilience of unimodular sequences. Also, we presented four types of
optimal DRSs with respect to a collection of the proposed bounds.
It should be noted that our ambiguity lower bounds of SCSs are
derived with the assumption that all the sequences share the identical
spectral hole constraint Ω. New ambiguity lower bounds of SCSs
may be possible when different spectral hole constraints are to be
considered. In addition, it is also interesting, although much more
difficult, to investigate aperiodic ambiguity lower bounds and the
associated optimal DRSs.

IX. APPENDIX

A. Proof of Lemma 1
If uj and uk are polyphase sequences, for arbitrary time shift τ ,

we have the ambiguity function satisfying
N−1∑
ν=0

∣∣AFuj ,uk (τ, ν)
∣∣2

=

N−1∑
ν=0

N−1∑
t=0

uj(t)u
∗
k(t+ τ)e

j2πνt
N

N−1∑
s=0

u∗j (s)uk(s+ τ)e−
j2πνs
N

=

N−1∑
t=0

N−1∑
s=0

uj(t)u
∗
k(t+ τ)u∗j (s)uk(s+ τ)

N−1∑
ν=0

e
j2πν(t−s)

N

=N

N−1∑
t=0

|uj(t)|2|uk(t+ τ)|2 = N2.

(80)

Since AFuj (0, 0) = N, we have∣∣AFuj (0, ν)
∣∣ = 0, for ν 6= 0. (81)

B. Proof of Corollary 1
If Zx = Zy = N , by denoting U(Zx,Zy) as U, we have

‖ UUH ‖2F= N(MN2)2. (82)

Based on the definition of ambiguity magnitude of DRS family and
(18), (23), (26), we have

MN4 +MN2(N2−N)θ2
A+MN2(MN2−N2)θ2

C ≥ N(MN2)2.
(83)

Hence, θmax ≥
√
N. The rest of the proof is similar to the above,

so we omit it.

C. Proof of Lemma 3
By definition

|VN (x, y)|2 =

N−1∑
t=0

ωxt
2+yt

N

N−1∑
s=0

ω−xs
2−ys

N

=

N−1∑
t=0

N−1∑
s=0

ω
(t−s)(x(t+s)+y)
N

=

N−1∑
k=0

N−1∑
s=0

ω
k(x(2s+k)+y)
N

=

N−1∑
k=0

ωxk
2+yk

N

N−1∑
s=0

ω2kxs
N .

(84)
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If N is odd, then
N−1∑
s=0

ω2kxs
N =

{
N ; N | kx,
0; otherwise. (85)

Hence, let g = gcd(x,N), we have

|VN (x, y)|2 = N
∑
N|kx

ωxk
2+yk

N = N

g−1∑
e=0

ω
yeN
g

N

= N

g−1∑
e=0

ωyeg =

{
Ng; g | y,
0; otherwise.

(86)

This completes the proof.

D. Proof of Lemma 4
By the definition of the ambiguity function in equation (26) , if

ν 6= 0, we have

|AFc(τ, ν)| =

∣∣∣∣∣∣
∑

f∈D∩D+ν

C∗(f)C(f − ν)e−j2πfτ/N

∣∣∣∣∣∣ (87)

and

|AFc(τ, 0)| = N

n

∣∣∣∣∣∣
∑
f∈D

e−j2πfτ/N

∣∣∣∣∣∣ . (88)

Since D is an (N,n, 1) cyclic difference set, we have
|D ∩ (D + v)| = 1, for v 6= 0, then |AFc(τ, ν)| = N

n
. If v = 0, we

have

|AFc(τ, 0)|2 =
N

n

∣∣∣∣∣∣
∑

f,f ′∈D

e−j2π(f−f ′)τ/N

∣∣∣∣∣∣ . (89)

Thus, we have |AFc(τ, 0)| = N
√
n−1
n

, for τ 6= 0, based on the
properties of the cyclic difference set. Then the result follows.
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