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Abstract

This paper studies the estimation of quantile regression for fractional data,

focusing on the case where there are mass-points at zero or/and one. More gener-

ally, we propose a simple strategy for the estimation of the conditional quantiles of

data from mixed distributions, which combines standard results on the estimation

of censored and Box-Cox quantile regressions. The implementation of the proposed

method is illustrated using a well-known dataset.
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1. INTRODUCTION

Empirical researchers are often faced with the need to model fractional data. Modelling

this sort of data poses particular problems, which have sometimes been dealt with in a

unsatisfactory manner. In a landmark paper, Papke and Wooldridge (1996) have shown

that the generalized linear models framework provides a simple and effective way of

modelling the conditional expectation of fractional data.

In many practical situations, however, the knowledge of the conditional expectation

may not be enough. For example, if the researcher needs to construct a confidence inter-

val for the value of the variate of interest, conditional on a given value of the covariates,

knowledge of the conditional expectation is of little use because the textbook assump-

tions of normality and homoskedasticity do not hold. On the other hand, conditional

quantiles provide a direct way of constructing this sort of confidence intervals. More

generally, conditional quantiles of fractional data are interesting because, due to the

bounded nature of the data, the features of the conditional distribution of interest will

often depend on the regressors in a complex way.

The specification and estimation of conditional quantile functions for fractional data

raises some interesting problems and the estimation strategy depends on the specific

nature of the distribution being considered. In the simplest situation, the variate of

interest has a continuous distribution in the [0; 1] interval. However, it is often the case

that there is an "inflation" of zeros and/or ones, and therefore the distribution is mixed.1

In this paper we look at the estimation of quantile regression for fractional data, focusing

particular attention on the case of mixed distributions.

The results we obtain for fractional data with mass-points can easily be extended to

other types of mixed data, like the non-negative data with a mass-point at zero, which

are often found in health economics (Duan, Manning, Morris and Newhouse, 1983), trade

1A third situation is possible. If the fractional variate of interest is defined as the ratio of two integers,

it has a discrete distribution. In this case the results of Machado and Santos Silva (2005) can be used

to model the numerator of the ratio, conditional on the denominator.
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(Santos Silva and Tenreyro, 2006), finance (La Porta, López-de-Silanes, and Zamarripa,

2003), and in many other areas.

The reminder of the paper is organized as follows. Section 2 details our approach

to the estimation of quantile regression for fractional data. Section 3 gives details on

the proposed method for the estimation of conditional quantiles when the data has a

mass-point at zero, and presents the essential asymptotic results. Section 4 illustrates

the application of the main results. Finally, section 5 contains some concluding remarks

and discusses the extension of the main results to other settings.

2. QUANTILE REGRESSION FOR FRACTIONAL DATA

Due to the equivariance property of the quantiles, estimation of quantile regression

functions for continuous fractional data is relatively simple. In particular, let y be the

fractional variate of interest and assume that, for any θ ∈ (0, 1), the researcher specifies
the following parametric model

Qy (θ|x) = Λ (x0β) ,

where Λ (x0β) is a function bounded between 0 and 1.2 Then, β can be estimated by

performing the usual linear quantile regression of Λ−1 (y) on x. For example, when

Λ (x0β) is the logit, β can be estimated by performing a linear quantile regression of the

log-odds ratio ln
³

y
1−y
´
on x. The function Λ−1 (y) will not be defined for the (rare)

observations in which y is zero or one. However, the properties of quantile functions

imply that for the cases in which y = 0 or y = 1, the values of y can be nudged away

from the boundaries without affecting the results.

When there are mass-points at zero or one, estimation is complicated by the fact

that the quantiles are not necessarily smooth functions of the regressors. For expository

purposes, we will consider only the case of a mass-point at zero, but handling a mass-

point at one (or both mass-points) is similar.

2Naturally, the parameters of Qy (θ|x) vary with θ, but that dependence is not made explicit to

simplify the notation.
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When there is a mass-point at zero, there are conditional quantiles that become iden-

tically zero for some values of the covariates. Specifically, the conditional quantiles have

the form

Qy (θ|x) = I (θ > Pr (y = 0|x))Qy>0

µ
θ − Pr (y = 0|x)
1− Pr (y = 0|x)

¯̄̄̄
x

¶
.

Therefore, in general, the conditional quantiles are not smooth functions of the regressors.

However, because the dependent variable has support on [0; 1], the quantiles have to be

continuous functions of the regressors. This suggests that, as in Powell (1984, 1986), the

quantiles will have the form

Qy (θ|x) = max {0, g (x0β)} , (1)

where g (x0β) is a function such that g (z) < 1, ∀z.
The choice of g (x0β) is an empirical matter. In the spirit of Papke and Wooldridge

(1996), we suggest the following specification

g (x0β) = (1 + γ)Λ (x0β)− γ, (2)

where Λ (x0β) is a CDF and γ > 0 is an unknown shape parameter.3

The specification of g (x0β) in (2) can be quite flexible. For example, if Λ (x0β) is the

CDF of a symmetric distribution, the quantiles will be s-shaped for γ < 1 and concave

otherwise. Naturally, identification depends on the curvature of Λ (x0β). If the data

is such that g (x0β) is essentially linear, identification will be difficult. Therefore, in

applications, difficulty in identifying γ suggests that simple censored linear model of the

form Qy (θ|x) = max {0, x0β} will be adequate.
Using (1) and (2), estimation of the parameters of interest is relatively easy. Indeed,

using the equivariance properties of the quantiles, it is easy to see that Qy (θ|x) =
max {0, (1 + γ)Λ (x0β)− γ} implies

QΛ−1( y+γ1+γ )
(θ|x) = max

½
Λ−1

µ
γ

1 + γ

¶
, x0β

¾
.

3The parameter γ may also be specified as a function of x, but that avenue is not pursued here.
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That is, conditional on the value of γ, β can be estimated by the linear censored

quantile regression of Λ−1
³
y+γ
1+γ

´
on x, with the dependent variable censored from below

at Λ−1
³

γ
1+γ

´
. The next section discusses the joint estimation of γ and β.

In the leading case where Λ (·) is specified as the logit, Λ−1
³
y+γ
1+γ

´
= ln

³
y+γ
1−y
´
and

Λ−1
³

γ
1+γ

´
= ln (γ). Therefore, for a given γ, β can be estimated by the linear censored

quantile regression defined by

Qln( y+γ1−y )
(θ|x) = max {ln (γ) , x0β} .

The model, defined by (1) and (2), for the case of a mass-point at zero can easily be

modified to accommodate other situations. If the mass-point is at one, Qy (θ|x) can be
specified as

Qy (θ|x) = min {1, (1 + γ)Λ (x0β)} . (3)

In the same spirit, in case there are mass-points at both zero and one, the following

specification can be adopted

Qy (θ|x) = max {0,min {1, (1 + γ + ξ)Λ (x0β)− γ}} ,

where ξ > 0 is a second shape parameter.

3. ESTIMATION

In this section we adapt Chamberlain’s (1994) two-steps estimation strategy of the

Box-Cox quantile model to our present setting, and discuss some details of the imple-

mentation of the proposed estimator.

3.1. Theory

The basic intuition for the population is as follows. The assumption that, for a given

θ ∈ (0, 1), there exist β0 and γ0 such that

Qy(θ|x) = max {0, (1 + γ0)Λ (x
0β0)− γ0}
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implies, under standard conditions on the conditional density of y, that (β0, γ0) is the

sole solution of

min
β,γ

E [ρθ (y −max {0, (1 + γ)Λ (x0β)− γ})] ,

with ρθ(z) = z [θ1(z ≥ 0) + (1− θ)1(z < 0)], (Koenker and Bassett, 1978, Powell, 1984,

1986). As noted before, the equivariance property of quantile functions implies that

Q
Λ−1 y+γ0

1+γ0

(θ|x) = max
½
Λ−1

µ
γ0

1 + γ0

¶
, x0β0

¾
and, thus, the solution β(γ) of the program

min
β

E

∙
ρθ

µ
Λ−1

µ
y + γ

1 + γ

¶
−max

½
Λ−1

µ
γ

1 + γ

¶
, x0β

¾¶¸
is such that β0 = β(γ0). Notice that, for any given γ, this program defines a standard

linear censored quantile regression problem. Finally, γ0 will be the solution of

min
γ

E [ρθ (y −max {0, (1 + γ)Λ (x0β (γ))− γ})] .

The proposed estimator will be the sample analogue of the procedure described above.

In a first step, for fixed values of γ, β̂(γ) will be the estimator of β in a linear censored

quantile regression of ti ≡ Λ−1
³
yi+γ
1+γ

´
on xi with known censoring points t0 = Λ−1

³
γ
1+γ

´
,

that is, it will solve

min
β

S1 (β) =
1

n

nX
i=1

ρθ (ti −max {t0, x0iβ}) .

Then, a one dimensional search over γ to minimize

S2 (γ) =
1

n

nX
i=1

ρθ

³
yi −max

n
0, (1 + γ)Λ

³
x0iβ̂ (γ)

´
− γ

o´
will yield γ̂ and thus β̂ = β̂(γ̂).

To simplify notation let

w(y, x, β, γ) = 1 (t0 < x0β) [θ − 1 (ti < x0β)]

= 1 (0 < g (x0β, γ)) [θ − 1 (y < g (x0β, γ))]
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where we now make explicit that g (·) depends on x0β and γ. Also put,

d (x, β, γ) =

⎛⎜⎜⎜⎝
x

∂g (x0β, γ) /∂β

∂g (x0β, γ) /∂γ

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
x

(1 + γ)λ (x0β) x

Λ (x0β)− 1

⎞⎟⎟⎟⎠ =

⎛⎝ x

d2 (x, β, γ)

⎞⎠ .

with λ (x0β) = ∂Λ(z)
∂z

¯̄̄
x0β
. Finally, let

A (γ) =

⎛⎝ Ik 0k×k 0k

00k ∂β (γ) /∂γ0 1

⎞⎠ .

The function β(γ) is implicitly defined by E [w (y, x, β (γ) , γ) x] = 0. If there is no

bunching at censoring points (i.e., g (x0β0, γ0) 6= 0 with probability one) (see Powell,

1984, 1986, and Fitzenberger, 1997), and if the inverse matrix below exists, we have by

the implicit function theorem

β (γ) /∂γ = − [E {1 (0 < g (x0β (γ) , γ)) fy (g (x0β, γ)) (1 + γ)λ (x0β (γ))xx0}]−1 ×
[E {1 (0 < g (x0β (γ) , γ)) fy (g (x0β, γ)) (Λ (x0β (γ))− 1) x}]

with fy (g (x0β, γ)) denoting the conditional density of y evaluated at the θth conditional

quantile.

Under suitable regularity conditions (Powell, 1991, and Fitzenberger, 1997), the esti-

mator is consistent and has the following linear representation

L (β0, γ0)

⎛⎝ √n³β̂ − β0

´
√
n (γ̂ − γ0)

⎞⎠ = −A (γ0)
1√
n

X
i

w (yi, xi, β0, γ0) d (xi, β0, γ0) + oP (1) ,

where

L (β0, γ0) = A (γ0)E
£
1 (0 < g (x0β0, γ0)) fy (g(x

0β0, γ0)) d (x, β0, γ0) d2 (x, β0, γ0)
0¤ .

Under the conditions of a Central Limit Theorem, the left hand side has an asymptotic

normal distribution with mean zero and covariance matrix

M (β0, γ0) = θ (1− θ)A (γ0)E
£
1 (0 < g (x0β0, γ0)) d (x, β0, γ0) d (x, β0, γ0)

0¤A (γ0)0 .
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Therefore, if L (β0, γ0) is non-singular,⎛⎝ √n³β̂ − β0

´
√
n (γ̂ − γ0)

⎞⎠→ N (0, V ) ,

with V = L−10 M0

¡
L−10

¢0
.

The asymptotic covariance matrix may be estimated by standard plug-in procedures.

As usual, the only critical issue is the estimation of the conditional density of the response

variable. A possible solution is to use the kernel methods proposed by Powell (1984) and

described, for instance, in Fitzenberger (1997).

Since, in practice, (1) and (2) only provide an approximation to the functional form

of the conditional quantiles, misspecification robust estimators of the covariance ma-

trix should be used (see Chamberlain, 1994, Kim and White, 2002, and Angrist, Cher-

nozhukov and Fernandez-Val, 2004).

3.2. Implementation Issues

Estimation of β and γ using the algorithm described above requires repeated esti-

mation of censored linear quantile regressions. Although other methods are available

(see Powell, 1986, Fitzenberger, 1997, and Buchinsky and Hahn, 1998), the three-step

algorithm for the estimation of censored linear quantile regression proposed by Cher-

nozhukov and Hong (2002), hereinafter CH, is particularly well suited to this particular

application.4 Indeed, this algorithm is generally well-behaved, has a good performance

even in moderate samples and is computationally very simple.

The first step of the algorithm proposed by CH is the estimation of a binary model,

say a logit, for the probability that a given observation is not censored. The two next

steps are linear quantile regressions on selected sub-samples. Let p̂i be the estimated

probability that the ith observation is not censored, obtained in the first-step, and let
4Strictly speaking, for the estimator produced by this algorithm to be as efficient as Powell’s bench-

mark estimator of the censored quantile regression model, somewhat more restrictive conditions are

needed. Specifically, it is necessary to ensure the validity of the initial step estimating the probability

of non-censoring.
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β̃ denote the estimator of β obtained from the second-step, that is, the linear quantile

regression estimated with the first sub-sample.

The selection of the two sub-samples to use in the second and third steps is critical

for the performance and properties of the estimator. Indeed, CH prove the consistency

of the estimator obtained when the two sub-samples are selected as follows. For the case

in which the data are censored from below at Ci, the first sub-sample is such that it

contains the observations for which p̂i > 1− θ + c, where c is strictly between 0 and θ.

As for the second sub-sample, CH defined it so that it contains the observations with

x0iβ̃ > Ci + δn, where δn is such that δn
√
n→∞ and δn & 0.

For the practical implementation of the estimator, CH propose that c can be set as the

qth quantile of all p̂i such that p̂i > 1− θ. In their simulations, CH used this rule with

q = 10%. As for δn, CH suggest that, in practice, it can be chosen like c, but discarding

a smaller percentage of observations. Strictly speaking, this method of choosing δn does

not lead to a consistent estimator because it does not ensure that δn & 0, at least if q is

not defined as a function of n.

To address this issue, we propose the use of an adaptive cut-off point for the deter-

mination of the second sub-sample which takes into account the variance of x0iβ̃. The

objective of the second cut-off point is to select the observations with x0iβ < Ci, which is

equivalent to x0iβ̃ < Ci+x
0
i(β̃−β). In the cut-off point suggested by CH, δn can be viewed

as a guess for the maximum value of x0i(β̃ − β) over the entire sample. Alternatively, we

define the cut-off point as Ci + δi, where δi is a function of V (x0iβ̃), the variance of x
0
iβ̃.

In particular, we set δi = knV (x
0
iβ̃)

0.5, where kn is such that kn/
√
n → 0 and kn → ∞.

Following Leamer (1978),5 we set kn =

r
n
³
n
1
n − 1

´
.

The use of this cut-off point can be interpreted as selecting for the second sub-sample

the observations for which the lower bound of a confidence interval for x0iβ is above

Ci, with the confidence level of the interval going to 1 as n goes to infinity. A similar

approach can be used to determine the cut-off point used to define the first sub-sample,

but we do not pursue that issue here.

5See also Tersvirta and Mellin (1986).
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4. AN EMPIRICAL ILLUSTRATION

In this section, the dataset studied by Papke and Wooldridge (1996) is used to illus-

trate the application of the proposed estimator. This is a dataset with 4734 firm-level

observations on employee participation rates in 401(k) pension plans. As explained by

Papke and Wooldridge (1996), participation in 401(k) pension plans is voluntary and

therefore the participation rate (Prate) depends on the characteristics of the plan, es-

pecially on the rate at which firms match the employees contributions (Mrate). Other

regressors available in this dataset include the firm total employment (Emp), age of the

plan (Age), and a dummy indicating whether the 401(k) plan is the sole plan offered by

the employer (Sole). Further details on the data, including descriptive statistics, can

be found in Papke and Wooldridge (1996).

In this sample, Prate is relatively high, and it is equal to 1 for over 40% of the

observations.6 This suggests that the higher quantiles of the distribution will be flat at 1

for most observations. Therefore, we expect the role of the covariates to be particularly

important for the lower quantiles.

Given the characteristics of the data, in this particular example we model the quantiles

of Prate as in (3). That is, we specify

QPrate (θ|x) = min {1, (1 + γ)Λ (x0β)} , (4)

where Λ (x0β) = exp (x0β) / (1 + exp (x0β)). As in Papke and Wooldridge (1996), x0β is

specified as

x0β = β0 + β1Mrate+ β2Mrate
2 + β3 ln (Emp) + β4 ln (Emp)

2

+ β5Age+ β6Age
2 + β7Sole.

Since Λ (x0β) is the CDF of a distribution symmetric around zero, (4) is equivalent to

Q1−Prate (1− θ|x) = max {0, (1 + γ)Λ (−x0β)− γ} .
6Prate is computed as the ratio between two integers. Therefore, strictly speaking, it has a discrete

distribution. However, the number of support points is so large that it is reasonable to model Prate

as if its distribution were mixed.
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Therefore, the framework described in Section 2 for modelling the quantiles of fractional

data with a mass-point at zero will be used here to model fractional data with a mass-

point at one.

The estimation procedure was implemented as follows. For each value of θ, we per-

formed a grid search over γ to minimize

S (γ) =
1

n

nX
i=1

ρθ

³
Pratei −min

n
1, (1 + γ)Λ

³
x0iβ̂ (γ)

´o´
.

The search was performed for values of γ from 0.001 to 5, in steps of 0.001. For each value

of γ, β was estimated by censored linear quantile regression, using the CH three-step

algorithm. The algorithm was implemented using q = 10% for the selection of the first

sub-sample and the adaptive cut-off point for the second sub-sample. All computations

were performed using TSP 5.0 (Hall and Cummins, 2005).

Table 1 displays the estimated parameters and corresponding standard errors, for

θ ∈ {0.10, 0.25, 0.40}. For θ > 0.4, estimation is difficult because g (x0β, γ) becomes

almost linear, making the identification of γ very tenuous. Figures 1 to 3 display the

plots of n×(S (γ)− S (γ̂)) for the most relevant range of values of γ and for the different

values of θ. The shape of the objective function for θ = 0.4 clearly reveals the difficulty in

identifying γ for the upper quantiles. As mention before, this suggests that a model of the

form Qy (θ|x) = min {1, x0β} may be adequate. For completeness, Table 1 also includes
the parameter estimates for θ = 0.4 obtained with the linear specification, as well as the

estimates of the parameters of the conditional mean obtained using the Bernoulli pseudo

maximum likelihood estimator of Papke and Wooldridge (1996).

In order to assess the adequacy of the proposed specification, RESET-type tests (Ram-

sey, 1969) were performed. The corresponding test statistics were computed as t-ratios

for the significance of
³
x0β̂
´2
in the third step of the CH procedure.7 This implementa-

tion of the RESET test for censored quantile regression, which is slightly different from
7In principle, given that f (x0β) can be s-shaped, it would be advisable to test for the joint significance

of
³
x0β̂
´2
and

³
x0β̂
´3
. However, for the range of values included in the sample, f (x0β) is concave, at

least for values of γ close to the optimum. Therefore, inclusion of the cubic term is likely to reduce the

power of the test.
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that suggested by Otsu (2007), is adopted here due to its computational simplicity. The

bottom row of Table 1 gives the tests statistics for θ ∈ {0.10, 0.25, 0.40}, computed at
the estimated value of γ, as well as the analogous test statistic for the conditional mean

regression. In all cases, the test statistics provide no evidence of misspecification.

Table 1: Parameter estimates

Quantile regression Mean

θ = 0.10 θ = 0.25 θ = 0.40 θ = 0.40
Linear

regression

Intercept 3.5401 2.8571 0.4823 1.3651 5.1053

(0.6848) (0.5398) (1.9143) (0.0613) (0.4156)

Mrate 1.2897 1.4035 0.4857 0.2477 1.6650

(0.1548) (0.2500) (0.2729) (0.0484) (0.1042)

Mrate2 −0.2688 −0.2727 0.0077 0.0066 −0.3321
(0.0740) (0.0492) (0.0781) (0.0356) (0.0256)

ln (Emp) −0.9740 −0.7347 −0.3105 −0.1658 −1.0306
(0.1627) (0.1247) (0.1735) (0.0153) (0.1097)

ln (Emp)2 0.0525 0.0401 0.0166 0.0089 0.05363

(0.0096) (0.0070) (0.0093) (0.0009) (0.0071)

Age 0.0499 0.0354 0.0146 0.0070 0.0548

(0.0091) (0.0083) (0.0087) (0.0017) (0.0077)

Age2 −0.0006 −0.0004 −0.0002 −0.0001 −0.0006
(0.0001) (0.0002) (0.0001) (0.0000) (0.0002)

Sole −0.0319 0.0252 0.0437 0.0206 0.0643

(0.0490) (0.0333) (0.0320) (0.0086) (00498)

γ 0.0750 0.1650 1.1940 – –

(0.0517) (0.0632) (1.8571) – –

Objective function 146.3723 234.2997 254.4501 254.4622 –

RESET −0.3677 −0.5553 −1.1113 −0.36440 1.0091
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Fig. 1: Objective function and RESET test statistics for different values of γ and θ = 0.10.
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Fig. 2: Objective function and RESET test statistics for different values of γ and θ = 0.25.

-4

-3

-2

-1

0

1

2

3

4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Objective function RESET test statistic

Fig. 3: Objective function and RESET test statistics for different values of γ and θ = 0.40.
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Figures 1 to 3 also plot the RESET-type test statistics for a range of values of γ and

for θ ∈ {0.10, 0.25, 0.40}. It is interesting to notice that these statistics tend to decrease
as γ increases, changing sign, and therefore being close to zero, for values of γ close to

the optimum. These plots are particularly useful in cases where S (γ) is relatively flat (as

for θ = 0.4), helping to pinpoint the region where the objective function is minimized.

For θ = 0.10, the estimated value of γ is close to zero, suggesting that QPrate (0.10|x)
hardly reaches one. Indeed, in the sample, the estimated value of QPrate (0.10|x) equals
one for a single observation. The estimates of γ increase with θ, reflecting the fact

that higher quantiles become flat at one for smaller values of x0β. The estimated values

of QPrate (0.25|x) and QPrate (0.40|x) are equal to one for about 10% and 25% of the

observations, respectively.

Using conventional significance levels, Papke andWooldridge (1996) find that, with the

exception of Sole, all regressors are statistically significant in the mean regression. The

results in Table 1 show that, for the lower quantiles, Sole is also the only regressor not

statistically significant. In contradistinction, for θ = 0.40, with the linear specification,

all the estimated parameters are statistically significant, including the one associated

with Sole. However, with the non-linear model, all parameters become statistically

insignificant as a result of the difficulty in identifying γ. More importantly, for θ = 0.40,

the sign of the coefficient of Mrate2 changes. This suggests that Mrate, which is the

more interesting regressor in the model, has very different effects on different regions of

the conditional distribution of Prate.

To better illustrate the effect of Mrate on the conditional distribution of Prate,

Figure 4 displays the estimated conditional quantiles (from top to bottom, for θ equal

to 0.40, 0.25 and 0.10, respectively) and conditional expectation (dashed red line) of

Prate, as a function of Mrate, evaluated at the sample means of ln (Emp) and Age,

and for Sole = 0.8

8For θ = 0.4, the conditional quantiles estimated with the linear and non-linear models are virtually

indistinguishable.
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Fig. 4: Quantiles and expectation of Prate as a function of Mrate

Figure 4 clearly shows that the mean regression of Prate on Mrate and other

control variables is not enough to unveil the complexity of the effects of Mrate on

the conditional distribution of Prate. For example, the plot shows that Mrate has

a non-monotonic effect on the dispersion of Prate. Moreover, for an important part

of the sample, the depicted quantile functions are steeper than the conditional mean.

Therefore, the mean regression masks the very different effects that changes in Mrate

have on different areas of the conditional distribution.

The difference between the marginal effects of the regressors on the mean and on

different quantiles is not specific to Mrate. Table 2 presents estimates of the marginal

effects of all regressors, for the estimated quantile functions and for the conditional mean,

evaluated at the sample means of Mrate, ln (Emp) and Age, and for Sole = 0. The

results in Table 2 confirm that the marginal effects of the regressors vary widely across

the different conditional quantiles. These figures also show that, for θ = 0.4, the linear

15



and non-linear model essentially lead to the same estimates, with the ones from the

linear model being much more precise.9

Table 2: Estimated marginal effects

Quantile regression Mean

θ = 0.10 θ = 0.25 θ = 0.40 θ = 0.40
Linear

regression

Mrate 0.2108 0.2276 0.2653 0.2576 0.1016

(0.0173) (0.0176) (0.2170) (0.0124) (0.0047)

ln (Emp) −0.0612 −0.0430 −0.0450 −0.0449 −0.0260
(0.0065) (0.0035) (0.0360) (0.0033) (0.0018)

Age 0.0084 0.0059 0.0057 0.0053 0.0033

(0.0012) (0.0006) (0.0045) (0.0007) (0.0032)

Sole −0.0076 0.0057 0.0224 0.0206 0.0054

(0.0118) (0.0073) (0.0219) (0.0086) (0.0042)

5. DISCUSSION

In this paper we propose simple methods to estimate conditional quantiles of fractional

data. We show that the particular estimator to be used depends on the specific nature

of the variate of interest, and develop a procedure to estimate conditional quantiles

for fractional mixed data with mass-points at zero or one. The implementation of the

proposed method is illustrated using a well-known dataset.

The estimator developed for the case of fractional data with mass-points can easily

be extended to other kinds of data from mixed distributions. For example, consider

non-negative data with a mass-point at zero, like that often found in the study of the

determinants of medical expenditures or international trade. In this case, it may still be

appropriate to specify

Qy (θ|x) = max {0, g (x0β, γ)} ,
9For θ equal to 0.10 and 0.25, the linear and non-linear models lead to substantially different results

and the linear model fails the RESET test.
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where now g (x0β, γ) in not bounded above by 1. For example, we may specify g (x0β, γ)

as

g (x0β, γ) = exp (x0β)− γ,

where γ is again a non-negative shape parameter. Mutatis mutandis, all the results in

Section 3 are valid in this case and therefore inference presents no additional problems.
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