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Abstract

Most epigenetic epidemiology to date has utilized microarrays to identify positions in the genome where variation in DNA methylation
is associated with environmental exposures or disease. However, these profile less than 3% of DNA methylation sites in the human
genome, potentially missing affected loci and preventing the discovery of disrupted biological pathways. Third generation sequencing
technologies, including Nanopore sequencing, have the potential to revolutionize the generation of epigenetic data, not only by
providing genuine genome-wide coverage but profiling epigenetic modifications direct from native DNA. Here we assess the viability
of using Nanopore sequencing for epidemiology by performing a comparison with DNA methylation quantified using the most
comprehensive microarray available, the Illumina EPIC array. We implemented a CRISPR-Cas9 targeted sequencing approach in
concert with Nanopore sequencing to profile DNA methylation in three genomic regions to attempt to rediscover genomic positions
that existing technologies have shown are differentially methylated in tobacco smokers. Using Nanopore sequencing reads, DNA
methylation was quantified at 1779 CpGs across three regions, providing a finer resolution of DNA methylation patterns compared
to the EPIC array. The correlation of estimated levels of DNA methylation between platforms was high. Furthermore, we identified
12 CpGs where hypomethylation was significantly associated with smoking status, including 10 within the AHRR gene. In summary,
Nanopore sequencing is a valid option for identifying genomic loci where large differences in DNAm are associated with a phenotype
and has the potential to advance our understanding of the role differential methylation plays in the etiology of complex disease.

Introduction
There is increasing interest in the role of epigenetic
variation in health and disease, with the primary focus of
epigenetic epidemiology being on variable DNA methy-
lation (DNAm) (1). The development of standardized
assays [e.g. the Illumina Infinium Methylation EPIC
BeadChip (‘EPIC array’)] have enabled epigenome-wide
association studies (EWAS) to identify specific positions
in the genome where methylomic variation is associated
with environmental exposures or disease. The most
common approach for profiling methylomic variation
involves the sodium bisulfite treatment of DNA, to
differentiate methylated cytosines, which are protected
and remain as a cytosine, from unmethylated cytosines,
which are converted to uracils. The methylation status
at individual genomic positions is then determined
by either sequencing the bisulfite-converted DNA or
hybridizing to a microarray. DNAm level is estimated
at individual genomic positions as the proportion of
methylated cytosines, which represents the proportion of

cells in the sample that are methylated at that position.
One of the limitations with using a microarray is that
the specific sites profiled is predefined, and in the
case of a commercial product such as the EPIC array,
predominantly non-customizable. Despite the EPIC array
being the most extensive array available, it only captures
∼3% of CpGs across the human genome (2) and while it
assays >97% of RefSeq genes there is a huge range in the
number of sites overlapping each gene, with a median of
18 sites per gene. It is highly probable, therefore, that
many of the specific sites at which aberrant DNAm
underpins the development of a given disease are either
not included or weakly indexed by proximal sites in
existing analyses. Alternatively, a sequencing-based
approach will provide a more comprehensive view of the
methylome, and is applicable for the study of any organ-
ism, with whole genome bisulfite sequencing currently
regarded as the gold standard experimental approach
(3). A consequence of the bisulfite conversion step is the
requirement for bespoke alignment tools as cytosines in

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/31/18/3181/6585769 by guest on 25 Septem
ber 2022

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6840-072X


3182 | Human Molecular Genetics, 2022, Vol. 31, No. 18

the reference genome could generate either a cytosine
in sequencing data, representing an methylated site,
or a thymine, representing an unmethylated site; this
means that a relatively large number of reads have to
be discarded at this processing stage due to the inability
to assign them unambiguously to the reference genome
(4). With any sequencing technology, the accuracy of the
quantification of DNAm is dependent on the number of
reads overlapping a given genomic position. Given the
often stochastic nature of sequencing coverage and the
fact that it is effectively count data, having sufficient
depth at any one site in all or even the majority of
your samples is often unlikely making it unfeasible
with the current technologies to perform EWAS in large
population cohorts.

Sequencing technologies continue to evolve, with
novel long-read approaches being able to interrogate
epigenetic modifications, including DNAm, in parallel
to determining the underlying DNA sequence. This
bypasses the need to perform a bisulfite treatment on
the DNA. For example, Oxford Nanopore Technologies
(ONT) sequencing platforms use known electrical signal
profiles to call nucleotide bases from DNA fragments,
which can be further refined to distinguish methylated
cytosine from unmethylated cytosine (5). While the
application of these technologies to large populations is
primarily limited by their cost, it has yet to be established
whether the quantification of DNAm is sufficiently
accurate to detect differentially methylated sites in an
epidemiological study, and how the estimation compares
to the standard microarray technology.

In order to increase the likelihood of obtaining suf-
ficient coverage in the same regions of the genome, a
targeted approach coupled with sequencing can be used.
There are a number of existing approaches for target-
ing specific regions in bisulfite-based sequencing, but
Nanopore sequencing can detect DNAm directly from
sequence data that has not been bisulfite-converted.
Nanopore Cas9-targeted sequencing (nCATS) is one such
method which uses Cas9/guide RNA (gRNA) ribonucleo-
protein complexes (RNP) to selectively cut DNA around
the targeted region and enrich these regions prior to
sequencing (6). While this has been shown to be effective
at increasing the depth of sequencing in these regions,
it is still unclear whether this will confer sufficient sen-
sitivity when quantifying the level of DNAm such that
differences between groups can be detected. This is vital
for assessing whether this could be a plausible approach
for epigenetic epidemiology studies of complex traits,
which are typically associated with small differences in
DNAm between groups.

One of the phenotypes with the most dramatic
influence on DNAm profiles is tobacco smoking, where
the signature is not only detectable in the blood of
current and former smokers (7–9), but additionally in
the blood of newborns and children who were exposed
in utero (10–12). In the largest meta-analysis comparing
2433 current and 6956 never smokers, 2623 DNAm sites,

annotated to 1405 genes were identified with signifi-
cantly different levels of DNAm, many of which were
associated with large effects (>5%) (13). Harnessing
DNAm levels at multiple sites into an aggregate score has
been shown to be highly predictive of current smoking
status (7,14).

The aim of this study was to assess the viability of
using targeted ONT sequencing for epigenetic epidemi-
ology by attempting to rediscover known differentially
methylated positions (DMPs) that existing technologies
have shown to be robustly associated with tobacco
smoking. We selected three genomic regions containing
highly significant smoking-associated DMPs (AHRR,
GFI1 and an intergenic region on chromosome 2) and
implemented the nCATS methodology, a CRISPR-Cas9
targeted sequencing approach. We report the first
comparison of DNAm called from ONT long read data
with DNAm profiled using the EPIC array on the same
samples and the first assessment of the sensitivity
of DNAm quantification with ONT to detect tobacco
smoking associated differentially methylated positions
by comparing estimated levels of DNAm between a
smoker and non-smoker.

Results
We targeted three genomic regions where previous
studies have identified multiple differentially methy-
lated sites associated with tobacco smoking; two are
centered on specific genes (AHRR and GFI1) and one was
intergenic on chromosome 2q37.1 (Table 1). To enrich
for reads in these regions we designed a panel of 18
gRNAs (Supplementary Material, Table S1) targeting the
start and ends, with additional gRNAs tiled across the
larger AHRR region (∼140 kb) optimizing the spatial
distribution (mean distance between guides = 15.6 kb)
against the predicted performance based on sequence
content. After sequencing two MinION r9.4.1 flowcells
on a Nanopore Mk1b sequencer, 215 829 reads were
generated. These were aligned to the human genome
(hg38) using minimap2 and filtered resulting in 185 540
(86%) high quality primary alignments (Supplementary
Material, Table S2). Of these, 645 reads (0.35%) were
located within our three targeted regions, meaning that
all regions had elevated coverage (range of means across
regions 7.72–21.5) compared to the mean read depth
genome-wide (1.18, SD = 0.99), as desired. On closer
inspection, acute increases in read depth were observed
at the location of all gRNAs, with accumulative effects
observed where multiple gRNAs are located within the
range of the typical read sizes (Fig. 1, Supplementary
Material, Figs S1 and S2). While it was evident that all
gRNAs had successfully targeted the desired genomic
locations, the performance in terms of number of reads
at each position was variable, in line with random mixing
of the gRNAs within the pools (see section Methods).
The proportion of on-target reads was in line with
previous studies (6) and off-target reads were randomly
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Table 1. Summary of the three targeted regions

Gene Chr Range (hg38) Size (kp) Number of
guides

Number of
reads

% of reads Mean
coverage

Mean read
length

N reads
>10 kb

AHRR 5 300 325–440 842 140.5 10 421 0.23% 19.1 10 067 160
– 2 233 280 458–

233 288 795
8.3 4 89 0.05% 21.5 4987 3

GFI1 1 92 939 875–92 957 522 17.6 4 135 0.07% 7.72 3380 14

Figure 1. Distribution of nanopore sequence reads across AHRR region. Depicted is the targeted genomic region on chromosome 5 containing AHRR
and the location of the gRNAs and sequencing reads. Shown from top to bottom is the gene locations (exons and introns) for different transcripts, CpG
islands locations (green boxes), target position of the gRNAs where the grey arrow indicates the orientation, a histogram of the total number of Nanopore
reads overlapping each position, and the location of the individual reads at the bottom. Note that due to the high number of reads in the region, only a
subset is included to give a representative view of read mappings.

distributed across the genome (Supplementary Material,
Fig. S3). The read lengths within the two smaller regions
were determined by the size of the region and the
location of the gRNA, for example, within the chro-
mosome 2 region, 40.4% of the reads spanned at least
90% of the targeted region (Supplementary Material,
Fig. S4). In contrast, while the larger AHRR region
was associated with longer reads, (mean = 10 067 bp;
Supplementary Material, Fig. S5) with 160 (38%) of
reads longer than 10 kb, the proportion of the targeted
region captured by a single read was smaller on average
(mean = 0.07).

To quantify the level of DNAm across the targeted
regions, Nanopolish (5), which uses a Hidden Markov
model and the electrical signal data to determine the
methylation status at CpG sites was run. Filtering to
sites with a minimum read depth of at least 10, DNAm
was quantified at 1779 CpGs clustered into 1130 regions.
This represents a much finer resolution of data than

is obtained using the most comprehensive microarray
available. For example in the AHRR region, we captured
1429 CpGs compared to 159 DNAm sites included on the
EPIC array, representing ∼9-fold increase of data points.
Furthermore, the median spacing between CpGs in this
region is reduced to 35 bp in the ONT data compared
to 405 bp on the EPIC array. First, we were interested
in assessing the level of accuracy in the quantification
of DNAm from ONT sequencing, by comparing the level
of DNAm at sites profiled using the EPIC array. A total
of 98 CpGs within the three targeted regions across the
two samples were quantified with both platforms. Esti-
mated DNAm levels correlated strongly (r = 0.94; Fig. 2),
although the absolute difference between the two tech-
nologies was moderate (RMSE = 0.138). Of note, it appears
that the ONT-derived levels of DNAm are less similar
between platforms at the extremes; rather than reflect-
ing inaccuracies in the ONT approach we hypothesize
that this reflects the fact that in these parts of the
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Figure 2. Scatterplot of DNAm quantified using ONT sequencing and Illu-
mina EPIC arrays. Plotted is the level of DNAm estimated from Nanopore
reads using Nanopolish (x-axis) and Illumina EPIC arrays (y-axis) for
all sites within the three targeted regions which were profiled using
both platforms combined across both samples. The color of the point
differentiates the two samples (i.e. smoker and non-smoker).

distribution the EPIC array is known to be less sensitive
(15) with variation here being attributable to lack the
of precision in the array-derived estimates. Second, we
were interested in whether we could detect differences
in DNAm between the smoker and non-smoker using
DNAm level derived from Nanopore sequencing at sites
within the targeted regions. We applied Fisher’s test to
compare the proportion of methylated reads between the
two samples at 514 sites profiled at sufficient read depth
(>10) in both samples (Supplementary Material, Table
S3). Twelve CpGs had a Bonferonni adjusted significant
P-value, 10 in the AHRR region and 2 in the chromosome
2 intergenic region. All 12 CpGs were hypomethylated in
the smoker, with a mean difference of −0.53. The power
to detect effects in the sequencing-based DNAm analyses
depends not only on the magnitude of effect but also the
read depth at that position (3). We wanted to determine,
whether we had potentially missed associations due to
limited sequencing coverage. Comparing the level of sig-
nificance against total read depth across both samples,
we observed that the lowest combined read depth of a
significant site was 44, more than double our read depth
filter of at least 10 in both samples, indicating that at
some sites we were not sufficiently powered (Supplemen-
tary Material, Fig. S6).

Next, we compared our results with an EWAS of
tobacco smoking based on participants from the UK
Household Longitudinal Study (UKHLS) who had whole
blood DNAm profiled using the EPIC array, to confirm
whether we could validate and refine previously reported
associations (Supplementary Material, Table S4). There
were 39 CpGs tested with both platforms, and only one

site was significant in both analyses (Fig. 3A). However,
in general, for sites significant in the EPIC EWAS, the
nanopore sequencing data demonstrated the same
direction of effect as that reported in the EPIC array
EWAS even if it was not significant (Fig. 3B). To establish
whether the lack of overlap of significant associations
was due to insufficient read depth in the nanopore
sequencing data, we compared the EPIC array P-values
with read depth and indeed, of the significant sites
from the EPIC EWAS, the one that was also significant
in our nanopore analysis had the highest read depth
(Fig. 3C). Therefore, we conclude that our inability to
rediscover all previously reported smoking sites is due
to limited power despite enrichment in our targeted
regions.

Eleven of the smoking associated significantly CpGs
we detected with Nanopore sequencing are not present
on the EPIC array and therefore represent novel associ-
ations. Looking at the genomic position of these, all ten
of the significant sites located within AHRR are intronic,
with nine annotated to the same intron (Supplementary
Material, Fig. S7). Furthermore, we observed that 6 of
these CpGs clustered within 400 bp (Fig. 4) and overlap
with cg05575921, typically the site on the EPIC array
with the most replicated association due to its large
magnitude of effect (7,9,11,13,16,17). For further func-
tional annotation, we downloaded the predicted regula-
tory functions from ChromHMM (18) for blood, and found
that these six CpGs were located in a bivalent enhancer
region, while the other CpGs in the AHRR region were
located in repressed regions. The two significant CpGs
located on chromosome 2 are ∼1 kb apart within the
same CpG island and lie within a broader region of
associated sites identified with the EPIC array (Supple-
mentary Material, Fig. S8).

An additional benefit of profiling DNA methylation
with long read sequencing is the ability to determine
whether correlated methylation status between neigh-
boring sites occurs non-randomly. We calculated an
adapted version of the linkage disequilibrium statistic
D′ between pairs of sites profiled in the same read
to quantify whether the co-occurrence of methylation
status was greater than expected by chance, given the
proportion of methylation at those sites. While there
were pairs of CpGs that had the same methylation
status within a read, this is not as extensive or prevalent
as is typically observed across genetic variants. First,
there was no evidence of decay in these relationships as
the distance between sites increased (Supplementary
Material, Fig. S9). Second, the sites did not segregate
cleanly into ‘blocks’ of highly correlated methylation
calls (Supplementary Material, Fig. S10). Instead, it was
seemingly random pairs of sites that were highly co-
ordinated. Considering just the subset of 12 sites with
significant differences associated with smoking status,
we did not see any evidence for the methylation status
of these to co-occur with the same read in a non-random
manner (Supplementary Material, Fig. S11).
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Figure 3. Comparison of nanopore sequencing and Illumina EPIC array to identify differential methylation sites associated with smoking. Across the
34 CpGs tested with both Nanopore sequencing and EPIC array for associations with current smoking status, (A) scatterplot of –log10 P-values from
EWAS comparing smoker(s) and non-smoker(s) using Nanopore sequencing (x-axis) and EPIC array (y-axis). (B) Scatterplot of the (mean) difference in
DNAm between smoker(s) and non-smoker(s) estimated using Nanopore sequencing (x-axis) or EPIC array (y-axis). (C) Scatterplot of total read depth in
Nanopore sequencing (x-axis) and –log10 P-values from EWAS comparing smokers and non-smokers using EPIC array (y-axis). In all panels the color of
the point indicates with which technology a significant difference was detected.

Discussion
In this study, we performed the first quantitative assess-
ment of Nanopore sequencing for epigenetic epidemi-
ology by deriving DNAm profiles from native DNA and
comparing with profiles generated with the current stan-
dard microarray technology (EPIC array). Our analyses
focused on three genomic regions, selected from previous
EWAS of tobacco smoking (7,9,13,16), which we targeted
using CRISPR gRNAs, to test whether the sensitivity of
DNAm quantification from Nanopore data is sufficient
to rediscover these associations. The correlation between
technologies was very high and the estimated level of
DNAm accurate enough to detect significant differences
between a heavy smoker and non-smoker at genomic loci
reported in previous analyses with much larger sample
sizes. One of the key advantages of using sequencing to
profile DNAm is the greater spatial resolution of signals
across the genome. For example, in our data, we had
∼9-fold more sites across the AHRR gene compared to
the content of the EPIC array, enabling us to discover
additional novel loci in this region associated with smok-
ing that have not previously been analyzed. This has
the potential to advance our understanding of the role
of aberrant differential methylation in the etiology of
complex diseases by providing complete coverage of the
region rather than being limited to a predefined sub-
set of sites that may or may not capture the complete
extent of methylomic variation in that region. A specific
utility of long read sequencing over both microarrays
and short read sequencing is the ability to characterize
whether methylation status is coordinated across CpGs
from the same genomic region by quantifying the pro-
portion of reads with concordant methylation calls was
greater than expected by chance. We found that high
correlations between neighboring sites were the excep-
tion, meaning that existing studies likely do not capture
much information about unmeasured sites and that it is

unlikely that the imputation of DNA methylation levels
will be as effective as it is for studies of genetic variation.
Altogether, this reiterates the need to empirically profile
DNA methylation using technologies that are genuinely
genome-wide. Improving the spatial resolution of DNAm
quantification will clarify the genomic region over which
differential methylation occurs, permitting better func-
tional annotation and enabling biological inferences.

While our data show great promise for the role of
Nanopore sequencing in studies of DNAm, it also high-
lighted some issues that will affect how it should be
used. DNAm is quantified as a proportion and when
using sequencing reads it is calculated as the fraction
of methylated reads to total number of reads at that
position. The accuracy of the quantification is therefore,
dependent on the sequencing depth at that position (i.e.
the denominator in the calculation). However, as in a
typical sequencing experiment the majority of DNAm
sites are captured by a handful of reads, while the total
number of CpGs covered can be many orders of mag-
nitude higher than a study based on microarrays, only
a minority are profiled adequately for any downstream
statistical analysis. To improve the likelihood of detect-
ing differences, we used a targeted approach based on
CRISPR/Cas9 methodology (6) to enrich for CpGs in three
specific genomic regions of varying size. This limited
our ability to detect novel DMPs to those located with
the regions that are already implicated. After filtering
DNAm sites for minimum coverage of 10 reads, only sites
within our targeted regions where retained. Despite the
high proportion of off-target reads, the mean read depth
across the genome was insufficient for accurate quantifi-
cation, highlighting the necessity of an enrichment step.

The methodology we present is applicable to any
genomic region, and we have shown that it is feasible
to consider multiple targets in a single experiment. It is
hard to predict from our data whether the magnitude
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Figure 4. Genomic distribution of AHRR CpGs with significantly different proportions of DNAm associated with smoking. Depicted is part of the targeted
genomic region on chromosome 5 containing AHRR where a cluster of significant CpGs were identified. Shown from top to bottom is the gene locations
(exons and introns) for different transcripts, CpG islands locations (green boxes), chromHMM predicted chromatin annotations from the 15 state model
for blood (E062) where the color of the box indicates the type of regulatory region as conferred in the legend at the bottom of the panel, a (orange)
Manhattan plot of the –log10 P-values from the Fisher’s test of the Nanopore sequencing estimated DNAm proportions comparing a smoker and non-
smoker, a (orange) line graph of the estimated difference in DNAm proportion between the smoker and non-smoker from the Nanopore data, a (blue)
Manhattan plot of the –log10 P-values from the EPIC array EWAS of current smoking status and a (blue) line graph of the estimated mean difference in
DNAm proportion between smokers and non-smokers estimated with the EPIC array.

of coverage enrichment we report would be replicated if
we had included more targeted regions, or whether we
would have seen higher levels of enrichment if we had
considered fewer regions. For regions that are smaller
than the typical read length only gRNAs at the start
and end are needed, whereas for target regions larger
than the typical read length (e.g. the AHRR region)
additional gRNAs tiled across the region are required.
The way the gRNAs combine is random. If there are lots
of gRNAs too close together multiple small fragments
may be produced. If they are too far apart, and the
reads do not span the full extent of the gap between
then, then an important part of the region may not
be adequately covered. Across the AHRR region, where
the gRNAs were located close together, we saw greater
levels of enrichment in terms of number of reads.
All the gRNAs we included produced fragments but
the performance was variable, with the enrichment
around GFI1 less successful in part because one of
the gRNAs was incorrectly orientated. Therefore, we
would recommend doubling up on gRNAs to protect
against the variable efficiency and to ensure adequate
coverage at particularly important regions. To maximize
the probability of the ‘correct’ gRNAs pairing up on
the same fragment, we ran the targeted regions in
different pools, with multiple pools for the AHRR region
consisting of different gRNAs. It should be noted that

one technical limitation of this method for profiling
DNA methylation is that it requires ten times the DNA
input per pool of gRNAs, compared to microarrays, and
therefore increasing the number of regions and therefore
pools will have an effect on the quantity of DNA required
for sequencing.

As well as targeting specific regions of the genome
where we knew differences existed, we additionally chose
a phenotype associated with large effects, such that dif-
ferences should be detectable even if the sensitivity is
low. While this strategy was effective, it is unclear from
our analysis how viable Nanopore sequencing will be for
detecting smaller differences between groups.

Even within our targeted regions, there were a number
of previously reported sites where we did not detect sta-
tistically significant differences, which we hypothesize is
due to insufficient read depth despite target enrichment.
Despite the experiment successfully enriching the data
for coverage with our three targeted regions, it should be
noted that the vast majority of reads were located outside
of these and randomly distributed across the genome,
meaning they were excluded from the analysis due to
low coverage. Improving the efficiency of the enrichment
will be the key to establishing this approach for studying
a broad range of complex diseases and phenotypes.

Another important factor for study design is sample
size. EWAS based on microarrays require large sample
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sizes to robustly detect differences after adjusting
for the penalty of testing sites across the genome
(15,19), with the exact size of the sample dependent
on the magnitude of the effect associated with the
phenotype under investigation (20). When quantifying
DNAm through sequencing based approaches, statistical
power additionally related to sequencing depth, which
can be increased by either profiling more samples, or
sequencing the samples you have more deeply. Both
approaches have financial and practical implications. For
Nanopore sequencing, currently there is no methodology
to enable multiple samples to be profiled on a single
flowcell, limiting the total sample size. In this study, we
only profiled two individuals, one heavy smoker and one
non-smoker, while the quantity of sequencing data made
up for the lack of samples, this may have affected which
differences we were able to detect if there is any inter-
individual variation in terms of which sites are affected
or the magnitude of the difference. In order to capture
the sites, which we did not rediscover, either additional
samples or more flowcells would likely be required.

As well as the experimental methodology, the data
analysis pipeline requires careful thought. Calling DNAm
from Nanopore sequencing data is a computational chal-
lenge to classify methylated and unmethylated cytosines
based on the electrical signal emitted as the DNA passes
through the pore with a number of algorithms developed
for this purpose. In this study we implemented just one
of these algorithms, Nanopolish (4), which was found to
be consistently one of the most accurate and concordant
with the other best performing methods, across a range
of genomic contexts, as well as the least computationally
intensive (21). One limitation of this algorithm is that it
only considers CpGs and ignores DNAm at cytosines in
other genomic contexts. This is of little consequence for
our comparison with the EPIC array, as it also predom-
inantly focuses on CpG sites, but means that there is
another layer of resolution in the DNAm profiles we have
not considered. As methods for calling additional DNA
modifications are validated, an additional advantage will
be the ability to call multiple epigenetic marks from
a single sequencing run (22). This would be especially
beneficial for studies of the brain where DNA hydrox-
ymethylation is abundant (23).

In summary, our data indicates that Nanopore
sequencing is a valid option for identifying multiple
CpGs across the genome that are associated with
large differences in DNAm between groups. It has the
potential to fine map associations detected with existing
microarray platforms by validating previous associations
and identifying novel loci and in this way advance our
understanding of the role differential methylation plays
in the etiology of complex disease.

Materials and Methods
Samples
Matched (age/sex) samples, including one heavy smoker
and one non-smoker, were obtained from the Exeter

10000 and Peninsula Research Bank (EXTEND/PRB),
an ethically approved biobank providing access to
anonymized DNA/RNA/Urine/Plasma/Serum. Samples
are stored at −80◦C. (https://exetercrfnihr.org/about/
exeter-10000-prb/). The EXTEND/PRB is housed and
managed within the NIHR Exeter Clinical Research
Facility (Exeter CRF).

Design of CRISPR/Cas9 gRNAs
Three genomic regions that contained robust smoking-
associated differentially methylated sites were selected
as the target regions (Table 1). For each region, we
designed two gRNAs for the start and two gRNAs for
the end of the region. For the AHRR region which is
140 kb and longer than the average read generated
by Nanopore sequencing, six additional guides were
designed, tiled across the region. We used the Alt-R

®

CRISPR-Cas9 system from Integrated DNA Technologies
(IDT). The gRNACRISPR were designed using software
available through the IDT website, selecting those with
the optimal predicted efficiency and specificity scores.
In total 18 gRNAs were included, the details of which
are in Supplementary Material, Table S1. The gRNA were
ordered as CRISPR RNA (crRNA), to allow the formation
of RNP with IDT tracRNA and Cas9 protein.

Cas9 cleavage and library prep
The CRISPR Cas9-mediated target enrichment was car-
ried out in line with the ONT protocol (Cas-mediated
PCR-free enrichment, ENR_9084_v109_revM_04Dec2018).
In accordance with the tiling approach described by ONT,
the crRNAs were diluted to 100 μm in TE pH 7.5 (IDT).
crRNA were split across five pools at equimolar concen-
trations, with two pools for the larger AHRR region, one
pool each for the two small regions, and a final pool with
all 18, as detailed in Supplementary Material, Table S1.

One μl of each crRNA pool (100 μm) was combined with
1 μl of tracrRNA (100 μm) and 8 μl IDT duplex buffer.
This solution was incubated at 95◦C for 5 min in a Veri-
ti™ 96-well thermal cycler (Applied Biosystems™), which
then ramped down slowly to 25◦C. To form functional
CRISPR ribonucleoproteins (RNPs), 3 μl of this annealed
crRNA/tracrRNA was incubated with 0.3 μl 62 μm HiFi
Cas-9 (IDT), 3 μl 10X NEB CutSmart

®
Buffer (New England

BioLabs) and 23.7 μl nuclease free water for 30 min at
room temperature.

Prior to Cas9 cleavage, human genomic DNA (gDNA)
was dephosphorylated using Calf Intestinal Phosphatase.
Briefly, 25 μg of gDNA (5 μg per crRNA pool) was diluted in
15.6 μl 10X CutSmart

®
Buffer (New England BioLabs) and

15.6 μl Calf Intestinal Phosphatase (5 U/μl) (New England
BioLabs) and was incubated for 10 min at 37◦C, 2 min at
80◦C and then held at 20◦C in a Veriti™ 96-well thermal
cycler (Applied Biosystems™) until cleavage.

For cleavage 10 μl of each CRISPR RNP pool was
combined with 5 μg dephosphorylated gDNA, 1 μl
10 mm dATP (New England BioLabs) and 1 μl NEB Taq
Polymerase (New England BioLabs) in order to achieve
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targeted gDNA cleavage and dA tailing of cleaved
products. The reaction was incubated at 37◦C for 30 min,
72◦C for 5 min and then held at 4◦C in a Veriti™ 96-well
thermal cycler (Applied Biosystems™). Adaptors from
the LSK-109 sequencing kit (Nanopore) were then ligated
onto 42 μl of pooled CRISPR cleaved DNA using NEBNext
Quick T4 Ligase (New England BioLabs) and incubated at
room temperature for 20 min. 1 volume of TE was then
added and 0.3X AMPure XP bead purification (Beckman),
using 2 × 250 μl SFB buffer washes in place of Ethanol.
The library was eluted in 13 ul of EB buffer (Nanopore)
and loaded on a Nanopore Mk1b sequencer with MinION
r9.4.1 flowcell and run for 24 h.

DNA methylation EPIC array
DNAm data for the two samples included in this study
was generated as part of a larger project profiling
>1200 individuals from the EXTEND cohort. The EZ-
96 DNA Methylation-Gold kit (Zymo Research; Cat No#
D5007) was used for treating 500 ng of DNA from
each sample with sodium bisulfite. DNA methylation
data were generated using the Illumina Infinium
HumanMethylationEPIC BeadChip (‘EPIC array’) array.
Raw data were processed using the wateRmelon pack-
age (24) and put through a stringent quality control
pipeline that included the following steps: (1) checking
methylated and unmethylated signal intensities and
excluding poorly performing samples; (2) assessing the
chemistry of the experiment by calculating a bisulphite
conversion statistic for each sample, excluding samples
with a conversion rate <80%; (3) identifying the fully
methylated control sample was in the correct location;
(4) multidimensional scaling of sites on the X and Y
chromosomes separately to confirm reported sex; (5)
using the 59 SNPs on the Illumina EPIC array to check
for sample duplications; (6) use of the pfilter() function
in wateRmelon to exclude samples with >1% of probes
with a detection P-value > 0.05 and probes with >1% of
samples with detection P-value > 0.05; (7) normalization
of the DNA methylation data was performed using the
dasen() function in wateRmelon (24); (8) samples that
were dramatically altered as a result of normalization
were excluded on the basis of the difference between
the normalized and raw data; and (9) removal of cross-
hybridizing and SNP probes (2,25).

Statistical analysis
Base calling was performed using GUPPY (Version 4.0.11,
high accuracy model) to generate FASTQ sequencing
reads from the electrical data. Reads were aligned to the
human reference genome (hg38) using Minimap2 (26).
Aligned reads were then filtered to primary alignments
and reads of high quality using samtools. Nanopolish
(5) was then used to call DNAm from individual reads,
which were then aggregated into estimates of the level
of DNAm by counting the proportion of methylated reads
to the total number of reads at position using the script
provided in Nanopolish. To compare the level of DNAm

at individual sites between the smoker and non-smoker,
a Fisher’s test was used to compare the proportion of
methylated reads between the two samples. Significant
sites were identified after adjusting the P-values for the
total number of sites tested (514) using the Bonferroni
method. Genomic region plots were generated using the
Gviz package (27). To profile whether concordant methy-
lation status at neighboring sites occurs non-randomly,
we adapted the linkage disequilibrium statistic D′ to
quantify whether the co-occurrence of methylation at
pairs of sites within a read was greater than expected
by chance, given the proportion of methylation at those
sites. For pairs of sites that were profiled in same read, in
at least 10 reads across both samples, D was calculated
as the proportion of reads where the methylation status
(either methylated or unmethylated) was consistent at
both sites minus the probability of the status being con-
sistent given the proportion of methylation at each site
(see equation below). D was then standardized to D′, by
dividing it by its theoretical maximum.

D1,2 = pMM + pUU −
(
p1p2 + (

1 − p1
) (

1 − p2

) )
(1)

Dmax =
{

pMM + pUU, if D < 0(
1 − pMM − pUU

)
, if D > 0

(2)

D′ = abs(D)/Dmax (3)

where pMM is the proportion of reads where both sites
are methylated, pUU is the proportion of reads where
both sites are unmethylated, p1, p2are the proportion of
reads that are methylated at sites 1 and 2, respectively.
Heatmaps of ‘linkage’ statistics between pairs of DNAm
sites were generated using the LDheatmap package (28).

All analysis was performed with the R statistical lan-
guage version 3.6.3. All analysis scripts are available at
https://github.com/ejh243/ONTMethCalling.

EPIC-array-based EWAS of tobacco smoking
The British Household Panel Survey (BHPS) began in
1991, and in 2010 was incorporated into the larger UK
Household Longitudinal Study (29) (UKHLS; also known
as Understanding Society), which is a longitudinal panel
survey of 40 000 UK households from England, Scotland,
Wales and Northern Ireland. DNAm was profiled in
DNA extracted from whole blood for 1170 individuals
who were eligible for and consented to both blood
sampling and genetic analysis, had been present at all
annual interviews between 1999 and 2011, and whose
time between blood sample collection and processing
did not exceed 3 days. Eligibility requirements for
genetic analyses meant that the epigenetic sample was
restricted to participants of white ethnicity. About, 500 ng
of DNA from each sample was treated with sodium
bisulfite, using the EZ-96 DNA methylation-Gold kit
(Zymo Research, CA, USA). DNAm was quantified using
the Illumina Infinium HumanMethylationEPIC BeadChip
(Illumina Inc., CA, USA) run on an Illumina iScan System
(Illumina, CA, USA) using the manufacturers’ standard
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protocol. Samples were randomly assigned to chips and
plates to minimize batch effects. Quality control, pre-
processing and data normalization were carried out
using the bigmelon package (30) following a standard
pipeline (31).

Smoking status was derived from interview data and
the response to the question ‘Do you smoke cigarettes
now?’ to classify as either a current or non-smoker. In
total 1113 participants were included in the EWAS of
current smoking status. To identify sites where DNAm
was significantly different between smokers and non-
smokers, a linear model was fitted using the limma R
package (32) for all sites on the EPIC array controlling
for age, sex, six cell type proportions (CD8T, CD4T, NK,
Bcell, Mono, Gran) (33,34) and plate as a potential source
of technical variation.

Supplementary Material
Supplementary Material is available at HMGJ online.
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