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Abstract—Cognitive radio-based Internet of Things (CR-IoT)
network provides a solution for IoT devices to efficiently utilize
spectrum resources. Spectrum sensing is a critical problem in CR-
IoT network, which has been investigated extensively based on deep
learning (DL). Despite the unique advantages of DL in spectrum
sensing, the black-box and unexplained properties of deep neural
networks may lead to many security risks. This article considers
the fusion of traditional interference methods and data poisoning
which is an attack method on the training data of a machine
learning tool. We propose a new adversarial attack for reducing
the sensing accuracy in DL-based spectrum sensing systems. We
introduce a novel design of jamming waveform whose interference
capability is reinforced by data poisoning. Simulation results show
that significant performance enhancement and higher mobility can
be achieved compared with traditional white-box attack methods.

Index Terms—Adversarial attack, data poisoning,
internet-of-things (IoTs), spectrum sensing, waveform design.

I. INTRODUCTION

A. Background

S PECTRUM is becoming increasingly scarce and congested,
and cognitive radio (CR) has emerged in recent years as

an effective technical means to intelligently perceive the elec-
tromagnetic environment for higher spectrum utilization effi-
ciency [1]. With CR, one can detect the available idle spectrum
in real time, dynamically adjust the communication parameters,
and allocate the identified idle spectrum to certain secondary
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users without disturbing the primary data transmissions [2].
Thanks to its high intelligence, CR can continuously perceive
various modulation modes, signal-to-noise ratios (SNRs), trans-
mission power, and other parameters of the external environ-
ment [3].

A key step of CR is spectrum sensing, which is to allow
cognitive users to obtain spectrum usage information in wireless
networks through various signal detection and processing meth-
ods. From the machine learning perspective, Tu et al. [4], Wang
et al. [5], and Lin et al. [6] studied the applications of deep
learning (DL), which is a pivotal tool of the sixth generation
wireless systems (6G), for efficient spectrum sensing. Zhang
and Zhao [7] proposed a spectrum sensing system based on a
composite neural network to realize low-level data processing
and high-dimensional spectrum sensing analysis. A deep rein-
forcement learning (DRL) based cooperative spectrum sensing
algorithm has been proposed in [8] to decrease the signaling
in the network of secondary users (SUs). By treating spectrum
sensing as a classification problem, Zheng et al. [9] developed
a DL classification-based sensing method. Xie et al. [10] in-
troduced a spectrum sensing method based on unsupervised
DL, called unsupervised deep spectrum sensing, which does not
require prior information such as noise power or statistics of the
signal.

B. Related Works

Despite the unique advantages of DL in solving radio com-
munication problems, the black-box and unexplained properties
of deep neural networks (DNNs) [11] may lead to many security
risks. Szegedy et al. [12] first pointed out a major weakness of
DNNs in the context of image classification: by adding adversar-
ial examples (e.g., small perturbations that the human eyes may
not be able to perceive) to the input samples, the neural network
classifier may be fooled, yielding inaccurate predictions on input
image samples. Moreover, such a perturbation may propagate
between different DNN models [13], increasing the probability
of being fooled. These misclassified samples are called adversar-
ial samples. So far, a majority of the research activities on adver-
sarial examples focus on images. Moosavi-Dezfooli et al. [14]
founded that the presence of pervasive perturbations affected the
network classification of all images. Adversarial training was
performed in [15] to explore the impact of adversarial examples
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Fig. 1. Illustration of data poisoning.

on large-scale datasets and the relationship between model size
and robustness. Sayles et al. [16] demonstrated that even 3-D
printing of real-world objects may fool the DNN classifiers.

Although adversarial attacking is a hot research topic in
computer vision, their applications in wireless communications
are rarely known. To the best of our knowledge, Sadeghi and
Larsson [17] first introduced adversarial attacks in wireless com-
munication by manipulating the receiver’s signal modulation
classifier. Such direct digital attacks may serve as the basis for
more sophisticated aerial attacks [18].

Another instance of such attack against DL neural networks
is poisoning attacks. The key idea of poisoning attack is to
purposely corrupt the training data to deceive the classifica-
tion learning, leading to erroneous or harmful classification
results. For example, dynamic crowdsourcing is vulnerable to
data poisoning attacks, where attackers report malicious data
to reduce the accuracy of aggregated data [19]. Recent studies
have found that federated learning frameworks exhibit inherent
vulnerabilities in active attacks. With poisoning attacks being
one of the most powerful and stealthy attacks, local updates
carefully crafted by attackers can disrupt the functionality of
global models. In [20], the poisoning attack mechanism is ex-
plored in the context of federated learning, and a poison data
generation method data_Gen based on generative adversarial
networks (GANs) is proposed. Fig. 1 shows the main idea of
poisoning attack. By adding poisoning data, the adversarial
samples that should be classified as type B are detected as type
A in Fig. 1.

C. Motivations and Contributions

In this article, we aim to understand the impact of adversarial
attacks on DL-based spectrum sensing. Our main idea is to first
design a novel covert adversarial waveform using the concept
of embedded communication, followed by a new data poisoning
attack method combining “poisoned data insertion” and “label
flipping” to reinforce the interference of the adversarial wave-
forms. Fig. 2 shows a specific scenario, in which the attack
has a serious impact on spectrum sensing, resulting in the
attacked SUs failing to carry out modulation recognition and

Fig. 2. Schematic of an adversarial attack envisaged on CR.

ultimately affecting the transmission and security performance
of communication network.

The main motivations and contributions of this article are
summarized as follows.

1) Through the concept of embedded communication, we
design a new covert adversarial waveform, called the em-
bedded communication method (ECM) waveform, which
is in sharp contrast to traditional jamming method that
relies on strong jamming power. The ECM waveform can
generate disturbances that are imperceptible yet produce
a certain interference capability.

2) We propose a new data poisoning attack method for the
binary classification situation of DL, called poisoned data
label hidden attack (PLHA). In contrast to poisoned data
insertion attacks, PLHA does not require iterations, i.e.,
a large number of accesses to the system is not needed.
In contrast to label flipping attacks, the reliability of the
system may not be degraded before launching a specific
disturbance.

3) By observing the complementary nature of the ECM
waveform and PLHA, we propose an embedded poisoning
method (EPM) to attack spectrum sensing system with the
aid of DL. Furthermore, we carry out extensive simulation
experiments to validate the effectiveness of the proposed
method.

The rest of this article is organized as follows: Section II
surveys the related work in this field, Section III describes
the specific methods of ECM waveform design, PLHA and
EPM. Section IV analyzes the performance of the attack effects.
Finally, Section V concludes this article.

II. PRELIMINARIES

A. Embedded Communication

Due to the open propagation nature of wireless communi-
cation, the information transmitted over the air can be easily
intercepted and eavesdropped. In military communications, a
feasible way to deal with the above challenge is to embed the
communication waveform into a radar signal, which is sent at
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the same time–frequency resource, and then use the radar signal
to mask the communication waveform, so as to achieve covert
communication while improving spectrum utilization. Such a
concept dates back to the 1990 s, when Sloan [21] used radar
radiation to construct interpulse communication waveforms for
covert communication. However, since multiple radar pulses are
required to transmit one communication waveform, the com-
munication transmission rate is very limited. In order to tackle
this limitation, Blunt and Yantham [22] and Blunt et al. [23]
proposed an intrapulse radar-embedded communication (REC)
method in 2007. Compared with interpulse REC, this method not
only ensures the transmission rate of communication, but also
effectively improves its concealment. With the development of
technology, Xu [24] proposed a new ECM based on singular
value decomposition, which can flexibly control the tradeoff be-
tween reliability and concealment. The constructed orthogonal
communication waveform can also improve the reliability of
receiver decoding.

Linear frequency modulated (LFM) signal, also known as
chirp signal, is obtained by performing LFM on the carrier signal
such that its frequency variation can be monotonically increas-
ing or monotonically decreasing. Specifically, its instantaneous
frequency f(t) can be expressed as

f(t) = f0 + kt (1)

where f0 is the initial frequency, k is the frequency modulation
slope, K = B

τ , B denotes the frequency modulation bandwidth,
and τ is the pulse duration.

Therefore, the mathematical expression of the LFM signal is

y = rect

(
t

τ

)
exp

[
j
(
2πf0t+ kt2

)]
(2)

where rect( t
τ ) =

{
1, | tτ | ≤ 1

2

0, | tτ | > 1
2

is the signal envelope. It is noted

that most of the LFM spectral components are distributed in its
passband, except for a small amount of spectral components
distributed in its stopband.

For digital signal processing, an LFM analogue signal is
converted into discrete signals by sampling. Usually, the receiver
will sample the received signal at a sampling rate higher than the
Nyquist sampling rate. The number of sampling points is defined
as N , the oversampling factor is M . Thus, the column vector s
with NM LFM waveform points after sampling is expressed as

s = [s1, s2, s3 · · · sNM ]. (3)

Since the radio waves in the environment include the reflected
echoes after the transmitted waveform touches multiple objects,
when s is convolved, there are 2NM − 1 translation possibili-
ties. Hence, the mathematical model of the Toeplitz matrix S is
defined as

S =

⎡
⎢⎢⎢⎣
sNM sNM−1 · · · s1 · · · 0
0 sNM · · · s2 · · · 0
...

...
. . .

...
...

...
0 0 · · · sNM · · · s1

⎤
⎥⎥⎥⎦. (4)

The convolution result after hash processing can be expressed as
follows, where x is a hash column vector of length 2NM − 1.

Sx =

⎡
⎢⎢⎢⎣
sNM sNM−1 · · · s1 · · · 0
0 sNM · · · s2 · · · 0
...

...
. . .

...
...

...
0 0 · · · sNM · · · s1

⎤
⎥⎥⎥⎦x. (5)

In this work, we consider additive white Gaussian noise,
which is fully justified by the central maximal theorem (CLT).
In order to maintain the correlation between the LFM signal
echo and the clutter, the eigenspace and eigenvector of the LFM
signal echo can be used to design the communication waveform.
By eigen decomposition, we have

1

σ2
x

E
[
(Sx)(Sx)H

]
=

1

σ2
x

SE
[
xxH

]
SH = SSH = VΛVH

(6)
where (·)H denotes the Hermitian transpose, E[·] denotes the
mean value, σ2

x is the variance of the radar echo.
In (7), the eigenvector matrix V contains NM eigencolumn

vectors of length NM . The eigenvalue matrix Λ is a diagonal
matrix, and the eigenvalues on the diagonal are arranged in
descending order. The ith eigenvalue corresponds to the ith
eigenvector. Assuming that the signal waveform power is nor-
malized, we have

tr
{
SSH

}
= NM |s|2 = NM (7)

where tr{·} denotes the trace processing of the matrix. Combin-
ing the two formulas, we have

tr
{
SSH

}
= tr

{
VΛVH

}
= tr{Λ} = NM. (8)

The eigenspace and eigenvectors of the LFM signal echo are
used to design the communication waveform. The eigenspace
of the LFM signal is composed of the eigen decomposition of
the correlation matrix. The sum of the eigenvalues is the same
as the number of sampling points, but most of the energy in
the eigenvalue matrix comes from the LFM signal waveform.
Therefore, the eigenvectors corresponding to the first L larger
eigenvalues contain most of the LFM signal energy.

On this basis, the eigenvectors corresponding to the first
L larger eigenvalues are defined as main space eigenvectors,
and the eigenvectors corresponding to the remaining NM − L
smaller eigenvalues are nonmain space eigenvectors. That is, the
main space size is L. The larger the eigenvalue, the higher the
similarity between the corresponding eigenvector and the LFM
signal echo, and vice versa. In terms of frequency spectrum,
eigenvectors with larger eigenvalues have a larger part of the
energy component of the LFM signal.

The existing waveform design methods of embedded com-
munication based on eigenvalue decomposition are mainly
dominant projection. First construct a hidden matrix P1 =
I−VNDVH

ND, where I is the identity matrix. Then, the com-
munication waveform c1 is obtained by multiplying the hidden
matrix P1 by the random column vector d1 known to the sender
and receiver, i.e.,

c1 = P1d1. (9)
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Fig. 3. Visual analysis of adversarial examples.

During the design process of the first communication wave-
form c1, the correlation of the main space is removed due to
the introduction of the hidden matrix P1. When designing the
second communication waveform c2, the correlation between
the main space and the first communication waveform c1 needs
to be removed. Therefore, when generating the main space
eigenvector corresponding to the second waveform, the Toeplitz
matrix S also needs to be replaced is the new Toeplitz matrix
SP1 = [S|c1]. Then, the eigenvalue decomposition process is

SP1S
H
P1 = VP1ΛP1V

H
P1. (10)

By keeping the size of the main space unchanged, we can form
the hidden matrix SP2 from the new Toeplitz matrix SP1 as
follows:

P2 = I−VP1,NDVH
P1,ND (11)

the second communication waveform c2 is

c2 = P2d2. (12)

In this way, all waveforms in the waveform set can be generated
cyclically.

B. Adversarial Attack Methods

Fig. 3 shows visual analysis of adversarial examples. The
plane represents all possible input feature vectors. For each
sample, the input feature value uniquely identifies its coordinates
in the plane. The two categories are divided into two regions by
the real boundary curve and the decision boundary curve, and
the overlapping part is the adversarial region.

The existing attack methods fall into three categories ac-
cording to the process of exploring adversarial perturbations,
namely gradient-based, optimization-based, and gradient-free
methods. Gradient-based attacks use gradient information to
make adversarial examples, which can be formulated as

xadv = x+ λ ·G (∇x�(f(x; θ), y
′)) (13)

where xadv is an elaborate adversarial example, x is an example,
and y′ is a label. f(.) is the target model, and the parameter is set
to θ. ∇x�(f(x; θ), y

′) is the gradient of x. G(.) is the gradient
mapping function, such as the sign function and the unit function.
λ is a hyperparameter that controls the strength of the attack.

To explore the attack performance in modulation recognition,
we select the fast gradient sign method (FGSM) [25] and two
iterative attack methods including the basic iterative method

(BIM) [26] and the momentum iterative method (MIM) [27]. All
of those generating methods are restricted by the infinity norm.
Among them, FGSM can quickly generate adversarial examples.
Since FGSM is a one-step attack, it is not possible to update
adversarial examples by querying model parameters multiple
times. While BIM is an extension of FGSM and update adversar-
ial examples by iterating and accessing the model multiple times,
but this comes at the cost of increased time and more complicated
calculations. Unlike BIM, MIM accelerates the gradient descent
by accumulating the velocity vector in the gradient direction of
the loss function in the iteration. MIM introduces momentum
and integrates it into iterative attacks, which ensure the stability
of each update direction of the model, and the generalization of
adversarial examples while maintaining the attack ability.

The optimization-based approach explores adversarial pertur-
bations as an optimization process described as

min
δ

f(x) �= f (x+ δ)

s.t.‖δ‖p ≤ ε (14)

where δ and ε denote adversarial perturbations and upper bounds
on the lp-norm of adversarial perturbations, respectively. For
example, the CW attack [28] explores minimal adversarial per-
turbations with lp-norm constraints. Deepfool [29] minimizes
the distance between adversarial examples and the target hyper-
plane.

C. Data Poisoning

Poisoning attack is one of the typical causal attacks in IoT
systems [30], where the attacker reduces the accuracy of the
target model by forging malicious data. There have been many
studies on poisoning attacks based on support vector machines
(SVMs) [31] and neural networks [32]. Specifically, Biggio
et al. [33] studied poisoning attacks against SVMs by using
a gradient ascent strategy to reduce model accuracy. In the
DL framework, Muoz-Gonzlez et al. [34] extended the attack
scenario from binary learning algorithms to multiclass problems,
using the inverse gradient optimization method to reduce the
attack overhead. Jagielski et al. [35] first proposed a system
poisoning attack method for linear regression methods by imple-
menting traditional gradient-based methods on neural networks.
Sun et al. [32] proposed a poisoning attack strategy by leveraging
gradients and a GAN model [36]. However, this data generation
method still requires the attacker to know the details of the target
model, such as precise weight values, which may not be available
in the black-box attack setting [37].

Poisoned data insertion is achieved by directly dirtying the
training data when DNNs are trained. First, a data poisoning
model is established. When poisoning data is inserted, a limited
number of poisoning feature vectors are added. Data poisoning
starts from a clean training dataset, denoted by D0, and then
transform it into another poisoning dataset D. The learning
algorithm is trained on D, whose purpose is to induce the target
decision of the feature vector set in the target instance setS. Two
problems are compromised when poisoning the dataset: reaching
the malicious target and minimizing the modification cost. The
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Fig. 4. Block diagram of the EPM.

term is denoted as the general risk function RA(D,S) of the
attacker, and the function varies with the learning parameter ω,
where ω is the parameter obtained by training the model on
the poisoned training data D. Meanwhile, the cost function is
denoted as c(D0, D). The optimization problem is expressed as

min
D

RA(D,S)

s.t.c (D0, D) ≤ C (15)

whereC is the specified modification cost budget, which defines
the attacker’s utility as UA(D,S) = −RA(D,S). The original
problem can be simplified by calculating the maximum utility
value.

III. MULTILEVEL ADVERSARIAL ATTACK FOR SPECTRUM

INTELLIGENT SENSING

Fig. 4 gives an introductory block diagram of the EPM. The
perturbation generation module generates ECM perturbations,
and the PLHA module performs data poisoning attacks. The final
EPM adversarial attack is proved to be effective and stealthy. The
steps of this method are as follows.

1) First, generate ECM perturbations through the ECM of
singular value decomposition.

2) Then, ECM perturbation-based PLHA data poisoning is
performed.

3) Finally, launch the EPM adversarial attack.

A. ECM Waveform

The ECM waveform design first performs singular value
decomposition of the Toeplitz matrix of the oversampled
signal as

Sb = Q

⌊
Δ O
O O

⌋
UH (16)

where U is a unitary matrix, Δ = diag(σ1, σ2, . . ., σr) is a
diagonal matrix, σ1, σ2, . . ., σr are diagonal elements (positive
singular values), r is the rank ofSb,Q is a unitary matrix formed
by associated eigenvectors.

The signal is then hidden within the stopband of the signal
spectrum to further improve stealth. The order of the Toeplitz

matrix singular value magnitudes of the signal is decreasing
(viz., σ1 ≥ σ2 ≥ · · · ≥ σr > 0). The first L singular values can
then be defined as the dominant region (corresponding to the
passband) and the remaining singular values as the nondominant
region (corresponding to the stopband). L(L ∈ N+, L < r) is
determined by the change in the eigenvalue curve. Substituting
zeros for the singular values of the dominant region, the matrix
V can be obtained as

V =

⎢⎢⎢⎣O O O
O ΔND O
O O O

⎥⎥⎥⎦ (17)

where Δ = diag(σL+1, σL+2, . . ., σL+r) corresponds to the di-
agonal matrix of the nondominant region. Finally, the following
interference waveform can be generated

c = QVUH · bk, k = 1, 2, . . .,K (18)

where c is the generated communication waveform and bk is a
random Gaussian column vector. The adversarial waveform is
formed by superimposing such an interference waveform with
the spectral environment.

Then, we carry out the population initialization of the natural
evolution algorithm, encode the genes, and apply integer coding.
One gene corresponds to a stop-band diagonal element σ, and
the number of individual genes can be controlled in single
digits. In this way, the number of iterations of the algorithm
and the calculation volume will be greatly reduced. The next
step is fitness calculation, i.e., each individual gene calculates
the fitness of the individual according to the objective function.
The individual with the smallest fitness value is stored as the
optimal individual in the iteration, and the objective function is
as follows:

F = D (x, x′) +M × loss (x′) (19)

where x = x1, . . . , xn represents the original signal vector,
x′ = x′

1, . . . , x
′
n represents the currently generated adversarial

sample signal vector, D(x, x′) represents the similarity between
x and x′. M is a positive number much larger than D(x, x′), and
loss(x′) is the loss function.
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When performing an untargeted attack, loss(x′) is defined as

loss (x′) = max
(
[f (x′)]r −max

(
[f (x′)]i�=r

)
, 0
)

(20)

where r represents the category of the original sample, the output
of [f(x′)]r is the probability that the sample x′ is identified as
category r, the output of [f(x′)]i �=r is the probability that the
sample x′ is identified as not category r.

After a large number of optimal individuals are selected,
then uniform crossover is used. For two random individuals,
each gene is crossed independently according to probability p.
Finally, combined with the problem to be solved, the Gaussian
mutation algorithm is used

xmutation = xorigin ±N0(m, s) (21)

where xorigin is the original gene, xmutation is the mutant gene,
N0(m, s) is the Gaussian noise, m is the mean of the Gaussian
noise, and s is the standard deviation of the Gaussian noise. In
the mutation process, the genes in the individual are randomly
added with Gaussian noise N0(m, s). If the algorithm satisfies
the termination condition, it will exit the loop iteration, and then
we will get the optimal waveform.

The optimal waveform is the ECM waveform, and the cor-
responding perturbation is the ECM perturbation. For spectrum
sensing, there are two cases: one is that the channel has signals,
and the other is that the channel has no signal. Therefore,
there are two cases of the ECM waveform, which are used
for adversarial attacks when there are signals in the spectrum
environment and when there is no signal.

B. Poisoned Data Label Hiding Attack

In the binary classification problem of DL, the label flip attack
is briefly introduced first. Let D0 = {(xi, yi)} be the original
“clean” training dataset. Assuming that the attacker has a label
flipping budget C, the cost of flipping the label of data point
i is ci. Let zi = 1 represent the decision to flip the label of
data point i, and zi = 0 represent the decision not to flip the
label decision making. Then, the attacker’s modification cost
budget is

c(D0,D) = c(z) =
∑
i

zici � C. (22)

Let D = D(z) be the training dataset after label flipping of
the subset selected by z. In the most basic variant of label
flipping attacks often considered in the literature, the target
dataset is the original dataset that has not been maliciously mod-
ified, i.e., S = D0. Then, the attacker’s optimization problem is
expressed as

max
z

UA(D(z)) ≡
∑
i∈D

l (yif (xi;D(z)))

s.t.

f(D(z)) ∈ argmax
f ′

∑
(xi,yi)∈D(z)

l
(
yif (xi)

′)
∑
i

cizi � C zi ∈ {0, 1}. (23)

Based on the label flip attack, we will briefly introduce the
poisoned data insertion attack. Consider an original (unmodi-
fied) training dataset D0, add an instance (xc, yc) to D0, where
we can decide the feature vector xc, but not the label yc, thus
generating a new dataset D. We wish to maximize the risk of
the learner on the target dataset S. To simplify the discussion,
assume S = (xT , yT ). That is, we only want to cause errors
for this target data point. Now, the training dataset becomes
D(xc) = D0 ∪ (xc, yc). Furthermore, by allowing the attacker
to add only one feature vector (given the label) to the existing
data, we effectively limit the budget for inserting a single data
point. Therefore, no further discussion of modification costs is
necessary here. Let fxc

(x) be the function learned on D(xc).
The optimization problem can be expressed as

max
xc

UA (xc) ≡ l (yT fxc
(xT )) (24)

where l(·) represents the loss function.
As shown above, we now illustrate this attack from SVMs

with arbitrary kernels, first by introducing some new nota-
tions. For a data point (xi, yi) in the training data, define
Qi(x, y) = yiyK(xi, x) for the kernel function K(·, ·). In par-
ticular, for (xT , yT ), this becomesQiT (x, y) = yiyTK(xi, xT ).
The loss function of SVM can be expressed as l(yT fxc

(xT )) =
max{0, 1− yT fxc

(xT )} = max{0,−gT } where

gT =
∑
i∈D0

QiT zi (xc) +QcT (xc) zc (xc) + yT b (xc)− 1

(25)
where zi and b are the dual solutions (b is also a bias or intercept
term) of the kernel SVM. Thus,

fxc
(x) =

∑
i

zi (xc) yiK (xi, x) + b (xc). (26)

Biggio et al. [33] addressed this problem using gradient ascent,
where gradients are derived based on the features of the optimal
SVM solution.

The first challenge of gradient ascent methods is that the hinge
loss is not differentiable everywhere: the hinge loss is constant as
long as the defender correctly classifies (xT , yT ), and is outside
the SVM classification boundary. To solve this problem, we
replace the original optimization problem with a lower bound
−gT , in which we omit the constant term, and replace xc with
x. Then, we have

min
x

gT (x) ≡
∑
i∈D0

QiT zi(x) +QcT (x)zc(x) + yT b(x). (27)

The corresponding gradient descent (since now we want to min-
imize) involves an iterative update step, in the t+ 1th iteration
we update x as follows:

xt+1 = xt − βt∇gT
(
xt
)

(28)

where βt is the learning rate. The complete algorithm proceeds
by iterating the following steps:

1) Learn an SVM (possibly increasing) with D0 ∪ xt (the
poisoned eigenvector value x obtained at step t).

2) Update xt+1 = xt − βt∇gT (x
t) using the gradient ob-

tained above.
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PLHA is a partial combination of the above two approaches.
For the selected feature vector, the adversary can make subtle
feature modifications to a certain number of data points, while
changing the labels of this subset of data points in the training
data. In this attack, the attacker’s goal is not to maximize the
model’s error on clean training data (i.e., unmodified data), but
instead hoping that the inserted data can be learned as altered
labels.

Consider a raw (unmodified) training dataset D0, add a
slightly modified instance (xh, yh) to D0. Assuming that the
attacker has a label flipping budget C, the cost of flipping the
label of data point h is ch. A new datasetD is thus generated. We
want to maximize the risk of the learner on the target dataset S.
To simplify the discussion, let us assume S = (xh, yh), i.e., we
only want to cause errors for this target data point. Let zh = 1
denote the decision to flip the label of data point h, and zh = 0
denote the decision not to flip the label. Let D = D(z) be the
training dataset after label flipping of the subset selected by z.
The optimization problem can thus be expressed as

max
z

UA(D(z)) ≡
∑
h∈D

l (yhf (xh;D(z)))

s.t.

f(D(z)) ∈ argmax
f ′

∑
(xh,yh)∈D(z)

l
(
yhf (xh)

′)
∑
h

chzh � C zh ∈ {0, 1}. (29)

Data crowdsourcing (referred to as “crowdsourcing” for
brevity) is widely used in IoT, and we can carry out data poison-
ing attacks based on crowdsourcing. Crowdsourcing leverages
the “wisdom” of a potentially large crowd of workers, who
provide data in tasks that specified by the requester. It has
found a wide range of applications including mobile sensing
(such as spectrum sensing). Many of these applications are
enabled by smart devices with powerful sensing, networking,
and computing capabilities, and the scope of these applications
is expected to expand rapidly with the emerging IoT. A key ad-
vantage of crowdsourcing lies in that it can exploit the diversity
of inherently inaccurate data from many workers by aggregating
the data obtained by the crowd, such that the data accuracy after
the aggregation can be substantially enhanced. However, crowd-
sourcing is vulnerable to data poisoning attacks [19], where an
attacker controls malicious workers to report manipulated data to
the requester, typically with the goal of reducing the requester’s
aggregated data accuracy. Due to the random nature of workers’
data and unknown ground truths of tasks, it is difficult for
the requester to distinguish a malicious worker from a normal
worker ac cording to their data.

C. Embedded Poisoning Method

As shown in Fig. 4, according to the ECM perturbation
designed in Section III-A, when only using it for jamming,
adversarial attacks can be launched only by transmitting it into
the spectral environment.

Fig. 5. Conventional model-driven spectrum sensing framework.

The EPM also needs to incorporate data poisoning attacks to
enhance the interference capability of ECM waveforms. Use
the PLHA injection method described in Section III-B. The
poisoning data are specified here. The label H0 indicates that
spectrum sensing is no signal, and the label H1 indicates that
spectrum sensing is signal, then the specific poisoning data is as
follows:

H0 : xperturbation + x

H1 : xperturbation (30)

where x represents the signal in the clean dataset, and xperturbation

represents the ECM perturbation corresponding to this signal.
After the PLHA data poisoning, the interference ability of ECM
waveform will be greatly improved. The combined adversarial
attack method of these two steps is the EPM adversarial attack.
It is verified that EPM has better interference performance than
traditional white-box attack methods, stronger concealment, and
maintains extremely high black-box mobility.

D. CM-RN Model

In this article, we consider the CM-CNN for spectrum sensing
system, which uses a convolutional neural network (CNN).
Considering the network performance and learning ability, we
replace the used network with a residual network (RN). Liu
et al. [38] first proposed a DNN-based detection framework,
in which a DNN-based likelihood ratio test (DNN-LRT) was
derived to guarantee the optimality of the designed test statistics.
As an implementation based on the DNN framework, the sample
covariance matrix is used as the input of the CNN, and a spectrum
sensing algorithm based on the covariance matrix-aware CNN
(CM-CNN) is proposed. The simulation results show that the
performance of this method is close to that of the optimal
detector. In particular, at SNR=−18 dB, it is significantly better
than the conventional method.

As shown in Fig. 5, we consider a general multiantenna
CR scenario, which consists of sampling, test statistic cal-
culation, and decision. The whole CM-CNN system is
based on the sensing of N observation vectors. x(n) =
[x1(n), x2(n), . . . , xM (n)]T , n = 0, 1, . . . , N − 1 denotes the
nth observation vector, where xi(n) denotes the nth discrete-
time sample at the ith antenna of the CR terminal. Therefore,
the spectrum sensing problem at a multiantenna CR terminal can
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be formulated as a binary hypothesis testing problem

H1 : x(n) = s(n) + u(n)
H0 : x(n) = u(n)

(31)

where s(n) ∈ CM×1 represents the signal vector suffering from
path loss and channel fading.

Usually, prior knowledge of primary users (PUs) cannot
be obtained at the CR terminal. Therefore, the signal vector
s(n) can be assumed to be an independent and identically dis-
tributed circularly symmetric complex Gaussian (CSCG) vector
with zero mean and covariance matrix Rs = E(s(n)sH(n)).
u(n) ∈ CM×1 denotes the noise vector, assuming that it is a
CSCG random vector with zero mean, and the covariance matrix
Ru = E(u(n)uH(n)) = σ2

uIM , where σ2
u denotes the noise

variance. Furthermore, H1 and H0 denote the hypothesis of PU
existence and nonexistence, respectively.

Based on the observation vector, we can design the test
statistic T to make a decision: if T > γ, then PUs are present;
otherwise, PUs are not present, whereγ is a threshold. According
to the Neyman–Pearson (NP) criterion [39], the key task of
spectrum sensing is to design a test statistic to maximize the
probability of detection (PD) given the probability of false alarm
(PFA), which can be expressed as

max
T

Pd =

∫ ∞

γ

fT |H1
(t)dt

s.t. Pf =

∫ ∞

γ

fT |H0
(t)dt = ϕ (32)

where T is the test statistic derived from the observation vector.
Pd = P{T > γ|H1} and Pf = P{T > γ|H0} denote PD and
PFA, respectively. T |Hi is the test statistic under hypothesis Hi

and fT |Hi
(·) is the probability density function (PDF) of T |Hi.

ϕ denotes the desired PFA and γ is the corresponding detection
threshold.

In the sampling phase, the CR terminal collects observation
vectors through a multiantenna system. Then, various model-
driven test statistics are designed using model-based features
such as energy, eigenvalues, and covariance matrices, such as
the test statistics for the ED method (denoted by TED) [40], the
MED method (denoted by TMED) [41], CAV method (denoted
by TCAV) [42], etc. Choose one of the methods and then we can
calculate the test statistic T . By comparing T and thresholding,
the system can finally make a decision.

Therefore, test statistics are very important for detection. The
CM-CNN system uses CNN to design a data-driven test statistic
to achieve very high detection performance. Replacing this CNN
with a RN is our CM-RN spectrum sensing detection system. It
has better convergence and learning ability. The ResNet model
used in this article has 33 layers, including 6 residual stack
structures. The overall structure of the ResNet and the output
of each part are shown in Table I.

IV. NUMERICAL RESULTS AND DISCUSSION

In the simulation experiment, the model to be attacked is
the CM-RN spectrum sensing system. The public dataset RA-
DIOML 2016.10b was used [43]. The dataset has a total of 20

TABLE I
RESNET NETWORK LAYOUT

Fig. 6. (a) is the eigenvalue curve of the signal when the number of sampling
points is 128; (b) is the eigenvalue curve of the noise when the number of
sampling points is 128. (a) Eigenvalue curve of the signal. (b) Eigenvalue curve
of noise.

different SNRs ranging from −20 to 18 dB with a step size of
2 and contains a total of 120 000 input samples. The sample
signal types include eight digital signals: 8PSK, QPSK, BPSK,
GFSK, CPFSK, PAM4, QAM16, and QAM64, and the two
analog signals are WBFM and AM-DSB [44]. We mainly use
the QPSK signal as the spectrum sensing signal, use 80% of the
samples as the training set, and the remaining 20% of the samples
as the test set. Each signal consists of an in-phase component
and a quadrature component, each with a length of 128.

A. Signal Characteristics and Spectrum

From Section II, we know that the sum of the eigenvalues of
the signal Toeplitz matrix is the same as the number of sampling
points, but most of the energy in the eigenvalue matrix comes
from the signal waveform, so the eigenvector corresponding to
the previous larger eigenvalue contains most of the radar signal
energy. Fig. 6(a) and (b) is the eigenvalue curves of the signal
and noise when the number of sampling points is 128, for the
figure of the signal, it can be seen that the size of the eigenvalues
on both sides of the sampling point is 20 is very different.
The eigenvectors corresponding to 20 larger eigenvalues contain
most of the energy, and the eigenvectors corresponding to the
last 108 smaller eigenvalues contain a small part of the energy.
It can be seen from the figure that there is no obvious dividing
line for noise, but it maintains a decreasing trend.

Fig. 7 is a spectral comparison of the signal and the distur-
bance generated by the signal at 10 dB. It can be seen from Fig. 7
that the embedded method of singular value decomposition
makes the disturbance waveform more similar to noise in the
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Fig. 7. Spectrum of signal and spectrum of perturbation approximated to noise
when SNR = 10 dB.

signal passband and stopband, and the difference between the
spectral components of the disturbance waveform in the signal
stopband and the signal passband is reduced. Therefore, the
disturbance waveform is more invisible.

The common white-box algorithm only considers the invisi-
bility and effectiveness of the method in the time domain. But be-
cause the design factor of the signal waveform is not considered,
the perturbations generated by the common white-box algorithm
is fragile, and a slight disturbance deforms the perturbation so
that the method loses its attack effect. Since only the time domain
is considered, the common white-box algorithm is likely to form
abnormal bulges in the frequency domain, which will be detected
by the receiver abnormally.

From the perspective of waveform design, EPM will not
lose its attack ability immediately due to the occurrence of
disturbance, and maintains stronger robustness in this regard.
The invisibility of perturbations is considered not only in the time
domain, but also in the frequency domain. The spectral energy
of the perturbations is hidden within the spectral stopband of the
signal, while the receiver tends to focus more on the passband,
which can easily pass receiver-side anomaly detection.

B. Under Different False Alarm Probabilities

First, Liu et al. [45] and [46] compared the attack effects under
different false alarm probabilities through experiments. We use
FGSM, BIM, MIM, ECM, and EPM to generate adversarial
examples in the attack model. Since EPM needs to know the prior
information of the training set, EPM belongs to the white-box
algorithm. Similar to several common white-box algorithms,
EPM also attacks by adding tiny perturbations, so they are
comparable in the same field.

Fig. 8 shows the output accuracy of CM-RN for different
false alarm probabilities at 10 and −6 dB. The results show
that, for several attacks, the accuracy of the model initially
increases rapidly, then increases, and finally stabilizes as the
false alarm probability gradually increases. When SNR=10 dB,
with the increase of false alarm probability, the performance of
iterative attack BIM and MIM is obviously better than that of

Fig. 8. Accuracy of the different methods with different false alarm probabil-
ities. (a) SNR = 10 dB. (b) SNR = −6 dB.

one-step attack FGSM, but the performance of FGSM is better
than that of ECM, and the best performance is EPM. At −6 dB,
with the increase of false alarm probability, the performance
of iterative attack BIM and MIM is obviously better than that
of one-step attack FGSM, but the performance of FGSM is
better than that of ECM. At this time, the attack performance
of EPM has declined and remained between ECM and FGSM.
At high SNRs, the performance of several methods will be
degraded compared with that at low SNRs. MIM introduces
momentum and integrates it into the iterative attack, which not
only ensures the stability of each update direction of the model,
but also ensures the transferability of adversarial samples while
maintaining the attack capability. Therefore, the attack effect is
relatively good in traditional attack methods. However, due to the
introduction of data poisoning attacks by EPM, the performance
is stronger than other attack methods at high SNRs. Generally
speaking, the false alarm probability of 0.8 when SNR and the
selected disturbance are determined.

C. Under Different Perturbations

Adversarial examples are limited by the infinite norm, i.e.,
the currently added perturbation must be no larger than the
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Fig. 9. Accuracy of the different methods with different perturbations.
(a) SNR = 10 dB. (b) SNR = −6 dB.

maximum allowed to be added to the signal vector. Based on
this, we can measure and evaluate the perturbation by averaging
the distance L

L =
1

N

N∑
i=1

|yi − f (xi)| (33)

where yi represents the ith original sample, and f(xi) represents
the ith adversarial sample.

The distance L can be obtained by calculating the average
of the sum of the absolute values of the differences between
the original and disturbed samples. The infinite norm is used
to limit the resulting perturbation, and for each sample point of
the signal sample, only a perturbation of size ±ε can be added.
Therefore, the calculated distance L can be used to evaluate
or preset the maximum permissible disturbance level ε. In the
following experiments, we discuss the attack performance of
adversarial examples and evaluate the impact of perturbation on
the signal waveform.

To explore the impact of attacks on spectrum sensing, we
compare the attack effects of five attack methods, including
FGSM, BIM, MIM, ECM, and EPM. Fig. 9 presents the variation

Fig. 10. Accuracy of the different method with different SNRs. (a) ε= 0.0015.
(b) ε = 0.003.

in accuracy of CM-RN under five attacks of 10 and −6 dB. As
shown in Fig. 9(a), when there is no attack, CM-RN achieves
92% accuracy at 10 dB. As the perturbation increases, the accu-
racy of the classifier is greatly reduced, which indicates that the
model is very sensitive to such perturbations. It is worth noting
that at the perturbation level of 0.0015, the prediction accuracy
of the model using the iterative method decreases by nearly 20%.
With the further increase of the disturbance, the accuracy of the
network continues to decrease, and finally reduces the accuracy
of the network by nearly 30%. EPM does not have obvious effect
when the perturbation level is not large. When the perturbation
level exceeds 0.0015, the performance has a great leap forward,
and finally the network accuracy is reduced by nearly 40%. The
results show that the effect of the iterative methods, namely BIM
and MIM, is much stronger than that of the one-step method
FGSM and ECM, and the two-level method EPM is better than
the iterative method when the perturbation level is higher than
0.0015.

To measure the consistency of attack effect, Fig. 9(b) shows
the accuracy of CM-RN with different perturbation sizes at
−6 dB. It can be seen that in the absence of attacks, the
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Fig. 11. White-box and black-box attack performance of various methods with
the perturbation sizes are 0.0015 and 0.003. (a) ε = 0.0015. (b) ε = 0.003.

prediction accuracy is about 68%, which is lower than the model
accuracy below 10 dB. When the perturbation is 0.0015, MIM
successfully drops the network accuracy below 50%. In addition,
the attack effect of MIM is also stronger than the other four
schemes in the low SNR case, which makes it inconsistent with
the observation results in the high SNR case. The performance
of EPM at this time is maintained between FGSM and ECM.
We conclude that ECM attack model has strong concealment,
but its performance is weak, even weaker than the one-step
FGSM. However, the performance of EPM based on this has
been improved, and the perturbation level is biased. It is better
than other schemes in the case of high SNRs.

D. Under Different SNRs

In this round of experiments, we use these five methods with
perturbation levels of 0.0015 and 0.003 to generate adversarial
examples. Our analysis focuses on the relationship between
model output accuracy and SNR. As shown in Fig. 10(a) and (b),
the output accuracy of the DNN model gradually increases with
the increase of SNR, and then fluctuates around a certain value.
It is assumed that at low SNR, there are various interferences,

Fig. 12. EPM-based attack with a perturbation size of 0.003. (a) Signal with
SNR = 10 dB. (b) Signal with SNR = −6 dB. (c) Noise.

which lead to waveform distortion. Therefore, it is difficult for
the model to identify the signal, resulting in low accuracy, and
since there are only two cases in spectrum sensing, each of the
the accuracy of the model is close to 50%. As SNR increases,
the accuracy of the CM-RN model increases. At the same time,
under the influence of low SNR and three commonly used
white-box attack perturbations, the prediction accuracy also

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 12,2022 at 12:38:02 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON RELIABILITY

begins to decline until the lowest value. However, at higher SNR
conditions, the CM-RN model has higher prediction confidence
in the signal and is therefore more difficult to interfere. There-
fore, in spectrum sensing, the SNR is a factor worth considering.
The exploration of the mechanism of adversarial examples under
different SNRs and the relationship with noise deserves further
attention.

Among several attacks, for the perturbation level of 0.0015 or
0.003, the attack effect of the MIM algorithm is slightly better
than the iterative algorithm BIM, these two iterative methods
have stronger attack performance than the one-step FGSM and
ECM, and the performance of FGSM is in turn better than that
of ECM. Among them, the most obvious change is EPM. When
the perturbation size is 0.0015, its attack performance is only
comparable to that of FGSM. But when the perturbation size
is 0.003, its attack performance is improved to the best among
several methods. System accuracy dropped to nearly 50%.

E. For Black-Box Attacks

In order to verify the black-box attack effect of ECM and
EPM, we analyze the white-box and black-box attacks of each
method under the two perturbations. As shown in Fig. 11(a),
when the perturbation size is 0.0015, the output accuracy of
BIM, MIM and FGSM is lower than that of ECM and EPM in
white-box attack. But for black-box attack, BIM, MIM, and the
attack performance of the three methods of FGSM drops sharply.
The attack performance of ECM and EPM is not only unaffected,
but even has stronger attack performance for different network
systems. At this time, the attack performance of ECM is better
than the other three white-box algorithms.

As shown in Fig. 11(b), when the perturbation size is 0.003,
the effect of EPM is already the best in the white-box attack.
In the black-box attack, the attack performance of the three
white-box algorithms is significantly reduced, while the attack
performance of ECM and EPM is not only unaffected, but
even has stronger attack performance for different network
systems.

In general, black-box attacks have no prior knowledge of the
model, resulting in lower attack strength of common white-box
algorithms and thus poorer performance. However, the attack
performance of the two-level method EPM is not affected,
because the EPM method is more of an attack effect generated
by the change of the data itself, under the condition of unknown
model prior information, the ordinary white-box algorithm loses
the threat to the model, but the threat of the data level of EPM
is still huge. And it has a greater threat to the federated learning
network system widely used in the intelligent IoT.

F. Waveforms Comparison

In adversarial attacks, it is important to note whether the added
adversarial perturbations are small enough that they cannot
be visually perceived while successfully perturbing the signal
samples and causing the model to misclassify them. We used
1000 sampling windows, each with a signal length of 128. Let
I be the in-phase component, Q the quadrature component, and

f the carrier frequency. Use the following modulation carrier
formula

S(t) = I cos(2πft) +Q sin(2πft). (34)

At this point, a raw S(t) signal will be generated. By recon-
structing and visualizing S(t), we can determine the waveform
of the partially modulated signal in the time domain, as shown
in Fig. 12. The vertical axis is the amplitude and the horizontal
axis is the time variable. Labels under each subplot represent
categories and SNRs. Lines with different colors represent the
results before and after perturbation. The perturbations are gen-
erated using the EPM.

Fig. 12(a) and (b) shows waveforms at 10 and −6 dB gener-
ated by the EPM at the perturbation level of 0.003. Observe
that the waveforms before and after perturbation are similar
when the model incorrectly classifies the signal into other classes
after adding a perturbation of 0.003. The perturbations are small
enough to prevent visual detection, indicating that the adversar-
ial attack is successful. Fig. 12(c) shows the waveforms before
and after EPM attack noise perturbation with a perturbation level
of 0.003. When there is no attack, the waveform is stable with no
more spikes or sudden changes. After the disturbance, the signal
waveform is basically the same as the original waveform, that is,
the amplitude, frequency, and phase change little. However, the
classifier model misclassifies the waveforms into other classes,
and the perturbations are difficult to identify with the human eye.
Changed the class predicted by the DNN without destroying the
waveform, making the classification model fooled.

Overall, this result also validates our hypothesis that the
recognition accuracy of the model decreases significantly after
adding small perturbations, which greatly increases the security
risk in spectrum sensing, and illustrates the vulnerability of DL
to adversarial attacks.

V. CONCLUSION

In this article, we have evaluated the security issues that EPM
poses to DL-based spectrum sensing systems. The simulation
results showed the effectiveness of the EPM attack. Through
the analysis of the EPM waveform spectrum, it was concluded
that compared with the common white-box algorithm, the in-
terference waveform was hidden in the spectral stopband of the
signal, which is not easy to be discovered by the enemy, and has
high concealment. In the DL-based spectrum sensing scenario
of the Internet of Things, the attack performance of EPM was
better than other white-box attack algorithms, and the robustness
was greatly improved. For different models, EPM also has high
transferability.
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