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Abstract 

Since its introduction in 2003, volatility indices such as the VIX based on the model-free 

implied volatility (MFIV) have become the industry standard for assessing equity market 

volatility. MFIV suffers from estimation bias which typically underestimates volatility 

during extreme market conditions due to sparse data for options traded at very high or 

very low strike prices, Jiang and Tian (2007). To address this problem, we propose 

modifications to the CBOE MFIV using Carr and Wu (2009) moneyness based 

interpolations and extrapolations of implied volatilities and so called GEV-IV derived 

from the Generalised Extreme Value (GEV) option pricing model of Markose and 

Alentorn (2011). GEV-IV gives the best forecasting performance when compared to the 

model-free VFTSE, Black-Scholes IV and the Carr-Wu case, for realised volatility of the 

FTSE-100, both during normal and extreme market conditions in 2008 when realised 

volatility peaked at 80%.  The success of GEV-IV comes from the explicit modelling of 

the implied tail shape parameter and the time scaling of volatility in the risk neutral 

density which can rapidly and flexibly reflect extreme market sentiments present in 

traded option prices.    
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1. Introduction 

The recent financial crisis which started in 2007 has resulted in periods of extreme 

volatility in financial markets. This has prompted new studies on the behaviour of stock 

market volatility (see, Schwert, 2011, Mencía and Sentana, 2011, Andersen et. al. 2011 

and Bollerslev and Todorov, 2011), especially in conjunction with option price implied 

volatility indexes such as the VIX.  Since the introduction in 1993 by the Chicago Board 

of Trade (CBOE) of the equity market volatility index
2
 based on the seminal work of 

Whaley (1993) on the implied volatility obtained from both call and put equity index 

options, the information content of the volatility index in forecasting future realized 

volatility has become an area of intense investigation.  Whaley (2000) coined the term 

“investor fear gauge” to highlight the fact that the volatility index peaks when the 

underlying market index is at the lowest level and hence reflects investors‟ fear about 

market crashes.  The volatility index also features in the pricing of volatility derivatives 

for hedging non-diversifiable market risk and is also cited in the management of systemic 

risk conditions.  

 

In September 2003, the CBOE adopted the so called model-free method, for the 

construction of the VIX.  Technically, VIX is the square root of the risk neutral 

expectation under a Q-measure of the integrated variance of the SP-500 over the next 30 

calendar days reported on an annualized basis.  The replication of this is independent of 

any model and involves only directly observed prices for out-of-the-money calls and 

out-of-the-money puts with the same maturity (see, Britten-Jones and Neuberger, 2000 

and Carr and Madan,1998).
3
 The relationship between the implied volatility and 

historically realized volatility has particular significance as the measure of volatility risk 

premium.  As risk averse investors buy index options to hedge their underlying equity 

positions, Carr and Wu (2009), Bollerslev, Tauchen and Zhou (2009) and others have 

                                                      
2
 The original CBOE volatility index, now referred to as VXO, was based on at the money Black-Scholes 

(1973) implied volatility. VXO is based on the SP-100 returns while the revamped VIX of 2003 has the 

SP-500 as the underlying.     
3
 Carr and Madan (1998) refined the model-free framework for option implied variance in the context of  

determining the variance swap rates. The VIX and volatility indexes adopted by the various exchanges for 

their stock indexes (such as VFTSE, VDAX, VX1 and VX6) are estimated as the square root of the model 

free implied variance. The Demeterfi et. al.(1999) fair value of future variance method has been shown by 

Jiang and Tian (2007) to be identical to the model free implied variance.       
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found that typically the spot VIX computed from option prices embeds volatility risk 

premium and exceeds expected realized volatility obtained under the P-measure.  

During turbulent market conditions, the value of traded option based volatility index goes 

up.  However, the lack of robustness in the MFIV method for the VIX first identified by 

Jiang and Tian (2007), expecially under extreme market conditions, has implications for 

mispricing volatility derivatives such as VIX futures, options and variance swaps.  

Mencía and Sentana (2011) investigate the mispricing of volatility derivatives during the 

recent crisis.  There is a large and growing literature on information from traded option 

implied distribution volatility indexes for their capacity (see, Giamouridis and 

Skiadopoulos, 2010, for a recent survey) to forecast future realized volatility and other 

statistics on the underlying asset. In recent conditions of severe market distress,  

Andersen et. al. (2011) have noted discrepancies in the intraday VIX in not showing a 

consistent inverse relationship with the underlying stock index, a condition that the „fear 

guage‟ should satisfy especially during turbulent market conditions.   

  

The objective of this paper is to use the extreme market volatility of about 30%-80% 

recorded in all the major stock index (daily) returns during the recent subprime financial 

crisis from mid 2007 to mid 2009 to test out the efficacy of differently constructed IV 

indexes to forecast realized volatility both in so called normal market conditions when 

volatility is no more than about 20% and during extreme market conditions.  For this we 

analyse data on the FTSE-100 and its model free VFTSE volatility index from January 

2000 to June 2009.  The paper aims to test the MFIV using the VFTSE and to propose 

alternative IV models that can specifically deal with the interspersed nature of relatively 

calm periods with periods of extreme volatility of stock index returns.  In particular, we 

aim to show how the implied volatility analytically derived from a closed form option 

pricing result of Markose and Alentorn (2011) using the Generalized Extreme Value risk 

neutral density (GEV-RND) can overcome the well known problems of MFIV and other 

extant methods of dealing with time varying tail shape of RND and resulting normal and 

extreme implied volatilities.  The issues involved here are briefly reviewed below.  
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Figure 1: FTSE 100 index level and FTSE-100 volatility index, VFTSE (January 

2000-June 2009) Right hand side axis the VFTSE levels and the Left Hand side Axis the 

FTSE-100 levels 

 

  

Figure 1 plots the FTSE 100 index level (blue) and its volatility index, VFTSE (green), 

from 4th January 2000 to 1st June 2009.  It shows that in relatively calm periods, the 

VFTSE volatility index ranges between 10% to about 20%.  However, there are also 

some spikes in the VFTSE series.  On 11th September 2001 (9/11), VFTSE spiked at 

around 50%, and during the American invasion of Iraq in March 2003, VFTSE peaked at 

over 40%.  The spike points of VFTSE during the crisis of autumn 2008 have been 

much higher than any recent market down turn.  The recent crisis has manifested in 

extreme spikes in VFTSE at about 55% on the 15th September 2008 corresponding to 

Lehman Brother Bankruptcy and near 80% on the 28th October 2008.  At about the 

latter spike of the VFTSE, the FTSE-100 records the first of its extreme minima followed 

by its all time low of this period in early March 2009. 

    

Engle (2010) has stated that “this crisis involved 99% confidence set of events”.   
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Model-free and non-parametric methods, in general, for option price implied statistics 

which rely on sparse data for options traded at very high or very low strike prices may 

not be able to capture extreme tail behaviour around the 99% confidence level of the 

underlying returns data.  Hence, parametric models become unavoidable, replacing 

sampling error with model error, Markose and Alentorn (2011).  The CBOE MFIV 

which has increasingly become industry standard globally has been called into question 

by Jiang and Tian (2007).  They identify so called truncation and discretization errors in 

the CBOE procedure. Truncation errors arise from ignoring strike prices beyond the 

range of listed strike prices and discretization errors are ascribed to an ad hoc numerical 

integration scheme to fill in discrete data points for the strike prices.  Using simulated 

option price data for listed strike prices on a typical trading day Jiang and Tian (2007) 

show that the CBOE model-free method for the VIX can lead to an underestimation of 

the true volatility by about 198 basis points and overestimation by 79 basis points.
4
 The 

worrisome point is that when the true volatility is high, the truncation errors kick in with 

large undestimation of implied volatility by the CBOE method.  The fact that inadequate 

asset pricing models that failed to capture extreme market price drops contributed to 

chronic underpricing of credit risk and market risk that characterized the lead up to the 

recent financial crisis failure should add to the urgency of the Jiang and Tian (2007) 

agenda to improve accuracy of risk neutral pricing models for volatility.     

 

Andersen and Bondarenko (2007) have aptly identified VIX and other MFIV as corridor 

implied volatility (CIV) measures with barriers set at the lowest (Kl) and the highest (KH)  

strikes being used on a given day to compute the index.  Andersen et. al. (2011) note 

that there is a lack of coherence in the VIX method on how return variation over the tail 

areas ([0; Kl] and [KH;∞]) is accounted for at different points in time.
5
 Andersen et. al. 

(2011) specify the use of a ratio statistic which indicates how far into the tail a given 

strike price K is and they propose a „coherent‟ method for the selection of truncation 

strikes which is defined as the inverse function of a fixed percentile (typically [0.01, 0.99] 

                                                      
4
 Jiang and Tian (2007) state that these translate to dollar values that range between - $1,980 and +£790 per 

contract.   
5
 The well known way of dealing with this is to take an effective range of moneyness with the highest and 

lowest strikes given as a ratio of at- the- money Black-Scholes implied volatilities, Figlewski (2002).    
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or [0.03,0.97]) of the ratio statistic.  Recently, Extreme Value Theory (EVT) is being used to 

model the return variation in the tail areas under a Q risk neutral measure.  In order to 

overcome ad hoc truncations and/or extrapolations into the tails of the option price 

implied risk neutral density (RND), Figelwski (2010) gives a parametric solution to an 

otherwise non-parametric model for the rest of the RND by using the Generalized 

Extreme Value (GEV) distribution for the tails of the RND.  Bollerslev and Todarov 

(2011) specify a semi-parametric Lévy density function based on the Generalized Pareto 

Distribution to model the left and right tails of the returns distribution under both Q and P 

measures in the context of capturing extreme movements in the variance risk premium. In 

Bollerslev and Todarov (2011) the generalized method of moments is used to estimate 

the Q tail parameters from observed option prices with the log moneyness set at 0.9 and 

1.1 for the left and right tails, respectively.        

 

In this paper, in order to solve the problems encountered in the CBOE MFIV, we specify 

two methods.  In the first method we modify the CBOE MFIV by following the steps 

taken by Carr and Wu (2009) (hence CW-IV) in the discretization needed for 

synthesizing the variance swap rate, based on interpolation and extrapolation in the 

implied volatilities at different moneyness levels of the options.  We use the cubic spline 

interpolation recommended by Jiang and Tian (2007) and retain a fixed 8 times average 

implied volatility extrapolation scheme from Carr-Wu (2009).  These adjustments can 

improve the accuracy of the IV calculation, especially in combating the problem of sparse 

data points at extreme tail regions.  However, the limitation of this method is that it 

requires a pricing model such as Black (1976) to derive the implied volatilities for 

interpolation and extrapolation.  This makes the approach no longer 'model-free' and 

runs the risk of model error.  Further, there are issues relating to the construction of 

fixed 30 day horizon IV which follows the CBOE MFIV method of using options of only 

two maturities.  The linear interpolation of the IVs of the closest and the second closest 

to maturity options that include the 30 day horizon assumes a linear term structure for 

implied variance in option maturity.  Also there are roll over effects on IVs when near 

(and second) maturity month options are switched at about 7 days to maturity. 
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The second IV model we consider is based on the recently developed Markose and 

Alentorn (2011) closed form solution for option pricing using the Generalised Extreme 

Value (GEV) distribution for the risk neutral density.  It is a parametric model which 

relies on the scale and tail shape parameters of the GEV distribution.  Depending on the 

tail shape parameter which also controls the size and skew of the tails of the distribution, 

the GEV distribution subsumes the three classes of distributions.  A zero value for the 

tail shape parameter yields the Gumbel class (which includes the normal, exponential and 

lognormal distributions) which have zero skew in the probability mass and symmetry in 

right and left tails.  Positive value for the tail shape parameter yields the so called 

Fréchet class that is able to capture the fat tailed behaviour with the maxima of a 

stochastic variable.  Negative value for the tail shape parameter yields the “reverse” 

Weibull class of distribution for the corresponding minima of the stochastic variable.  

Larger the non-zero values for the tail shape parameter lead to increased higher moments 

including the variance, skewness and kurtosis of the GEV distribution.  As the selection 

of the tail shape parameter is not restricted apriori but is backed out from the traded 

option price data, the GEV model mitigates model error.  

 

Markose and Alentorn (2011) find that GEV-RND yields results that strongly challenge 

traditionally held views on tail behaviour of asset returns based on Gaussian distributions 

which predicate simultaneous existence of thin tails in both directions during all market 

conditions.  The GEV RND which is governed by the option price implied tail shape 

parameter is found to switch tail shape with underlying market conditions.  A non-zero 

value for the tail shape parameter results in significant skewness in the probability mass of 

the GEV density function during extreme market conditions which implies large one 

directional movements and truncation in the probability mass in the other direction.  

During extreme market turbulence, a positive value for the tail shape parameter of the GEV 

RND function for losses implies extreme price drops, while a large negative tail shape 

value signal large price increases.  These switches in the implied tail shape parameter 

result in a much larger GEV-IV than can be obtained by other parametric and 

non-parametric methods during turbulent market conditions.  Likewise, during normal 

market conditions, a close to zero or negative tail shape around -.3 for the GEV-RND 
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implies a much smaller GEV-IV than what is obtained by most other methods.  To date, 

proposed option pricing models intended to deal with extreme and asymmetric volatility, 

fat tails and the skew in asset returns have failed to highlight the above characteristic 

features of the GEV-RND.
6
  Thus, as first demonstrated in Markose and Alentorn (2011), 

GEV-RND can capture both market perceptions of fat tailed behaviour, as well as, 

expectation of calmer periods consistent with the Gumbel class of distributions.  

Remarkably, this is achieved with none of the truncation and extrapolation exercises to 

capture extreme implied volatility that is encountered in model-free methods.  

 

Markose and Alentorn (2008) also find that the GEV RND yields better estimates for high 

quantile extreme Value-at-Risk for a 10 day constant horizon than a number of parametric 

and non-parametric methods for this.  The success in overcoming option maturity effects 

in order to report constant horizon implied GEV-RND, its quantile and other implied 

statistics such as volatility on a daily (or an intra daily) basis comes from using all 

maturities for traded options and explicitly backing out the term structure parameter to 

scale GEV volatility, Alentorn and Markose (2006).  We will adopt this method to address 

problems of roll over effects of close to maturity option contracts and of assuming a linear 

scaling of the implied variance with time.    

  

The suitably refurbished Carr and Wu (2009) modification for the CBOE method, 

CW-IV, the GEV-IV and the Black-Scholes IV (BS-IV) are constructed for a 30-day 

fixed horizon based on traded option price data on the FTSE-100.  For realised volatility 

of the FTSE-100, we use the square root of the annualised 30 day daily squared returns 

(see, Siriopoulos and Fassas, 2008).  We find that the volatility indices from the GEV 

model and the Carr-Wu method perform better than the Euronext VFTSE and the BS-IV 

for forecasting realised volatility, especially during the recent financial crisis of 

2007-2008.  Though we primarily investigate the forecasting performance of the 

                                                      
6
 Other parametric option pricing models that aim to capture leptokurtosis, left skew and extreme volatility 

often start with specific fat tailed distributions for the RND such as skewed Student –t distribution, de Jong 

and Huisman (2000), or Weibull distribution, Savickas (2002) and hence run into model error.  They also 

fail to have closed form solutions or end up over-fitting with far too many parameters.  For example, the 

latter case is the mixture of two log-normals which has to estimate five parameters, Gemill and Saflekos 

(2000).    
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different IV models, the benchmark case of lagged realized volatility is also given.  

When the data is broken down into subsamples of normal and extreme market conditions, 

the GEV-IV yields the best forecast performance, in all cases, followed by the CW-IV.  

The GEV-IV performs best due to its explicit reliance on the implied tail shape parameter 

and implied volatility term structure parameter which can rapidly and flexibly reflect 

extreme and normal market sentiments being impounded in traded options.  

 

The rest of this paper is organised as follows.  Section 2 provides a literature review on 

forecasting future realised volatility with implied and historical volatility measures. 

Sections 3 and 4 introduce the two different methodologies (Carr-Wu and GEV) for the 

construction of the implied volatility index.  Section 5 estimates the realized volatility 

and discusses the empirical results on the forecasting comparisons for VFTSE, Carr-Wu 

IV, BSIV and past realized volatility, RV. Both univariate and encompassing regressions 

are used to test the informational content of the IV and past RV models.  Section 6 gives 

concluding remarks. 

 

2.  Review of Forecasting Future Realised Volatility with Implied Volatility  

Discussions on traded option implied volatility and its efficacy in forecasting realized 

volatility has dominated the literature by far (see, Poon and Granger, 2003) though the 

role of option implied statistics for their capacity to incorporate market information is 

growing (see, Giamouridis and Skiadopoulis, 2010).  The other main contender for 

volatility forecasting are times series based historical volatility, HV, models.  

Empirically, a regression setting is used to test whether the IV or HV measures are an 

unbiased and information efficient forecast of future realized volatility. Unbiasedness is 

typically assessed by examining the regression coefficients (intercept=0 and slope=1) of a 

univariate regression equation.  Using encompassing regression equations, a forecast 

based on IV or HV measure is defined to be information efficient if it is not subsumed by 

other forecast variables.  In all cases, efficiency of forecasts requires residual forecast 

errors to be white noise.  Although the conclusions are somewhat contradictory and 

varied, most authors contend that option implied volatilities provide biased, but more 

efficient, forecasts of future volatility than historical volatility measures.  Within the 
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class of IV measures, while Jiang and Tian (2005) found the CBOE MFIV forecasts 

better than model based IV such as BS-IV, more recent papers find that modified model 

based IV measures including the Black (1976) IV model and the new Corridor Implied 

Volatility of Andersen and Bonderanko (2007) can out-perform MFIV constructed by the 

different authors and also the industry standard ones such as VIX.      

 

Some of the early papers in this area find that the implied volatility is poor at forecasting 

future realised volatility (see, Canina and Figlewski (1993) and Lamoureux and Lastrapes 

(1993)). However, Christensen and Prabhala (1998) have countered their results by 

stating that the early studies are hampered by poor or insufficient data sets and lack a 

proper method for measuring realized volatility. They proceed to use non-overlapping 

data and a longer time series and show that the implied volatility outperforms historical 

time series based realised volatility such as ARCH and GARCH in forecasting future 

realised volatility. 

 

Fleming, Ostdiek, and Whaley (1995) show that the VXO is strongly related to its future 

realised volatility and it forecasts realised volatility better than a first order autoregressive 

volatility model. However, the forecast result of the VXO has an upward bias. Blair, 

Poon, and Taylor (2001) show that the VXO provides almost all relevant information for 

forecasting index volatility from one to twenty days.  Additionally, they find that the 

VXO gives more accurate forecast results compared with volatility constructed by Risk 

Metrics and GARCH type models.  Giot (2003) investigates forecasting volatility and 

market risk with the VIX and VXN.  The findings show that the volatility index has a 

higher information content than Risk Metrics and GARCH models at different time 

horizons. 

 

There are also similar results for forecasting the future realised volatility with the 

volatility indices for stock markets in countries other than the US.  For example, Franck, 

Patrick, and Christophe (1999) study the Marché des Options Négociables de Paris 

(MONEP) Market Volatility Index (VX1) and show that the VX1 is highly related with  

realised volatility and performs well in predicting future realised volatility with different 
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time horizons.  The study by Siriopoulos and Fassas (2008) on the FTSE-100  

volatility index VFTSE uses the same underlying as we do.  They show that the VFTSE 

is a biased estimate of future realised volatility but that it includes more information on 

future realised volatility than historical volatility based methods. 

 

There are also some opinions contrary to the above.  Areal (2008) shows that the high 

frequency data based volatility of the FTSE-100 index gives a better forecast for the 

future realized volatility than the implied volatility indices constructed by the author.  

The latter were found to contain information on future volatility but they yield biased 

measures of future volatility.  Becker, Clements, and White (2007) and Becker and 

Clements (2008) show that the model free VIX cannot offer additional information on 

volatility forecasts of the S&P 500 market compared with a combination of historical 

model based forecasts.  However, no single historical model based forecasts is 

necessarily better than the VIX.  

 

When looking exclusively at the forecasting performance of MFIV, the first study of this 

is that of Jiang and Tian (2005) on the SP-500 for the period 1988-1994.  They find that 

the volatility forecast using MFIV outperforms both BS-IV and past RV.  In the case of 

the MFIV constructed by the authors Cheng and Fung (2012) for the Hang Seng Index, 

they find that both the MFIV and the futures prices based Black (1976) IV outperform a 

number of time series based historical volatility (TS-HV) models in terms of their 

forecast power of realized volatility.  Cheng and Fung (2012) find that futures prices 

based Black-IV subsumes the information content of both MFIV and TS-HV.  Andersen 

and Bondarenko (2007) find similar results to Cheng and Fung (2012) that futures prices 

based Black-IV dominates MFIV and the VIX while their new Corridor Implied 

Volatiltiy subsumes all others.  However, as we discussed in the introduction, the 

robustness of the widely used industry standard MFIV is itself in question especially as 

the method exhibits truncation errors which leads to an underestimation of volatilty 

during market downturns, Jiang and Tian (2007), the focus of this paper is to contrast IV 

models that are specifically built to address this and those that are not.  In the following, 

we introduce two alternative methods to construct implied volatility indices that can deal 
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with extreme market conditions to see if they can improve on the model free method. 

 

3. Carr-Wu Implied Volatitily With Spline Interpolation and Linear Extrapolation  

As we intend to use the Carr-Wu (2009) discretization and truncation scheme to 

overcome problems in the CBOE MFIV, we will first briefly outline the CBOE 

construction.  The generalized formula (see, CBOE VIX White Paper, 2003) used for 

the CBOE implied variance is:  
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Here T is the time to maturity of the index option, r is the risk-free interest rate, F is the is 

the maturity matched forward index level, K0 is the first strike below F (K0 ≤ F), Q(T,Ki ) 

is the midpoint of the bid-ask spread for the call and put options with strike price Ki 

where out-of-the-money call options are used if Ki > K0, out-of-the money puts are used 

if Ki < K0 and both calls and puts are used for Ki=K0.  Note, iK  is the strike 

increment calculated as  

                           
2

11 ii

i

KK
K  . 

At the lowest or the highest strike prices, the strike price increment is simply the 

difference between the two two lowest and highest strike prices, respectively. The 

put-call parity condition is used to get the maturity matched forward index level at closest 

and second closest maturity dates  

  

(2) 

 

Here  is the strike price for which the call option price has the smallest difference 

with the put option price and  are the call (put) option prices at .
7
 

The second term in (1) implements a correction for the discrepancy betweeen the forward 

                                                      
7
 Closest to maturity options must have at least one week to expiration. 
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price and K0.  To obtain a fixed 30 day horizon MFIV, the implied variance in (1) is 

evaluated at closest maturitiy date if this is greater than 30 days.  If there are fewer than 

30 days and next-term options have more than 30 days to expiration, the resulting MFIV 

reflects an interpolation of the implied variance in (1) for , viz.  and .  

This will be defined in (8).  Clearly, as the MFIV on the FTSE-100 is readily available 

in the form of VFTSE, we use this directly.  

 

However, there are further procedures in the CBOE VIX White Paper (page 6) in the 

selection of the calls and puts with respect to the strike prices needed for equation (1) 

which we give below having fully expanded ),( iKTQ 8
:      
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We now apply the steps used by Carr-Wu (2009) to address the discretization and 

truncation problems in (3). For this, first we take both in-the-money and 

out-of-the-money option prices and then estimate the implied volatility  with all 

available option prices  corresponding to the strike prices Ki using the Black 

(1976) futures option pricing model expressed in moneyness levels:   

 

)))(()((()( 21 i

k
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C kdNekdNFk i

Tj
,                           (4.a)  

)))(()((()( 21 i

k

ii

P kdNekdNFk i

Tj
                        (4.b) 

                                                      
8
This can be found at www.cboe.com/micro/vix/vixwhite.pdf. The bids of all the option prices must be 

non-zero. The CBOE method first sorts the call options with their strike prices ranked from low to high. 

Then it selects call options with strike prices greater than the at- the- money- strike price,  A similar 

method applies when selecting put option prices. Finally, at  both call and puts are selected.  The 

truncation of out- of- the- money put prices take the following form : if two puts with consecutive prices 

with zero bid prices are found then no puts with lower strikes are considered.  Likewise for out- of- the- 

money calls, once two consecutive call options with zero bid prices are found, no calls with higher strikes 

are considered.   

http://www.cboe.com/micro/vix/vixwhite.pdf
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Here 
j
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. 

The moneyness level with all available strike prices  and the futures price  is 

defined as  

                             (5)        

For each moneyness level , there is a corresponding Black (1976) implied volatility 

.  Based on the moneyness level from low to high, we can use interpolation to 

generate very fine grids. We define the upper and lower bounds of the moneyness level 

grids as  

 

  (6.a) 

 and  

                       (6.b) 

  

where , # denotes the average of all available implied volatilities for options with the 

respective selected maturities,  denotes the generated artificial grids, and . 

The maximum and minimum available moneyness levels are denoted as  and 

.
9
 Clearly extrapolations into the tails using (+/-)8 times Black (1979) average 

implied volatilities # in (6a,b) will reflect the market information for the time varying 

nature of the statistic on a daily basis and counter some of the criticism directed at the 

lack of „coherence‟ that comes from the CBOE method (see, footnote 8) of moving into 

deep OTM tail regions.  Andersen and Bondarenko (2011) state that OTM options that 

are excluded after two consecutive zero bid quotes are encountered “induces 

randomness” in the effective strike range.  

 

We apply a cubic spline interpolation instead of linear interpolation used in Carr and Wu 

(2009) to calculate the implied varaince for each corresponding moneyness level 

                                                      
9
Carr and Wu (2009) use 8 times the average implied volatility to make sure the strike price range is big 

enough.  We also find 8 is a proper magnitude. 
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between  and .
10

 For the moneyness level outside  and , we apply 

a flat extrapolation using the range in (6a,b).  For all moneyness levels lower than , 

we use the implied volatility of .  Likewise, for all moneyness levels higher than 

, we use the implied volatility of .  With this interpolation and extrapolation 

method we can have implied volatilities which cover a wide range and also have small 

strike price intervals and hence achieve a more precise approximation result for the 

CBOE replication equation (1).  On substituting (4.a.b) into (3) and using (5) and (6a,b) 

we have the annualised implied variance,  with time to maturity from  to :  

 

  

  

  

 (7) 

 Here  

                     

                 

 

and denotes the moneyness level corresponding to at- the- money- strike price, .   

 

In order to calculate the 30-day implied volatility, we follow the CBOE method of 

interpolating the implied variance from the two closest maturities. If the closest 

maturity, T1, is equal to or greater than 30 calendar days, , then we use the 

closest implied variance to the 30 calendar day implied variance of market. If  

and , then a linear interpolation between these two is taken. The annualised 

30-day implied volatility is the square root of the Carr-Wu implied variance  in (7) :  

                                                      
10

The spline interpolation is also recommended by Jiang and Tian (2007) in order to avoid arbitrage 

opportunities. 
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 (8) 

 

4. Implied Volatility with Generalised Extreme Value (GEV) Option Pricing Model 

In this section we will derive an implied volatility index that is based on the GEV option 

pricing model which can respond flexibly to both extreme market as well as normal 

market conditions, Markose and Alentorn (2011). The GEV option pricing model offers a 

more accurate and empirically grounded approach to price derivatives, hedge volatility 

and estimate value at risk (VaR) under real world conditions as the log-normal 

distribution of returns on underlying financial assets has been found not to hold. The 

returns on financial assets are found to have fat-tails, skewness and other stylised facts 

regarding time varying volatility. Compared with BS model and other parametric models 

which make restrictive distributional assumptions, the GEV-RND function can capture 

the stylised facts on the non-normal skewness and kurtosis without any apriori 

restrictions on the class of distribution being implied for the underlying.  Also using the 

Alentorn and Markose (2006) method described below, we estimate the constant horizon 

30-day implied volatilities of the FTSE 100 from the implied RND term structure of the 

GEV model using both put and call options of all maturities on a daily basis. With an 

empirically obtained time varying term structure parameter in traded option maturity for 

the GEV RND, this model can capture the implied volatility for any time horizon without 

assuming the square root law where volatility scales with the square root of time.   

 

4.1  GEV- RND and Option Pricing Model 

Following the Harrison and Pliska (1981) arbitrage free option pricing result, under a risk 

neutral measure, Q, the call option at current time  and with maturity time  can be 

priced using a risk neutral density (RND) function  :  

 

K
TTT

tTr

T

Q

t

tTrC

Tt dSSgKSeKSEeK )()()]0,[max()( )()(

, (9) 

 

The corresponding put option pricing function is given as:  
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, )()()]0,[max()(  (10) 

 

Here, Et
Q
 refers to the expectations operator under the risk neutral Q measure. In an 

arbitrage-free economy, the following martingale condition must also be satisfied: 

 

                )()(

T

Q

t

tTr

t SEeS .                       (11.a) 

Using the price of index futures, TtF , , which expire at the same date as the option, this 

condition yields 

                 )(, T

Q

tTt SEF .                           (11.b) 

     

In keeping with the extreme value distribution modelling of economic losses
11

, we 

assume negative returns defined as  follows the GEV density 

function for the tail shape parameter 0  (see, Reiss and Thomas, 2001, p. 

16-17):  

/1/11

)(
1exp

)(
1

1
)( TT

T

LL
Lf    (12)  

Note, the relationship between the density function for LT and the RND function g(ST) for 

the underlying price ST  is given by the general formula (see, Baz and Chacko, 2004) 

  This yields the GEV RND function :  
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L    for  0 .                (13.b) 

                                                      
11

 Since extreme economic losses are more probable than extreme economic gains, the fat tailed or Fréchet 

distribution is used to model extreme losses. To this end, we follow the practice of the insurance industry, 

Dowd [2002, p 272], and model returns as negative returns. This has also been discussed in Figlewski (2010). 
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Here,  is location and  is the scale parameter of the GEV distribution.  Further,  is 

the tail shape parameter which governs whether the GEV distribution belongs to the 

Frechet (  > 0) class or the reverse Weibull class (  < 0).  As discussed at length in 

Markose and Alentorn (2011), the implied GEV tail shaped parameter changes with 

market conditions.  In distributions for which  ≠ 0, the condition in equation (13.b) 

imposes a truncation on the probability mass and a distinct asymmetry in the right and 

left tails such that when the probability mass is high at one tail signifying non-negligible 

probability of an extreme event in that direction, there is an absolute maxima (or minima) 

in the other direction beyond which values of ST have zero probability.
12

 Only the case 

where the tail shape parameter =0 yields thin tailed distributions belonging to the 

Gumbel class with the tail index α= 
-1

 being equal to infinity, implying that all moments 

of the distribution are either finite or zero.
  

The Gumbel class has zero skew in the 

probability mass and displays symmetry in the right and left tails and there is no 

condition truncating the distribution in either direction for values of ST. 

 

On substituting (13.a) into (9) and using the constraint in (13.b) to get the upper limit of 

integration for the option price, a change of variable operation for the integration enables 

Markose and Alentorn (2011) to obtain a closed form solution for a GEV RND based 

option price using incomplete and generalized incomplete Gamma functions. Omitting 

the proof which can be found in Markose and Alentorn(2011), the GEV- RND call option 

price is given as      

 

)(, K
C

Tt

/1/1

),1()1( /1)( HH

t

tTr eKHeSe   (14) 

 

                                                      
12

 As shown in Reiss and Thomas (2001), kurtosis of the Fréchet distribution becomes infinite at  > 0.25 

(the tail index, α < 4), and all higher moments including kurtosis and the right skew become infinite at  ≥ 

0.33 (the tail index, α ≤ 3).  Even for small positive values of , approximately at about  = 0.1, the rate of 

growth of skewness and kurtosis of the distribution, with both fast approaching infinite growth rates, result 

in a concentration of the probability density of the Fréchet distribution at the right tail.  Markose and 

Alentorn (2011), and also see Figure 6 in this paper which reports the implied GEV tail shape parameter for 

the sample period analysed here, find that even during extreme market conditions, though the implied tail 

index results in fat tails for the GEV-RND – at all times the first four GEV-RND implied moments were 

finite.  
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Here, dzezH z

H /1

),1( /1
 is the incomplete gamma function, and  

tS

K
H 11 .  The key to understanding the GEV option pricing formula lies 

with the term, 

/1

/1
11

tS

K

H ee .  This term is the cumulative GEV 

distribution function given as the “standardized moneyness” or the percentage pay-off 

from the option defined as (St – K)/St.  Hence, it corresponds to the risk neutral 

probability of the call option being in- the- money at maturity.
13

 For a given set of 

implied GEV parameters { , , ξ }we can work out the range of exercise prices K in 

relation to the given St which yield:  
/1He = 1 for deep in-the-money call options, 

/1He = 0 for deep out-of-the-money call options, and  0 < 
/1He < 1 for all other 

cases.  

 

The corresponding GEV- RND based put option price is given by  

 

),,1()()1()()( /1/1)( /1/1/1/1

HheeSeeKeKP hH

t

HhtTr

t
   (15) 

 where 0)1(1h  and ),,1( /1/1 Hh = dzez z

H

h

/1

/1

is the 

generalized incomplete Gamma function (see, Markose and Alentorn, 2011).  

 

Our next steps are analogous to the procedure in the Black-Scholes model where the 

mean of the distribution is replaced using the martingale condition in (11a,b) so that only 

the volatility parameter needs to be estimated.  However, in the GEV case, neither the 

mean nor the volatility of the distribution directly correspond to the location, , and scale 

parameter, .  As shown in Reiss and Thomas (2001), the mean of a GEV function can 

                                                      
13

 Recall that in the case of the Black-Scholes model the probability of the option being in-the-money at 

maturity is given by N(d2), where N() is the standard cumulative normal distribution function, and 

TTrKSd t /])2/()/[ln( 2

2
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be defined as   

       m
GEV

 = )/)1)1(( .                  (16)     

 

The GEV volatility for returns takes the form   

 

                       (17)      

In order to construct constant horizon GEV RND and implied statistics, following 

Alentorn and Markose (2006), we propose that the GEV scale parameter  is a function 

of time to maturity :  

 

       (18)      

 

where  is the annualised GEV scale parameter, and  is the parameter for the term 

structure of volatility that is implied by taking information from option prices for all 

maturities on a given day .
14

 Conventional literature assumes the square root of time rule 

for scaling volatility and it is widely used to scale up 1 day volatility to obtain volatility 

for N day returns.  The square root scaling rule is only appropriate for time series that 

have Gaussian properties.  In (18), the parameter b is not restricted to be 0.5.  As will 

be seen in the next section the parameter b will be backed out of from traded options with 

all available maturities.  Heuristically, b in (18) can be seen to be the fractal or Holder 

exponent (see, Calvet and Fisher, 2008) such that the expected variations under a risk 

neutral measure Et
Q
 /dS/  (dt)

b 
.  Smaller values of b, b<0.5, as will be seen, coincide 

with abrupt changes in the volatilty of market returns. Once the option implied term 

structure parameter b is obtained along with the other implied GEV parameters, the GEV 

                                                      
14

See Alentorn and Markose (2006) for a full explanation of how the maturity effects are removed by using 

a term structure of RNDs which includes all strikes and maturities for traded options on a given day.  

Typically, as in the CBOE method discussed in Section 3, in order to report implied volatility on a daily 

basis for a fixed 30 day horizon, options prices with only two maturities that span the 30 day horizon are 

used.  As shown in the next sub-section, we obtain a much simpler formula for a fixed horizon GEV 

implied volatility using (17) and (18) and having backed out the GEV RND implied parameters 

 from (20).       
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implied volatility using (17) for any fixed time horizon can be obtained as a function of b 

by substituting (18) into (17).  We will see that this GEV-RND based IV will be driven 

by the annualised GEV scale parameter , the tail shape parameter  and b.  Option 

traded implied values show -0.3 ≤  ≤ 0 and value of b≥0.5 during normal market 

conditions. With the onset of market turbulence the absolute value of  values increases 

and b< 0.5.   

 

Finally, we can use the martingale condition in (11a,b) and the definition in (16) of the 

GEV mean to yield the risk neutral expected value of the (negative) returns function,  

Et
Q
 (-RT) = (

t

Tt

S

F ,
1 ) to express the GEV location parameter μ as follows:

  

                  

1)1(
1

,

t

Tt

S

F
.                  (19)         

 

To satisfy a fixed horizon implied GEV mean free of maturity effects,  in (19) is 

replaced by (18).  This can now be substituted into the GEV option prices in (14) and 

(15) to eliminate the parameter .   

 

4.2  30-Day GEV Implied Volatility  

With the above closed form solutions for the call and put option prices, the parameters of 

the GEV option pricing model,  are backed out from traded option prices. 

We constrain  to be the same across all maturities and strikes for the available option 

contracts in any given day to remove maturity effects that normally prevail for option 

implied statistics (see, Alentorn and Markose, 2006). The sum of squared errors (SSE) 

between the analytical solution of GEV option prices and the observed traded option 

prices with all available strikes (N) and maturities (J)
15

 in the option markets is 

minimized with respect to :  

 

                                                      
15

 This is subject to well known selection procedures of options contracts described in section 5. 
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        (20) 

 

Here,  denotes the analytical GEV option price with maturity time  and 

strike price , and  denotes the observed traded option price with the same 

maturity time and strike price.
16

 From the above optimisation in (20), we obtain the 

implied GEV RND parameters . The implied volatility for a time horizon 

given by  can be calculated using equation (17) and (19) :  

 

                  (21)  

 

The prominent role of the GEV RND implied tail shape parameter  must be noted.  

As the  controls both shape and size of the tails of the GEV-RND and is time varying 

with the daily traded option data, we avoid the further calculations on how far into the tail 

to extrapolate or how to paste in the tail shape that model free and non-parametric option 

pricing models have to address mostly in an ad hoc way.  Corresponding to the volatility 

indices launched for stock market indices, we construct a 30-day GEV-IV for the stock 

index by using the implied term structure parameter  derived on each day to scale the 

required 30 day horizon given as a proportion of 365 days:  

                        (22) 

In order to compare it to the volatility index constructed with other methods, we multiply 

it with  to obtain an annualised 30-day implied volatility.  Finally, the use of the  

implied term structure parameter  for the GEV scale parameter  obtained from the 

traded options of all available maturities, avoids issues of linear interpolation when 

exactly 30 day horizon contracts do not exist.  Also there are no messy roll over effects 

                                                      
16

This optimization is carried out with the non-linear least square algorithm of the interior-reflective 

Newton method described in Coleman and Li (1994) and Coleman and Li (1996). 



23 
 

when the closest maturity contract reaches 7 days to maturity.        

 

5.  Data Analysis and Empirical Construction of Implied Volatility for FTSE-100 

The data period used in this paper is from 4th January 2000 to 1st June 2009.
17

 We use 

the spot price of FTSE-100 index level, annualised daily London Interbank Offered Rate 

(LIBOR), the FTSE-100 index future prices, and the daily settlement prices of the FTSE- 

100 index options.  The futures and option data is from the London International 

Financial Futures and Options Exchange (LIFFE). There are four FTSE-100 futures 

contracts every year, which have maturity days on the third Friday of March, June, 

September and December.  Options are all European style and their maturity days are 

the third Friday of their maturity months. The strike prices of the options have intervals 

of 50 or 100 points depending on the different time to maturity.  The option price tick 

size (the minimum amount of the option prices can be changed) is 0.5 basis point. The 

money notion per basis point is £10. The time series for the Euronext model free VFTSE 

is available from Datastream.
18

 Note the FTSE 100 option prices used for calculating the 

Euronext VFTSE are mid-prices.
19

 For the calculation of the other volatility indices in 

this section the daily closing prices are used. 

 

This study only uses traded option prices, viz. options that have non-zero traded volume 

on a given day.  Also, options whose prices were quoted as zero, have less than one 

week to expiry, or more than 120 days to expiry were eliminated. Finally, option prices 

were checked for violations of the monotonicity condition.
20

 A small number of option 

prices that did not satisfy this condition were removed from the sample. 

 

The rest of this section is organised as follows: Subsection 5.1 gives the construction 

method and results of realised volatility for the FTSE-100 market. Subsection 5.2 

                                                      
17

The VFTSE was launched on the 4th January 2000. 
18

A more detailed introduction to the VFTSE can be found on the website of the NYSE Euronext Volatility 

Indices (http://www.euronext.com/editorial/wide/editorial-3955-EN.html). 
19

See NYSE Euronext Volatility Indices methodology 2007 

http://www.euronext.com/fic/000/035/208/352080.pdf). 
20

 Monotonicity requires that the call (put) prices are strictly decreasing (increasing) with respect to the 

exercise price.  
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provides the results of four implied volatility indices for the FTSE-100. Subsection 5.3 

shows the calculation and properties of volatility risk premium. Finally, subsection 5.4 

gives the results of forecasting future realised volatility with the different constructed 

implied volatility indices. 

 

5.1  Realised Volatility of FTSE 100 

Realized volatility of stock index returns is a latent variable which in theory is the ex post 

realized values of the expectation under the P measure, , of the square root of the 

future quadratic variation of log prices over a time horizon, (t, T).  As the sampling 

frequency increases, in the continous limit, following Andersen et. al (2003) and 

Barndorff-Nielsen and Shephard (2002), the quadratic variation is the integrated variance. 

Thus,   

            .                  (23) 

Here  is the quadratic variation of the log stock index from  to  and  is 

the integrated variance.  As we sample the observed price path over [t, T] on a daily 

basis, realized volatility defined as the square root of the quadratic variation of the log 

FTSE-100 spot index prices, involves taking the ex post cumulative sum of daily squared 

returns over [t, T].  The annualised 30 calendar days ex post realised volatility of the 

FTSE-100 can be calculated with a rolling window of the FTSE-100 index daily prices as  

 

           (24) 

 

 where  is the FTSE -100 index at time t. 

 

Figure 2 shows the annualised ex post 30 day realised volatility of the FTSE-100 returns 

and Euronext VFTSE. These two time series have similar patterns. In most periods, 

especially during a boom, the value of realised volatility is lower than the VFTSE. 

However, exceptionally, there are also some periods where realised volatility can be  

higher than the VFTSE, for example, during the financial crisis at the end of 2008.  The 
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sample statistics for RV and VFTSE are given in Table 2 along side those for the 

constructed IVs.     

 

Figure 2: The realised volatility of FTSE-100 Returns and VFTSE 

 

 

 

5.2  Construction of Implied Volatilities of FTSE 100 

5.2.1  Carr-Wu IV Method 

Following Section 3, we construct the CW- IV for the FTSE-100. We filter the option 

data using the CBOE VIX method.  Table 1 gives the average number of different daily 

strikes with FTSE 100 call and put options for the nearest (1st) and the second nearest 

(2nd) maturities. Table A.1 in the Appendix reports the average annual call (Panel A) and 

put (Panel B) option prices and number of observations (in brackets) for six different 

categories of moneyness ( ) and the two maturities.  On average, the nearest maturity 

(1st) option prices are lower than the second nearest maturity (2nd) option prices for 

almost all moneyness categories for both calls and puts.  For the CW-IV, we use all 

these option prices to get the Black implied volatilities, and interpolate and extrapolate to 
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get finely spaced implied volatility grids as explained in equations (4-6).  We then 

proceed to construct the CW-IV for the FTSE 100 using equation (8).  

  

Table 1: Yearly Average number of daily strikes 

 

   

 Period     Average Number of 

Daily Strikes  
   1st 

Maturity   

  2nd 

Maturity  

 2000     92     91  

 2001     85     81  

 2002     77     75  

 2003     60     58  

 2004     50     50  

 2005     52     53  

 2006     55     54  

 2007     63     58  

 2008     63     52  

   2009 a      51     44  

     

  

 [a] The option data for 2009 only includes five months ( 2 January 2009 - 1 June 2009).    

  

5.2.2  Implied Volatilities with GEV and BS (1973)  

Following Section 4, for every trading day, the GEV implied parameters  are 

derived from option prices using equation (20) and constructed to get the annualised 

30-day GEV implied volatility with equation (22).  In the latter, the constant 30-day 

horizon GEV-IV is scaled by using the implied term structure parameter  backed out in 

(20) from options with all maturities and strike prices available in the market, where their 

trading volumes are not zero.  This is different from the VFTSE and the implied 

volatility model of Carr-Wu derived in section 3, which are calculated using at most only 

two options maturities that span the 30 day horizon. For the comparison, we also 

construct the standard IVs for the Black and Scholes (1973) model.  

 

5.2.3  Statistical Analysis and Comparison 

Figure 3 plots the time series of implied volatility indices for the FTSE 100 with the four 

different methods (VFTSE, Carr-Wu, GEV, and BS). These four indices show very 
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similar patterns with the most obvious visual detail being that the GEV-IV takes on the 

smallest values during normal market conditons and the biggest ones during turbulent 

conditions. From mid-2003 to mid-2007, the four volatility indices give corresponding 

low values, which are mostly below 20%.  At the end of 2008, the GEV-IV and CW-IV  

peak at around 80% which is similar to the realized volatility in Figure 2. In contrast, 

VFTSE peaks at 75% and the BS-IV is the least volatile and peaks at 53%.   

 

Table 2: Summary Statistics of Implied and Realised Volatilities for FTSE 100 

    

             

   Implied  Volatility     Realised  
           Volatility  

 VFTSE       BS-IV    GEV-IV    CW-IV     RV    

Min   0.0910     0.0954     0.0566     0.0926     0.0512    

Max   0.7554     0.5346     0.8229     0.8256     0.7973    

Mean   0.2185     0.1982     0.2021     0.2178     0.1831    

Std. Dev.   0.1021     0.0717     0.1016     0.1041     0.1155    

Skewness   1.5379     1.1900     1.5888     1.6238     2.0594   

Kurtosis   6.0321     4.6537     6.4667     6.3989     8.8822   

ADF Test #   -3.7326    -3.0520    -3.8456    -3.7852 -2.2470    

             
# Augmented Dickey Fuller Test with critical value of -1.942 at 5% significance level (no 

constant and time trend)  

 

Table 2 gives the sample statistics of the four implied volatility indices (VFTSE,  

Carr-Wu, GEV, and BS) and of the realised volatility of the FTSE-100  The mean of the 

VFTSE is 0.2185, while that of the realised volatility is 0.1831.  All the other 

constructed IV estimates share this property of having a mean greater than the mean of 

realised volatility.  This is consistent with the findings (see, Anderson and Bondarenko, 

2007, and Carr and Wu, 2009) on the negative volatility risk premum which is defined as 

the difference between the volatility derived under the P- measure and the volatility 

derived under the risk neutral Q-measure.  The maximum values for the CW-IV and 

GEV-IV are greater than that for the RV while that for the VFTSE it is less at 0.755 and 

BS-IV peaks at only 0.53.  Their minimum values are all less than 10% , with that for 

the GEV-IV at 5.6% being the closest to the minimum of the RV at 5.12%.  BS-IV is 

much less volatile than the other three volatility indices, and its skewness and kurtosis are 

also the smallest of all other IV measures.  This fully reflects the assumption of 
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log-normality of the model.  The RV has kurtosis of 8.82 which is not matched by the 

kurtois of any of the IVs.  GEV-IV is the closest at 6.46 while the VFTSE has a 

relatively low kurtosis of 6.03.  

 

The augmented Dickey-Fuller (ADF) tests (without constant and time trend) in Table 2 

show that the four volatility measures and RV all reject the null hypothesis of unit root at 

a 5% significance level. This implies that all of these volatility series are stationary.  

Also, we apply the Jarque-Bera test (not reported).  All five volatility indices reject this 

at 5% significance level, indicating none of them is normally distributed.  Siriopoulos 

and Fassas (2008) also applied the above statistical tests for the VFTSE levels, its 

changes and its log changes from February 2000 to May 2008, with similar results.
21

 

 

Figure 3: The volatility indices of FTSE 100 with the four IV methods:VFTSE, 

Carr-Wu IV, GEV-IV, and BS-IV (Jan 2000- June 2009)                  

 

The following Figures 5 and 6, respectively, for the implied volatility term structure 

                                                      
21

 We also do these tests for the changes and the log changes of the volatility series and find similar results.  
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parameter  for the GEV-IV model and the time varying implied tail shape parameter, , 

highlight how GEV-IV produces the smallest values of all the four IVs during normal 

market conditions while it spikes up rapidly as conditions become turbulent.  Using 

formula (22) for the 30 day horizon GEV-IV and as discussed in Section 4.1 relating to 

equations (17 and (18), in Figure 5 we see that the  registers sudden plunges below 0.5 

marking points of abrupt jumps in volatility in September 2001, June 2002, June 2006 

and October 2008.  The latter gives the lowest point for the implied volatility scale 

parameter  at 0.223 and this coincides with the highest value attained by the GEV-IV.  

This indicates that the square root of time scaling rule which is true for Gaussian models 

and one that is used in almost all IV constructions, by permitting linear interpolations of 

implied variance obtained from option prices of the nearest and second nearest maturity 

contracts, has substantive implications that warrant closer scrutiny. 

 

Figure 5 Option Implied Term Structure Parameter,b, for Scaling GEV-IV Time To 

Maturity (Jan 2000- June 2009)                   

 

The implied tail shape parameter,  for the GEV-IV model plotted in Figure 6 shows 
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that the maximum value is given by 0 <  < 0.12.  This indicates that the  ≈ 0.1 

region, large but finite varaince, skewness and kurtosis exists for the GEV RND based 

returns through out the sample period. Further,  are by and large a rare events, 

with normal conditions with -0.3 <  < 0 being more the norm.  Figure 6 shows that 

during the June/July 2004 correction of the FTSE-100 and then in mid 2005.  

From January 2007 to after the Lehman debacle in September 2008, , showing 

market expectations of great turbulence and also large price falls.  During the 2007 

period,  in March and June.  In the period after October 2008,  < 0 and with 

a very large negative = - 0.4 occuring in December 2008, marks market expectations of 

large upswings in the FTSE-100 in early 2009.  Note, large non-zero values for  result 

in increased GEV-IV as skewness and kurtosis also grow.  

  

Figure 6 Option Implied Tail Shape Parameter in GEV-RND Model (Jan 2000- 

June 2009)                   

 

 

 

5.3  Forecasting Realised Volatility with Implied Volatility Indices in FTSE 100 

Market 
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The implied volatility is the expectation of future realised market volatility under the risk 

neutral measure  and hence we have the following relationship (see, Carr and Lee, 

2007, Bollerslev, Tauchen, and Zhou, 2008): 

 

                           (25) 

 

We expect that the implied volatility contains information on ex post realised volatility 

defined in (24).  In order to verify this, typically linear regressions are run with implied 

volatilities as the dependent varable and realised volatility as the independent variable.  

We will do this for both the whole sample period and sub-periods. 

 

5.4.1 Estimation for the Whole Sample Period  

Univariate Regression 

We first run two variants of ordinary least square (OLS) regressions for realised volatility 

with the four different IV indices we constructed as respective dependent variables and 

also the lagged RV. The first set of regressions are in levels and the second set is in 

logarithms of the variables:   

 

                (26) 

 and  

 

                   (27)           

 

where  is the realised volatility at month .  stands for the four 

volatility indices  and lagged realised volatility , respectively. 

Christensen and Prabhala (1998) show that overlapping data would exhibit a large 

amount of autocorrelation and result in estimation problems and incorrect results. 

Therefore, we use non-overlapping RV and IV which are selected from the data once 

every month.  We choose the last trading day of every month as the observation day.  

The implied volatilities (realised volatility) on that day represents the risk neutral 

expected volatilities (realised volatility) for the next month.  We also use 1 month 
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lagged realised volatility to forecast realised volatility to provide a comparison with the 

IV based forecasts. We run five OLS regressions one for each of the four implied 

volatilities and the fifth one for the lagged realised volatility.  

 

Table 4: The basic OLS regression estimation 

  

  α     β   

  

Adj.R
2
   

  F-test     DW  
(p-value) (p-value) 

  [std error]     [std error]   
 (p-value)    (p -value)  

  (Conf. Interval) 

 Bm Panel A:  RVm=α+βBm+em 

        

 

  

  RVm-1   0.053 0.706 

0.495 
109.95 1.959 

  (0.0004) (0.0000) 

    [0.0014]     [0.0064]   (0.0000) (0.7000) 

  

  
 

    

 VFTSEm   -0.013 0.909 

0.528 
125.39 1.484 

  (0.4945) (0.0000) 

    [0.0018]     [0.0077]   (0.0000) (0.0029) 

  

  

      

 BS-IVm   -0.047 1.170 

0.477 
102.15 1.355 

  (0.0539) (0.0000) 

    [0.0023]     [0.0109]   (0.0000) (0.0002) 

  

  

      

 GEV-IVm   -0.001 0.930 

0.552 
137.58 1.527 

  (0.9484) (0.0000) 

    [0.0016]     [0.0075]   (0.0000) (0.0062) 

   
 

    

 CW-IVm   -0.009 0.893 

0.539 
131.14 1.527 

  (0.6364) (0.0000) 

    [0.0017]     [0.0074]   (0.0000) (0.0062) 
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 lnBm   Panel B:  lnRVm=α+βlnBm+em 

  lnRVm-1   -0.443 0.762 

0.578 
153.40 2.184 

  (0.0003) (0.0000) 

    [0.0112]     [0.0058]   (0.0000) (0.4154) 

  

  
 

    

 

lnVFTSEm   -0.098 1.084 
0.645 

203.279 1.732 

  (0.4426) (0.0000) 

    [0.0120]     [0.0072]   (0.0000) (0.1057) 

  

  
 

    

 lnBS-IVm   0.296 1.274 

0.615 
178.39 1.569 

  (0.0742) (0.0000) 

    [0.0155]     [0.0090]   (0.0000) (0.012) 

  

  
 

    

 

lnGEV-IVm   -0.127 1.003 
0.674 

230.38 1.784 

  (0.2807) (0.0000) 

    [0.0111]     [0.0062]   (0.0000) (0.1813) 

  

  
 

    

 lnCW-IVm   -0.122 1.064 

0.647 
204.45 1.770 

  (0.3321) (0.0000) 

    [0.0118]     [0.0070]   (0.0000) (0.1577) 

  

  

      

The -test is for the joint hypothesis of  and , and DW is the Durbin-Watson test for the null 

hypothesis of zero serial correlation. We provide their corresponding -values in brackets in the relevant 

columns of Table 4.  

Table 4 gives the results for the two sets of regressions in Panel A and B, respectively. 

Panel A shows that the regressions for the four IV series do not pass the Durbin-Watson 

(DW) test, which indicates that there are autocorrelations in the residuals.  In contrast, in 

Panel B for the logarithmic case, the DW test shows that except for the lnBS-IVcase, the 

other lnIVs and the lagged lnRV regressions pass the DW test and give efficient 

estimations.  Hence, we will focus our analysis on Panel B on the logarithmic 

regressions as do other studies such as Cheng and Fung (2012).  All  coefficients are 

significantly different from zero, indicating that both IVs and the lagged RV contain 
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information on future realised volatility. While both the lagged RV and ln BS-IV show a 

statistically significant negative coefficient  for lnVFTSE, lnGEV-IV and lnCW-IV, 

the null hypothesis of  cannot be rejected.  However, the -test shows all the 

regressions reject the joint null hypothesis of  and , indicating that all these 

forecasts are biased to a greater or lesser extent.  Finally, we find that the GEV-IV 

performs best with an adjusted  of 67.4%, followed by that for the CW-IV at 64.7% 

and that for the VFTSE at 64.5%. The lagged lnRV regression has the lowest adjusted 

of 57.8%.  Moreover, the GEV-IV has the best F-test value which indicates that it 

provides the least biased estimates. 

  

Encompassing OLS Regressions  

We also run the encompassing OLS regression for each of the implied volatility indices 

along with the lagged RV as follows:  

  

 (28) 

 

Table 5 gives the results.  The intercept coefficients,  , taken individually are all not 

significantly different from zero. The  coefficients of all implied volatilities are 

significantly different from zero, but the coefficients ( ) of past realised volatility are a lot 

smaller and in the VFTSE, GEV-IV and CW-IV cases  is not significantly different from 

zero.  This indicates that all implied volatilities have a much better explanatory power 

than the lagged realised volatility.  For the BS model, the coefficient of BS-IV is the 

smallest and the coefficient on the lagged RV is the biggest and statistically significant at 

90% confidence level.  Of all the IV regressions, the coefficient for the GEV IV is the 

highest.  This confirms that the GEV-IV model has the best explanatory power and the 

BS model has the worst.  But again the -test is rejected in all cases, which shows that 

all the estimations are biased.  The encompassing regressions show better DW test 

results with zero serial correlation for the error term than the simple regressions in Table 

5 Panel B.  

 

Table 5: Encompassing OLS regression estimation 
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  α     β   γ   
  

Adj.R
2
   

  F-test     DW  
(p-value) (p-value) (p-value) 

  [std error]     [std error]     [std error]     

(p-value)   

 (p 

-value)    

 

    

lnBm                     lnRVm=α+βlnBm+ γlnRV(m-1)+em 

lnVFTSEm   -0.118 0.934 0.120 

0.645 
101.628 1.847 

  (0.3642) (0.0000) (0.4253) 

    [0.0123]     [0.0191]     [0.0142]   (0.0000) (0.3057) 

  

  
  

    

lnBS-IVm   0.120 0.867 0.276 

0.625 
93.471 1.880 

  (0.5181) (0.0002) (0.0514) 

    [0.0175]     [0.0214]     [0.0132]   (0.0000) (0.3909) 

  

  
 

      

lnGEV-IVm   -0.131 0.953 0.044 

0.671 
114.300 1.823 

  (0.2718) (0.0000) (0.7492) 

    [0.0112]     [0.0159]     [0.0130]   (0.0000) (0.2571) 

  

  
  

    

lnCW-IVm   -0.138 0.925 0.113 

0.646 
102.109 1.871 

  (0.2807) (0.0000) (0.4528) 

    [0.0120]     [0.0187]     [0.0142]   (0.0000) (0.3729) 

  
   

      
The -test is the joint hypothesis of ,  and , and DW is the Durbin-Watson test. We 

provide the test statistics of these two tests and and their corresponding -values in brackets.  

 

As a robustness check, we apply the instrumental variable estimation suggested by 

Christensen and Prabhala (1998). This test accounts for Error-In-Variables problems in 

the implied volatility time series. We regress the implied volatility in the following 

regressions to obtain the instrumental variables for each of the four implied volatilties:  

   

  i=1…,4.  (29) 

 

We use the estimated log implied volatility in (29), , to replace the log 

implied volatility in equation (26).  The final results of the instrumental variable 

regressions are summarised in Table 6 (see Appendix, Table A.2 for the first stage of this 

regression).  Again, the estimation result for BS-IV is not efficient as the DW test is 

failed and there is significant bias from a non-zero intercept term.  Though the adjusted 

R
2 

 is now close for all the IV models, the GEV-IV gives the best results, and the CW-IV 
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comes second best also in terms of the DW and F tests.  

 

Table 6: The final result (second stage) for instrumental variable regression 

estimation 

 

  

  α     β   

  

Adj.R
2
   

  F-test     DW  
(p-value) (p-value) 

  [std error]     [std error]   
  (p-value)    (p -value)  

  

 lnB m   lnRVm=α+βlnB m +em 

lnVFTSEm   -0.099 1.082 

0.581 
153.317 1.769 

  (0.4984) (0.0000) 

   [0.0138]    [0.0083]   (0.0000) (0.1572) 

  

  

      

lnBS-IVm   0.307 1.280 

0.573 
148.742 1.597 

  (0.0919) (0.0000) 

   [0.0172]    [0.0100]   (0.0000) (0.0188) 

  

  
 

    

lnGEV-IVm   -0.139 0.995 

0.585 
155.959 1.804 

  (0.3272) (0.0000) 

   [0.0134]    [0.0076]   (0.0000) (0.2201) 

  

  

      

lnCW-IVm   -0.116 1.066 

0.583 
154.660 1.799 

  (0.4203) (0.0000) 

   [0.0137]    [0.0081]   (0.0000) (0.2106) 

  

   

    

The -test is the joint hypothesis of  and , and DW is the Durbin-Watson test. We provide 

the test statistics of these two tests and and their corresponding -values in brackets.  

 

In the final encompassing regression we have lnRV as the dependent variable and all constructed 

IVs independent variables, along with the lagged lnRVm-1.  Due to multi-collinearity, lnVFTSE 

is modelled with a lag.  The only two dependent variables that are significant at 10% confidence 

level are lnGEV-IV and ln CW-IV with the  coefficient on lnGEV-IV being 0.78 and 

dominating the one for the lnCW-IV at 0.508.  The composite regression gives a marked 

improvement in R
2
 and appears to be both efficient and unbiased with regard to the coefficients.  

The joint F test for the null hypothesis that the sum of beta coefficiants equals 1 and the constant 

equals 0 cannot be rejected.    

 

Table 7: The final multiple variable encompassing regression  
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    lnRV   

 lnVFTSEm-1   0.035   

  [0.864)   

  (0.201)   

 lnBS-IVm   0.105   

 [0.861]   

 (0.596)   

 lnGEV-IVm   0.781   

  [0.094]   

  (0.455)+   

 lnCW-IVm   0.508   

  [ 0.090]   

  (0.292)+   

 lnRVm-1   -0.149   

  [0.344]   

  (0.155)   

Constant 0.505   

  [ 0.044]   

  (0.243)*   

R-squared 0.9152   

Standard errors in brackets [  ] and p values (  )     

+ significant at 10%; * significant at 5%     

Joint Test     

Null Hypothesis: Sum Beta's=1 and alpha=0      

(We do not reject the Null hypothesis)     

F( 2,    38)  2.17   

Prob > F  0.1282   

Tests show there is NO SERIAL CORRELATION     

Durbin-Watson Statistic 1.135987   

Durbin's Alternative Test (p-value) 0.4611   

Breusch-Godfrey LM test (p-value) 0.425   

 

 

5.4.2  Estimation with Sub-periods 

We divide the whole sample period into three sub-periods. The first one is from 4 January 

2000 to 30 April 2003.  This period accounts for the recession in the early 2000s and the 
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average realized volatility was 21.27%.  The second one is from 1st May 2003 to 30th 

June 2007.  In this period, the market recovers and shows characteristics of a boom 

economy and an average realized volatility of 10.85% . The third period is from 1st July 

2007 to 1st June 2009.  This period covers the recent subprime crisis when the market 

experienced extreme negative movements and the average realized volatility was 29.05%. 

 

Table 8: The basic OLS regression estimation for three sub-periods 

  

  α     β   

  

Adj.R
2
   

  

F-Statistic   
  DW  

(p-value) (p-value) 

  [std error]     [std error]   
  (p-value)    (p -value)  

  

  lnRVm=α+βlnBm+ em 

lnBm Panel A: 4 January 2000 - 30 April 2003, 39 Observations 

lnRVm-1   -0.746 0.542 

0.276 
15.123 1.945 

  (0.003) (0.000) 

    [0.0378]     [0.0226]   (0.0004) (0.6578) 

lnVFTSEm-1   -0.426 0.857 

0.351 
21.048 1.782 

  (0.120) (0.000) 

    [0.0433]     [0.0303]   (0.0001) (0.3231) 

lnBS-IVm   -0.038 1.059 

0.282 

15.513 1.568 

  (0.9257) (0.0004) (0.0001) (0.0925) 

    [0.0660]     [0.0436]       

lnGEV-IVm   -0.369 0.847 

0.384 

24.063 1.830 

  (0.166) (0.0000) (0.0000) (0.40217) 

    [0.0424]     [0.0280]       

lnCW-IVm   -0.420 0.851 

0.357 

21.539 1.797 

  (0.1216) (0.0000)     

    [0.0430]     [0.0297]   (0.0000) (0.3481) 

  

  

      

lnBm   Panel B: 1 May 2003 - 31 June 2007, 50 Observations 

lnRVm-1   -1.547 0.326 
0.097 6.173 2.103 

  (0.000) (0.0166) 
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    [0.0432]     [0.0188]   (0.017) (0.869) 

  

  

      

lnVFTSEm-1   -1.001 0.660 

0.211 
13.804 2.079 

  (0.0062) (0.0005) 

    [0.0499]     [0.0254]   (0.001) (0.978) 

lnBS-IVm   -0.844 0.733 

0.179 

11.458 1.933 

  (0.055) (0.0014) 
 

  

    [0.0613]     [0.0309]   (0.001) (0.613) 

lnGEV-IVm   -0.978 0.627 

0.289 

20.597 2.186 

  (0.0016) (0.000)     

    [0.0416]     [0.0197]   (0.000) (0.675) 

lnCW-IVm   -1.039 0.636 

0.199 

12.931 2.067 

  (0.0047) (0.0008)     

    [0.0500]     [0.0253]   (0.001) (0.995) 

  

  
 

    

  Panel C: 1 July 2007 - 1 June 2009, 24 Observations 

lnRVm-1   -0.656 0.515 

0.227 
7.171 1.802 

  (0.023) (0.0145) 

    [0.0567]     [0.0410]   (0.015) (0.393) 

lnVFTSEm-1   -0.302 0.821 

0.313 
10.587 1.417 

  (0.3666) (0.004) 

    [0.0696]     [0.0538]   (0.004) (0.058) 

lnBS-IVm   -0.135 0.870 

0.241 

7.680 1.414 

  (0.763) (0.012)   
 

    [0.0939]     [0.0670]   (0.012) (0.055) 

lnGEV-IVm   -0.264 0.813 

0.339 

11.791 1.434 

  (0.4192) (0.0026)     

    [0.0683]     [0.0505]   (0.003) (0.064) 

lnCW-IVm   -0.353 0.789 

0.316 

10.696 1.458 

  (0.267) (0.0038)     

    [0.0660]     [0.0515]   (0.004) (0.074) 

  

  

      

The F-Statistic for the test of the joint hypothesis of  and , and DW is the Durbin-Watson test. 

We provide their corresponding -values in brackets.  
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Table 8 gives the OLS regression results for the three periods.  It shows that the results 

for the three periods are consistent with the whole sample period estimation and the 

GEV-IV gives the highest adjusted , followed by CW-IV except for the period of low 

volatility (Panel B in Table 8).  The latter is telling as the CW-IV is inflexibly 

„hard-wired‟ to extrapolate using the 8 times average volatility rule into the extreme 

volatility surface and hence will not have sufficient flexibility to reflect regime switches.  

The DW statistics for the last sample period are quite low for all implied volatilities.  

This is due to the limited observations for the last sample period.  In conclusion, Table 8  

implies that in both bull and bear markets, the GEV implied volatility can forecast future 

realised volatility better than other implied volatilities.
22

 

 

6. Conclusion 

The period marking the run up to the 2007 financial crisis had very low volatility of stock 

market index returns, while the 2007-2009 period encompassed extreme tail events which 

have been difficult to model using Gaussian models.  The clear message from the paper, 

is that to cope with the stochastic, time varying and extreme movements in the realized 

volatility of stock returns, implied volatility models, which purport to be the expected 

value of realized volatility under a risk neutral Q-measure, have to incorporate 

information from the tails of the risk neutral density function of option pricing models. 

This paper has higlighted fundamental problems in extant methods in modelling implied 

volatility that can flexibly incorporate traded option implied market expectations of 

extreme returns volatility.          

 

The industry standard CBOE model free method based on observable option prices for 

constructing implied volatilities, MFIV, runs into problems first highlighted by Jian and 

Tian (2005, 2007).  The downward bias of MFIV during periods of high realized 

volatility is of particualr concern.  Further, the reliance on deep out of the money 

options to model tail behaviour is compounded by VIX White paper truncation rule that 

                                                      
22

The encompassing regressions and instrumental variable regressions for sub-periods also give similar 

results. 
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has aptly been termed „incoherent‟ by Andersen  et. al. (2011).  It is somewhat 

arbitrary as to how much of tail behaviour is captured on a certain day (see, footnote 8 ).   

 

A recent sophisticated approach towards capturing the time-variation in implied volatility 

has been to directly involve the time variation in the shape of the tails of the risk neutral 

density function.  This was proposed by Figelwski (2010) where he fits a GEV tail to 

replace extrapolations of the kind described above.  Bollerslev and Todorov (2011), 

specifically in the context of estimating P and Q measure volatility during the recent 

period of extreme volatility spikes, have recommended the use the Generalized Pareto 

Distribution to model jump tail events.  The main contribution of this paper is to 

develop an implied volatility index derived from a closed form option pricing model for a 

GEV based risk neutral density function developed by Markose and Alentorn (2011). 

This paper was the first to show how a fixed horizon traded option implied GEV tail 

shape parameter can be obtained to flexibly capture expected market conditions that 

reflect Fréchet, Gumbel or reverse Weibull RND and hence implied higher moments for 

the equity returns.  In particular, the GEV-IV model given in equation (22) dispenses 

with the need for extrapolations and interpolations that feature in most extant model free 

and semi-parametric Q-measure volatility models in order for them to capture extreme 

tail movements.  There is also remarkable economy in the GEV-IV modelling which is 

based on 3 parameters  (respectively, the GEV tail shape parameter, the 

annualized GEV scale parameter and the time scaling or term structure parameter) backed 

out in from the function in (20) minimizing sum of squared errors between the traded 

option prices and the GEV closed form call and put option prices given in (14) and (15).                 

 

In all Q-measure estimates of volatility where a fixed horizon (30 days for VIX/VFTSE) 

is required and option maturity effects have to be removed, the square root to time scaling 

of volatility is assumed as implied variance is linearly interpolated between two adjacent 

maturities for options. As this reflects Guassian asumptions, it is not in keeping with 

recent attempts to incorporate non-Gaussian fat tailed behaviour of stock returns.
23

 We 

                                                      
23

 Note, in Markose and Alentorn (2011) the square root law for time scaling was assumed and the full 

non-Gaussian time scaling implied from traded options of all available maturities derived here was not used.     
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have argued that time scaling exponents for volatility can themselves be backed out of 

option pricing data and abrupt decreases in this parameter signal increased volatility as 

has been noted in Calvet and Fisher (2008). We have incorporated this non-Guassian 

implied time scaling parameter in the derivation of the GEV-IV model in equations (21) 

and (22).               

 

We analyse data on the FTSE-100 and its model free VFTSE volatility index from 

January 2000 to June 2009. This period incorporates both extremely low and high 

volatilties and provides an ideal test bed to see the the efficacy of differently constructed 

IV indexes to forecast realized volatility.  We retain the CBOE framework as closely as 

possible and apply cubic spline interpolations and extrapolations in the Black (1976) 

implied volatility space as in Carr and Wu (2009) and Jiang and Tian (2007) to address 

the well known problems in the CBOE MFIV methodology. The Carr and Wu (2009) 

rule of 8 times average implied volatilities obtained from observed (and reliable) traded 

option prices appears to be robust in capturing extreme high volatility and performs better 

than the VFTSE with the exception of the sub-period (1 May 2003 - 31 June 2007) of very 

low volatility.  Quite comprehensively, the results show that the GEV-IV gives the best 

explanatory power for predicting future realised volatility for both whole data sample 

periods and sub-sample periods which include both boom and bust market conditons.  In 

low volatility periods, GEV-IV gave the least values of the four IV measures we 

compared, while GEV-IV was best capable of matching the extreme highs of realized 

volatilty (see, Table 2 and Figure 3).  The VFTSE came third after the GEV-IV and 

CW-IV and only these two IV measures remained statistically significant in the 

encompassing regression equation with all other contenders (see, Table 7).  The 

standard BS–IV simply does not have the capacity to track the extreme realized volatility 

and lagged realized volatility also does not fare well.      

 

In conclusion, the recent financial crisis has shown the inadequacy of extant risk neutral 

pricing models to flexibly reflect to extreme market sentiments impounded in traded 

options in terms of implied volatility and higher implied moments of stock returns.  Our 

findings raise a number of issues for future research related to the use and construction 
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of implied volatility measures.  The square root of time scaling widely used in model 

free and parametric IV models does not sit well with the recent proposed uses of extreme 

value theory in this area.  The use of a time varying implied scaling law for time to 

maturity backed out from traded options in the style of Calvet and Fisher (2008) needs 

further investigation than was feasible here.  It is our view that the traded option implied 

switches of the GEV tail shape parameter to about 0.1 and less than -0.3 are both key to 

the capacity of the GEV-IV model to capture extreme Q-measure volatility.  Finally, it 

is well known that flawed Q-measure equity return volatility contributes to inaccuracies 

in the volatility risk premia and the pricing of volatility derivatives.  Future research will 

investigate the volatility risk premia obtained from GEV-IV and compare this with those 

obtained by other IV models including the industry standard ones and others that 

explicitly model tail jumps.           
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Appendix  

  

 

Table A.1: Yearly Average Prices for FTSE-100 Index Options For Different 

Moneyness Categories And For Nearest (1
st
) and Second Nearest (2

nd
) Maturities 

( Number of observations in brackets) 

 

    
                                                

 Panel A: Call option prices 
  

Period   

  

Maturity    

    OTM    ATM     ITM  

         

  

                       

  

2000   

  1st       4.25   (1769)    30.36   (1024)    88.20    (972)   189.32    (906)   322.38    (862)   1375.53   (9942)  

     2nd       11.30   (2367)    72.70    (687)   147.61    (656)   250.77    (616)   374.90    (583)   1372.35   (6624)  

 2001     1st       4.63   (1959)    31.05    (897)    80.85    (860)   169.29    (802)   286.32    (758)   1104.41   (7755)  
     2nd       10.64   (2301)    67.03    (626)   131.71    (577)   220.58    (551)   329.13    (524)   1106.18   (5262)  

 2002     1st       5.95   (2159)    38.19    (756)    83.38    (696)   157.81    (666)   253.57    (627)   1040.58   (7639)  

     2nd       12.24    (2430)    75.71    (508)   132.10    (472)   207.21    (440)   297.02    (435)   1059.12   (5213)  

 2003     1st       3.24   (1427)    21.01    (674)    55.12    (642)   119.19    (599)   205.84    (567)    918.25   (6979)  

     2nd       7.36   (1777)    46.50    (464)    91.73    (435)   157.57    (408)   236.82    (378)    871.04   (4429)  

 2004     1st       0.85   (457)     4.33    (713)    27.53    (723)    98.58    (669)   205.80    (645)    881.07   (6434)  
     2nd       1.61    (675)    12.67    (524)    49.83    (487)   123.58    (455)   223.29    (437)    892.36   (4397)  

 2005     1st       0.63    (178)     2.30    (691)    21.13    (821)   101.30    (774)   229.25    (737)   1006.12   (7353)  

     2nd       0.97    (445)     7.05    (587)    39.27    (572)   121.91    (528)   240.29    (509)   1011.46   (5114)  

 2006     1st       1.18    (463)     6.59    (905)    39.47    (935)   134.33    (878)   272.60    (835)   1083.84   (7644)  

     2nd       2.18    (925)    18.32    (691)    68.83    (649)   166.32    (613)   293.49    (571)   1061.18   (5152)  

 2007     1st       2.81   (1194)    16.07   (1212)    63.48   (1280)   169.67   (1208)   313.37   (1038)   1157.52   (7916)  
     2nd       5.23   (1451)    37.43    (810)   104.08    (787)   212.50    (724)   347.35    (650)   1180.89   (5141)  

 2008     1st       9.43   (3106)    58.48   (1132)   117.37   (1288)   203.00   (1253)   310.73   (1017)    854.51   (4687)  

     2nd       21.16   (2698)   107.33    (628)   179.07    (594)   270.05    (574)   373.13    (527)    888.35   (2918)  

 2009     1st       8.19   (1618)    42.33    (630)    86.62    (784)   149.31    (766)   232.18    (558)    669.93   (2827)  

   2nd       19.96   (1370)    81.46    (379)   135.68    (361)   202.23    (317)   278.74    (280)    684.39   (1745)  

                             
                                               

 Panel B: Put option prices 

  

Period   

  

Maturity   

    ITM    ATM     OTM  

         

  

                       

  

2000   

  1st     1303.25   (8827)   331.19   (1026)   186.01    (972)    96.89    (906)    50.31    (862)     7.54   (5685)  
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     2nd     1296.89   (5910)   373.17    (687)   246.27    (656)   159.21    (616)   103.20    (583)     19.03   (5718)  

 2001     1st     1354.76   (9897)   294.75    (901)   166.95    (860)    88.56    (802)    48.24    (758)     9.27   (4942)  
     2nd     1256.49   (6112)   328.18    (626)   216.12    (577)   140.77    (551)    91.39    (524)     19.18   (4750)  

 2002     1st     1158.76   (8545)   255.44    (757)   153.91    (696)    91.42    (666)    56.62    (627)     10.99   (5223)  

     2nd     1102.85   (5390)   292.37    (508)   202.66    (472)   142.08    (440)   101.46    (435)     22.98   (4575)  

 2003     1st     838.23   (5897)   212.59    (675)   117.39    (642)    60.57    (599)    32.75    (567)     5.51   (4150)  

     2nd     836.03   (4020)   237.02    (464)   153.63    (435)    99.20    (408)    66.02    (378)     13.24   (4028)  

 2004     1st     626.59   (3494)   217.66    (765)    96.63    (723)    33.27    (669)    13.07    (645)     2.55   (3596)  
     2nd     632.57   (2380)   227.59    (524)   119.57    (487)    58.91    (455)    30.49    (437)     6.12   (3396)  

 2005     1st     589.88   (2717)   245.16    (859)   101.32    (821)    27.22    (774)     8.67    (737)     1.79   (2914)  

     2nd     606.83   (2003)   249.72    (590)   118.90    (572)    47.73    (528)    20.57    (509)     3.60   (3168)  

 2006     1st     640.10   (2683)   286.40   (1000)   130.33    (935)    48.58    (878)    19.45    (835)     3.26   (3279)  

     2nd     633.15   (1823)   297.46    (691)   159.94    (649)    80.62    (613)    41.66    (571)     7.15   (3796)  

 2007     1st     722.09   (3358)   318.06   (1271)   161.54   (1280)    78.06   (1208)    40.80   (1038)     8.05   (4710)  
     2nd     728.49   (2105)   338.32    (810)   201.14    (787)   121.07    (724)    75.19    (650)     17.62   (4038)  

 2008     1st     1089.11   (6863)   308.81   (1135)   195.96   (1288)   126.18   (1253)    82.41   (1017)     25.94   (4060)  

     2nd     1018.22   (3988)   352.19    (628)   255.17    (594)   186.02    (574)   137.23    (527)     49.33   (2893)  

 2009     1st     1069.71   (3099)   251.36    (487)   165.20    (763)   106.27    (790)    67.51    (634)     17.59   (3126)  

   2nd     1144.94   (2011)   307.33    (288)   227.77    (333)   166.79    (317)   122.95    (316)     40.42   (2206)  

                             

   

 This table gives the average prices and the corresponding number of observations in brackets with FTSE 100 call and put 

options for the nearby (1st) and the second nearby (2nd) maturities. We divide the option prices into six categories based on the value 

of  (see see Bakshi, Cao, and Chen (1997)). For call options, it is out-of-money (OTM) when  and far out-of-money when 

; it is at-the-money (ATM) when ; it is in-the-money (ITM) when  and deep in-the-money when 

. Vice versa for the put options.  

 

 
 

Table A.2: The first stage for instrumental variable regression estimation 
     

                   

                                 

   
  F-test     DW  

   [std]     

( -value)    

  [std]     

( -value)    

  [std]     

( -value)    

    

( -value)   

  (  

-value)   

       

  

   

  

-0.1515   

  

(0.0022)   

  0.3870     

(0.0000)   

  0.4547     

(0.0000)   

  

0.9083   

  

545.8256   

  1.8780  

   

[0.0046]   

    

[0.0046]   

    

[0.0034]   

      

(0.0000)   

  

(0.3976)  

      

-0.2407   

  

(0.0000)   

  0.5188     

(0.0000)   

  0.3086     

(0.0000)   

  

0.9288   

  

718.8800   

  1.9310  

   

[0.0042]   

    

[0.0039]   

    

[0.0024]   

      

(0.0000)   

  

(0.5650)  

      
-0.1528   

  
(0.0087)   

  0.3743     
(0.0000)   

  0.4995     
(0.0000)   

  
0.8876   

  
435.5328   

  2.1059  

   

[0.0054]   

    

[0.0053]   

    

[0.0044]   

      

(0.0000)   

  

(0.7127)  

      
-0.1516   

  
(0.0033)   

  0.3612     
(0.0000)   

  0.4800     
(0.0000)   

  
0.9018   

  
505.8124   

  1.9611  

   

[0.0048]   

    

[0.0048]   

    

[0.0036]   

      

(0.0000)   

  

(0.6881)  

                   

  

  

 The column of  gives the -value of the null hypothesis of , the column of  gives the -value of 

the null hypothesis of . The -test is the joint hypothesis of  and , and DW is the Durbin-Watson test. We 

provide the test statistics of these two tests and and their corresponding -values in brackets.  
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