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Abstract

Standard methods, such as sequential procedures based on Johansen’s (pseudo-)likelihood
ratio (PLR) test, for determining the co-integration rank of a vector autoregressive (VAR)
system of variables integrated of order one can be significantly affected, even asymptoti-
cally, by unconditional heteroskedasticity (non-stationary volatility) in the data. Known
solutions to this problem include wild bootstrap implementations of the PLR test or
the use of an information criterion, such as the BIC, to select the co-integration rank.
Although asymptotically valid in the presence of heteroskedasticity, these methods can
display very low finite sample power under some patterns of non-stationary volatility.
In particular, they do not exploit potential efficiency gains that could be realised in the
presence of non-stationary volatility by using adaptive inference methods. Under the as-
sumption of a known autoregressive lag length, Boswijk and Zu (2022) develop adaptive
PLR test based methods using a non-parameteric estimate of the covariance matrix pro-
cess. It is well-known, however, that selecting an incorrect lag length can significantly
impact on the efficacy of both information criteria and bootstrap PLR tests to determine
co-integration rank in finite samples. We show that adaptive information criteria-based
approaches can be used to estimate the autoregressive lag order to use in connection with
bootstrap adaptive PLR tests, or to jointly determine the co-integration rank and the
VAR lag length and that in both cases they are weakly consistent for these parameters in
the presence of non-stationary volatility provided standard conditions hold on the penalty
term. Monte Carlo simulations are used to demonstrate the potential gains from using
adaptive methods and an empirical application to the U.S. term structure is provided.
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1 Introduction

It is well-known that standard methods for determining the co-integration rank of vector au-
toregressive (VAR) systems of variables integrated of order one are affected by the presence
of heteroskedasticity. In particular, sequential procedures based on (pseudo-) likelihood ratio
[PLR] test as developed by Johansen (1996) can be significantly over-sized, even in large sam-
ples, when the volatility process displays non-stationary variation (so called non-stationary un-
conditional volatility) and, moreover, the finite sample power of these tests can vary enormously
depending on the pattern of heteroskedasticity present; see, in particular, Cavaliere, Rahbek
and Taylor (2010). This is an important issue in practice because time-varying behaviour in
unconditional volatility appears to be a common feature in many key macroeconomic and fi-
nancial time series; see, among many others, McConnell and Perez Quiros (2000), Sensier and
van Dijk (2004), and Cavaliere and Taylor (2008); see also McAleer (2005, 2009), Asai et al.,
(2006) and McAleer and Medeiros (2008).

In a series of recent papers, Cavaliere, Rahbek and Taylor (2010, 2014) show that a solu-
tion to the size problems induced by non-stationary volatility is obtained by using wild boot-
strap based implementations of the standard PLR tests. In particular, Cavaliere et al. (2010)
show that the sequential procedure based on wild bootstrap PLR tests leads to consistent
co-integration rank determination in the presence of non-stationary unconditional volatility.
As alternative solution to the use of wild bootstrap PLR tests is considered by Cavaliere, De
Angelis, Rahbek and Taylor (2015, 2018) who show that methods based on information cri-
teria can also be used to consistently determine the co-integration rank in the presence of
non-stationary volatility. In particular, they show that popular information criteria such as
the Bayesian information criterion [BIC] (Schwarz, 1978) and the Hannan-Quinn information
criterion [HQC] (Hannan and Quinn, 1979) provide a useful complement to the wild bootstrap
sequential procedures.

The wild bootstrap PLR tests are correctly sized in the presence of non-stationary volatility
and attain the same asymptotic local power functions as infeasible size-corrected versions of
the standard PLR tests. As such they can therefore display very low power properties for
some patterns of non-stationary volatility. Indeed, other things equal, their asymptotic local
power functions are reduced, relative to the unconditionally homoskedastic case, under non-
stationary volatility. Similarly, the ability of the standard information criteria-based methods
discussed above to select the correct co-integration rank can also be greatly reduced under
non-stationary volatility. In particular, none of these methods exploits the potential efficiency
gains that could be provided by using inference methods which adapt to the volatility process.

Adaptive methods, where the covariance matrix process is estimated non-parametrically, have



the potential to be particularly useful in this context.

Under the assumption of a known autoregressive lag length, Boswijk and Zu (2022) develop
an procedure based on adaptive PLR tests for determining the co-integration rank in possibly
heteroskedastic VAR models. Specifically, they propose a procedure where the volatility process
is estimated using a non-parametric kernel estimator, with this estimate then used in the
adaptive PLR test procedure. Under suitable conditions, they establish that the non-parametric
volatility estimator is consistent and that the resulting adaptive PLR co-integration rank tests
have the same asymptotic local power functions as for infeasible tests based on the assumption
that the volatility process is known. The asymptotic null distribution of their proposed statistics
are, however, non-standard and depend on the realisation of the volatility process. As such,
asymptotic p-values for the adaptive PLR tests need to be obtained using bootstrap methods.

The assumption of a known of autoregressive lag order is problematic in practice. It is
well-known that an incorrect lag length choice can significantly impact on the efficacy of both
information criteria and PLR tests, in particular where a lag order smaller than the true order
is used; see, among others, Boswijk and Franses (1992), Cheung and Lai (1993), Haug (1996),
Liitkepohl and Saikkonen (1999), and Cavaliere et al. (2018). In practice the autoregressive
lag length will need to be estimated along with the co-integration rank. To that end, the
practitioner can use either a sequential procedure, where the lag length is consistently estimated
in a first step and then subsequently employed in the second step in a procedure such as either
the adaptive PLR test approach of Boswijk and Zu (2022) or an information criterion for
determining the co-integration rank, or a joint information criteria-based approach can be used
whereby the lag length and co-integration rank are determined simultaneously. Cavaliere et al.
(2018) show that both joint and sequential procedures based on standard information criteria
consistently determine both the lag length and the co-integration rank in the presence of non-
stationary unconditional volatility, provided standard conditions hold on the penalty term.
They also show the asymptotic validity of a sequential procedure based on wild bootstrap PLR
tests with the autoregressive lag length chosen by an information criterion.

The contribution of this paper is to develop adaptive information criteria methods, based
around a (non-parametric) estimation of the volatility process, for jointly selecting the co-
integration rank and autoregressive lag order. We show that these adaptive information criteria-
based methods are weakly consistent for the co-integration rank and autoregressive lag order
under the precisely the same conditions on the penalty function are as required for the con-
sistency of standard (non-adaptive) information criteria under non-stationary volatility of the
form considered in this paper. We also establish the asymptotic validity of a sequential pro-
cedure selecting the autoregressive lag length by an adaptive information criterion [ALS-1C]

in the first step and then determining the co-integration rank using again an ALS-IC in the



second step based on the first step estimate of the lag length. Because the co-integration rank
is determined by minimising an adaptive information criterion over all possible values of the
co-integration rank from zero up to the dimension of the system, the practitioner does not
therefore need to obtain p-values by bootstrap methods, making the procedure considerably
less time consuming than the Boswijk and Zu (2022) procedure based on adaptive PLR tests.
We also establish the asymptotic validity of a sequential procedure selecting the autoregressive
lag length by an ALS-IC in the first step and then using the adaptive PLR test-based approach
of Boswijk and Zu (2022) in the second step based on the first step estimate of the lag length.

The remainder of the paper is organised as follows. Section [2| details our reference het-
eroskedastic co-integrated VAR model. Section [3] outlines adaptive information criteria-based
methods for determining the co-integration rank and the autoregressive lag length. The large
sample properties of these procedures are detailed in Section 4l Monte Carlo simulation exper-
iments reported in Section [5| are used to explore the finite sample performance of the ALS-IC
methods relative to standard methods such as those based on standard information criteria-
based procedures. These results highlight the potential gains that can be achieved by using
adaptive methods. Section [0] provides an empirical application of the methods discussed in this
paper to the term structure of interest rates in the US. Section [7| concludes. Proofs of our main

results are contained in the Appendix [A]

2 The Heteroskedastic Co-integrated VAR Model

Consider the p-dimensional process {X;} which satisfies the k-th order reduced rank VAR

model:
k-1

AX,=af' X1+ TiAXi+ap' D+ ¢dy e, t=1,....T, (2.1)

i=1
where X; := (Xy¢,...,Xp)" and the initial values, X;_g,..., Xy, are taken to be fixed in the
statistical analysis. Let ko denote the true value of the autoregressive lag length k in . In
the context of we assume that the standard ‘I(1, ) conditions’ hold, where ¢ € {0, ..., p}
denotes the true co-integration rank of the system (see also Cavaliere, Rahbek and Taylor, 2012);
that is, the characteristic polynomial associated with has p — rg roots equal to 1 with all
other roots lying outside the unit circle, and where o and  have full column rank rq.

The deterministic variables in are taken to satisfy one of the following cases (see, e.g.,
Johansen, 1996): (i) D; = 0, d; = 0 (no deterministic); (ii) D; = 1, d; = 0 (restricted constant);
or (iii) Dy =t, d; = 1 (restricted linear trend).

The innovation process e; := (€14,...,6,) in is taken to satisfy the following set of
conditions collectively labelled Assumption [I}



Assumption 1 The innovations {e,} are defined as e, := o,2;, where o, is non-stochastic and
satisfies oy := o (t/T) for allt = 1,...,T, where o (-) €Dgox»|0, 1], with Drmxn[0,1] used to
denote the space of m x n matrices of cadlag functions on [0,1] equipped with the Skorokhod
metric, and where o (u) is non-singular for all v € [0,1] and continuous in u € [0, 1]; z is an
i.i.d. sequence with E(z;) =0 and E(zz;) = I,.

Remark 1. Assumption 1| implies that E(e;) = 0 and that &; has the time-varying uncon-
ditional variance matrix ¥; := E(ge}) = oyo; > 0. In what follows, o, will be referred to as
the wvolatility matriz of £,. Elements of Assumption [I| have previously been employed by, inter
alia, Cavaliere et al. (2010), Boswijk, Cavaliere, Rahbek and Taylor (2016), Cavaliere et al.
(2018) and Boswijk and Zu (2022). In particular, Assumption 1 allows for a countable number
of discontinuities in o (-) therefore allowing for a wide class of potential models for the time-
varying behaviour of the unconditional variance matrix of ;. As discussed in Boswijk and Zu
(2022), the continuity assumption on o (-) is made so that o (-) can be consistently estimated.
This assumption is not restrictive in practice however because one can always approximate
discontinuities in o () arbitrarily well using smooth transition functions. Moreover, one could
relax this assumption by assuming that o(-) is a piecewise Lipschitz-continuous function; see
Xu and Phillips (2008). &

Remark 2. In order to simplify our presentation, Assumption [I| rules out the possibility of
conditional heteroskedasticity in z;. We do so because adaptive estimation can only lead to
efficiency gains over standard estimation in cases where o(u) varies across u which can only
happen where non-stationary volatility is present. Conditional heteroskedasticity of the form
considered in Assumption 2(b) of Boswijk et al. (2016), cannot induce time-variation in o(u)
and so it is irrelevant so far as adaptive estimation is concerned. It is straightforward, however,
to show that the large sample results given in this paper remain valid if we allow for conditional

heteroskedasticity in z; of the form considered in Assumption 2(b) of Boswijk et al. (2016).

3 Adaptive Information Criteria

In this section we discuss adaptive information-based methods for determining the co-integration
rank and the autoregressive lag length in the context of . In particular, we first derive the
log-likelihood function in Section and the nonparametric estimator of the volatility matrix
in Section We then outline the adaptive information criterion for the joint determination
of the co-integration rank and the lag length in Section and we discuss how to sequentially

estimate the lag length and the co-integration rank using adaptive methods in Section [3.4]



3.1 The Likelihood Function

Define W := [y : ... : I}_y] and Z2¥ = (AX] |, ... ,AX] ;1) such that the model in (2.1)

with no deterministic components (case (i)) can be rewritten more compactly as
AX, =aBX, 1 +0zZ8 + ¢, (3.1)

Suppose for the present that {o;} is known, and that z; is Gaussian; i.e., z; ~ i.i.d. N(0, 1,).
Then under Assumption 1 we have that e;|F;_1 ~ N(0,%;), where F,_1 := {X;_1,..., X1, Xo,
..., X1}, and the log-likelihood function is given by (see Boswijk and Zu, 2022):

Tp 1 <
lr(e, B,0) = —=log2m — o log|%|
t=1
T
1
-3 S (AX - af Xy — VZPYSTHAX, — af X — 9ZY). (3.2)
t=1

Maximum likelihood estimation of the parameters (a, 8, ¥) can be achieved by using the
so-called generalised reduced rank regression procedure (Boswijk, 1995; Hansen, 2002, 2003),
which uses a switching algorithm in order to circumvent the issue of the lack of a closed-
form expression for the maximum likelihood estimator (MLE). In particular, because the MLE
of (a, V) for fixed 8 and the MLE of 8 for fixed (o, V) have closed-form expressions, the
maximisation of can be achieved, starting from an initial guess, by switching between

maximisation over (a, ¥) and f3; see Boswijk and Zu (2022) for further details.

3.2 Volatility Estimation

In this paper we focus on the two-sided smoothing nonparametric estimator of the volatility
matrix adopted by Boswijk and Zu (2022). This estimator is a multivariate extension of Hansen
(1995)’s nonparametric volatility filter based on leads and lags of the outer product of the
residual vector. A similar approach to adaptive estimation has also been considered by Xu and
Phillips (2008) and Patilea and Raissi (2012), among others.

Let K(-) denote some kernel function and define Kj(z) := K(z/h)/h with h > 0 a window

width. The kernel estimator for J; that we will consider is then defined as,

S EST=1 K (%) €s€y
Et = T P
Zs:l Kh (T)
where é; is the residual vector obtained by estimating an unrestricted VAR model of order K
in the levels of X;, ie. ¢ = X; — Zf; /L»Xt_i, where A;, i = 1,..., K, are p X p coefficient

matrices. The value K denotes the maximum autoregressive lag order we will allow for which,

, (3.3)



unless otherwise stated, is assumed in the following to be at least as large as the true lag order,
ko in ([2.1]).

The kernel function in is implemented with two-sided smoothing, so that 3, is based
on leads and lags of é,¢}, as outlined in Assumption 3 in Boswijk and Zu (2022). In their
Lemma 2, Boswijk and Zu (2022) show that the volatility matrix process implied by the T
nonparametrically estimated covariance matrices is uniformly consistent over the compact in-
terval [0, 1], which, in turn, implies uniform consistency of the nonparametric estimator 3, in
over t = 1,...,T. Therefore, these consistent estimators can be used to replace ¥; in
the log-likelihood function in , thereby allowing for a feasible version of the generalised
reduced rank regression procedure and the computation of the adaptive information criteria
and the adaptive bootstrap PLR tests.

In implementing the nonparametric estimator of ¥; in (3.3)), we will select the window width

h by minimising the quantity
) T
Cr(h) =) _|IE (k) — &gy,
t=1

where || - || denotes the Euclidean matrix norm, and where 3, ¢(h) is given by (3.3)), but with
K(0) replaced by 0, so that é,&, does not enter the expression for ¥;*(h). This leave-one-out
cross-validation technique is implemented in Boswijk and Zu (2016) and Patilea and Raissi

(2012), and satisfies the requirement that h decreases with the sample size at a certain rate;
see Lemma 2 of Boswijk and Zu (2022) and Section 4] below.

3.3 Joint Determination of the Lag Length and Co-integration Rank

The maximised pseudo log-likelihood function (3.2]) associated with (3.1)) under lag order k
and co-integration rank r, say égﬁ ’T)(oz, B,¥), in conjunction with the volatility estimator in
(3.3)) substituted for 3, in (3.2]) can then be used to construct a feasible adaptive information

criterion of the following generic form
ALS-IC(k, ) := =208 (o, B, ) + e (k, r), (3.4)

where the term ¢y may depend on the sample size T (see below) and where 7(k,r) denotes
the number of parameters in the estimated modelH The autoregressive lag order and the co-

integration rank can then be jointly estimated by minimising the information criterion in (|3.4)

!The number of parameters which defines the penalty term in depends on the deterministic components
included in the model as follows: (i) in the case of no deterministic component (Dy = 0, d; = 0 in [2.1)),
7(k,r) = r(2p—r)+p?(k—1); (ii) for the restricted constant case (D; = 1, d; =0 in, w(k,r) =r2p—r+1)+
p?(k—1), and (iii) for the case of a restricted trend (D; = 1, d; = 1 in 2.1), m(k, ) = r(2p—r+1) +p+pi(k—1).

6



jointly over both all possible lag lengths, £ = 1,..., K, and over all possible co-integration
ranks, r = 0, ..., p; that is,

(I%ALS—ICa fALS—IC) = arg min ALS—IC(]{?, T).
r=0,...,p;k=1,.... K

Different values of the coefficient ¢y yield different adaptive information criteria. In the stan-
dard (non-adaptive) case, which can be obtained as a special case of the adaptive information
criterion in by restricting ¥, = I, in the likelihood function , the most widely used
information criteria are the Akaike information criterion [AIC] (Akaike, 1974), the Bayes in-
formation criterion [BIC] (Schwarz, 1978), and the Hannan-Quinn information criterion [HQC]
(Hannan and Quinn, 1979), which obtain setting ¢y = 2, log T', and 2log log T', respectively. We
will denote the generic standard information criterion in this case as IC(k,r) and the resulting
estimate in as (kic, 71c). In the context of (3-4), we will refer to the adaptive information
criteria based on the AIC, BIC and HQ choices of ¢y as ALS-AIC, ALS-BIC, and ALS-HQC,

respectively.

3.4 Sequential Determination of the Lag Length and Co-integration
Rank

Because the lag length k in is in general unknown and needs to be estimated prior to
estimating the co-integration rank, practitioners often use a two-step procedure, whereby the
autoregressive lag length is estimated in the first step and then subsequently employed as if it
were the known lag length in a second step for determining the co-integration rank, such as a
sequential procedure based on PLR tests or an information criterion. In particular, Liitkepohl
and Saikkonen (1999) and Nielsen (2006), inter alia, show that the lag length in nonstationary
VAR models can be consistently estimated from the levels of the data using an information
criterion. Therefore, the lag length could be selected in the first step of the sequential procedure
according to a (standard) information criterion where we do not impose a reduced rank structure
on IT := af' in (2.1)), that is by imposing r = p; see, among others, Cavaliere et al. (2018).

As for the joint determination of the lag length and the co-integration rank considered in
Section an adaptive version of the information criterion for determining the lag length can
also be considered. In particular, the lag length may be selected using an adaptive information

criterion of the generic form
ALS-IC(k, p) := —20%"P/(IL, I, W) + crm(k, p), (3.5)

where tﬁg,{c (I, I,, V) is the maximised pseudo likelihood ({3.2) associated with (3.1)) where we
do not impose a reduced rank structure on II = «f’ under lag length & and ¥, in (3.2)) is



substituted with the volatility estimator in . Again, the choice of the ¢y term identifies
different information criteria as outlined above and, in this case, 7(k,p) = p(pk +14) with i =0
when no deterministic component is involved, ¢ = 1 in the case of restricted constant, and
i = 2 for the restricted trend. The resulting adaptive information criterion-based lag length
estimator is then given by

I%ALS_IC = argmin ALS-IC(k, p).
k=1,..K

We note again that the generic standard information criterion, which we will denote by
IC(k,p), can be obtained as a special case of the adaptive information criterion in , by
restricting >, = I, in the likelihood function , with the resulting lag length estimator
denoted by krc. In the simulation experiments discussed in Section , we will consider both the
standard and the adaptive versions of the information criterion for determining the lag length
in the first step of the two step sequential procedure. The selected lag length, either /2?10 or
karsic generically denoted by k for the remainder of this section, is then used as if it were the
true lag length in the second step for determining the co-integration rank. The second step
could be based on either the sequential procedure of Boswijk and Zu (2022) based on adaptive
bootstrap PLR tests or an adaptive information criterion for selecting the co-integration rank.
We now outline these two possibilities.

The adaptive PLR test-based procedure of Boswijk and Zu (2022). Boswijk and Zu (2022)
introduce the adaptive PLR statistic for testing the null hypothesis that the true co-integration

rank is (no more than) r, 0 <r <p—1,

T
Quier = —2 |65 (a, B, W) — (8711, 1, xp)] =Y (é;tiglér,t - é;,,tzzt—lép,t) . (36)

where £,; and £,,; denote the residuals from the restricted and unrestricted VAR model in
, respectively. For the case where the autoregressive lag length is known (k = k), they
demonstrate that the limiting distribution of depends on the unknown volatility process.
Consequently, bootstrap methods are required to approximate the critical values from this

distribution. In order to do so, a bootstrap sample {X:,t}tT=1 is generated recursively from

ri{—1

k—1
AX:, = a8 X, S TOAX;, e, t=1,...T, (3.7)
=1

initialised at X, = Xj;, for j = 1 —k,...,0, where (34(7"), B(T), and fg’“) are the estimated
parameter matrices from the model (2.1)) obtained using conventional reduced rank regression
under the rank r imposed by the null hypothesis. The adaptive PLR test statistic based on the

bootstrap sample is then computed as

* i Akl —1 Ak Akl v—1 A%
Qr,k,T T § <Er,t2t Er,t - 6p,tzt 5p,t> ) (38)



where £, and & ; denote the (bootstrap) residuals from the restricted and unrestricted mod-
els, respectively. Following Boswijk and Zu (2022), we consider the following two bootstrap
implementations: (i) the variance bootstrap, €, := ZA]; / 22’: , where ZA]tl s any square root of 3,
and z; ~ 1.i.d.N(0, I,)); (ii) the wild bootstrap, €}, := &.,w;, where w} is a scalar i.i.d. N(0,1)
sequence; see Section 4.2 of Boswijk and Zu (2022) for more details. As is typically done in
practice, the unknown lag length £ in and is replaced by the lag length estimated
in the first step of the sequential procedure, say k, in order to compute the bootstrap statis-

tic Q: i Using the bootstrap sample in (3.7) based on k. The corresponding p-value is then

*

T,I%,T
data) cdf of Q: L Starting from r = 0, the bootstrap algorithm is repeated as long as p: LT

~

exceeds the significance level 7, thus yielding 7*(k) = r. If the null is not rejected for r = p—1,

~

then 7*(k) = p.

The asymptotic validity of the two bootstrap procedures outlined above is established in

computed as pr; .= 1— <Q:,1;,T)’ where G:kT() denotes the conditional (on the original

Theorem 3 of Boswijk and Zu (2022) with the implication that, for the case where the autore-
gressive lag length is known (k = kg), the variance and wild bootstrap adaptive PLR test-based
procedures, 7*(ko), are asymptotically accurately capped estimator of the co-integration rank
rg.E| In Section {4 we will generalise these results to the case where the lag length is unknown

and estimated in the first step of the sequential procedure.

The adaptive IC-based procedure. Alternatively, to determine the co-integration rank in the
second step of a sequential procedure based on ALS-IC, k in the generic form (3.4) can be
replaced by the lag length estimated in the first step, thus yielding

ALS-IC(k, ) := —20%7 (o, B, W) + er(k, p). (3.9)

The resulting adaptive information criterion-based co-integration rank estimator is then given
by
fALs_IC(I%) := arg min ALS—IC(I%, D).

r=0,...,p

4 Asymptotic Analysis

In this section we establish the large sample properties of the adaptive methods for determining
the co-integration rank and autoregressive lag length outlined in Sections and [3.4]
Lemma 2 of Boswijk and Zu (2022) establishes that the nonparameteric estimate of the

volatility matrix process defined as i)T(u) = Zthl itl[(tq) 77 (w) is uniformly consistent

2The sequential rank determination procedure of Johansen (1996) is asymptotically accurately capped in that
if each PLR (or bootstrap PLR) test in the sequence is run with nominal (asymptotic) significance level 7, then
the limiting probability of selecting a rank smaller than, equal to, and greater than the true rank will be 0,

1 — 7 and 7, respectively, when ry < p and 0, 1 and 0, respectively, when r¢ = p.



over the compact interval [0,1]. This result is a basic building block needed to demonstrate
weak consistencyf|for the adaptive information criteria in (3-4) and (3.5) and so for completeness

we first reproduce that result below as Result 1.

Result 1 Let {X;} be generated as in (2.1) with the parameters satisfying the I(1, ro) con-
ditions and let Assumption 1 hold, and let K be a bounded non-negative function defined on
R which satisfies [*° K(x)dx =1, 0 < ff)oo K(z)dr <1 and 0 < [ K(x)dx < 1. Then, if
T — 00, h — 0 and Th? — oo, it holds that

sup |[Sr(u) — S(w)|| 20,

u€[0,1]

where YX(u) := o(u)o(u) is the true variance matriz process.

Using Result 1, we first show in Lemma (1| that the adaptive information criterion in is
weakly consistent for the co-integration rank, regardless of the autoregressive lag length used,
provided standard conditions hold on the penalty term, c¢y. Then second in Lemma [2| we show
that for the true co-integration rank, rg, the adaptive information criterion in (3.4)) is weakly

consistent for the autoregressive lag length.

Lemma 1 Let the conditions of Result 1 hold. Then, for any 0 < k < K, it holds that, as
T — oo:

(i) for r > ry, Pr(ALS-IC(k,r) > ALS-IC(k,ro)) — 1, provided cp — oo;

(i1) for r < ry, Pr(ALS-IC(k,r) > ALS-IC(k, 7)) — 1, provided c¢r/T — 0.

Lemma 2 Let the conditions of Result 1 hold. Then it holds that, as T — oo:

(i) for any k such that kg < k < K, Pr(ALS-IC(k,r9) > ALS-IC(ko,709)) — 1, provided

cr — 00,

(ii) for any k such that 0 < k < ko, Pr(ALS-IC(k, 1) > ALS-IC(ko,70)) — 1, provided
CT/T — 0.

3An estimator T}, is defined to be weakly consistent if it converges in probability to the true value of the

unknown parameter ; that is, T), 2 6.

10



Remark 3. The results in Lemma [I] imply that, provided the standard condition that <& +
% — 0, as T" — oo, holds on the penalty term, cr, then for any lag length £ = 1,..., K, the
adaptive information criterion-based estimator of the co-integration rank is weakly consistent
for the true co-integration rank, rq. The results in Lemma [2] imply that, under the same
conditions on c¢p, the adaptive information criterion-based estimator of the lag length, computed
by imposing the true co-integration rank, i.e. r = rg in , is a weakly consistent estimator for
the true lag order ky. Consequently, in each case, the use of either the ALS-BIC or ALS-HQC,
but not the ALS-AIC penalty, will yield weakly consistent estimates. Cavaliere et al. (2018)
demonstrate that analogous results hold, with the same condition on c¢r, for the corresponding

non-adaptive information criterion-based estimators. &

Using the results in Lemmas [I] and [2, we are now in a position to establish the weak

consistency of the joint procedure. This is now given in Theorem

Theorem 1 Let the conditions of Result 1 hold. Then it holds that (ifALs_Ic, TALSIC) RN (ko,70),
provided cp in (3.4) satisfies the condition that Z- + é—>0 as T — oo.

Remark 4. An immediate consequence of the result in Theorem [1|is that the resulting ALS-
BIC-based and ALS-HQC-based estimators are weakly consistent for both the co-integration
rank and autoregressive lag length, but that the corresponding ALS-AIC-based estimator is
not. %

To conclude this section we now detail the large sample behaviour of the two-step sequential
procedures outlined in Section [3.4] where in the first step we select the autoregressive lag and
then in the second step an adaptive procedure based on this estimated lag length is used to
determine the co-integration rank.

First, in Lemma , we generalise the results in Lemma 3 of Cavaliere et al. (2018), which
show the sufficient conditions on the term ¢y that ensure weak consistency for an information
criterion of the form given in , to the case of its adaptive analogue, ALS-IC(k,p). In
particular, we derive the conditions under which minimising an adaptive information criterion
consistently selects the true lag order, kg, in the first step when we do not impose a reduced

rank structure, so that we set r = p.

Lemma 3 Let the conditions of Result 1 hold. Then, for any 0 < k < K, it holds that, as
T — oo:

(i) for k > ko, Pr (ALS-IC(k,p) > ALS-IC(ko,p)) — 1, provided ¢z — oo;
(i1) for k < ko, Pr (ALS-IC(k, p) > ALS-1C(ko,p)) — 1, provided cy/T — 0.
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The results in Lemma |3 imply that ]%ALS-IC 2 ko, again provided % + %%0, as T — oo.
Using the results in Lemmas [I] and [3] we are now in a position in Theorem [2] to establish the
large sample properties of the bootstrap adaptive PLR test-based estimator of the co-integration

rank using the lag length estimated by an information criterion as in (3.5)) at the first step,

T (I%ALS-IC) :

Theorem 2 Let the conditions in Result 1 hold. Then, provided cr in (3.5)) is such that
L+ %—>O as T — oo, the variance and the wild bootstrap PLR-tests satisfy:

(1) limp_, o0 Pr(f*(l%ALS_IC) =r)=0 forallr=0,1,...,19—1;

(i) imy oo Pr(7#* (karsac) = 1) = 1—n-I(rg < p), and lim  sup  Pr(#*(kapsic) = r) <
0 THOOTE{TQ#’l,...,p}

Remark 5. The results in Theorem [2| show that, provided the information criterion used in
the first step of the sequential procedure is a consistent lag length estimator, that is % + $—>O,
as T' — oo, the bootstrap adaptive PLR test-based procedure is an asymptotically accurately

capped estimator of the true co-integration rank, rq. &

Remark 6. The results in Theorem [2| can also be shown to hold (under the same conditions)
for any consistent lag length estimator obtained in the first step. Therefore, the consistency
result in Theorem [2| will also hold for variance and wild bootstrap adaptive PLR tests when
a standard information criterion, such either BIC(k, p) or HQC(k, p), is used to select the lag
length at the first step. O

Finally, in Theorem |3| we generalise the results in Theorem 2 of Cavaliere et al. (2018) by
establishing the large sample properties of the adaptive IC-based estimator of the co-integration

rank as in (3.9) using the lag length estimated by an information criterion as in (3.5) at the

first step, 7arsic(kaLsic)-

Theorem 3 Let the conditions in Result 1 hold. Then it holds that f’ALS_IC(l%ALS_IC) 2 1o,
provided cr in (3.5) and (3.9) satisfies the condition that & + é—ﬂ) as T — o0.

Remark 7. It is easy to show that the condition placed on ¢y in Theorem [3]is not required if
our purpose is to consistently estimate the co-integration rank. Indeed, as was shown in Lemma
[ any fixed lag length k& will also suffice in that case. However, as shown in Cavaliere et al.
(2018), inter alia, the finite sample performance of the information criteria for determining the
co-integration rank can deteriorate badly if a fixed lag length is used which is not equal to the

true lag length, ko, and particularly so where it is smaller than k. &
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5 Numerical results

In this section we use Monte Carlo simulation methods to investigate the finite sample per-
formance of the joint and sequential adaptive methods for determining the co-integration rank
and autoregressive lag length outlined in Sections [3.3] and and compare these with their
standard (non-adaptive) counterparts. The results from these Monte Carlo experiments are
reported in Tables 1-6.

We will consider the following second-order VAR model of dimension p = 2 as our simulation
DGP:

a 0 10
AXt = Ctﬁlthl +F1AXt,1 + &4, a = [ 0 b ] s 5 = [ 01 ] s (51)

witht =1—-K,..., T, X_x = AX_g = 0, where K denotes the maximum lag order. In
order to allow for true co-integration ranks, ro, of 0, 1 or 2, we set the parameters a and b
in the long-run parameter vector o in as follows: a = b =0 for rp = 0, a = —0.4 and
b=0forrg =1, and a = b = —0.4 for ry = 2 (full rank). Moreover, we set I'; := I, with
v € {0,0.1,0.5,0.9} 1

We will consider three cases for the the innovation vector, &; in . The first case is that
g ~ iid. N (0,13) so that &; is homoskedastic. This case will provide a useful benchmark
to investigate the effects of using adaptive methods when they are not needed. The second
case considers conditionally heteroskedastic innovation processes, where the individual compo-
nents of g; follow the first-order AR stochastic volatility [SV] model sets as g;; = vy exp (hit),
hit = Ahiy—1 + 0.5&;, with (&, vy) ~ id.d. N(O,diag(ag,l)), independent across ¢ = 1,2.
Results are reported for A = 0.951, o, = 0.314. This case constitutes a well-known condition-
ally heteroskedastic model for the innovations which has been used with the same parameter
configuration in many other Monte Carlo experiments such as Gongalves and Kilian (2004),
Cavaliere et al. (2010), and Cavaliere et al. (2015, 2018). The third case we consider sets &, to be
a non-stationary, unconditionally heteroskedastic independent sequence of Gaussian variates,

characterised by a late positive variance shift. Specifically,

1 fort < |27T/3]

g, ~ N (0,0%1,), with o, :=
e~ N (0.00L) ' {3 for t > [27/3]

In order to evaluate the behaviour of the adaptive and corresponding standard procedures in
practically relevant sample sizes we report results for "= 50 and 100. All experiments are run
over 1,000 Monte Carlo replications and were programmed using MATLAB. Our experiments

are based on the no deterministic component case. In all of our simulation experiments we set

4For the simulation DGP in (5.1)), it suffices that (a,b,7) € (—2,0]% x [0,1) in order to satisfy the I(1,7)

conditions.

13



K = 4 as the maximum lag length considered. Results for the joint information-based estimates
of the co-integration rank and lag length from Section are reported first in Table 1, while
results relating to the sequential procedures from Section are reported in Tables 2 and 3 for
the IC-based approaches in the case of SV innovations and single volatility break, respectively,
and in Tables 4 and 5 for the sequential bootstrap-based procedures, again for the SV and
single volatility break cases, respectively. Finally, for comparison purposes, Table 6 reports
the results for the joint information-based approaches in the homoskedastic case. Additional
Monte Carlo simulations, not reported here in the interests of space but available on request,
consider the case of the presence of a “seasonal effect” in the volatility. In particular, in the
spirit of Hounyo (2021, cf. Section 4), we consider the case of a periodic variation in volatility
where the innovation vector in is defined as g, ~ N (0,0215), with oy := s,0 where {s;} is
the repetition of the sequence {1,1,2,4} and o = 1. Although this model does not satisfy our
Assumption 1, the results we obtained nonetheless suggest that the adaptive versions of the
information criteria and bootstrap-based likelihood ratio tests perform at least as well as their

standard counterparts.
INSERT TABLES 1-6 HERE

Consider first Table 1 which reports results for determining the co-integration rank r (left
two panels of Table 1) and the lag order k (right two panels of Table 1) using the joint ALS-1C-
based procedures detailed in Section [3.3|together with their corresponding standard information
criteria-based counterparts. In particular, Table 1 reports the empirical frequencies with which
7 and k from the joint information-based estimator defined in select the values r =0,1,2
and k = 1,2, 3,4, respectively, for each of the adaptive criteria ALS-HQC and ALS-BIC, and
the corresponding standard criteria, HQC and BIC. We do not consider the ALS-AIC estimator
nor its standard counterpart in the Monte Carlo experiments because the poor performance of
AIC-based approaches in finite samples is documented in many contributions in the literature
(see e.g., Kapetanios, 2004; Wang and Bessler, 2005; Cavaliere et al., 2015; Cavaliere et al.,
2016). Additional simulations show that, also in the case of adaptive estimation, this criterion
tends to overestimate both the true co-integration rank and the lag length. Nevertheless, the
adaptation with respect to the variance matrix profile considerably improves the finite sample
performance of the AIC-based approach. These results are available on request.

A number of observations can be made from the results reported in Table 1. Consider first

the estimators of the co-integration rank.

(i) In the case of autoregressive SV innovations reported in the upper portion of Table 1,

the performance of the adaptive version of the information criteria, i.e. ALS-HQC(k, p)
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and ALS-BIC(k, p), is overall superior than (or at least as good as) their standard coun-
terparts, HQC(k,p) and BIC(k,p). The only exception seen is for the case of no co-
integration, ry = 0, where the standard BIC outperforms its adaptive counterpart. How-
ever, this is likely to be an artefact of the tendency of the standard BIC to under-fit the
‘true’ value of the co-integration rank, which can be seen from the results in Table 1 for
BIC and ALS-BIC when ry > 0.

(ii) In the case of a single volatility break (lower portion of Table 1), for a given penalty choice,
i.e. HQC or BIC, the adaptive estimator is more efficacious, and often considerably so,
than the standard estimator in all but two of the cases reported in Table 1. As an example,
while ALS-HQC selects the correct value of r 81.4% of the time when ro = 0, v = 0.5
and T = 100, the standard HQC picks the correct rank only 64.5% of the time.

(iii) In the no co-integration case, ro = 0, the ALS-BIC penalty delivers superior performance
to the ALS-HQC, with the same ordering holding for the approaches based on the standard
BIC and HQC criteria. In particular we see that for both the adaptive and standard cases
the HQC penalty over-fits the co-integration rank considerably more often than the BIC
penalty. The degree of over-fitting is, however, smaller for the ALS-HQC wvis-a-vis the
standard HQC criterion.

(iv) For the case where ry = 1 there is overall little to choose between the estimators based on
the BIC and HQC penalties; in particular, those based on the HQC penalty again tend
to over-fit the rank to a greater degree than those based on the BIC penalty, with this
effect again lessened for the adaptive version of the estimator. In contrast, the BIC-based

estimators can tend to under-fit for 7" = 50, excepting v = 0.9.

(v) For the full rank case, 7y = 2, the HQC-based estimators generally select rq = 2 more
often than the corresponding BIC-based estimators, although this is likely to some degree

to be an artefact of the tendency of the former to over-fit, discussed above.

(vi) For all of the estimators considered, the lag length and the magnitude of the lag parameter,
v, can have a considerable impact on the finite sample behaviour of the co-integration
rank estimators. This impact appears to be less pronounced, other things equal, for
the adaptive variants of the estimates and for the BIC-based procedures relative to the

corresponding HQC-based procedures.

The following observations can also be made concerning the behaviour of the estimators of

the autoregressive lag length seen in Table 1.
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(i) As observed above for co-integration rank estimation, the adaptive information criteria
outperform their standard counterparts in selecting the true autoregressive lag length, ko,
in almost all of the cases reported in Table 1. These differences can again be large and
generally tend to be larger, other things equal, for the HQC penalty than for the BIC
penalty. As an example, while the ALS-HQC estimate of k selects the correct lag length
91.5% of the time when rg = 1, v = 0.0 and T' = 100, the standard HQC estimate selects
the correct lag length 71.7% of the time.

(ii) The behaviour of each of the lag length estimators considered is very similar, other things
equal, across the three values of the co-integration rank considered. Consequently, the
value of the true co-integration rank would appear to have relatively little impact on the

finite sample properties of the lag length estimators.

(iii) The HQC-based procedures are superior to the BIC-based procedures for v = 0.1, pre-
sumably because of the greater tendency of the HQC-based procedures to over-fit, a
tendency which is clearly seen for the larger values of v considered, most notably with

the non-adaptive versions of the estimators.

Let us now turn our attention to a discussion of the results in Tables 2-5 which relate to
the sequential estimates from Section [3.4]

We first focus attention on the results reported for the two-step IC-based procedures in
Tables 2 and 3 for the cases of SV innovations and a single volatility break, respectively. In
particular, we report the empirical frequencies with which both standard and adaptive IC-
based procedures select the lag length, k, at the first step (‘Step I’ in the tables) and those
with which they select a co-integration rank, r, of zero, one or two at the second step (‘Step I’
in the tables), using the lag length estimated at the first step by each standard and adaptive
information criterion, IC(k, p) and ALS-IC(k, p).

The results for where the co-integration rank is determined using the same information
criterion at both steps of the sequential procedure are overall similar to the results for the
corresponding joint IC-based approaches discussed above. As an example, the joint ALS-BIC
estimate of r in Table 1 selects the correct co-integration rank 77.6% (91.3%) of the time when
ro =1, v=05and T = 50 (T" = 100) in the SV case, while the corresponding sequential
procedure based on ALS-BIC estimate at both steps, i.e. ALS—BIC(/%ALS_BIC, 1), selects the true
rank 77.1% (90.9%) of the time. Moreover, all of the approaches considered appear to be fairly
robust to the choice of whether to use an adaptive or standard information criterion in the first
step of the sequential procedure as the results for the co-integration rank determination appear
very similar using either ALS-IC(k, p) or IC(k, p).
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We now turn to a discussion of the results for the wild bootstrap PLR procedure [denoted
PLR-WB], together with the adaptive PLR procedures of Boswijk and Zu (2022) implemented
with either a variance bootstrap [denoted ALR-VB]| or a wild bootstrap [denoted ALR-WB]

in Tables 4 and 5 for the cases of SV innovations and a single break in volatility, respectively.

For each of these we report the empirical frequencies with which they select a co-integration

rank, r, of zero, one or two. We report results for three case for the lag length used in these

procedures. The first is an infeasible version based on knowledge of the true lag length, i.e.

we set k = kg. The other two select the lag length in the first step of the two-step sequential

procedure using either standard BIC, k = /%BIC, or its adaptive counterpart, k = lAfALS_BIC

A number of observations can be made from the results reported in Tables 4 and 5.

(i)

(i)

(iii)

In the no co-integration case, rqg = 0, the PLR-WB procedure is seen to have better “size”
properties than either of the ALR-VB and ALR-WB procedures which both tend to over-
estimate the co-integration rank to a greater degree than does the PLR-WB procedure.
The behaviour of the ALR-VB or ALR-WB procedures for ry = 0 are fairly similar.

In the co-integrated case, 1o = 1, the ALR-VB and ALR-WB procedures both show a
significantly higher empirical probability of selecting the correct rank, ro = 1, than does
the PLR-WB procedure which displays a tendency to under-fit the co-integration rank,
most notably for 7" = 50. In the ry = 1 case the ALR-VB procedure appears to be slightly
more efficacious than the ALR-WB procedure.

In the full rank case, ro = 2, and with SV innovations (Table 4), the adaptive procedures
overall provide slightly better performance than the PLR-WB procedure. Conversely, in
the single volatility break case (Table 5), the PLR-WB procedure is, as in the zero rank
case, more efficacious than either the ALR-VB or ALR-WB procedures, both of which
display a consistent tendency to under-fit the rank. As with the the ro = 1 case, the
ALR-VB procedure appears to be slightly superior to the ALR-WB procedure for both

the heteroskedastic cases considered.

All of the PLR-WB, ALR-VB and ALR-WB procedures appear to be fairly robust to the
choice of the lag length made at the first step of the sequential procedure. In particular, a
comparison of the results for k = I%BIC and k = ]A{'ALs_BIC with those for the corresponding

infeasible procedures based on a known lag length, k = kg, reveals that the loss in efficacy

5In Tables 4 and 5 we focus on BIC-based approaches for the selection of k because these provide the best

overall performance, see e.g. Cavaliere et al. (2018). Moreover, we only report the results for the lag length

determination for the case of ro = 1. The results for rg = 0 and 2 are very similar and thus, in the interest of

space, are not reported.
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shown by the procedures for determining the true co-integration rank at the second step
due to the estimation of the unknown lag length at the first step appears very small and in
some cases even negligible. This is a comforting result as it suggests there are only small
losses in finite sample efficacy from estimating the autoregressive lag length, relative to

an infeasible benchmark based on knowledge of the true lag length.

(v) Focusing on the results for the lag length determination reported in the right panel of
Table 2, we can observe that, overall, ALS-BIC appears to be more reliable than the
corresponding standard BIC. For example, in the case of a single volatility break and
~v = 0.5 the selection frequency of the true lag order, k = ko = 2, for ALS-BIC is 82.0%
(98.4%) against 74.8% (93.3%) for BIC when T' = 50 (7" = 100).

Finally, we investigate the potential losses of efficacy seen when using the adaptive methods
in the benchmark case of homoskedastic innovations by comparing the results reported in Table
6 for the adaptive IC-based methods with those of their standard counterparts. These results
suggest that the performance of the joint adaptive IC-based procedures do not deteriorate
to any significant degree when the shocks are homoskedastic, such that the use of adaptive
methods is unnecessary. Indeed, when either rp = 1 or 2, the performance of the ALS-IC-
based approaches is similar and sometimes even better than the results for their corresponding
standard counterparts. Conversely, in the case of no co-integration, rq = 0, standard BIC
and HQC-based approaches outperform their adaptive counterparts. However, as pointed out
above, this is mainly an artefact of the overall tendency of the standard criteria, especially BIC,

to under-fit the true co-integration rank.

To conclude this section, we compare the finite sample behaviour of the adaptive information
criteria-based methods with that of the adaptive PLR test-based approaches. By comparing
the results reported in Tables 1, 2 and 3 with those in Tables 4 and 5, we observe that, for the
co-integrated case (rg = 1), the finite sample performance of either joint or sequential ALS-1C
is similar to that of adaptive PLR test-based procedures. Conversely, when rq = 0 the PLR
test-based procedures outperform the adaptive information criteria-based approaches, while
this behaviour is reversed when rq = 2 and T" = 50. In the case of full rank and 7" = 100, the
performance of the methods considered are similar. Finally, by comparing the results in Tables
1, 2 and 3 for the joint and the sequential information criteria-based approaches for selecting

the lag length, we note that the ability of these methods to determine k£ are very similar.
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6 An Empirical Application: US Term Structure of In-

terest Rates

In this section we provide an empirical application of the adaptive information criteria-based
approaches to the term structure of interest rates in the US. In particular, we analyse the time
series Xy = (Xy4, ..., X5)" of monthly zero yields from January 1970 to December 2012, for
maturities equal to 3 months (Xy;), 1 year (Xy), 3 years (Xs;), 5 years (Xy), and 10 years
(Xs5¢)-

The co-integration analysis of X; has already been considered by Boswijk et al. (2016) and
Boswijk and Zu (2022). In particular, in order to account for the unconditional heteroskedas-
ticity present in the data, sequential procedures where the lag length is selected at the first
step according to (standard) HQC(k, p), and then the co-integration rank of the system is de-
termined using either PLR-WB (Boswijk et al., 2016) or adaptive PLR tests (Boswijk and Zu,
2022) were adopted. Here we apply the adaptive information-based methods to estimate the
co-integration rank and autoregressive lag order of the system and compare these results with
those obtained in the two previous analyses cited above. In what follows, the VAR models are
fitted with a restricted trend and, for all methods, the maximum number of lags considered is
K = 4. The number of bootstrap samples used in the bootstrap algorithms is B = 999.

We first focus on the joint determination of the co-integration rank and lag length using
adaptive joint information criterion-based procedures as outlined in Section and the stan-
dard counterparts. These results are reported in Table 7. The results in Table 7 show that all of
the joint information criteria, both adaptive and non-adaptive, agree on selecting a lag length
of k = 2. Moreover, both standard and adaptive versions of the joint BIC-based approach
delivers the same estimate of the co-integration rank, namely 7gi¢ = Tarspic = 2. Con-
versely, the joint HQC-based approaches select a higher co-integration rank. Specifically, the
co-integration rank selected using the (standard) joint HQC-based approach is 3, i.e., fngc = 3,

whereas 7ars nqc = 4 is obtained using the adaptive version.
INSERT TABLE 7 HERE

We now consider in Table 8 the results obtained using the sequential procedures for deter-
mining the lag length and then the co-integration rank. In particular, the upper panel of Table
8 shows the results for the selection of k in the first step of the sequential procedure, whereas
the results for the determination of r at the second step using information criteria and PLR
tests are reported in the middle and lower panels of Table 8, respectively. Note that the results

reported in the lower panel of Table 8 for the case of k=2 reproduce those in Boswijk et al.
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(2016) and Boswijk and Zu (2022) who use standard HQC to select the lag length and therefore
they set k = 2. The results for the first step of the sequential procedure show that all but the
standard BIC information criteria agree on a choice of k= 2; standard BIC chooses /%BIC =1.
Therefore, on balance, we would recommend a VAR model of order 2.

Let us next focus on the second step of the sequential procedure and, in particular, on
the determination of the co-integration rank obtained by the PLR tests (see the lower panel
of Table 8). For k= 2, the results for the adaptive and non-adaptive bootstrap-based PLR
test procedures vary according to the nominal significance level considered. In particular, at
a standard 5% level we select 7 = 2 using the (non-adaptive) PLR-WB procedure, whereas
the two adaptive PLR methods yield 7 = 4, again replicating the results in Boswijk et al.
(2016) and Boswijk and Zu (2022), respectively. Using a 1% significance level, we still select a
co-integration rank of 2 using the (standard) PLR-WB but we would now select # = 3 using
the two adaptive PLR test-based procedures. The results for the information criteria used in
the second step of the sequential procedure show that, using k= 2, HQC-based approaches
in both adaptive and non-adaptive form agree with the selection of 7 = 4 also made at the
5% level made by the adaptive PLR test-based procedures. The co-integration rank of 7 = 2
selected using both the adaptive and non-adaptive BIC-based approaches matches that chosen
by the (non-adaptive) PLR-WB test procedure. It is worth noting that, when setting k = 1 as
suggested by the (standard) BIC(k, p), the results for both information criteria and PLR tests
in step 2 of the sequential procedure are much more variable across the methods with the rank
selected anywhere between 2 and 5. Therefore, we would not recommend the conclusions based
onk=1. In particular, because BIC uses a stricter penalty term than HQC, we would expect,
other things equal, that BIC-based approaches will often select a lower lag length and/or co-
integration rank than HQC-based approaches. Moreover, this tendency of standard BIC might
be exacerbated by the presence of heteroskedasticity in the data, thus allowing the adaptation

with the respect to the volatility process to deliver more reliable results in small samples.
INSERT TABLE 8 HERE

In summary, overall our results seem strongly in favour of a selection of an autoregressive
lag length of 2. However, the selected co-integration rank varies according to the method used.
In particular, the joint and sequential (for k= 2) HQC-based approaches select a co-integration
rank of 4, while the joint and sequential (for k= 2) BIC-based approaches select rank 2. The
sequential procedures based on PLR tests and k =2 select # = 2 in non-adaptive form, 7 = 3
when using a 1% significance level and 7 = 4 when using a 5% significance level. This is
in some ways consistent with the findings for BIC and HQC-based methods since decreasing

the significance level is qualitatively the same as using a stricter penalty in the information
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criterion. Finally, it is worth noting that the choice of a rank equal to 4 implies the presence of
a single stochastic trend driving the five yields and is in line with the (weak-form) expectation
hypothesis of interest rates (see, for example, Campbell and Shiller, 1987), which implies that
the (long-term) level factor - but not the slope nor the curvature - of the interest rate yield

curve is a random walk process, so that 'X; consists of spreads X;;, — Xy; for i =2, 3,4, 5.

7 Conclusions

In this paper we have proposed new methods for determining the co-integration rank and the
lag order in heteroskedastic VAR models which exploit the time variation in the unconditional
error variance matrix. In particular, we have proposed adaptive information criteria-based
approaches to jointly determine the co-integration rank and the autoregressive lag length. Pro-
vided standard conditions hold on the penalty term hold, these methods are proved to be weakly
consistent for co-integration rank and lag order determination. We have also demonstrated that
the adaptive PLR rank determination procedure of Boswijk and Zu (2022), originally developed
under the assumption of a known autoregressive lag length, remains asymptotically valid when
a consistent lag length estimate, such as that provided by an adaptive information criterion,
is used. Monte Carlo experiments reported indicate that the adaptive information criteria-
based approaches generally outperform standard methods in finite samples when non-stationary

volatility is present in the data.
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A Appendix

Notation and preliminary results. Write the unrestricted model (with » = p and k = K)

without deterministic terms as
AXt = HXt_l + \Ith + & = [H . \I[]Wt +& = (Wt/ X Ip) 0 + &4,

where W, = (X[_,, Zj) with Z, = 75 = (AX]_4,...,AX] g.,), and where § = vec[I] : ¥].

The lag order restriction £ < K implies particular zeros on vec ¥, say,

(k)
vecV = 3 .
0

The cointegration restriction rank IT < r implies IT = af’, and hence
vec Il = vec(af') = (I, ® a) vec (8'),

where « and [ are p x r matrices. Depending on r, we normalise 8 as ¢ = I, for some
known p x r matrix c of full column rank. Defining ¢, as the orthogonal complement of ¢, and
¢ =c(dc)™, this leads to f = ¢+ ¢, ' for some r X (p — r) matrix ® of unknown parameters;
hence

vec Il = (I, ® ) (vec(@) + (co ® I)¢) =: g™ (¢, ), (A.1)

where ¢ = vec ® and the function ¢(") is implicitly defined.
With known 3J;, minus two times the log-likelihood of the unrestricted model, up to an

additive constant, is given by

(AX: = (W ® 1,)0) 57 (AX, — (W] @ 1) 0)

[M]=

—2Up(0) =

t=1

] =

(ét - Wi el)0- 9))' = (ét — (W& 1,)(0— é))

t=1

T
aXE+(0-0)) (W e %) (0-90),

1 t=1

E

o~
I

where 0 is the unrestricted MLE

T -l
b= [Z (W, ® ztl)] > (Wen')AX,
t=1 t=1
and &, = AX,— (W} ® I,) §. Estimating different submodels (r, k) involves minimizing —2¢7(6)

over 0 under the restriction

9" (¢, )
o) _ e

1 9

0
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~(k,r
which yields the restricted estimator 8( ).

Using the true value 3y and hence ry, define

pyp= | T er T ’ ® I,
0 0 T YLk 1
such that
T2 X, 4
DL (Wy @ 1,) =T1/? B Xy ® I,
7

This is used to normalise the factors of the log-likelihood ratio function:
Ar(0) = =2 |er(0) - ()]

=0 (W @) (0 - 0)

t=1

= (0—0)Dt [Z Dy (WW! @ £, DT] D6 —6).
t=1

Note that Dy has been defined such that D;'(0 — ) and the normalised observed information

matrix in square brackets are bounded in probability (and the latter has a non-singilar limit).

Indeed, as shown by Boswijk and Zu (2022),

—1
. w | 0 S
DAY O —65) 5 | ! ",
0 J2 SQ

T

ZD’T(WtWt’®E;1)DTﬂ> B0 ,
t=1 0 J

and

where S and J; are the limits of the normalised score vector and information matrix of the
cointegration parameters ¢, and S; and J, are the corresponding limits for the remaining
parameters (o and V). Furthermore, Boswijk and Zu (2022) show that the same limit results
apply if the true sequence {¥,};_, is replaced by the non-parametric estimate {3,}7_, in the
expression for /7 and hence Ar.

Extending the above results to the case with a (possibly restricted) constant or linear
trend term requires X;_; and possibly Z; to be extended by such deterministic terms, and
a corresponding extension of the matrix Dp. This will not be considered explicitly here.

Finally, it will be convenient to define LR(H, | Higry) = AT(9 () ) — AT(H (ke m)) the
likelihood ratio statistic for Hy, ,, against Hy, ,,, where (k1,r1) and (kq, r2) are particular values
of (k,r) with k; < ke and r < ro. d
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Proof of Lemma 1. To obtain the results of Lemma 1, we proceed to analyse

kﬂ'o)

ALS-IC(k, ) — ALS-IC(k, 7o) = Ar(8™") = Ar@™") + ep [k, 7) — 7k, 70)]

where w(k,r) = r(2p —r) + p*(k — 1). We first consider the case where k > kg, such that the
chosen lag length is well- (or over-) specified. After that, we consider the case of under-specified
dynamics (k < ko).

When k > kg, then Hy,,, is a well-specified model, and hence AT(é(k’TO)
for the null hypothesis that the lag length is (less than or) equal to k and the cointegrating

~(k,r
rank is 7o in the unrestricted model. As this null hypothesis is true, AT(G( 2

) is the LR statistic

) will have a
limiting null distribution, being the distribution of the sum of the LR statistic in Boswijk and

Zu (2022) and a x? random variable. Most importantly, AT(é(k’m)) = 0,(1).
) = Agp(0"™) = —LR(Hyp[H,), which is minus the LR

For r > ry, we have AT(é(k’r)
statistic for a true null hypothesis in an overspecified model, and hence it is O,(1). Because
mw(k,r) —mw(k,r9) > 0, it follows that

Pr (ALS-IC(k,r) — ALS-IC(k,79) > 0) — 1,

provided cr — oo.

For r < ry, we have AT(é(k’T))—AT(é(k’TO)) = LR(Hg»|Hkr,)- In this case, the null hypothesis
is violated, which will cause the statistic to diverge (to +00) at the rate O,(T"). To obtain this
rate, consider first the simplest case where r = 0 and ky = k = K = 1, so that the estimator of

U is zero under both constraints, and é(k’ﬂ — vec ") = 0. Therefore,
~(k,r ~(k,r
LR(Hip[Hire) = Ar(@®7) = Ap(@™"

)
N r ~ ~(k
— ipt [Z Dy (W, @ 57 DT] D719 — Ap(8™"

t=1

).
Since D70 = D360, + O,(1), with

D710y = (

and AT(é(k’m)) is O,(1) as before, this leads to AT(é(k’r)) — AT(é(

we will find that the divergence rate of

T(Byrcr) By
T1/2(C/ﬁ0)_1cl

0
R 1, | o ® L, vecag = ,
p) o ® 1, ’ ( T2 vec ay >

IMO)> = O,(T). More generally,

T
—0) D! [Z Dy (W,W, @ 5;1) DT] D;'(0

t=1

5 (ko)

Ar(8 g

)= (0

(k) @)

will be determined by



and since 0y does not lie in the constrained parameter space such that the difference é(k7r) — 6y
will be O,(1) but not o,(1), it follows that D;l(é(k’r) —0) = O,(T*?) as before, and hence
AT(é(k’r)) = O,(T). The term cr [w(k,r) — w(k,70)| is negative and diverges at the rate cr;
therefore

Pr (ALS-IC(k,r) — ALS-IC(k,79) > 0) — 1
provided ¢p/T — 0.

Next, consider the case k < kg, so that we are comparing two (dynamically) misspecified
models. When r > ry, such that the larger model encompasses the correct cointegration rank,

we may use the following decomposition:
LR<%k,ro ’%k,r) — LR’(%K,’I’O |HK,T) + LR<Hk,r0|f7L[K,ro) - LR(Hk,T|%K,T)7 (A2)

which follows from Hy,, C Hkr, C Hi, and Hyry C Hir C Hir, and equating the sum of
the LR statistics for both nested sequences of hypotheses. The first right-hand side expression
in (A.2)) is the LR statistic for the correct cointegration rank in a well-specified model, and
hence O,(1). The second and third terms in are LR statistics for an incorrect lag length
against an unrestricted lag length. Both test statistics will diverge, but their difference is O,(1),
as we will now show.

Recall the definition of ¢ (¢, a) in , and define the corresponding Jacobian matrix

D (6.0a) 9a" (6.
600 = |20 O] (e wa)s o),

where /3 is determined from ¢ as vec 8’ = vec((c'c) ') + (c). ® I,.)¢. Next, define the Jacobian

matrices evaluated at the true values
Go =G (g, a0), G =G, .

Here (¢, o) is the true parameter value in the model H.,, and similarly (¢, al) is the
true value in the overspecified model Hg , with r > ry. Note that ¢ and « are not identified
in the over-specified model, but one can choose a true value such that veclIl; = g(r)(¢(()r), Oé(()r)).
Using a linearisation of the rank-restricted model, and hence a quadratic approximation of the
log-likelihood, we have
~(1{,7‘0) ﬁ(KJ,O) — T
0 - 00 - ~ (Kﬂno) -
(G — o

where 2z, = 0; ', (with o, the symmetric square root of ;) and

Go 0
0 I

T -1
(Z W?W?’) > Wiz + 0, (T7?),

t=1 t=1

Wgt G6<Xt—1 ® Ut_l)
W? =1 Wy = it ® Ufl
Woy Ly ® 0[1
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Here the vector of lagged differences Z; has been partitioned into the retained lags Z;; =
(AX]_,,...,AX] ;) and the excluded lags Zo; = (AX]_,,...,AX] ,. ) in the model Hy ,,;
with coefficients v; and )5, respectively. By the same quadratic approximation of the log-
likelihood,

Kr )
R(Hiro| Hicirg) = ’ Z W5, 104 W 10 t¢2 + op(1), (A.3)
with
(K,ro) —
() S T,
t=1
and where

T T -1
) WO WO/ WO ! WO
W10, = War — ZW%(W%: Wi,) (Z [ o o ] > ( o > : (A.4)

—1 Wi We, W, WY, Wiy

the least-squares residual of a regression of Wy, on WY, and Wy,. By the same derivations, an

approximation analogous to (A.3)) applies to LR(Hy.»|Hx ) for r > 7o, but with @éK’TO) replaced
by @éK’r), and W9, replaced by Wy.10¢, which in turn is defined by (A.4) with W, replaced
by Wy, = G'(X;_1 ® o, '). This leads to the following result:

~(K'r (K,ro)
R(Hk,ro‘HK,ro) - LR(Hk,T’HK,r) = ’ ZWQ 10t 10 th ’
~ (K
~y sz 10 W0, 85 + 0y(1)
t=1

T
= OE 210t 210t W210tW210t)¢20
t=1

T
+2¢5 0 Z 2 10, WZIOJ) <t
t=1

Z 210t<ZW210t 210t> ZW210tzt
T -1 7

- Z 2 Wy, 10,t <Z Wa.104W5 19 t> Z Wa.0,2¢
t=1 t=1

+0,(1). (A.5)

The third and fourth terms in the final right-hand side expression are O, (1), since they represent
essentially the two likelihood ratio statistics under the null hypothesis ¥ = 0. We will now
analyse the first two terms.

Because Hgr, is nested in Hg,, it follows that the column space of Gy is a subset of

the column space of G. Without loss of generality (after suitable rotation), we may write
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G = [Gy : G*| for some matrix G*, orthogonal to Gy. Using standard derivations involving

projection matrices, this leads to
T T -1
Wg-lo,t — Waios = Z W%WS; (Z WgtW(ﬁ;) Woe,
t=1 t=1

with W, the least-squares residual of a regression of G*(X;_; ® ;') on WY, and Wy;; and

T T T —1
Z (W10, W90 — Wai0,Wags) = Z Wa W, (Z WStWSQ> W, W,
=1 =1

t=1
It can be shown that G*(X;_; ® 0, ') selects I(1) linear combinations from X;_;, which implies

T T T
Z WStWSQ = Op(T2)7 Z WStWIQt = Op(T)> Z Wopze = OP(T)v
t=1 t=1

t=1 —

and substituting this in (A.5) leads to LR(Hre|Hiro) — LR(Hi,|HK,) = Op(1). Hence,
because 7 (k,r) — w(k,19) > 0, it follows that

Pr (ALS-IC(k,r) — ALS-IC(k,ry) > 0) — 1

if cT — OQ.
For k < ko,r < rp, the proof follows from a combination of ingredients from the previous

two cases: now

LR(Hk,T|Hk,To) = LR(HK,rlHK,T()) + LR(sz,T|HK,T) - LR(Hk‘,To |HK,7"O)-

The first right-hand side term will diverge at the rate O,(T"), analogous to the result for k > ky,
r < 1o; and the final two terms together will be O,(1) as in the case k < kg, 7 > 1. This again
leads to the required result. [l

Proof of Lemma 2. As in the proof of Lemma 1, we start with expressing the ALS-IC
difference in terms of likelihood ratio statistics and 7 (k,r). For ky < k < K,

ALS—IC(/{?, To) — ALS—IC(]{?(), ’l“()) = —LR(H]%,TO ’Hk,ro) +cr [7'((]{, To) — 7T(k‘0, ’l“o)] .

The first right-hand side term is an LR test statistic for a true null hypothesis in a well-
specified model, and hence O,(1). Because w(k,79) — m(ko,79) > 0, the ALS-IC diverges
provided ¢z — oo, which proves part (7).

For 0 < k < ko,

ALS-IC(’f, T‘Q) — ALS—IC(I{?(), 7"0) = LR(H]%TO |H}€077~0) + CT [W(k, T[)) — 7'('(]60, T‘())] .
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The first right-hand side term is an LR statistic for a false null hypothesis in a well-specified
model, and hence will diverge at the rate O,(T); see the proof of Lemma 1, case k < ko, 7 > rq.
Since 7(k, 7o) — m(ko,79) < 0 in thise case, the ALS-IC diverges provided ¢y = o(T"), which
proves part (7). d

Proof of Theorem 1. The theorem is a direct extension of Theorem 1 of Cavaliere et al.
(2018) to the case of ALS-based information criteria. Making use of Lemmas 1 and 2, the line

of the proof is exactly the same as in their proof. O

Proof of Lemma 3. The proof is analogous to the proof of Lemma 2; the difference is that
the true cointegrating rank ry in Lemma 2 has been replaced here by p > ry. Therefore, the
LR test statistics are now for a true or false null hypothesis in an over-specified model; but this

does not affect the divergence rates, hence the same results obtain. U

Proof of Theorem 2. It follows from Boswijk and Zu (2022), Theorem 3, that when using
the true lag length kg, the bootstrap PLR-tests have correct size and are consistent, i.e., for

the chosen significance level 7, and as T" — oo,

Pr(7*(ko) <r) — 0,
Pr (7" (ko) =10) — 1—n.

Together with Lemma 3, this implies the result of Theorem 2, analogously to the proof of
Theorem 3 of Cavaliere et al. (2018). O

Proof of Theorem 3. The theorem is a direct extension of Theorem 2 of Cavaliere et al.
(2018) to the case of ALS-based information criteria. Making use of Lemmas 1-3, the line of

the proof is exactly the same as in their proof. O
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TABLE 7: Co-integration rank and lag length determination for the term structure of interest
rates in the US using standard and adaptive joint information-based procedures, IC(k,r) and
ALS-IC(k, ).

HQC BIC ALS-HQC ALS-BIC
k 2 2 2 2
7 3 2 4 2

Note: VAR models are fitted with a restricted constant. The maximum number of lags is K = 4.
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TABLE 8: Co-integration rank and lag length determination for the term structure of interest

rates in the US using standard and adaptive sequential procedures.

HQC  BIC ALS-HQC ALS-BIC

StepI k 2 1 2 2
Step 11 (IC)
fio(k = 1) 4 2 5 3
fo(k=2) 4 2 4 2
Step II (PLR)  PLR-WB ALR-VBS  ALR-WBS
k=1 k=2 k=1 k=2 k=1 k=2
r=0 0.000 0.000 0.000 0.000 0.000 0.000
r=1 0.000 0.000 0.000 0.000 0.000 0.000
r=2 0.015 0.091 0.000 0.000 0.000 0.001
r=3 0270 0.309 0.010 0.038 0.000 0.011
r=4 0914 0806 0.082 0.172 0.035 0.124
oot 3 3 5 4 5 4
oo 3 2 4 4 5 4
ooy 2 2 3 3 4 3

Notes: VAR models are fitted with a restricted constant. The maximum number of lags is K = 4.
‘PLR-WB’ denotes the (non-adaptive) wild bootstrap PLR test-based approach; ‘ALR-VB’ denotes the
adaptive PLR test based on the volatility bootstrap; ‘ALR-WB’ denotes the adaptive PLR test based on the
wild bootstrap. The number B of bootstrap samples used in the wild bootstrap algorithm is 999.
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