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1. INTRODUCTION

Underreporting is likely to be pervasive in survey data. Therefore, models that ac-

count for this type of measurement error are possibly useful in many applications. For

the particular case of count data, models accounting for underreporting are described

in the monographs of Cameron and Trivedi (1998) and Winkelmann (2008), and are

implemented in popular statistical packages (e.g., Econometric Software, Inc., 2007).

In this note we study the conditions under which leading models for underreported

counts are identified, and highlight a peculiar identification problem that afflicts two

of the most popular specifications.

The reminder of this note is organized as follows. Section 2 presents the identifica-

tion results, Section 3 discusses the practical consequences of the main results and,

finally, Section 4 contains brief concluding remarks.

2. RESULTS

Models for underreported counts are based on the assumption that the number of

occurrences reported in a given period by individual i is given by

yi =

y∗iX
j=1

bij, (1)

where y∗i is the total (unobserved) number of occurrences and bij is a Bernoulli random

variable that takes the value 1 when the jth occurrence is reported. Throughout,

we assume a regression framework in which the object of interest is the conditional

distribution of y∗i , given the set of regressors xi. For convenience, xi is written as

xi = (x1i, x2i), where x1i and x2i may be identical, overlapping or disjoint.

Perhaps the most popular specification for underreported counts is the Poisson-

logit model introduced by Winkelmann and Zimmermann (1993),1 which is obtained

1See also Mukhopadhyay and Trivedi (1995).
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as a special case of (1) when it is assumed that, conditionally on xi: y∗i follows

a Poisson distribution with parameter λi = exp (x01iβ), Pr (bij = 1|xi) = Λi =

exp (x02iγ) / (1 + exp (x
0
2iγ)), and y∗i and bij are independent.2 Under these assump-

tions, it is possible to show that, conditionally on xi, yi follows a Poisson law with

parameter μi = λiΛi.3

Although Poisson regression is generally well behaved, the Poisson-logit is a double-

index model whose likelihod function may have multiple maxima. Moreover, identi-

fication of θ = (β0, γ0)0 is problematic, even under the maintained strong parametric

assumptions. For example, θ is not identified when x2i is a subset of x1i and Λi is con-

stant (see, Cameron and Trivedi, 1998, or Winkelmann, 2008). Even in less extreme

situations, identification of the Poisson-logit model is afflicted by a subtle problem.

Indeed, it is trivial to show that

μi ≡ exp (x01iβ)
exp (x02iγ)

1 + exp (x02iγ)
= exp (x01iβ + x02iγ)

exp (−x02iγ)
1 + exp (−x02iγ)

≡ μai . (2)

Since the likelihood function of a Poisson regression model depends on xi only

through the conditional mean, (2) implies that there are two Poisson-logit regression

models with conditional means μi ≡ λiΛi and μai ≡ λi exp (x
0
2iγ) (1− Λi), which will

lead exactly to the same value of the likelihood function. Therefore, unless appropriate

restrictions are imposed on θ, these two models with very different specifications of

E [yi|xi] are observationally equivalent.4
2If y∗i and bij are conditionally independent, (1) implies that yi has a stopped-sum distribution

(see Johnson, Kemp and Kotz, 2005, Ch. 9).
3This result can be traced back to Catcheside (1948).
4Zero inflated models of the type introduced by Mullahy (1986) and Lambert (1992) are often

specified with a conditional mean of the form μi ≡ λiΛi, where Λi represents the probability of zero-

inflation. The likelihood function for zero-inflated models, however, depends separately on μi and

Λi, and therefore the identification problem discussed here does not arise if the model is estimated

by maximum-likelihood.
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To explore the consequences of (2), it is convenient to consider the case in which

xi = x1i = x2i, which leads to

exp (x0iβ)
exp (x0iγ)

1 + exp (x0iγ)
= exp (x0i (β + γ))

exp (−x0iγ)
1 + exp (−x0iγ)

. (3)

Now, identification can be studied by analyzing the non-sample information needed

to distinguish θ = (β0, γ0)0 from θa = (β0 + γ0,−γ0)0.
Starting with the case in which the researcher has information on the logit part of

the model, it is obvious that θ is identified when the sign of at least one (non-zero)

element of γ is known a priori. Alternatively, when some elements of γ are known to

be zero, although there are still two observationally equivalent models, it is possible

to identify the elements of β corresponding to the zeros in γ because in this case the

relevant elements of β and βa = β + γ are identical. Turning now to the possible

non-sample information on β, identification of θ requires the knowledge of at least

one element of this vector, for example as a result of an exclusion restriction. When

that is the case, μi and μai can be distinguished because μ
a
i is not consistent with the

non-sample information. The practical consequences of these results will be explored

below.

Although consistency of the Poisson-logit estimator only requires E [yi|xi] = μi, it is

possible to generalize this model to account for possible overdispersion. The standard

way of doing this is to assume that, conditionally on xi and on an unobservable indi-

vidual effect εi, y∗i follows a Poisson distribution with parameter λi = exp (x
0
1iβ + εi),

Pr (bij = 1|xi, εi) = exp (x02iγ) / (1 + exp (x02iγ)), and y∗i and bij are independent. Now,
conditionally on xi and εi, yi has a Poisson distribution with parameter λiΛi exp (εi),

where λi and Λi are defined as before.

Under the usual assumption that exp (εi) has a gamma distribution with unit mean

and variance αi, the distribution of yi, conditionally on xi only, is negative-binomial

with mean μi = λiΛi and variance ωi = μi + αiμ
2
i .
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The leading member of this family of models is the NegBin2-logit, for which αi is

constant. As in the Poisson-logit, the likelihood function of the NegBin2-logit depends

on xi only through μi (see Cameron and Trivedi, 1998). Therefore identification of θ

requires exactly the same conditions established for the Poisson-logit model.

When αi is allowed to depend on the regressors, identification may be easier. In

particular, identification is possible when αi is a function of λi. For example, assuming

that αi = δ/λi, we obtain a NegBin1-logit model with mean μi = λiΛi and variance

ωi = μi + δλiΛ
2. In this case, due to additional structure imposed on the variance,

the likelihood function does not depend on xi only through μi and therefore the result

in (2) does not imply the existence of an identification problem, even when x1i = x2i.

It should be noted, however, that in this case identification of the conditional mean

of yi is achieved by assuming a parametric specification for the conditional variance.

This has obvious consequences for the robustness of the estimator.

An alternative way of accounting for unobserved heterogeneity in count data is

to use of finite-mixture models, which in some cases have a natural and attractive

interpretation (see, e.g., Deb and Trivedi, 1997 and 2002). Although we are not aware

of any model based on finite-mixtures that also accounts for underreporting, it is easy

to see that, if the probability of underreporting is allowed to vary across classes, the

conditions for the identification of the mixture model will be exactly the same that

are required for the identification of the models for each class. Therefore, the results

presented above can easily be extended to this class of models.

Of course, strictly speaking, the identification problems of the Poisson-logit and

NegBin2-logit do not extend to models where Pr (bij = 1|xi) is not of the logit form,
like in a Poisson-probit model or in the specification suggested byWinkelmann (1998).

In spite of this, the findings in the next section suggest that the identification results

presented here are likely to be useful at least for some of these models.
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3. CONSEQUENCES FOR PRACTITIONERS

As noted before, the likelihood function of a Poisson-logit model may have multiple

maxima. Moreover, the results in Section 2 suggest that very different sets of parame-

ters may lead to very similar values of the likelihood function. This will certainly be

the case when identification hinges on an exclusion restriction that is “weak” in the

sense that either the regressors excluded from x1 are highly colinear with remaining

elements of this vector, or the elements of γ corresponding to the regressors excluded

from x1 are small. Naturally, the same result is true for the NegBin2-logit model.

If the practitioner is unaware of this, he may be puzzled to find that his estimated

model fits the data quite well, despite having estimated parameters with implausible

values or “wrong signs”. To exemplify this situation, we reconsider a well known

empirical illustration.

Winkelmann (2008) uses a Poisson-logit to model the number of job offers when only

data on voluntary job changes is available. The partial observability resulting from

the fact that only the accepted job offers are counted makes the use of the Poisson-

logit potentially appropriate.5 The data used in the illustration is a subsample of the

German Socio-Economic Panel consisting of 1962 males workers aged between 25 and

50 in 1974. Table 1 presents two sets of results from the estimation of a Poisson-logit

model using the sample and specification considered in Winkelmann (2008).6 The

names of regressors in Table 1 are self-explanatory, but a complete description of the

regressors and further details on the data can be found in Winkelmann (2008).

The first two columns in Table 1, labeled β̃ and γ̃, coincide with the estimates

given in Winkelmann (2008). The final two columns, labeled β̂ and γ̂, correspond to

5It should be made clear that the results presented in Winkelmann (2008) are merely illustrative

and that the same data set is used to exemplify the estimation of many different count data models.
6Standard errors computed from the observed information matrix are given in parenthesis.
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the estimates obtained when using as starting values β0 = β̃ + γ̃ and γ0 = −γ̃, and
imposing the that the element of β0 corresponding to Single is zero.

Table 1: Poisson-logit regressions for number of job changes

β̃ γ̃ β̂ γ̂

Intercept 0.81208 0 0.84395 0

(0.21841) – (0.22583) –

Education −0.32237 3.73211 3.25160 −3.58186
(0.15870) (2.05257) (2.04117) (1.98077)

Experience −0.66889 −6.04420 −6.40329 5.72807

(0.13372) (3.89619) (3.70472) (3.67749)

Experience2 0.07179 3.32178 3.19228 −3.12084
(0.04796) (2.24479) (2.11346) (2.09315)

Union −0.29149 0 −0.29352 0

(0.06498) – (0.06496) –

Single 0 0.37970 0 −0.08352
– (1.37139) – (0.11589)

German −0.39741 0 −0.39614 0

(0.07614) – (0.07622) –

Qualified white collar 0.06936 0 0.06771 0

(0.13112) – (0.13117) –

Ordinary white collar 0.17865 0 0.18113 0

(0.14752) – (0.14770) –

Qualified blue collar 0.13240 0 0.13270 0

(0.08245) – (0.08252) –

Log-likelihood −2039.3549 −2039.1312
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In this particular sample, the model is identified by the exclusion of Single from

x1i. However, Single has a relatively small, and statistically insignificant, effect on

the logit part of the model. Therefore, although θ̃ =
³
β̃
0
, γ̃0
´0
and θ0 =

¡
β00, γ00

¢0
do not lead to the same value for the likelihood function, the results of the two last

columns reveal that there is a second maximum of the likelihood function for θ very

close to θ0. Indeed, we note that γ̂ ' −γ̃ and β̂ ' β̃ + γ̃. Moreover, we find that

θ̂ =
³
β̂
0
, γ̂0
´0
leads to a value of the log-likelihood function which is extremely close

to, and actually slightly better than, the one obtained with θ̃.

These results are not limited to the Poisson-logit specification. For this particular

data, comparable results can be found for the Poisson-probit and for the NegBin2-

logit models (these results are available from the authors upon request). Therefore,

even in cases where identification is guaranteed by appropriate restrictions or by the

structure of the model, the results of the previous section may be helpful in that

they can be used to guide the researcher in the search for the global maximum of the

likelihood function.

4. CONCLUDING REMARKS

This note reviews the conditions needed for the identification of the Poisson-logit

and other leading models for underreported counts. In general, identification is easier

when at least one of the regressors affects the probability of reporting without affecting

the underlying count process. In case such regressor is not available, identification

may still be achieved by using additional information. This information can take the

form of restrictions on the signs of some coefficients in the probability of reporting,

or it can be used to specify a skedastic function that disentangles the effect of the

regressors on the mean of the count process and on the probability of reporting.

Even when the model is identified, the likelihood function is likely to have multiple

maxima. Therefore, when estimating this sort of model, it is important not to accept
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a maximum of the likelihood function as global without having performed a thorough

search for other maxima. In particular, having obtained one set of estimates, our

results can be used to obtain starting values that are often close to a set of parameter

values that leads to an alternative maximum of the likelihood function.
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