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Abstract 

Background: Sex differences are known to play a role in disease aetiology, progression and outcome. Previous stud-
ies have revealed autosomal epigenetic differences between males and females in some tissues, including differences 
in DNA methylation patterns. Here, we report for the first time an analysis of autosomal sex differences in DNAme 
using the Illumina EPIC array in human whole blood by performing a discovery (n = 1171) and validation (n = 2471) 
analysis.

Results: We identified and validated 396 sex-associated differentially methylated CpG sites (saDMPs) with the major-
ity found to be female-biased CpGs (74%). These saDMP’s are enriched in CpG islands and CpG shores and located 
preferentially at 5’UTRs, 3’UTRs and enhancers. Additionally, we identified 266 significant sex-associated differentially 
methylated regions overlapping genes, which have previously been shown to exhibit epigenetic sex differences, and 
novel genes. Transcription factor binding site enrichment revealed enrichment of transcription factors related to criti-
cal developmental processes and sex determination such as SRY and ESR1.

Conclusion: Our study reports a reliable catalogue of sex-associated CpG sites and elucidates several characteristics 
of these sites using large-scale discovery and validation data sets. This resource will benefit future studies aiming to 
investigate sex specific epigenetic signatures and further our understanding of the role of DNA methylation in sex 
differences in human whole blood.
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Introduction
Sex is an important covariate in all epigenetic research 
due to its role in the incidence, progression and outcome 
of many phenotypic characteristics and human diseases 
[1, 2]. There is an increasing interest as to which role epi-
genetic modifications (such as DNA methylation) may 
play in the underpinnings for relationships between envi-
ronmental exposures and disease onset. In addition, sex 

has previously been shown to have a strong influence on 
DNA methylation variation [3–7]. However, the idea that 
DNA methylation variation between males and females 
may underlie the sex biases observed in diseases has not 
been well documented thus far.

Sex differences in disease prevalence are sometimes 
explained at the molecular level and rooted in genetic 
differences between males and females. Differences 
in sex chromosome complement have independently 
been shown to direct differences in gene expression and 
chromatin organisation [8–11]. Furthermore, these dif-
ferences in sex chromosome complement are sufficient 
to explain sex bias seen in some diseases. For example, 
X chromosome number has previously been shown to 
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impact immune cell population and occasionally there-
fore the development of diseases such as autoimmunity 
[12, 13].

Previous research has also revealed sex differences in 
gene expression of autosomal genes as well as sex chro-
mosome linked genes [14]. It is worth noting that most of 
the differences in gene expression on the autosomes are 
small differences [15]. However, small expression differ-
ences may still be associated with great effects on phe-
notypic characteristics and disease incidence and onset. 
Others also identified sex differences in chromatin acces-
sibility and histone modifications, thus suggesting that 
different epigenetic factors contribute to gene expression 
sex biases seen in some diseases [16].

Sex specific gene expression and levels of sex hormones 
may be mediated by epigenetic mechanisms, includ-
ing DNA methylation. Several genome wide association 
methylome studies (or Epigenome Wide Association 
Studies, EWAS) have highlighted differences in DNA 
methylation patterns linked to sex differences in genes on 
the autosomes [15–18]. Previous studies have reported 
sites and regions showing varying methylation due to 
sex differences in several tissues such as saliva, placenta, 
brain, pancreatic islets and whole blood [15, 17, 19–28]. 
These studies highlight the presence of autosomal loci 
displaying sex-biased DNA methylation patterns across 
the genome for several tissues. In order to determine 
their role in disease and developmental processes, these 
loci warrant further exploration.

However, due to X chromosome inactivation in 
females, large differences in methylation levels of X chro-
mosomes can be observed between males and females 
[29]. Recent research suggests that normalising meth-
ylation data with the sex chromosomes introduces a 
large technical bias to many autosomal CpGs [30]. This 
technical bias has been reported to result in many auto-
somal CpG sites being falsely associated with sex even 
when male and female samples are normalised indepen-
dently of each other, a method employed by some stud-
ies in the field. Moreover, it also leads to many autosomal 
CpGs being incorrectly identified to be more methylated 
in male samples compared to female samples. Therefore, 
the breadth of autosomal DNA methylation variation 
between males and females is still not well understood 
and requires further clarification. Extra steps were there-
fore employed in this study by applying a normalisation 
method which aims to reduce bias introduced to auto-
somal CpGs [30] to uncover true biological differences 
and determine patterns of global DNA methylation levels 
between males and females.

Additionally, it is worth noting that thousands of 
autosomal CpGs do show very small differences in 
DNA methylation patterns between males and females. 

However, a robust and well-annotated catalogue of 
sites showing the largest differences still needs to be 
characterised.

Here, we use the EPIC BeadChip to assess autosomal 
sex differences in DNA methylation levels from whole 
blood at individual sites and genomic regions. All indi-
viduals involved in this study were part of Understand-
ing Society: The UK Household longitudinal study [31]. 
Additionally, we adequately handle the technical bias 
introduced by sex chromosomes. To our knowledge, this 
is the largest study using the Illumina EPIC BeadChip 
(allowing for interrogation of ~ 850,000 sites across the 
genome) to investigate autosomal sex differences in DNA 
methylation at CpG sites in whole blood.

Results
Females show higher methylation at a subset of autosomal 
loci
Analysis of DNA methylation (DNAme) differences 
between males and females on the autosomes was per-
formed using linear regression for the Illumina EPIC 
BeadChip for 1171 individuals (682 females and 489 
males) for discovery and repeated in a validation data 
set of 2471 participants (1339 females and 1132 males). 
After data processing and cleaning, n = 747,302 CpGs 
were analysed (see Material and Methods). Sites which 
are known SNP probes, cross hybridising or X/Y linked 
probes were excluded. Moreover, since whole blood is 
a bulk tissue, we calculated the estimated cell type pro-
portions for whole blood between our male and female 
samples to assess whether any differences in cell type 
proportions would potentially be reflected in our results 
resulting in false positives. Using Wilcoxon test, we found 
no significant difference in the proportions of Granulo-
cytes between males and females, but we did find sta-
tistically significant differences in proportions of CD4T, 
CD8T, Natural killer, B cells and monocytes (Additional 
file  6: Figure S1B and S1D). We therefore included cell 
type proportions in our models for identifying sex-asso-
ciated differentially methylated probes and regions. After 
adjusting for multiple testing using the Benjamini–Hoch-
berg FDR method (FDR p < 0.05), we identified 54,261 
autosomal CpGs associated with sex in our discovery 
and validation data set (Additional file 6: Figure S1C). Of 
those CpGs, 60% (33,103 CpGs) were more highly meth-
ylated in females and the remaining 40% (21,788 CpGs) 
were more methylated in males. Gene ontology analyses 
showed several enriched terms for these 54,261 auto-
somal CpGs (Table  1) which included terms related to 
mammalian sex determination and gonad development, 
specifically several signalling pathways such as Ras sig-
nalling, MAPK signalling, Wnt and Hippo signalling 
[32–1]. Other terms included pathways related to cancer 
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and cellular proliferation (Table 35). This is not surpris-
ing though, as there is overwhelming evidence that sex 
influences cancer risk, progression, and treatment 
response [36–38]. It is also now well accepted that sex 
differences may significantly impact on the cell biology of 
cancer [39]. Further, epigenetic dysregulation is also now 
accepted widely as a mechanism for cancer initiation and 
progression. This may be through transcriptional acti-
vation or repression of specific autosomal loci through 
means of DNA methylation. Therefore, one can hypoth-
esise that sex specific patterns may influence the ability of 
cancer cells to adopt a stem cell like phenotype. This ena-
bles us to draw a link between epigenetic signatures and 
cancer pathways. It is likely that these sex differences in 
DNA methylation in part cause or are caused by differing 
levels of sex hormones such as androgen or oestrogen. 
This idea is supported by previous literature highlighting 
that DNA methylation transcriptionally represses mas-
culinising genes and that this depends on gonadal hor-
mones during development [39].

The lambda value of the Q-Q plots is slightly high 
(Additional file 6: Figure S1A and S1C) indicating slight 
inflation of test statistics and, in order to ensure we 
detect true sex differences, we selected CpGs that dis-
played large differences in methylation. Further, as a high 
proportion of CpG sites across the genome, we were 

also interested in investigating further, those CpG sites 
which show the largest differences between sexes. Thus, 
we further filtered our list of 54,261 CpGs by only con-
sidering those probes that displayed the largest sex differ-
ences, determined by a ΔBeta value (absolute difference 
between average Beta values in male and female samples) 
greater than 0.05. A total of 396 CpGs met this criterion 
(called sex-associated DMPs or saDMPs) in both our vali-
dation and discovery data sets and, from here on, are the 
focus of this manuscript (Additional file 6: Figure S1C). 
CpG sites which we identified to have higher methylation 
in females are from here, referred to as ‘female-biased 
CpGs’ and CpG sites which have higher methylation 
in males are here on referred to as ‘male-biased CpGs’. 
We found that these saDMPs were distributed across 
all autosomes (Fig.  1A) with 74% of the saDMPs being 
female-biased CpGs (293 CpGs) and 26% being male-
biased CpGs (103 CpGs) (Fig.  1B) (see Additional file  1 
for the full list).

Since we had such stringent parameters to define what 
we considered a significantly associated saDMP for males 
and females, we performed principal component analy-
sis (PCA) to see how male and female beta values clus-
tered in PC space and to evaluate the effect of DNAme 
at the saDMPs. As shown in Fig.  1C, male and female 
samples formed distinct clusters based on the beta values 

Table 1 Enriched GO terms among the 54,261 CpGs identified to be significantly associated with sex

N indicates the number of genes in the KEGG term. DE refers to the number of genes annotated to the sex-associated DMPs which are differentially methylated. P.DE 
indicates the P value for over representation of the KEGG term in this data set. FDR indicates the false discovery rate (using the Benjamini and Hochberg method)

Path Description N DE P.DE FDR

path:hsa04020 Calcium signalling pathway 240 192 4.10E−09 1.41E−06

path:hsa04015 Rap1 signalling pathway 210 169 1.15E−07 1.98E−05

path:hsa05200 Pathways in cancer 531 382.8333 1.91E−07 2.19E−05

path:hsa04014 Ras signalling pathway 232 180 2.97E−07 2.56E−05

path:hsa04010 MAPK signalling pathway 294 223.33333 2.24E−06 0.00015382

path:hsa04360 Axon guidance 182 148.5 3.46E−06 0.00019826

path:hsa04072 Phospholipase D signalling pathway 148 121 4.51E−06 0.00022149

path:hsa04310 Wnt signalling pathway 166 129.5 7.50E−05 0.00322397

path:hsa04371 Apelin signalling pathway 139 107.5 0.00011119 0.00363348

path:hsa04724 Glutamatergic synapse 114 93 0.00011675 0.00363348

path:hsa04390 Hippo signalling pathway 157 123.5 0.00012001 0.00363348

path:hsa01521 EGFR tyrosine kinase inhibitor resistance 79 67.5 0.00013811 0.00363348

path:hsa04071 Sphingolipid signalling pathway 119 94.5 0.00013944 0.00363348

path:hsa05226 Gastric cancer 149 115.5 0.00014787 0.00363348

path:hsa04550 Signalling pathways regulating pluripotency of stem cells 143 108.5 0.00059275 0.01359379

path:hsa04151 PI3K-Akt signalling pathway 354 245 0.00076003 0.01634056

path:hsa05224 Breast cancer 147 111.5 0.00092102 0.01863701

path:hsa04725 Cholinergic synapse 113 88 0.00148428 0.02836619

path:hsa04961 Endocrine and other factor-regulated calcium reabsorption 53 44 0.00209794 0.03798375

path:hsa05225 Hepatocellular carcinoma 168 123.5 0.00284431 0.04892215
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of the significant sex-associated DMPs (396 CpGs). PC1 
explained 16.1% of the variance and PC2 explained 4.2% 
of the variance. Based on Fig.  1C we can conclude that 
these saDMPs are sufficient to contribute to the clear 
separation of male and female samples in PC space.

Characterisation of sex‑associated DMPs
The saDMPs were found in 174 unique genes with 48 
of these genes harbouring several saDMPs (Fig.  1D). 
The number of saDMPs harboured by individual genes 
ranged from 1 to 8. CRISP2, a gene known to be involved 
in sperm function and male fertility [40], harboured the 
largest number of saDMPs, 8, which interestingly were 
all found to be female-biased CpGs. We performed 
GO and KEGG analyses but did not identify any sig-
nificantly enriched biological processes or pathways 
for these genes. Nevertheless, the genes which did har-
bour saDMPs are biologically interesting, as many are 
genes known to be involved in sexual development and 
processes, such as SOX18 [41]. Further, some genes are 
already known to exhibit sex specific methylation pat-
terns, such as PRR4 and PTPRN2 [42, 43]. Despite this, 
we were able to identify some novel genes which have 
not previously been reported to exhibit sex differences in 
DNA methylation such as GCK, HIP1R and KANK1.

To help us gain more insight into the functional role 
of these saDMPs, we characterised their genomic loca-
tion and further compared this with the autosomal EPIC 
background. We found that saDMPs are preferentially 
located in CpG islands and CpG shores and depleted in 
open sea regions compared to the autosomal background 
(Fig.  1E). Moreover, female-biased CpGs are enriched 
at promoters and exons, with male-biased CpGs being 
enriched at 5’UTRs (Fig. 1F). Interestingly, we observed 
that all saDMPs display enrichment at enhancers, which, 
together with their presence at promoters, indicates that 
they could play a role in gene regulation. Lastly, we also 
note that all saDMPs were depleted at transposable ele-
ments and introns compared to the autosomal EPIC 
background.

Enrichment of saDMPs at enhancers suggests that some 
of the saDMPs could potentially regulate distal genes [44, 

45]. We further annotated the saDMPs to genes by identi-
fying if their contacts with promoters are mediated by 3D 
chromatin loops detected in Hi-C data. Following this, 
we further annotated the saDMPs to 37 additional genes, 
28 of them being annotated to female-biased CpGs and 8 
to male-biased CpGs (see Additional file  7: Figure S2A, 
B and Additional file 5).

Of the 8 genes linked to male-biased CpGs, we found 
three histones (HIST1H3A, HIST1H4A and HIST1H4B), 
which are known to interact with CDYL. Chromodo-
main Y-like protein (CDYL) is a chromatin reader bind-
ing to heterochromatin (H3K9me3, H3K27me2 and 
H3K27me3) that is crucial for spermatogenesis, male 
fertility and X chromosome inactivation [46]. In addition, 
ODF2L; outer dense fibre of sperm tails 2 like is linked 
to saDMPs female-biased CpGs and has previously been 
shown to interact with PRSS23, which is involved in ovu-
lation [47].

Next, to evaluate whether the genes controlled by the 
saDMPs are part of the same regulatory network, we 
merged all proximal and distal genes and produced pro-
tein–protein interaction networks to visualise the net-
works of these genes. Following this, we were able to 
identify the top 30 hub genes by evaluating each gene 
by its network connectivity. The results for these analy-
ses are produced in Additional file  7: Figure S2C, D. 
The top hub gene (ranked by the maximum clique cen-
trality method) for the male-biased CpGs in males was 
HIST1H4B and the top hub gene for female-biased CpGs 
was SLC17A7.

Enrichment of saDMPs in transcription factor binding sites
To identify common features among the sex-associated 
DMPs, we performed transcription factor (TF) bind-
ing site and gene ontology analyses. First, we evaluated 
whether the saDMPs were enriched in motifs for TFs 
(100  bp window). For the 293 female-biased CpGs, we 
found 315 unique enriched TFs (p value < 0.05) (Fig. 2A 
and Additional file 3) with strongest evidence for FOXB1, 
TIA1 and XRCC1. These are genes not previously 
reported to exhibit any sex differences or be enriched at 
areas exhibiting any sex differences. We did however find 

(See figure on next page.)
Fig. 1 Location and characterisation of saDMPs. A Manhattan plot for EWAS analysis of sex. CpG sites which met a threshold of FDR < 0.05 and had 
an average beta change of > 0.05 and found in both discovery and validation data sets were considered significant and are represented by darker 
colours. B Volcano plot for saDMPs. CpGs which are not significant in both the discovery and validation data sets are represented in grey, replicated 
saDMPs male-biased CpGs are in orange and replicated saDMPs female-biased CpGs in blue. Grey points displayed beyond the cut off points 
represent CpG sites which were met the criteria in the discovery data set (FDR < 0.05 and deltaBeta value > than 0.05 in any direction) but were not 
replicated in the validation data set. C Principal component analysis of beta values at the significant saDMPs. Male samples are indicated in orange 
while female samples are indicated in blue. D Number of saDMPs harboured by individual genes. E Top panel shows the annotation of all saDMPs 
(n = 396), female-biased CpGs (n = 293) and male-biased CpGs (n = 103) relative to CpG island regions compared to the autosomal background. 
Bottom panel shows the  log2 (obs/exp) annotations based on the autosomal background of the different annotations. F Top panel shows the 
overlap of all saDMPs (n = 396), female-biased CpGs (n = 293) and male-biased CpGs (n = 103) with genomic features compared to the autosomal 
background. Bottom panel shows the  log2 (obs/exp) annotations based on the autosomal background of the different annotations
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Fig. 1 (See legend on previous page.)
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some TF motifs enriched which have previously been 
shown to play a role in sexual development and hormone 
levels. For example, we found SOX13, SOX21 and SRY 
TF motif to be enriched in female-biased CpGs, which 
are known to be involved in male sex determination 
(Fig. 2A) [2, 48]. For the 103 male-biased CpGs, we iden-
tified 64 enriched TFs, including ESR1 which encodes 
the oestrogen receptor, TCEAL6 HLCS and GPD1 
(Fig. 49A and Additional file 4).

To analyse whether the TF motifs were enriched for 
annotation to biological processes or pathways, we per-
formed pathway analyses using the GO and KEGG data-
bases in order to learn more about how potential sex 
specific regulatory pathways affected different pathways. 
We identified several enriched KEGG pathways for the 
TFBS enriched at female-biased CpGs, spanning a wide 
range of processes such as transcriptional misregulation 
in cancer, several specific cancer pathways, PI3K-Akt 
signalling and more (Fig. 2B). In addition, we also found 
39 enriched GO terms ranging from transcription factor 
activity, E-box binding, transcription coactivator activ-
ity and interestingly, bHLH transcription factor binding 
(Additional file  8: Figure S3B). Nevertheless, we found 
no enriched KEGG terms for the TFs enriched at male-
biased CpGs, likely due to the small number of enriched 
TFs. However, we identified several enriched GO terms 
such as NAD, NADP binding and oxidoreductase activity 
(Additional file 8: Figure S3A).

As we identified enrichment for some transcription 
factors encoded on the sex chromosomes (e.g. SRY), 
we hypothesised that sex chromosome encoded tran-
scription factors may influence CpG methylation at the 

saDMPs directly or indirectly by acting as hub genes in 
the enriched TF motif network. To assess this, we firstly 
produced protein–protein interaction networks to visu-
alise the networks of these TFs (Additional file  9: Fig-
ure S4). Although we identified some enriched motifs 
for several TFs encoded on the X chromosomes in the 
male-biased CpGs such as ELK1, TGIF2LX and TCEAL6 
(Additional file  9: Figure S4A), we observed that they 
were not central nodes in the network. Nevertheless, we 
did identify several central TF motifs encoded on the sex 
chromosomes for the female-biased CpGs (Additional 
file 9: Figure S4B). These included 15 TFs encoded on the 
X chromosome and 2 on the Y chromosome including 
SRY and KDM5D.

Secondly, we further utilised cytohubba a plug-in tool 
in cytoscape to robustly identify if these TFs were in 
fact hub genes in the network. This revealed that one TF 
encoded on the X chromosome (RPS4X) did in fact act 
as a hub gene in the TF network; however, the other 29 
genes were encoded on the autosomes (Additional file 9: 
Figure S4C). Furthermore, for the TF motifs enriched 
at female-biased CpGs, we identified MAPK1, JUN and 
BRCA1 and other autosomal genes to be hub TFs in the 
network revealing novel TFs involved in sex differences 
(Additional file  9: Figure S4D). Moreover, for those TFs 
enriched at male-biased CpGs, we identified SP1, ESR1 
and SMAD4 to be hub genes in this network (Additional 
file 9: Figure S4C). Interestingly, SP1 is a gene known to 
influence SRY expression [49] and ESR is the gene that 
encodes the oestrogen receptor and lastly, SMAD4, has 
previously been described as a female germ cell deter-
minant [50]. This analysis suggests that although we 

Fig. 2 Transcription factor motif enrichment analysis. A Overlap of enriched TF motifs for female-biased CpGs (blue) and male-biased CpGs 
(orange). saDMPs were enriched in TF binding motifs including SRY and ESR1. B KEGG analyses for the significantly enriched TF motifs at 
female-biased CpGs
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did identify some sex chromosome encoded TFs to act 
as hub genes in the TF network, it is unlikely that they 
are responsible for affecting CpG methylation at these 
saDMPs.

Relationship with gene expression
The 396 saDMPs were then further explored in asso-
ciation with the expression levels of their annotated 
genes using publicly available data for whole blood 
poly(A) + (GSE120312). The majority of the differentially 
expressed genes (DEGs) are located on the sex chromo-
somes, but we also did observe differential expression 
between males and females for several autosomal genes 
(Additional file 10: Figure S5B-S5C). We did not identify 
any significant sex-biased gene expression patterns cor-
responding to differences in DNAme levels at these genes 
(Additional file 10: Figure S5). This is not surprising as it 
has been previously reported that autosomal sex differ-
ences in DNA methylation result in nominal or no differ-
ences in gene expression [26, 28], a trend also seen with 
age specific DNAme marks [51]. Moreover, while other 
studies claim that they identify DEGs on autosomes 
between males and females, corresponding to differences 
in DNA methylation, when adjusting for multiple testing, 
it appears that these no longer hold statistical significance 
[27]. It is also important to note that, the relationship 
between DNAme with gene expression is a complex one, 
although it is generally thought that DNA methylation 
leads to gene repression, lots of literature reports meth-
ylation leading to active expression [52–54] or that it is 
insufficient to repress transcription [55]. These results 
support the idea that differences in DNA methylation 
observed between males and females do not lead to sig-
nificant differences in gene expression.

Sex‑associated differentially methylated regions
Given that several genes harboured numerous saDMPs, 
we postulated whether some of the saDMPs were part of 
larger differentially methylated regions associated with 
sex. We therefore searched for differentially methylated 
regions associated with sex in our discovery and valida-
tion data set. Following adjustment for multiple testing 
(FDR) and adjustment for cell type proportions, batch 
effects and age, we identified many sex-associated dif-
ferentially methylated regions. We therefore considered 
a sex associated differentially methylated regions (saD-
MRs) as significant if it harboured at least 5 CpGs, had an 
FDR value smaller than 0.05, had a methylation difference 
within the region greater than 0.05 in either direction and 
was present in both our discovery and validation data set. 
Following filtering of the list of saDMRs, we identified 
266 significant sex-associated DMRs on the autosomes 
between males and females located at 231 unique sets of 

genes (Additional file 2). The number of CpGs within the 
DMRs ranged from 6 to 123 and had an average width of 
2392 base pairs (bp) ranging from 178 to 14,715 bp.

Figure  3 shows the beta values for males and females 
at 4 of the most significant saDMRs: The top hits in the 
saDMR list overlapped promoter regions of genes such 
as SDHD, TIMM8B, ATP5J, GABPA, GPN1, CCDC121, 
AND PRKXP1. SDHD and TIMM8B are genes known 
to be influenced by oestrogen exposure [56] suggest-
ing that sex hormones may underlie sex differences in 
autosomal DNA methylation, or alternatively that DNA 
methylation may mediate sex hormone levels. Moreover, 
ATP5J and GABPA are genes (male-biased CpGs) which 
have previously been reported to be implicated in early 
onset of Alzheimer’s disease [57, 58], a disease known to 
affect females more than males. Furthermore, ATP5J is a 
gene known to be a target gene of oestrogen, previously 
shown to serve an inhibitory role in the sex differences in 
hepatocellular carcinoma [59]. GPN1, CCDC121, ATP5J 
and GABPA have previously been shown to exhibit func-
tions which are sex specific [21]. Furthermore, PRKXP1 
is located on chromosome 15 and CpGs in this region 
have previously been associated with Crohn’s disease and 
intestinal inflammation, a disease which has previously 
been reported to be more prevalent in females [60]. A 
saDMR harbouring 123 CpGs overlapped the promoter 
region of a gene called MCDC1, a gene known to direct 
chromosome wide silencing of the sex chromosomes in 
male germ cells, initiate meiotic sex chromosome inacti-
vation (MSCI), and lead to XY body formation [61].

These findings are extremely important for epigenome 
wide association studies aiming to characterise sex spe-
cific effects in relation to exposures, a rising theme in 
the literature [6, 42, 62–65]. Our study provides a valu-
able resource for the community to disentangle whether 
particular sites or regions display sex differences in DNA 
methylation.

Discussion
Here, we conducted the first study aiming to character-
ise autosomal sex differences in DNAme between males 
and females in whole blood using the Illumina EPIC 
BeadChip, which interrogates ~ 850,000 sites across the 
genome. While we were able to identify thousands of 
autosomal CpGs displaying sex differences in DNA meth-
ylation, we focused the majority of our analysis on those 
autosomal CpGs displaying the largest sex differences 
(see Methods). We, thereby, identified 396 sex-associated 
differentially methylated positions on the autosomes. 
Previous work has reported contradicting results, some 
research report that there is higher methylation on auto-
somes in females [5, 19, 21], while other research reports 
identifying higher methylation on autosomes in males 
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[28–66] and others reports no significant difference in 
DNAme on autosomes between males and females [68]. 
Our results support the former and we found that 76% 
of these loci (293 CpGs) showed higher methylation in 
females compared to males.

Therefore, although the existence of these autosomal 
sex-associated CpG sites is well established, a robust 

and consistent catalogue is yet to emerge. When com-
paring the saDMPs discovered in this study to findings 
previously reported in blood samples (where a full list of 
sex-associated sites were available), we do observe some 
overlap, although it is limited (Table 2). For example, we 
identify 54% overlap of our identified saDMPs with pre-
viously reported sex-associated sites in cord blood [21]. 

Fig. 3 Plots of sex-associated differentially methylated regions (saDMR). We plotted regions: A SDHD and TIMM8B, B PRKXP1, C ATP5J and GABPA 
and D CCDC121 and GPN1. Yellow boxes represent appropriately labelled genes, green boxes represent the genomic region which the differentially 
methylated region spans. The scatterplots represent the beta values for males (orange) and females (blue) at CpG sites located within the 
differentially methylated region
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On the other hand, overlap from other research also 
investigating cord blood was lower, namely 36.87% [69]. 
Furthermore, we observe only ~ 15% overlap of saDMPs 
identified in a previous study investigating sex differ-
ences in peripheral leukocytes [24]. We also addition-
ally checked the overlap between our saDMPs identified 
in blood with those identified in other tissues (Table 2). 
Interestingly, we observe a 73% overlap with sex-asso-
ciated sites identified in placenta by Inkster et  al. [27] 
and a 35% overlap with sex-associated sites identified 
in post-mortem prefrontal cortex [66]. The existence of 
this overlap between different tissues shows that a por-
tion of these saDMPs identified are conserved across tis-
sues, and that some are tissue specific. This highlights an 
important avenue for future work.

However, alternative reasons for this limited overlap 
exist; firstly, this may be attributed to differences in sam-
ple size, as the datasets used within this study are much 
larger than previously used thus increasing our ability to 
detect true sex differences in DNA methylation.

Secondly, the differing normalisation methods applied 
to DNAme microarray data. Previous research has shown 
that the methylation levels of CpG sites on the X chro-
mosome differ largely between males and females [29] 
and, thus, normalisation methods which normalise array 
data indiscriminately with CpG sites on the autosomes 
introduce large technical biases for autosomal CpGs 
[30]. Using normalisation methods, which do not handle 
the technical bias introduced by sex chromosomes, will 
therefore lead to many autosomal CpG sites being falsely 
associated with sex and further, a higher number of auto-
somal CpGs being incorrectly identified as male-biased 
CpGs. Our choice of normalisation method greatly 

reduced technical bias at autosomal CpGs for male and 
female samples.

Moreover, as thousands of autosomal CpG sites show 
differences in DNA methylation between males and 
females, differences in the methods for determining 
the definition of a sex-associated site result in limited 
reproducibility between studies, a point also raised by 
Gatev and colleagues in their identification of sex-asso-
ciated regions [28]. Here, we therefore proposed and 
applied stringent cut offs to define a sex-associated site 
(FDR < 0.05 and effect size of at least 0.05 in either direc-
tion). While we acknowledge that true but small differ-
ences in DNA methylation related to a phenotype may 
exist, in the interest of generating a reproducible and 
robust catalogue of saDMPs, we chose to apply effect size 
cut offs. Consistent with this, we were able to replicate 
75% of our saDMPs identified in our validation data set 
in our discovery data set. Moreover, we found that 73% 
of the saDMPs we identified in this study were also iden-
tified by Inkster and colleagues [27], whom also applied 
effect size cut offs, demonstrating the reproducibility and 
robustness of our catalogue of saDMPs.

We further categorised these 396 saDMPs into two 
groups, those that were male-biased CpGs (n = 103) and 
those that were female-biased CpGs (n = 293). Several 
saDMPs found to be female-biased CpGs overlapped the 
transcription start site (TSS) of genes not previously been 
reported to exhibit sex differences in DNAme including 
C19orf77, ATP10D and SHANK2. Interestingly, it has 
previously been shown that sex hormones can regulate 
SHANK expression leading to a sex differential expres-
sion in SHANK2 [71]. Furthermore, this gene has pre-
viously been implicated in autism spectrum disorder, 

Table 2 Overlap of autosomal sex-associated differentially methylated positions reported in this study with previous literature in 
various tissues

Study Tissue of interest Sample size 
(number of 
individual samples 
in study)

Platform used for 
DNA methylation 
assessment

Number of 
autosomal probes 
identified

Percentage of 
saDMPs replicated 
(%)

References

Yousefi et al. (2014) Cord blood 111 newborns Illumina 450 k 3031 54 [21]

Mccarthy et al. (2014) Meta analysis of 76 
studies

6795 Illumina 27 k 184 0.54 [70]

Inoshita et al. (2015) Peripheral leukocytes 117 adults Illumina 450 k 292 15 [24]

Maschietto et al. 
(2015)

Cord blood 71 newborns Illumina 450 k 2332 36 [69]

Xu et al. (2014) Post-mortem pre-
frontal cortex

46 adults Illumina 450 k 614 35 [66]

Hall et al. (2014) Pancreas 87 adults Illumina 450 k 470 18 [19]

Xia et al. (2021) Post-mortem brain 
samples

1408 adults Illumina 450 k 15,417 31 [7]

Inkster et al. (2021) Placenta 293 adults Illumina 450 k 162 73 [27]
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a disorder known to exhibit higher prevalence in males 
rather than females [21]. In contrast, the most significant 
male-biased CpG is located in the CpG island of a gene 
located on chromosome 21 called GABPA. GABP is a 
methylation sensitive transcription factor and has previ-
ously been shown to be a transcriptional activator of Cyp 
2d-9, which is a gene encoding a male specific steroid in 
mice [72]. Sex differences in these regions have previ-
ously been identified by other studies investigating auto-
somal sex differences in DNA methylation, specifically 
Yousefi et  al. [73] also identified this region to be a top 
sex-associated DMR in their analysis. In addition, previ-
ous research investigating transcriptome wide sex differ-
ences using single cell RNA-seq data in mouse reports 
GABPA to be one of six TF families responsible for the 
majority of sex dimorphic transcriptional regulation 
activities [74].

Interestingly, as well as GABPA being the gene anno-
tated to the most significant saDMP (male-biased CpGs), 
it was also the third most significant saDMR, suggest-
ing these regions could account for important sex biases 
observed in some diseases. This is further supported by 
the fact that GABPA has also been heavily associated 
with early onset of Alzheimer’s disease, Parkinson’s dis-
ease, breast cancer and autism [71, 73–75].

The saDMR harbouring the highest number of CpG 
sites (n = 123) is located on chromosome 6, overlaps 
TUBB, MDC1 and XXbac. MDC1 is thought to play a 
crucial role in the production of male games, lead to XY 
body formation and also initiate meiotic sex chromo-
some inactivation. These functions are achieved through 
its interaction with DNA damage response (DDR) fac-
tors, ultimately leading to transcriptional silencing [61, 
76].

These results collectively support the hypothesis that 
sex differences in autosomal DNAme may account for 
some of the sex differences seen in disease prevalence, 
onset and progression. Moreover, we did identify saDMPs 
in genes known to exhibit sex differences in DNAme such 
as CRIPS2 and DDX43 which are involved in spermato-
genesis and male fertility [21, 40], Specifically, CRIPS2 
harboured 8 significant saDMPs, all female-biased CpGs, 
and is part of a group of proteins called CRISPs which 
show male-biased expression in the male reproductive 
tract. CRIPS2 plays an important role in spermatogen-
esis, acrosome reaction and gamete fusion [40]. Some of 
our saDMPs were located in genes known to show sex 
by age effects, such as PRR4, a gene associated with dry 
eye syndrome [77]. Despite this, recent research shows 
that the adult blood DNA methylome is largely affected 
by sex, but that these methylome sex differences do not 
change throughout adulthood and so are largely inde-
pendent from age effects [78].

The Illumina EPIC array has an increased coverage of 
the genome, including distal regulatory elements [79]. It 
was interesting that the 396 saDMPs were still found to 
be significantly enriched at CpG islands and CpG shores 
but depleted in open sea regions of the genome (Fig. 1E). 
The genomic location of DNA methylation normally 
alters its function. Methylation in CpG islands normally 
functions to serve long term silencing of genes [80] and 
CpG island shore methylation is strongly related to gene 
expression [81], suggesting a potential functional role 
for these saDMPs. To further support these findings, we 
identified enrichment of these saDMPs at enhancers, 
5’UTRs and promoters (Fig. 1F). Enrichment at 5’UTRs 
is potentially suggestive that they may be acting as alter-
native promoters, though we did not test this hypoth-
esis in this study. Despite this enrichment at regulatory 
regions, we found no correlation of these sites alone with 
significant differences in gene expression between males 
and females, suggesting that these saDMPs are not suf-
ficient alone to predict gene expression. Further, this sug-
gests that DNA methylation may potentially be acting as 
a passive reporter of sex specific transcription. Moreover, 
it is well established that DNA methylation differences 
do not always result in differences in gene expression 
but that these DNA methylation differences are likely to 
instead be part of larger gene regulatory networks, via 
acting distally or interacting with transcription factors 
[52, 53, 82–84]. Despite this, we acknowledge that one 
caveat of our study was that our DNA methylation data 
and gene expression data were obtained from different 
cohorts (they are unmatched) and have large differences 
in sample size (RNA-seq data have a significantly smaller 
sample size).

However, this potential link was identified in our TF 
motif analysis, where we found SRY (sex determining 
region Y) transcription factor motif, also known as the 
sex determining factor, to be enriched at female-biased 
CpGs and further identified this gene to be acting as a 
hub in the TF network. SRY has been found to bind and 
repress WNT activation of ovarian genes, and has been 
shown to bind the promoter regions of many targets of 
involved in differentiation of the testis [48, 49, 85]. Fur-
thermore, we also found ESR1 transcription factor motif 
enriched in the saDMPs female-biased CpGs, a gene 
known to code for the oestrogen receptor.

It has previously been reported that 3D genome organi-
sation can impact sex-biased gene expression through 
direct and indirect effects of cohesion and CTCF loop-
ing on enhancer interactions with sex-biased genes [10]. 
Recently, it was shown that with rising oestrogen lev-
els, the female brain exhibits sex hormone driven plas-
ticity and that chromatin changes underlie this [86]. 
Interestingly, by annotating our saDMPs to distal genes 
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using chromatin loops, we were able to identify con-
tacts between saDMPs and three genes HIST1H3A, 
HIST1H4A and HIST1H4B which are core components 
of nucleosome, thereby responsible for playing a role in 
chromatin organisation. Note that the Hi-C data and 
DNA methylation data were not from matched sam-
ples, but two different cohorts. However, these results 
suggest that although we found DNAme to not be pre-
dictive of sex differences in gene expression (Additional 
file 87: Figure S5), these saDMPs may interact with other 
genes, transcription factors and other epigenetic modifi-
cations to direct chromatin organisation and regulatory 
networks.

Lastly, we acknowledge limited overlap with previous 
studies yet conclude that this is due to our extremely 
large sample size (discovery, n = 1171 and validation, 
n = 2471) and improved handling of sex bias introduced 
by normalising such data with the sex chromosomes. 
Both factors contribute to our ability to detect true posi-
tives and obtain a more robust catalogue of true sex-asso-
ciated autosomal CpGs.

Material and methods
Participants
Whole blood Illumina Infinium MethylationEPIC Bead-
Chip DNAme data were collected from participants 
involved in Understanding Society: The UK Household 
Longitudinal Study [31]. In wave 3 of the study (2011–
12), blood samples were collected from a portion of the 
study participants. Individuals were considered eligible to 
give a blood sample if they were over the age of 16, con-
sented to blood sampling and genetic analysis, and par-
ticipated in all annual interviews between 1999 and 2011 
as previously reported in Hughes et  al. [88]. Our study 
population was restricted to participants of white eth-
nicity. A full description of the dataset and data process-
ing has been described by [88]. Following quality checks 
of the data, our final data set consisted of 1171 partici-
pants (males = 489, females = 686) for discovery and 2471 
(males = 1135, females = 1345) participants for valida-
tion. The age ranges for each data set were 28–98 years 
old and 16–99 years old, respectively.

DNA methylation data
Samples of whole blood DNA from participants were 
obtained following the protocol described in [88]. Raw 
signal intensities were processed using the R package big-
melon [29] and watermelon [89] from idat files. Prior to 
normalisation of the data, outlier samples were identified 
using principal component analysis and subsequently 
removed from the data set. The reported age of each 
sample was compared to predicted age using the epige-
netic age method implemented by agep in the R package 

bigmelon [89]. Further, the reported sex of the samples 
was checked using a DNA methylation-based sex clas-
sifier [90] which predicts sex based on the methylation 
difference of X and Y chromosomes. 4 samples were 
subsequently removed from our discovery data set and 
9 samples were removed from our validation data set, as 
reported and predicted sex did not match. The data were 
then normalised via the interpolatedXY adjusted dasen 
method implemented in the R package, wateRmelon 
[91]. Following normalisation of the data, SNP probes, 
cross hybridising probes 27 and X or Y linked probes 
were removed from the data set. The final discovery and 
validation data set consisted of 1171 and 2471 samples, 
respectively, and 747,302 DNA methylation sites.

As whole blood is a heterogenous tissue and contains 
different cell types, individual samples will have differ-
ent cell type proportions which may confound analyses. 
Often, this manifests itself as many false positives being 
identified. The estimation is based on epigenetic data and 
expected DNA methylation signatures at specific loci in 
each cell types are used to estimate cell type composi-
tion. To ensure that whole blood cell composition did not 
differ significantly by sex and would not introduce bias 
to our results, the relative proportions of Granulocytes, 
mononuclear, natural killer, CD4T, CD8T and B cells 
were estimated for all samples using the estimateCell-
Counts function implemented in bigmelon [89]. Further-
more, to assess whether the sex differences we observed 
were age independent, we performed a Mann–Whitney 
U test between the age distribution of males and females. 
Our results confirmed that there is no statistical differ-
ence in age between our male and female samples for our 
discovery data set (p value 0.07; median values of 60 and 
58, respectively) and also for our validation data set (p 
value 0.26; median values of 52 and 51, respectively).

Identifying sex‑associated autosomal differential 
methylation.
Sex-associated autosomal differentially methylated posi-
tions (saDMPs) were identified by performing linear 
modelling using the limma package in R [92] using sex 
annotation and Beta values while adjusting for age, cell 
type proportions and batch effects. Correction for multi-
ple testing was performed with the Benjamini–Hochberg 
false discovery rate method (FDR values). We further 
used the Bayesian method for controlling p value infla-
tion using the R package  bacon for both our discovery 
and validation data sets [93]. A probe was considered 
significantly differentially methylated if the difference 
in Beta values between males and females was greater 
than 0.05 in either direction and the FDR value was 
smaller than 0.05. We considered a saDMP to be vali-
dated if it met these two criteria in both the discovery 



Page 12 of 16Grant et al. Clinical Epigenetics           (2022) 14:62 

and validation data set. We further characterised dif-
ferentially methylated regions (DMRs) by applying the 
DMRcate function from the R package ChAMP to detect 
DMRs between males and females on the autosomes [94]. 
A DMR was considered to be significantly associated 
with sex (saDMR) if it consisted of at least 5 CpG sites 
with a maximum difference in beta values between males 
and females greater than 0.05.

Genomic annotation of CpG sites
We annotated the autosomal CpG’s using the manufac-
turer supplied annotation data (MethylationEPIC_v-1-0_
B2 manifest file). Annotation was completed in the R 
package Minfi [95]. Several categories were used as anno-
tations in relation to CpG islands and divided into the 
following categories: CGIs, CGI shores (S and N), CGI 
shelfs (S and N) and open sea regions. Further, we also 
annotated the autosomal CpGs to several genomic fea-
tures, including exons, introns, 5’ UTR, 3’UTR, enhanc-
ers, promoters and transposable elements (TEs) using 
data from UCSC table browser (https:// genome. ucsc. 
edu/ cgi- bin/ hgTab les).

Gene ontology analyses
GO analyses were conducted using the gometh function 
in the missMethyl package [96] which tests gene ontol-
ogy enrichment for significant CpGs while accounting for 
the differing number of probes per gene present on the 
EPIC array. For GO ontology analyses of enriched TFBS, 
we used enrichGO from the clusterProfiler package in R 
[97], which performs FDR adjustment .

Enrichment of saDMPs in transcription factor binding 
motifs and integration with gene expression
The enrichment analysis of known motifs in sex-associ-
ated DMPs was performed using the R package PWMEn-
rich [98] using the MotifDb collection of TF motifs [99]. 
Specifically, the DNA sequences within a 100  bp range 
from the saDMP which were female-biased CpGs were 
extracted from the genome and compared to the saDMPs 
which were male-biased CpGs as the background to 
reveal unique enriched motifs (adjusted p value < 0.05). 
RNA-seq data for 20 healthy donors (10 males and 
10 females) from publicly available data from GEO 
(GSE120312) were used in our analysis. We used the pre-
processed count matrices with DESeq2 [100] to calculate 
differentially expressed genes between males and females 
with an adjusted p value of 0.05 and  log2 fold change of 1. 
DESeq2 does apply an automatic filtering step to remove 
genes with low counts but we did also apply our own 

independent filtering to this data by removing genes that 
have counts of at least 10 in all samples.

Overlap of saDMP’s with chromatin loops
We examined whether any of the sex-associated DMPs 
made 3D contacts with distal genes using Hi-C data avail-
able from the GEO under accession number (GSE124974) 
for white blood cells and neutrophils. Hi-C library prep-
aration was performed using the Arima-HiC kit and 
pre-processing of the data was performed using Juicer 
command line tools [101]. Reads were aligned to the 
human (hg38) genome using BWA-mem [97] and then 
pre-processed using the Juicer pre-processing pipeline. 
We called chromatin loops using the HICCUPS tool from 
Juicer using a 10  Kb resolution. We then constructed 
GenomicInteractions objects to annotate saDMPs to 
loop anchors using the findOverlaps function from the 
GenomicRanges package using a maxgap of 10,000. Fol-
lowing this, we then annotated the corresponding anchor 
to the relevant gene ID. These steps then allowed us to 
perform network analysis in Cytoscape [102] and GO 
and KEGG analyses in clusterProfiler [103].

Protein–protein network visualisation and hub gene 
identification
We searched all of the genes annotated to our saDMPs 
using the Search Tool for the Retrieval of Interacting 
Genes (STRING) (https:://string-db.org) database to gen-
erate our networks. We extracted protein–protein inter-
actions with a combined score of > 0.4. Following this, 
we utilised the cytoscape plugin tool Cytohubba [104] 
in order to identify hub genes within the networks. This 
was done by employing the local based method called 
maximum clique centrality (MCC). The same analysis 
was applied to the enriched transcription factors found 
at saDMPs.
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13148- 022- 01279-7.
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Additional file 6. Figure S1: (A) QQ plot and lambda values (discovery 
data) distribution of the adjusted p values against the null distribution 
for EWAS of sex in the understanding society cohort. Genomic inflation 
lambda score is indicated in the QQ plot to indicate statistical inflation of 
p values. (B) Boxplots of estimated whole blood cell type proportions for 
males (orange) and females (blue) in the discovery data set, estimated 
using the estimateCellCounts function from bigmelon. We performed 
a Mann-Whitney U test (p value: n.s. 0.05, *p value < 0.05, **< 0.01 and 
***< 0.001). (C) QQ plot and lambda values (validation data) distribution 
of the adjusted p values against the null distribution for EWAS of sex 
in the understanding society cohort. Genomic inflation lambda score 
is indicated in the QQ plot to indicate statistical inflation of p values. 
(D) Boxplots of estimated whole blood cell type proportions for males 
(orange) and females (blue) in the validation data set, estimated using 
the estimateCellCounts function from bigmelon. We performed a Mann–
Whitney U test (p value: n.s. 0.05, *p value < 0.05, **< 0.01 and ***< 0.001). 
(E) Venn diagram showing overlap of differentially methylated positions 
identified in our validation and discovery data set before and after filtering 
of the list of saDMPs.

Additional file 7. Figure S2: (A) Integrated genomics viewer track of 
chromatin loop on chromosome 6 showing two male-biased CpGs 
contacting H1/H4/H3/H2V/H2A. (B) Integrated genomics viewer track 
of chromatin loop on chromosome 1 showing a female-biased CpG 
contacting the ODF2L gene. Blue lines represent the chromatin loops, 
with black lines showing the loop anchors. Orange vertical lines represent 
the male-biased CpGs and blue vertical lines represent the female-biased 
CpGs. Purple annotations represent genes. (C-D) Subnetworks of the 
top 30 genes annotated to male-biased CpGs (C) and females (D). Node 
colour represents the degree of connectivity. The scale from red to yellow 
represents the top 30 enriched genes rank from 1-30, with red indicating 
highest degree and yellow indicating lowest degree. 

Additional file 8. Figure S3: GO terms overrepresented for the signifi-
cantly enriched TF motifs at male-biased CpGs (A) and female-biased 
CpGs (B).

Additional file 9. Figure S4: (A-B) Network visualisation of protein-protein 
interactions for all transcription factor motifs found to be enriched at 
male-biased CpGs (A) and female-biased CpGs (B). Grey coloured boxes 
represent individual TFs located on autosomes, while purple-coloured 
boxes represent TFs encoded on the X chromosome and green coloured 
boxes represent TFs encoded for on the Y chromosome. Grey lines 
represent edges between transcription factors within the protein-protein 
network. (C-D) Subnetworks of the top 30 enriched TF motifs at male-
biased CpGs (C) and females (D). Node colour represents the degree of 
connectivity. The scale from red to yellow represents the top 30 enriched 
TF motif rank from 1-30, with red indicating highest degree and yellow 
indicating lowest degree.

Additional file 10. Figure S5: Volcano plot showing differential gene 
expression between males and females. We considered the case of: (A) 
genes annotated to the saDMPs, (B) sex chromosome linked genes and 
(C) autosomal genes. Points coloured in grey represent non differentially 
expressed genes. Green points represent genes which had a log2 Fold 
Change value greater than 1. Blue points represent genes which met the 
adjusted p value threshold (FDR <0.05). Points coloured in red represent 
genes which showed differential expression between males and females 
(adjusted p value<0.05 & log2FC > 1).
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