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Abstract. This paper presents the architecture of a multi-agent decision support 
system for Supply Chain Management (SCM) which has been designed to 
compete in the TAC SCM game. The behaviour of the system is demand-driven 
and the agents plan, predict, and react dynamically to changes in the market. 
The main strength of the system lies in the ability of the Demand agent to 
predict customer winning bid prices – the highest prices the agent can offer 
customers and still obtain their orders. This paper investigates the effect of the 
ability to predict customer order prices on the overall performance of the 
system. Four strategies are proposed and compared for predicting such prices. 
The experimental results reveal which strategies are better and show that there 
is a correlation between the accuracy of the models’ predictions and the overall 
system performance: the more accurate the prediction of customer order prices, 
the higher the profit.  

Keywords: Multi-Agent Systems, Trading Agents, Supply Chain Management, 
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1   Introduction 

Supply Chain Management (SCM) involves a number of activities from negotiating 
with suppliers to competing for customer orders and scheduling the manufacturing 
process and delivery of goods. The activities are different in their nature: they work 
with different data, have different tasks and constraints. At the same time, they are 
interrelated to ensure the achievement of the ultimate goal of maximizing the 
enterprise’s profit. This makes the chain very difficult to manage: being successful in 
one area of the supply chain does not necessarily guarantee the improvement of the 
overall performance. Designing an effective decision-support system (DSS) for SCM 
has become crucial in recent years, especially nowadays, when enterprises can no 
longer rely on static strategies for operating their business. With the advent of e-
Commerce and in a global economy, SCM systems have to be able to deal with 
uncertainty and volatility of modern markets. 

This paper introduces an intelligent DSS for SCM. A multi-agent approach is 
applied for designing the system in order to deal with the complexity of the domain 
and to provide flexibility regarding the system architecture. This approach allows 
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separating different tasks within the SCM and exploring them both independently and 
in relation to each other. The system can be broken down into separate building 
blocks, each concentrating on a particular part of the supply chain. By replacing one 
building block with another and by combining them in different ways, various 
versions of the system can be created. In this way, the influence of changes in 
behaviour in each link of the supply chain can be systematically studied. In addition, 
the concept of agents is used to facilitate industrial application of the system: by 
assigning an autonomous agent to a separate entity of the supply chain, the tasks can 
be distributed geographically as well as implemented using different platforms.  

The architecture of the proposed system includes agents for each link of the supply 
chain: supply, inventory, production, selling, and delivery. While following their own 
goals, the agents work in cooperation in order to achieve the common ultimate goal – 
to maximize the overall profit. The Demand agent takes the leading role in the 
system: the performance of the other agents is organised in such a way so as to ensure 
execution of customer orders on time. The main task for the Demand agent is to 
provide the most profitable customer order bundle.  It does this by predicting the 
highest prices it can offer customers for each of their requests for quotes (RFQs) and 
still win their orders. Different strategies for predicting customer order prices are 
considered in this work. The first strategy is to model competitors’ behaviour, predict 
their offer prices and bid just below them. The second approach is to predict customer 
order prices based on the time-series of these prices. The third strategy is to predict 
the prices based on details of the customers’ RFQs, market details and bidding 
history. Finally, the last strategy is to predict probabilities of the winning price to be 
in particular intervals and bid according to the most probable price. The Neural 
Networks learning technique is used in the predictors. 

The system has been tested in the TAC SCM simulated environment [9], which is 
now probably the best vehicle for testing SCM agents. It encapsulates many of the 
tradeoffs that could be found in real SCM environments: time-constraints, network 
latency, unpredictable opponents, etc. The generalized problem competitors are faced 
with can be formulated as follows: “given a market situation with specific rules, how 
does one act to buy, sell, and produce goods to maximize expected profit?” [10].  

Many research teams have dedicated their work to exploring various issues that 
arise within the TAC SCM environment. They offer different system architectures 
and explore various methods for dealing with uncertainty and the volatility of the 
environment. This paper contributes to the area by offering a new multi-agent 
demand-driven architecture for SCM systems. Moreover, the paper introduces a 
number of algorithms for predicting customer order prices, which have not been 
explored in the TAC community yet. We compare the algorithms in terms of their 
accuracy of prediction and influence on the overall system performance.  

The rest of this paper is organized as follows. An overview of related work is 
provided first. The description of the behaviour of the internal agents in the system 
follows. Section 4 introduces the approaches for predicting customer order prices. The 
experiment settings and results are presented next. The paper closes with the 
conclusions and a discussion of future work. 
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2   Related Work 

The idea of applying a multi-agent approach to SCM systems has become very 
popular in recent years. We refer to [11] as one of the first attempts to organize the 
supply chain as a network of intelligent agents. The latest collection of papers on the 
applications of agent technology to SCM can be found in [7]. The book also discusses 
advantages and disadvantages of the agent-based approach for designing industrial 
software. The multi-agent system developed in [24] helps to reduce the total cost and 
bullwhip effect across the supply chain.  

A significant contribution to the area has been made by the research teams that 
design trading agents to compete in the TAC SCM game. A survey of design 
approaches of these agents can be found in [14]. The survey is organized by the 
primary research agenda considered by the agents’ developers: constraint 
optimization, machine learning, management of dynamic supply chains, scalable 
autonomous agents, architecture, empirical game theory, dealing with uncertainty, 
decision coordination, agent coordination mechanisms, predicted sales volume, future 
production schedule, inventory management, central strategy module, separate supply 
and demand models, and internal markets. Our paper contributes to this research by 
presenting an original multi-agent demand-driven architecture for the SCM system. In 
addition, the paper proposes four different strategies for sellers to follow when setting 
customer offer prices. The algorithms developed according to these strategies differ 
from the ones proposed by other TAC SCM participants. The methods used by other 
teams include fuzzy reasoning inference mechanisms [13], additive regression with 
decision stumps [21], linear regression [2], linear cumulative density function (CDF) 
[3], reverse CDF [16], continuous knapsack problem [1], dynamic pricing [5], and k-
nearest neighbors [8, 17]. According to [8], the M5 algorithm outperforms multiple 
linear regression, neural networks, and support vector machines (SVM) when 
predicting customer wining bid prices. The M5 algorithm along with BoosTexter [25] 
have also been supported in [22], where the authors compared these algorithms with 
neural networks, decision stumps (single-level decision trees) boosted with additive 
regression, J48 decision trees, SVM, naïve Bayes, and k-nearest neighbours. 
According to [15], all the aforementioned methods do not take into consideration 
market conditions that are not directly observable. The authors use a Markov 
correction-prediction process and an exponential smoother to identify the market 
regimes and a Gaussian mixture model to determine the probability of receiving a 
customer order in different regimes for different prices. 

The Neural Networks (NN) learning technique has not found much support within 
the TAC SCM community [22, 8]. However, it might be due to the fact that 
researchers have been using standard setup in their learning algorithms as 
implemented in tools such as WEKA (http://www.cs.waikato.ac.nz/ml/ 
weka/) [28], Matlab (http://www.mathworks.com/), and Netlab (http://www. 
ncrg.aston.ac.uk/netlab/). We developed our own NN predicting tool and 
experimented with its settings, as we found strong evidence of successful application 
of NNs for solving forecasting tasks in the domains of finance and business other than 
TAC SCM. An overview of successful NN models applied to marketing, retail, 
banking and finance, insurance, telecommunication, and operations management is  
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provided in [26]. Empirical evidence of applicability of NN to the prediction of 
foreign exchange rates is reported in [29]. The authors of [6] discuss application of 
classical regression models, NN, fuzzy logic, and fractal theory for forecasting time 
series of dollar/peso exchange rate, U.S./Mexico exchange rates and prices of onions 
and tomatoes in the U.S. market. They conclude that the regression models show the 
poorest performance, and also that NN outperform fuzzy logic when forecasting in the 
short-term, while fuzzy logic outperforms NN when forecasting in the long term. In 
[12], the researchers propose several methods for predicting online auction prices 
using regression, decision trees (C5.0), and NNs. Their binary classifier based on NNs 
demonstrated the highest prediction accuracy (96%). 

3   System Architecture 

The system has a multi-agent architecture. Each agent within the system is 
responsible for a particular aspect of the supply chain. Although each agent focuses 
on specific tasks within its problem domain trying to achieve its own goals and 
having its own constraints, the agents do not act in isolation. They communicate with 
each other in order to achieve the main goal of generating profit. The system includes 
the following agents: Manager agent, Demand agent, Supply agent, Inventory agent, 
Production agent, and Delivery agent. The agents are described below in turn and 
Figure 1 illustrates the system architecture using UML notation [4]. 

The Manager agent is responsible for the communication with the TAC server as 
well as managing all other agents. It undertakes the following tasks: (1) Imports game 
settings, competitors’ identities, Bill of Materials, and Component Catalog; 
(2)Updates inventory, factory and bank status; (3) Gets supplier offers, customer 
RFQs and orders; (4) Sends customer offers and supplier RFQs and orders; (5) Sends 
production and delivery schedules; (6) Gets market and price reports; (7) Keeps a 
record of RFQs, offers, orders, schedules, reports, and other information shared by all 
other internal agents; (8) Coordinates the agents’ performance. While managing the 
whole SCM system, the agent aims to maximize the overall profit.  

The Demand agent deals with selling personal computers (PCs) to customers. Each 
day it gets customer RFQs and orders from the Manager. In addition to these, the 
agent generates RFQs that might arrive in the future. Due to the limited production 
capacity, future demand has to be taken into consideration when scheduling 
production: future orders might bring more profit than the current ones. It has been 
shown in [21] that predicting future demand level (number of RFQs in a Bundle) 
doesn’t significantly improve the system’s performance comparing to setting this 
level equal to the current level. According to this, we assume that the future RFQ 
bundle contains the same number of RFQs that arrived on the current day. The value 
of each parameter of a future RFQ is chosen uniformly in the interval between the 
minimum and maximum allowed values for this parameter according to the game 
specification.   For every new and future RFQ, the agent decides on the bidding price 
to offer to the customer. This paper introduces several approaches for setting offer 
prices which are discussed in the next section. Having the bidding prices, this agent 
estimates the profit of both new and future RFQs based on the latest prices the Supply  
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agent paid for the components. It then sorts the RFQs in profit descending order and 
asks the Production agent to project production for 10 days in the future (i.e. create 
production drafts) using the details of the new and future RFQs as well as orders. 
Considering only the new RFQs allocated to production drafts, the Demand agent 
generates customer offers and returns the RFQ bundle to the Manager to be sent to 
customers. The goal of this agent is to maximize revenue from the customers’ orders. 

The remit of the Supply agent is the procurement of low cost components on time 
from suppliers. Considering the component demand, current level of component 
usage, and available stocks, the agent generates its supplier RFQs. The agent uses the 
strategy of sending RFQs with different due dates. Long-term RFQs to arrive in 20 
days are sent according to the current level of component usage to benefit from lower 
prices. Short-term RFQs to arrive in 3-6 days are then sent to meet current production 
needs. The agent tracks the suppliers’ deliveries and prices, and sends its RFQs to the 
suppliers with the lowest level of current prices and delays. The agent sets its RFQ 
prices based on the prices paid recently, current prices quoted by the suppliers for 
probe RFQs (RFQs with zero quantity), and prices provided in the latest market 
report. When the RFQ details are decided, the agent generates an RFQ bundle. After 
getting offers from suppliers, the Supply agent generates its order Bundle. It accepts 
all complete offers and earliest partial offers. The RFQ Bundle along with the Order 
Bundle are passed to the Manager who sends them to the corresponding suppliers. 

The Inventory agent manages the arrival of components from suppliers and 
assembled PCs from production, as well as releases components for production and 
PCs for delivery to customers.  It registers the component and PC demands of the 
Production and Delivery agents respectively, and tries not to let the inventories go 
below a certain threshold in order to satisfy these demands.  To minimize inventory 
storage costs, the agent dynamically adjusts the threshold levels for each component. 
To avoid situations where the Production agent schedules the production of PCs that 
cannot perhaps be produced due to lack of components, the Inventory agent also 
manages the critical levels of each component below which the PC production cannot 
be scheduled. 

The Production agent is responsible for scheduling current production and 
projecting production in the future. Having the details on customer RFQs and orders 
from the Demand agent and component inventory stocks from the Inventory agent, 
the agent schedules its production for 10 days in the future. Having a limited 
production capacity, it tries to maximize the production utility (the potential profit 
that the scheduled production might generate). For every day in the future, the agent 
schedules the current and late orders, depending on their due date, profit and 
availability of components, and then it allocates current and future RFQs, again 
considering their due dates, profit and availability of components. 

The remit of the Delivery agent is to deliver PCs to customers according to their 
orders. To prevent penalties for late deliveries, it schedules the delivery of active 
orders as soon as the requested PCs are released from production. It sorts current 
active orders by their due date and allocates the delivery of these orders into the 
current delivery schedule until the corresponding PCs are available in store. 

The UML sequence diagram Figure 2 summarizes the interaction between the 
agents. 
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Fig. 1. The SCM system architecture 

:Manager agent :Demand agent :Production agent :Inventory agent :Supply agent :Delivery agentTAC SCM server

setSupplierRFQs(), setSupplierOrders(offers)

generateFutureDemand(rfqs.size())

predictOrderPrices(rfqs,futureRfqs,reports)

scheduleDemand(orders,rfqs,futureRfqs)

getComponentInventory()

componentInventory

projectProduction(activeOrders,rfqs,futureRfqs)scheduledNewRfqs

componentDemand

customerOfferBundle

productionSchedule

generateProductionSchedule()

scheduleProduction()

customerOfferBundle setCustomerOffers

productionShedule

generateDeliverySchedule(activeOrders)

deliveryScheduledeliverySchedule

processSupplierOffers(offers)supplierOrderBundlesupplierOrderBundle

getComponentDemand()

compDemand

getProductInventory()

prodInventory

supplierRfqBundle

scheduleDelivery(activeOrders,prodInventory)

generateSupplierRfqs(compDemand,supPrices,supDelays)supplierRfqBundle

setCustomerOffers(rfqs,orders,reports)

processNewInfo (rfqs,offers,orders,reports)

 

Fig. 2. Agent interactions in the SCM system 
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4   Strategies for Predicting Customer Order Prices 

This paper investigates approaches for setting customer offer prices and how various 
algorithms for predicting winning bid prices influence the overall system’s 
performance. 

In the TAC SCM game, there are six agents who act as product manufacturers 
competing for supplier components and customer orders for finished PCs. Customers 
send RFQs to all agents for the 16 types of PCs that can be manufactured on a daily 
basis. Agents make offers and according to the game rules, customers accept the 
lowest offers proposed among all agents. Information on competitors’ offer prices is 
not available to TAC agents. However, apart from RFQs details, the lowest and the 
highest order prices for each PC type from the previous day are available. 

Four different strategies to determine which prices to offer customers are proposed. 
All of them are based on customer order price predictions. The first strategy is to 
predict competitors’ offer prices and bid just below them. The second one is to predict 
the lowest and the highest customer order prices for each product based on the time-
series of the prices and bid in between the predicted values. According to the third 
approach, order prices are predicted based on details of the customer RFQs, market 
details and bidding history. Finally, the last approach is to predict probabilities of an 
order price to be in particular intervals and bid according to the most probable price. 

The Neural Networks learning technique (NN) is used to make predictions. Genetic 
Programming (GP) has been also applied for modelling competitors’ behaviour and 
making time-series predictions [19]; however, we found that NN models outperform 
GP models in terms of accuracy of prediction, time execution, and complexity of 
implementation. Thus, only NN models are considered. NN architectures of the 
models differ to meet the requirement of each algorithm. The sigmoid activation 
function and Back-propagation training algorithm [20] are used in all NNs. 

4.1   Modelling the Competitors’ Behaviour 

According to the game specification, customers choose the lowest price among the 
ones offered by all sellers. Prediction of the competitors’ prices for an RFQ allows to 
identify the lowest price which will be offered to a customer. Using GP, the trees have 
been evolved for each competitor, to represent which attributes a competitor is using 
when setting its offer prices [19]. According to these trees, an individual NN has been 
constructed for each competitor: only the attributes represented in the competitor’s 
tree have been included as inputs to its NN. The full set of inputs consists of the 
following parameters: PC type, current date, lead time (due date minus current date), 
quantity, reserve price, penalty, the lowest and highest reported market price, and 
current demand level. Inputs are normalized to be in the interval [0.1; 0.9], using the 
minimum and maximum allowed values for each input according to the game 
specification (formula 5). 

4.2   Time-Series Prediction 

In the TAC SCM game, the lowest and highest customer order prices for each product 
type are available from the previous day. In the context of a highly competitive 
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market the difference between these prices tends to be very small. It has been 
experimentally established that setting offer prices in between these prices is a 
competitive strategy. According to this, the NN learning technique is applied to 
perform time-series forecasts of the lowest and highest customer order prices for the 
next day. Customer offer prices are then set in between the predicted values. 
Algorithms within this group vary in the following: data transformation methods; data 
normalisation methods; number of historical data points included in time-series. The 
following data transformation and normalisation methods are applied over NN inputs: 
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where xt and xt-1 are consecutive data values in a series; xmin and xmax are the minimum 

and maximum allowed values for the corresponding data type; x is the mean of the 

series values and 2σ is their variance. 
The models take price values from six or eleven preceding days and predict the 

winning price for one day in the future. 
On average, the most accurate model appears to be the one with the differential 

transformation method, linear varied normalisation method, and eleven data points in 
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input time-series. However, during the course of a game, accuracy of the models’ 
predictions varies. A meta-model has been applied over the models to find the final 
predicted price according to the models’ performance in runtime. The heuristics of the 
meta-model is based on the idea of reinforcement learning. The final predicted price 
is set to the weighted sum of the prices predicted by all time-series models. Weights 
are summed up to 1 and tuned on-line during the course of a game: the most currently 
accurate model is rewarded by increasing its weight, while the worst model is 
punished by decreasing its weight. The optimal step for tuning the weights is set 
experimentally to 0.01. Experiments demonstrated that inclusion of the meta-model 
doesn’t improve the accuracy of prediction compared to when only the best 
performing on average model is applied. According to this, only this best time-series 
model (TB, “Time-series the Best”) is tested in the experiments that follow. 

4.3   Order Price Prediction Based on Bidding History 

According to this approach (referred further as WP, “Winning Price”), customer order 
prices are predicted for each RFQ using RFQ details, current market information, and 
results from previous auctions. Using this information, the NN predicts the expected 
value of the order price. The inputs for the model include: product type, its quantity, 
current date, due date, penalty, customer reserve prices, the lowest and the highest 
customer order prices for the last three days, and the current demand level (ratio of 
the number of RFQs received from the customers to the maximum possible number 
according to the game specification). Records in the training set map these attributes 
to the actual order price. The number of hidden units is set to 5 and the learning rate is 
tuned during the training process according to the dynamics of the prediction error. 

4.4   Order Price Probability Prediction 

A set of ensembles of NNs, one set for each product type, is designed to predict order 
price probabilities. The possible price range is split into small intervals. Each NN in 
the ensemble is assigned to one such interval and predicts the probability of the order 
price to be in this interval. The final price is set to a random value from the interval 
with the greatest probability (the random element makes prices hard to predict by our 
opponents). The strategy for setting the upper limit of the possible price range varies. 
According to one algorithm (PF, “Probability Fixed”), the upper price limit is fixed 
according to the highest price observed in all previously played games. In another 
algorithm (PV, “Probability Varied”), the upper limit is set for each RFQ individually 
according to the customer reserve price (the highest price the customer is willing to 
pay). The inputs for both algorithms include RFQ details and current market 
information, such as: type of product requested, its quantity, current date, due date, 
penalty, customer reserve prices, the lowest and the highest customer order prices for 
the last three days, and the order level as calculated for the previous day (ratio of the 
number of orders received from customers to the number of offers sent to them). 
Along with these attributes, an offered price and the corresponding binary code 
showing if the offer with this price resulted in a customer order is recorded during the 
games for each RFQ. These records are used for training the models. The input units 
are normalised according to formula (5). 
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5   Experimental Setup 

Having a number of learning algorithms for predicting customer order prices, the task 
is to compare their predictive abilities and to identify the strategy which is better for 
the Demand agent to follow so as to ensure a better overall system performance. 

When learning from data, we are interested in which data are perceived from the 
environment, how these data are preprocessed, and in what way the output is used for 
making decisions. Our time-series predictors use price values only. The other 
algorithms require more information from the market environment. The input set is 
the same for these algorithms with the only exception that probability predictors use 
order level instead of demand level. The algorithms differ in NN settings, methods for 
preparing inputs, and in the way the outputs are used to set customer offer prices.  

First, a number of experiments have been run in the TAC SCM simulated 
environment to indentify the most accurate predictive model. In order to do this, all 
the models have been tested simultaneously and the prices predicted by them were 
recorded for further analysis. To provide a fair evaluation benchmark, the customer 
offer prices have been set using a random element according to the following formula: 

Offer price = (phighest + plowest)/2 + a1 –a2 (7)

where plowest and phighest are the lowest and highest customer order prices reported on 
the previous day; a1 and a2 are coefficients set to random values within the interval [0; 
20] (the upper limit of the interval is set according to the average gap between the 
lowest and highest customer order prices observed in the games).  

The second set of experiments has been run to explore how predictive models 
affect the overall system’s performance. The experiments have the aim to identify 
which model helps to get the best score and if there is a correlation between the 
accuracy of the models’ predictions and the score achieved in the game. The models 
have been tested in pairs: two versions of the system with different predictors have 
been playing in the same game against each other and four other competitors. All 
other settings in both versions of the system have been kept the same. 

The following TAC SCM agents have been chosen as competitors: TacTex2007 
[21], PhantAgent2006 [27], Maxon2006, SouthamptonSCM 2006 [13], and 
CrocodileAgent2005 [23] (the agents’ binary code is publicly available at 
http://www.sics.se/tac/). For the second set of experiments, the second version of the 
system replaced the TacTex2007 agent. For both experiments, 30 games have been 
played to collect the data for training the models and then another 40 games – to 
estimate their performance. 

6   Results 

For the first set of experiments, where the accuracy of models predictions has been 
estimated, the models are compared in terms of their average relative error (ARE): 
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Table 1. Summary of models’ performance 

Model Name Abbreviation Section ARE (st. dev.) Rank 
Competitor Individual CI 4.1 0.0437 (0.017) 3 
Time-series the Best TB 4.2 0.0320 (0.016) 1 
Winning Price WP 4.3 0.0353 (0.016) 2 
Probability Fixed PF 4.4 0.1080 (0.034) - 
Probability Varied PV 4.4 0.1080 (0.028) 4 

Table 2. Models’ pair-comparison 

% of wining games % of winning bids Experiment 
Model 1 Model 2 Model 1 Model 2 

CI vs. TB 0 100 62,7 50,2 
CI vs. WP 0 100 52,0 45,4 
CI vs. PV 100 0 62,9 58,3 
TB vs. PV 100 0 58,3 56,8 
WP vs. PV 100 0 61,6 56,1 
TB vs. WP 60 40 53,8 52,7 

 
where xactual  and xpred are actual and predicted customer order prices observed in a 
case; N is the number of  cases recorded in all games. 

The detailed discussion of the results from the first set of experiments can be found 
in [18]. In summary, the algorithms cope with the dynamics of the environment very 
well: accuracy of their predictions remains the same throughout a game considering 
that some opponents also learn. According to Table 1, the time-series model gives the 
highest accuracy of prediction (ARE=3,2%) followed by WP model which achieves 
ARE=3,5%. The strategy of applying competitors’ price predictors gives ARE=4,4%, 
while both probability price predictors provide the lowest accuracy with ARE=10,8%. 

In the second set of experiments, the effect of applying the predictive models on 
the overall system performance has been estimated. Two different versions of the 
system have played against each other and the percentage of winning games as well 
as the number of orders won compared to the number of offers sent have been 
estimated for each of them. According to the results (Table 2), the systems with the 
TB and WP models perform similarly good, outperforming other versions of the 
system which use the CI or PV predictive models (as PF and PV models predict with 
the same accuracy and their architectures are similar, only the PV model has been 
tested in the second set of experiments). The system with the PV models achieves the 
lowest score. The ranking order for the models is provided in Table 1.  

Combining the results from both sets of experiments the conclusion can be drawn 
that there is a strong correlation between the models’ accuracy of prediction and total 
score achieved in games. At the same time, the algorithms leading to the better overall 
performance do not necessarily provide higher percentage of winning orders (the ratio 
of the number of offers sent, to the number of orders received). For example, the 
strategy of predicting competitors’ prices (CI), which comes third, provides the 
highest percentage of winning bids comparing to all other strategies. Therefore, a 
more extensive analysis of the algorithms’ performance is required. In particular, the  
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ratio of prices predicted lower than the actual prices to those of higher predicted, as 
well as the relation between the predicted prices and the ones set by competitors have 
been investigated, however due to the limited space are not included to this paper. 

7   Conclusions and Future Work 

SCM is a very complex and dynamic process. It includes a number activities, which, 
on the one hand, have their particular individual tasks to perform and goals to 
achieve, but on the other hand, they are connected and interdependent. Being 
successful in one area of the supply chain does not necessarily guarantee the 
improvement of the overall performance. Thus, there is the need for a mechanism to 
separate different tasks and explore them both independently and in relation to each 
other. We implemented such a mechanism in our multi-agent decision support system 
for SCM. The multi-agent approach allows to change the behaviour of each agent at a 
time and identify how the changes affect the overall system’s performance. 

The proposed system consists of six agents: one for each link in the supply chain 
(supply, inventory, production, demand and delivery) and also the Manager agent that 
coordinates and integrates the performance of all other internal agents, as well as 
provides interaction with the external environment. The agents plan, predict and 
collaborate in order to achieve the goal of maximizing profit. The Demand agent 
plays a central role in the system. Its main goal is to provide the most profitable 
customer order bundles taking into consideration changes in the customer demand, 
limited production capacity, limited inventory stocks, and unstable supply. The agent 
predicts customer order prices. Different methods for performing forecasts and 
approaches for setting customer offer prices are investigated and their influence on 
the overall system performance is studied. The experiments in the TAC SCM 
environment demonstrated that time-series forecasts and price predictions based on 
RFQ details and bidding history provide the best performance. The systems with these 
algorithms achieve similar scores when competing against each other. The system 
with the competitor price predictors comes next, and the approach of predicting price 
probabilities gives the lowest result. The same ranking order is observed when 
comparing the accuracy of the models’ predictions. Thus, there is a strong correlation 
between the accuracy of price predictions and the total profit made: the higher the 
accuracy, the better the overall system performance. 

Although the multi-agent approach has been applied by other researchers for 
designing their SCM systems, this paper offers an original demand-driven system 
architecture and scenario of its behaviour. The major contribution of our work is the 
development and comparison of the algorithms for predicting customer order prices 
that have not yet been applied in this domain. The algorithms demonstrated good 
performance in the TAC SCM game. What is more important, the models are 
designed in such a way that they are not associated with the game rules and thus can 
be used in other dynamic and competitive environments. Applying the algorithms in 
other domains is one of the next steps in our research. We also want to test our most 
accurate algorithms against the algorithms developed by other researchers. As 42 
different predictive algorithms have been developed, it has been hard at this stage to 
compare them all against existing methods proposed in the literature. Another task for 
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the future work is to explore possibilities of applying other learning techniques to 
perform forecasts of customer order prices according to the strategies proposed in this 
paper. We also want to investigate how the behaviour of internal agents in the system 
can be further developed in order to improve the overall system’s performance. 
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