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Abstract 
We study the formation of social networks that are based on local interaction and 
simple rule following. Agents evaluate the profitability of link formation on the basis 
of the Myerson-Shapley principle that payoffs come from the marginal contribution   
they make to coalitions.  The NP-hard problem associated with the Myerson-Shapley 
value is replaced by a boundedly rational ‘spatially’ myopic process.  Agents consider 
payoffs from direct links with their neighbours (level 1) which can include indirect 
payoffs from neighbours’ neighbours (level 2) and up to M-levels that are far from 
global.  Agents dynamically break away from the neighbour to whom they make the 
least marginal contribution. Computational experiments show that when this self-
interested process of link formation operates at level 2 neighbourhoods, agents self-
organize into stable and efficient network structures that manifest reciprocity, equity 
and segregation reminiscent of hunter gather groups.  A large literature alleges that 
this is incompatible with self-interested behaviour and market oriented marginality 
principle in the allocation of value. We conclude that it is not this valuation principle 
that needs to be altered to obtain segregated social networks as opposed to global 
components, but whether it operates at level 1 or level 2 of social neighbourhoods.  
Remarkably, all M>2 neighbourhood calculations for payoffs leave the efficient 
network structures identical to the case when M=2.   
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1. Introduction  
The importance of social networks in economics has been emphasised in the recent 

economics literature. The idea that people interact through specific links rather than 

solely through anonymous market mechanisms is one which has been inherited from 

the literature in other fields, particularly sociology. In standard economic models 

consideration of inter-relational network structures for economic outcomes has been 

regarded as irrelevant since a central coordinating device achieved the necessary 

coordination. 1 The intrinsic difficulties with this approach have been avoided by 

resorting to an extreme version of methodological individualism. This  “representative 

agent approach” holds that aggregate economic activity can be described as the 

behaviour of  some “average individual” and thus denies the importance of any direct 

interaction between individuals. This vision has been widely criticised, (see e.g. 

Kirman (1992)) and more recently a considerable literature on economic networks 

and the importance of local interaction has developed, (for an excellent survey see 

Jackson (2005)).  We will review below the strands of literature on social networks 

that have a bearing on the objectives of the paper and the computational experiments 

that we design for this.  

Although the nature of links is often left at an abstract level, in reality they 

may  involve genealogy, kinship, friendship, trade (barter, supply chains, credit and 

inter bank relationships), traffic, disease (genetic or infectious), criminality, political 

or interest based alliances, communication, information and knowledge transfer  

(scientific collaboration, co-authorship) and so on.  Each of these interactions, some 

of which may be voluntary and some involuntary, can lead to different types of 

network structure.  Some socio-economic network structures are characterised by 

intimate social groupings or clusters that manifest principles of reciprocity, equity and 

punishment by ostracism. Such structures have dominated long periods of human 
                                                           
1 In the Arrow-Debreu  general equilibrium framework, though heterogeneous consumers and 
producers are possible,  no coordination through local  interaction is necessary because of  the 
existence of  equilibrium prices via a centralized Walrasian price setting process.  A recent critique of 
this problem in Markose (2005) and Axtell (2005) argues that the original rationale that the existence 
of the Walrasian equilibrium prices can achieve Pareto efficiency solely from self-interested behaviour 
and without central command is an example of the invisible hand argument or self-organization is not 
entirely valid.  The Axtell (2005) view is that as Walrasian price determination is NP-hard, it is 
unlikely to be an invisible hand or self-organizing process.  There is a strong assumption that self-
organizing processes that resort to simple or adaptive local calculations have arisen precisely to avoid 
NP-hard calculations or those that are non-computable.    
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evolution associated with the hunter gather stage as well as in non-market 

interrelationships (see, Kranton (1996), Bowles and Gintis (2000, a,b)).  These 

clusters are, paradoxically, still found even on large freely accessible markets such as 

commodity exchanges, Aboulafia (1997), or on large wholesale markets, Weisbuch et. 

al. (2000).  These structures are very different from the large social networks which 

involve looser social connections such as those found in information and 

communication networks.  It has also been argued that much of the coordination of 

aggregate economic activity depends on “cooperation with strangers”, Seabright 

(2004).  Between these two views falls the “small worlds” model of Watts and 

Strogatz (1998), Watts (1999) and Albert and Barabási (2002).2  In that perspective 

dense local clusters are linked through some long connections. The latter decrease the 

distance between any two individuals whilst retaining the essentially local nature of 

groups.   However,  small world networks are characterised by so-called “scale free” 

or power law distribution in terms of connections (in-degrees) and payoffs to some 

individual nodes, (see Barabási and Albert (1999)), which make them structurally 

different from the more balanced or egalitarian in-degree distribution found in close 

society networks.3  Methodologically, it has been the study of scale free networks, 

especially in the context of the www, that has stimulated the use of computer 

simulation models and the analysis of self-organization in network structures based on 

low rationality models of link formation.4  While there is a close conceptual link with 

what economists originally called the ‘invisible hand’ process, self-organization today 

refers to a much wider category of phenomena than those associated with the 

Walrasian model. These involve situations, where coherent patterns of network 

structures or other globally identifiable regularity can be seen to emerge without 

                                                                                                                                                                      
 
2  This is named after the work of the sociologist Stanley Milgram (1967)  on the six degrees of 
separation or that everybody is linked to every body  else in a communication type network by no more 
that six indirect links 
3 With the concept of the ‘small world’ network now firmly attached to the description of  large 
networks with highly skewed in-degrees, we will use the term ‘close society’, with no derogatory 
implication, to refer to the more intimate segregated social networks with balanced in-degrees. 
4 Barabasi and Albert (1999) have shown that a constantly increasing population and preferential 
attachment are sufficient conditions for generating stationary scale free networks with power law 
skewed in-degree distribution.  The mechanical  nature of process involved in producing the final  
network structures in these studies have also extended to sophisticated schemes such as the assignment 
of weights to network formation (Yook et. al. 2001) and assortative mixing in networks when high 
degree nodes attach to high degree nodes (see, Newman (2002) and Newman and Park (2000)).  
Economists, in contrast, have attempted to give more behavioural foundations for the social network 
formation process.   
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central direction and solely as a result of rule following by agents who interact locally 

without full system wide knowledge of its structure and components (see, Markose, 

2005, for a recent critique).   We subscribe to the necessity for analysing self-

organization in networks and the use of computer simulations from this strand of the 

literature on large social networks.  We will, however, seek more intentionality and a 

less mechanistic process behind the link formation process.          

The underlying idea for all the analysis on social networks is that the 

individuals involved stand to gain from being connected. Yet the major question as to 

how these networks evolve has to be answered. There has been extensive theoretical 

and empirical work done by sociologists, anthropologists, neuro-physiologists, 

psychologists, physicists, mathematicians and economists to uncover the socio-

economic behavioural, neuro-cognitive and mathematical rules that govern and 

sustain social network structures.   However, to date, there is no model of social 

networks that gives a mathematical, dynamical or behavioural process that can 

account for the observed topological and social value related characteristics of both 

small group network dynamics and more anonymous large communications network.    

We will draw on an early literature that combined theories of neuro-cognition 

with social anthropology which gave rise to the so called social brain hypothesis (see, 

Dunbar,1998, 1993).  There it is postulated that the coevolutionary growth of the 

human neo cortex and its capacity to process social information places constraints on 

the number of close associates individuals can have and this implies that there is a 

clear relation between the numbers of links individuals have at different social 

distances, Zhou  et. al.(2004).  An important aspect of the social brain hypothesis, 

which we take into account, is the significance of what is called the level 1 support 

clique to an individual.  Hence, when an individual considers his position vis-à-vis his 

level 1, or immediate neighbours, he has to also consider their support clique, that is, 

individuals who are at distance 2 from himself.  This is what will be referred to as the 

individual’s level 2 neighbourhood.  It will be seen that what is critical about the 

identity and stability of intimate social groups is whether self-interested relational 

calculations made by individuals operate at level 1 or level 2 and above.  That is, if all 

agents consider their neighbourhoods to be of level 2 or more, then any agent relating 

to his direct neighbour will have to be concerned also about his indirect impact on his 

neighbours’ neighbours up to a minimum of 3 or more levels from himself. 

Remarkably, as we will see no more than level 2 neighbourhood calculations of 
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‘payoffs’ to each agent from direct neighbours  are required to achieve the social 

values and network structures associated with intimate social groupings.  In contrast, 

an analysis which restricts dealings to level 1, viz. direct neighbours’ reactions will 

generate network structures that can incorporate large global components but with 

looser connections.   This inverse relationship between intimacy and group size is, 

therefore, an issue of the cognitive costs behind social relational links.  This is in 

keeping with the idea that individuals reflecting on the reactions of other individuals 

to whom they are only distantly linked is a move towards the complete game 

theorising which as Binmore (1990) and others have shown poses logical as well as 

calculability problems (see Axtell (2005)). 

We will now discuss which class of payoff function is appropriate to explain 

the dynamic behind social network formation that can produce both large components 

and segregated clusters.   In this and in the design of the model behind the 

computational experiments on the dynamic behind social network formation, we face 

a conundrum that is prominent in the extant economics literature on social networks.  

A large well established literature appears to argue that the principles of equity and 

reciprocity observed in close societies which manifest ‘other regarding’ preferences 

and cooperation are fundamentally different and often in conflict  

( ‘strong’ dichotomy hypothesis) with those based on self-interest. In the latter 

payoffs are based on individual marginal calculations which are found in large global 

networks involving impersonal market oriented interactions. The basic argument here 

made influential by Olson (1965) and also from discussions on the one shot n-person 

Prisoner’s Dilemma models starting with Hardin (1971, 1982)5  is that, in the absence 

of coercion, self-regarding individuals, except in small intimate groups, cannot be 

made to perform cooperative and other regarding activities even if they perceive these 

to be beneficial to themselves in the longer term.  This contrasts with the development 

of the social networks literature (see, Durlauf and Young (2001)) which challenges 

the primacy in economics of models based on individual rationality which ignore the 

impact of social networks on choices made by individuals.6  Likewise, a large 

experimental economics literature, which we do not deal with here, attempts to see the 
                                                           
5 See, Ostrom (2000) for a survey.   
6 Durlauf and Young (2001) consolidate and extend the view that methodological individualism cannot 
explain socio-economic problems such as the perpetuation of low aspirations and poverty  while  
‘group think’ or mimetic conformity influenced by local interactions in the social  networks is a better 
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extent to which self and other regarding values ‘inform’ behaviour and choices of 

people from different cultures under controlled conditions.7   

A part of the literature that is relevant to us seeks to explain ‘deeper’ roots for 

the dynamic behind how equity and reciprocity in the context of group formation can 

become norms among selfish individuals. A number of theoretical models use 

evolutionary game theory which either postulate natural selection of carriers of the 

cooperative  ‘gene’, viz. a gene based model (see, Bergstrom (1995) or a culture  

based  model on the evolution of cooperation as in repeated Prisoner’s Dilemma, 

Axelrod  (1984).   The latter is seminal in that it gave the first demonstration of how 

self-regarding behaviour can ‘morph’ into other regarding behaviour.   Thus, it is not 

surprising that in the few papers, for example, Haag and Lagunoff (2005) and Bowles 

and Gintis (2000,a), that use local interaction network models to understand the 

dynamic behind close society values of reciprocity, equity (within the group) and 

exclusivity or segregation, have done so within the context of  the pay off/incentive 

function implied by the repeated Prisoner’s Dilemma.  In contrast to this, in the 

axiomatic framework of the Shapley value in cooperative game theory, Shapley 

(1953), a certain concept of equity is shown to be consistent with the allocation of 

value or payoffs to a player in terms of his marginal contribution in the context of 

group formation.  There is also a somewhat looser literature which has recently 

revived insights from as far back as Adam Smith (see, Ashraf et. al. (2005)) that there 

is no inconsistency between the self-regarding wealth creating activities in markets 

and precepts of civil society which are manifestly socially orientated.  Ashraf et. al. 

(2005) emphasize the Adam Smith view that a spontaneous or invisible hand process 

arising from cultural reinforcement results in other regarding values of civility that 

include fairness and trust which become an innate or deontic virtue that individuals in 

such cultures will follow without external compulsion.  These two ideas are pivotal to 

our inquiry.  Thus, as noted by Winter ( 2002 ) what is most appealing in the payoff 

function of the Shapley value is that it is a “ synonym for the principle of marginal 

                                                                                                                                                                      
explanation for individuals who turn their back on better opportunities for themselves.  Akerlof (1987) 
gives a good introduction to these issues. 
7 These experiments began with the classic one designed by  Roth et. al.  (1991), followed by other 
influential papers by Rabin (1993) and Fehr and Gächter (2000).  Within the context of the set piece of 
games such as the ultimatum game, it was found that participants from market societies as opposed to 
more tribal ones showed as much or greater willingness for equitable allocations (see, Henrich et. al. 
2004).  This can be viewed as evidence against the ‘strong’ dichotomy hypothesis.   
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contribution – a time-honoured principle in economic theory” of markets . 8  It is 

interesting to see which social network systems will self-organize if all players 

attempt to maximize their Shapley style payoffs by choosing appropriate neighbours 

within a local interaction framework.  In particular, can the formation of network 

structures with characteristics of close society values be engendered by self-interested 

behaviour and payoff/value functions based on the marginality principle ? 

The rest of the paper is organized as follows. Section 2.1 first sets up the 

rationale for a spatio-socially myopic implementation of the payoff function based on 

the principle of marginal contribution in the network oriented framework of Myerson 

(1977). Section 2.2 gives the mathematical prerequisites on the use of graph theory in 

social network modelling and also introduces the notion of neighbourhood 

components which defines the nature of local interactions.  Section 3.1 gives the 

analytical framework for a boundedly rational implementation for the Myerson-

Shapley value for networks in a dynamic setting.  The definition of a stable and 

efficient network is developed along the lines of neighbourhood stability. The results 

from the simulations are given in Section 3.2.  The concluding section summarizes the 

results and discusses future work.    

2 Spatially Myopic Implementation of Myerson-Shapley Style 
Payoffs in Social Networks: Network Theory and Neighbourhoods  
2.1 Payoff Functions and Social Network Dynamics  

Any dynamical process considered so far in the cooperative game theory framework 

of network formation potentially has had to contend with the computational problem 

that the Shapley value depends on an NP- hard problem of working out, ex ante, 

players’ contribution to all possible 2N-1 coalitions. 9 Nevertheless, it is not unfair to 

say that network game theory started with the Myerson (1977) extension of the 

Shapley value, referred to as the Myerson-Shapley value, wherein each player’s 

                                                           
8 Young (1985 ) raised the important issue on  how far a deviation from the Shapley value is feasible if 
the principle that agent’s payoffs are based on their marginal contributions is not abandoned.  The 
answer appears to be not a lot.  
9 A problem is computationally intractable if it only has exponential time algorithms that have 
computation times that vary exponentially with the problem size (given by an integer N), for example, 
rN, for some r >1.  A polynomial (P) time algorithm is said to be tractable if its computation time varies 
proportional to the problem size raised to some integer power, d, as in Nd.  Exponential functions grow 
strictly faster than polynomial ones.  The significance of P-class problems is that they coincide with 
those that can be realistically solved by computers or economic agents.   Deng and Papadimitriou 
(1994) were among the first to discuss the NP-hard problem when payoff functions are in general 
defined by 2N coalitional values.  In special cases, as we will also see, such as when agents consider 
payoffs only from direct level 1 neighbours, the Shapley value can be easily computed.   
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marginal contribution is not just a function of the members of the coalition but also 

the communication network structure involving these members.  Myerson (1977) 

assumes a framework of undirected graphs where a link formation requires the mutual 

agreement of both the players on the premise that a link can be formed only if there is 

equitable division of the payoffs.10   In the models that followed from Aumann and 

Myerson (1988) where non-cooperative dynamic  processes have been modelled to 

see if the Myerson–Shapley value will be obtained,  bilateral bargaining and 

behavioural norms  based on equity are introduced apriori  rather than shown to be 

the consequence of self-regarding behaviour guiding the choice of  optimal coalition.  

          In general, if we consider the theoretical literature on network formation, it 

typically assumes that there is a value for any individual of a given network.11 When 

contemplating the creation or severing of a link, the individual involved can calculate 

the change in his pay-off which follows. To do this, he has to know the mapping from 

all network structures to individual pay-offs. This is already a strong assumption. It is 

that adopted by Jackson and Watts (2002) for example.  In this framework one tries to 

find equilibrium situations in which no individual has any incentive to change the 

links in which he is involved. One might want to go further and ask how one arrives at 

such an equilibrium. The procedure generally adopted, (see Bala and Goyal (2000)) is 

to consider a protocol which determines in which order each player appears and 

makes a proposition or forms links. This is important as a simplifying device but is 

somewhat artificial.  Furthermore, it leaves open the horizon of the individuals. When 

making propositions, how many reactions in the future can they anticipate?  

We shall take a different line on both of these points. First, as we have argued, 

given the significance of market oriented individualistic determination of value, we 
                                                           
10  Myerson (1977) argues for the condition of equity, symmetry or fairness to hold in an apriori  
fashion: ….“ Unequal allocations … would seem unfair and therefore unlikely to most observers.  If 
players have an extra-utilitarian ethic against being exploited or taken advantage of in the cooperation 
process, then equal gains split must be the most likely outcome for this game.  Certainly, we would 
expect an impartial arbitrator to suggest  an equal split based on considerations of symmetry or equity”.     
11 Apart from the payoff frameworks of Prisoner’s Dilemma and the Myerson-Shapley value that have 
been used in social network models, the payoff functions that have become well known are those that 
have given rise to two main classes of network models developed by  Jackson and Wolinsky (1996).  In 
both models, agents benefit from their direct connections but in the first, often called friendship model,  
indirect connections generate positive externalities, while in the second,  they generate negative 
externalities.   The latter, often referred to as the Jackson -Wolinksy coauthorship model, is now 
recognized to be flawed.  This is because in the real world coauthorship networks, in various subject 
fields such as bio-medicine, physics, and mathematics, show little evidence of what is implied in the 
Jackson-Wolinsky co-authorship model that the majority of authors are organized in small segregated 
components of researchers.  Rather, as summarized in Newman (2004 ) and also Goyal (2007) , 
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will use the Myerson-Shapley payoff structure which is based on an agent’s marginal 

contributions to coalitions he belongs to. Thus, when an agent contemplates joining a 

coalition or forming a link to a neighbour he anticipates, as payment, what his arrival 

will add to the value of that coalition/neighbourhood. We propose using this approach 

to evaluate which neighbours individuals will keep over time as they dynamically 

break away from the neighbour to whom they make the least contribution.  In 

connection with the second point, we will introduce a form of myopia which is spatio-

social rather than temporal. We will not allow individuals to calculate the impact of 

their decision to form a link on agents far from them in the network.  Agents evaluate 

their marginal contribution to their level 1 neighbours and their respective 

neighbourhoods up to a limited number of further levels, with a remarkable result that 

agents effectively need not look at payoffs from their neighbours with more than level 

2 neighbourhood components.  Further levels cannot improve on the efficient and 

stable network structures that emerge.  Thus, by adopting spatio-social myopia, we 

can evaluate the impact of self-interested behaviour on the type of network which 

forms without facing the full brunt of computational intractability often assumed 

away in the axiomatic framework.  

In summary, there is a long standing economics literature which when  

considered with  the topological differences between the ”small world” and  “close 

society” networks has led to strongly held views.  Firstly, it is argued that large scale 

communication networks in globalized market societies often underpin impersonal or 

anonymous relationships and these operate on profit maximization marginal 

efficiency principles. Given this, and the observation that  close society networks  

display  equity and reciprocity in the division of value it is argued that other regarding 

principles in such networks are inconsistent with the principle of self interested 

calculations of maximizing payoffs based on marginal contribution. The conundrum 

the literature, therefore, poses is as follows.  Field and experimental data and in 

particular in the axiomatic literature on social coalition formation involving the 

Shapley value suggests that there is no inconsistency between equity and symmetry or 

reciprocity and self-regarding value functions based on the marginality principle.  

However, the axiomatic approach to social group formation and the dynamic models 

that have followed are for the most part analytical and have not taken into account the 

                                                                                                                                                                      
scientific collaboration manifests what are called giant components of maximally connected peers 
which account for 80% of all authors and with in degree distribution showing power law.   
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NP-hardness of the decision problem involved for the individuals nor paid any 

attention to the trade off between size of social components and the level of social 

closeness.  A way round this is to develop models of self-organization based on local 

interaction with somewhat more intentionality than the low level rationality decision 

rules such as those used in the extensive literature on the Strogatz and Watts genre of 

large scale communication networks.   

The objective of this paper is to construct computational experiments to 

combine  a computational feasible boundedly rational approach to group formation 

which involves local interaction. This leads to the self-organisation of network 

structures through mutually self-interested behaviour that is based on payoffs 

determined by the Myerson-Shapley principle of marginal contribution.  No apriori  

assumptions of equity, reciprocity or symmetry are made.       

 
2.2. The graph theoretic framework for social network formation 

In graph theory representations of socio-economic relations, nodes stand for agents or 

players and edges are connective links.  There is a fixed and finite set of players, N = 

{1,2,3,…..,n}, with n > 3.  Myerson (1977) first made the distinction between all 

manner of groupings ie. subsets of N,  {S ⊆ N, S ≠ ∅ }, called coalitions on N and the 

network structures, that he called cooperation structures. The network structures will 

be denoted as g and optimal network structures maximize payoffs from coalitions.   

At each time t, t= 1,2,….., as will be explained presently, the network will be altered 

by agents making and breaking  links, and hence its dynamics will be denoted by gt.   

                  Let i and j be two members of the set N and note that when a link between 

them can exist in either or both directions, it will be denoted simply as (i,j).  When a 

direct link originates with i and ends with j, viz. an out degree for i, this will be 

denoted by ( ji, ). If vice versa, we have ( ji, ) .   The latter yields an in degree for i 

from j.  If the links exist in both directions we will denote it as ),( ji .   Note, an 

agent’s out degrees is denoted by ki.  We will use directed graphs, as we aim to model 

agents as having complete discretion over the initiation of any link that they may 

choose to form.  Further, a connection to another agent may generate value even 

without the active consent of that agent. The notion of active reciprocity requires a 

link to be explicitly initiated by an agent if there is one to him from another agent.  In 

a system of linkages modelled by undirected graphs, the relationships between N 
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agents when viewed in NxN matrix form will produce a symmetric matrix as a link 

between two agents will produce the same outcome whichever of the two partners 

initiated it.  In contrast, directed graphs are useful to study relative asymmetries and 

imbalances in link formation.  

It is assumed that each agent i can not send more than one out degree to 

another agent j,  i ≠ j.  We define a complete network 

                     gN = { ),( ji  | i ∈ N, j ∈ N , i ≠ j }                                 (1) 

as the set of all subsets of N of size 2, where all players are connected to all others.  

Let g ⊆ gN be an arbitrary collection of links or a network on N.  We define  

                                    G= {g | g ⊆ gN }                                              (2) 

as the finite set of all possible networks between the n agents.  The empty network 

denoted as gø is such that it contains no links. gø (i,j), gø(S) for any S S, ⊆ N, imply 

respectively that there are no direct links between the pair (i,j) or and zero links in the 

set S.  Singleton sets are also empty networks. 

Example 1: Consider a 3 player game with N = {1,2,3} and g= { )3,2(),2,1( }. This 

means that there are reciprocal or two way links between (1, 2) and (2 ,3) and no 

direct links  between 1 and 3, ie  gø (1,3) .  Player 2 has two out degrees and two in 

degrees while players 1 and 3 only have one of each.   

 
 

 

Throughout the paper we will adopt the symbol  \  to denote the removal of a member 

from the set of players or of a link in any or both directions (a,b) from a graph.  Thus: 

       S\ a =  { i |  i  ∈ S,  i ≠ a }                                                              (3.a) 

       g\ (a,b)  =  {(i,j) | (i,j) ,g∈ (i,j) ≠ (a,b) }                                        (3.b)  

To study properties of networks on some special subsets S ⊆ N we will define the set 

of links in g that is obtained by eliminating links involving players outside  S, ie.  the 

complement set of S, S¬ = ( a ∈ N|  a ∉  S}.  Thus,  

1 

2

3

Figure 1  Example of a directed graph g= { )3,2(),2,1( }. 
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                        g(S)=  { },),(|),( SjandSigjiji ∈∈∈ .                (4)   

In what follows, g(S\i), i ∈ S, will be important when each of the i players have to 

assess their topological significance which will be defined  as their marginal value to 

the group or coalition on the network g.    

 Indirect Connections and Components   

A strong  path (weak path)  in a network g∈G  between players i and j is a sequence 

of links between distinct players with i= i1 followed by  i2 , ……, iM = j   such that for 

the successive pairs we have  ( 1, +mm ii ) (( 1, +mm ii ))  and  gii mm ∈+ ),( 1  for each m ∈{1, 

…….., M}.  A variant which combines properties of the strong and weak path , 

referred to as a reciprocal path is one where in at least one of the successive pairs m 

and m+1, defined above, we have both ( 1, +mm ii ) and ( 1, +mm ii ).  In the case of 

reciprocal paths, we have loops and sequences of M links need not have distinct 

members.  Thus, let  ( ji g→ ),  ( ji
g −→ ),   and  ( ji g↔ ) respectively  be the set of 

paths that strongly, weakly or reciprocally connect  i and j  on the graph g. The length 

of the path is the number of links m in it, whilst counting only 1 link between any 

successive pair, (im, im+1), for the strong and the weak paths that belong to g.  The set 

of strong (weak) shortest paths between i and j  on g will have minimum path lengths. 

This is called the geodesic distance between two agents and is denoted as d*( ), ji  and  

d*(
−

ji, ), respectively in the strong and weak paths between i and j.  In the case of 

reciprocal  paths, agents at distance M from from i will be denoted d( ji, )=M where    

d*( ), ji  and d*(
−

ji, ) operate to track the shortest paths in the two directions.  When 

there is no path between (i,j), then conventionally, their geodesic distance is taken to 

be infinite: d(i,j) = ∞.  

A graph g ⊆ G is said to be connected if there exits at least a weak path 

between any two nodes of g. For any g, we define  η(g) ={i| gjiandj ∈∃ ),( }, the 

set of agents who have at least one link in the network g and the cardinality of this set 

denoted by |η(g)| gives the number of players involved in g and all the links in η(g) is 

given by  ∑ ∈
=

)(
.

gi ikk
η

  

 A weak component of a network g on the set η(g), is a non-empty sub-

network g′ ⊂ g which we will denote as c(g′ (S))): 
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        c(g′(S))  = { ji
g '↔  for all i ∈ η(g′) and j ∈η(g′),  i ≠ j  and  

                              if i ∈η(g′) and }'),(,),( gjithengji ∈∈                 (5) 
The set of all sub-components of any g is denoted as C(g) where g  =  ')(' ggCg ∈∪  .   

It is useful to define a strong component implemented by g on subsets or 

coalitions S⊂ N, given by g(S) above, which we will denote as  

                         c*(g(S)) = {(i )jg→    for all i ∈ S and j ∈S,  i ≠ j }.                   (6) 

2.3 Neighbours and M-level neighbourhoods  

We will be particularly concerned with components that are defined by 

neighbourhoods.  Placing an agent i at level 0,  i’s first level or direct neighbours 

taken from this point are defined by   

                            Ξi
1

 = {j ∈ N  | ( ji, )∈g },                                                          (7) 

and the cardinality of this set denoted by  ki = | Ξi
1

 |   equals agent i’s out degrees. 

Note, the 2nd and 3rd  or the Mth. level neighbours of agent i will be denoted by  Ξi
2 , 

Ξi
3 , Ξi

m  respectively.  Thus,  

                              Ξi
m   =   { j ∈ N  | ∀ ji g→  , ),(* jid  = M} .                         (8.a) 

Example 2: For purposes of illustration, Figure 2 gives an arbitrary weakly 

connected graph defined by the set η(g) = {1,2,3,4,5,6, 7, 8, 9}.  Using the network 

given in Figure 2, agent 1’s level 2 neighbours along strong paths are given by (8) is : 

                       Ξ1
2 =   {5,6} .  

In contrast, we will refer to an agent i’s M-level neighbourhood , denoted by Ξi
M+,  as 

one which includes all direct neighbours of i and their neighbours upto and including 

those at strong/weak geodesic length of M .  Note, as agent i can be the neighbour of  

any member j in the M length sequence, we have reciprocal paths and 

                      Ξi
M+   =   { j ∈ N  | ∀ ji g↔ , d( ji, ) M≤ } .                              (8.b) 

Thus, this set can include agent i. 

Example 3: Agent 1’s level 2 neighbourhood from the network given in Figure 2 as 

defined in (8.b) yields: 

                       Ξi
2+   = {2,3,1,5,6}. 
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In the network given in Figure 2, we will identify a so called level-2 neighbourhood, 

Ξ2,  as one where all connected individuals in the network is a level-2 neighbour of at 

least one member of η(g).     

                       Ξ2  =   { i∈ η(g) | i∈   Ξj
2  for at least one j ∈ η(g), i ≠ j}          (9) 

Thus, for the η(g) = {1,2,3,4,5,6, 7, 8, 9}in Figure 2, Ξ2  = {1,2,3,4,5,6 }. 

Note, agents {7,8,9}, do not belong to Ξ2 as they are not neighbours of any member of  

the given η(g). In the sort of boundedly rational framework that we will consider, 

spatio-social myopia restricts all agents to payoffs from their M-level neighbourhood 

networks denoted as g (Ξi
M+).  At initial time t=0, using Figure 2 and from Example 3  

agent 1’s }6,5,1,3,2{2
1 =Ξ + . Note when counting the links in +Ξ 2

1  which are at strong 

1 

2

3

 

6

Player 1’s 
level 1 
neighbours 

Player 1’s 
level 2 
neighbours 

5

4

Player 1’s 
level  3 
neighbour is
player 4 

9

8

7

Figure 2: Example of a weakly connected  network 
defined by the set η(g) = {1,2,3,4,5,6, 7, 8, 9} 



 15

geodesic distance of upto and including 2 from agent 1, viz. ),1( jd  2≤ , the out 

degrees of agents {1,2,3} are counted and not those of  agents {5,6}. Thus ,   

                                                  |gt=0 )( 2
1

+Ξ |=6 .                                                             (10) 

The generalized formulae for the cardinality of links in g (Ξi
M+) viz. of a M-level 

neighbourhood network for any i, is given presently in section 3.2. 

Each agent is assumed to obtain payoffs from each of their direct/level 1 

neighbours based on the latters’ respective M-level neighbourhoods. Thus, the set of 

M-level neighbourhood subcomponents of agent i, denoted as C(g( +Ξ M
i )),  can first 

be decomposed to include the agent i’s  direct neighbours 1
iΞ   and then given in 

terms of the M-level neighbourhood of agent i’s level 1 neighbours denoted as 1,qj  ∈ 

1
iΞ  with the ki neighbours at level 1 listed as {q, q+1,  … ki} in ascending order of the 

numerical indexes given for the ki agents,     Thus,       

       C(g( UU
i

q

k

q
ji

M
i

M
i }{)) 1,,

1 ++
ΞΞ=Ξ .                            (11) 

The notation 1,, qji
M +Ξ  denotes the M-level neighbourhood of agent i’s neighbour , 1,qj . 

For each of i’s level 1 neighbours jq,1 , 1,, qji
M +Ξ can be recursively defined one level at 

a time.  Thus, 

                                  1,, qji
M +Ξ  =   U U

M

m j

m
j

m
mqjmq

mq
1 }{

1

1,,

,
= Ξ∈

+

−

Ξ       ,                (12)     

with   11
0, ijq

Ξ≡Ξ .  Here, mqj ,  ∈ {
1m,qj −

Ξ m} defines membership of the set of  

neighbourhoods of agent jq,1 at geodesic distance m from agent i whose level 1 

neighbour  jq,1 is.   

Example 3: Consider the example in which spatio-social myopia restricts agents to  

M=2 neighbourhoods.  Then for agent 1 in Figure 2, his level 1 neighbours are given 

by  Ξ1
1

 = {2,3}.  Equation (11) which yields the set for M=2 neighbourhood 

subcomponents for agent 1 for  its level 1 neighbours, agents 2 and 3, is as follows: 

         C(g( 3,1
2

2,1
2

2

,1
21

1
2

1 }3,2{}{)) 1,
++

=
++

ΞΞ=ΞΞ=Ξ U UUU
k

q
jq .     (13)                           

 Using the recursion in (12) and setting jq,1 to be agent 2 in Figure 2, in (13) we have, 
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}}4,2{},3,2{},5,1{{ 3
5

3
1

2
2

2

1 }{

1
2,1

2

1,,

,
=Ξ=Ξ=Ξ=Ξ=Ξ

= Ξ∈

++

−

U U
m j

m
j

m
mqjmq

mq
. 12      (14) 

That is, we have agent 2’s direct neighbours who are agents 1 and 5 and then their 

respective neighbours who are now at relational level 3 from agent 1.  

Likewise, on setting jq+1 ,1  to be agent 3 in Figure 2,  in  (13) we have:              

}}5,1{},3,2{},6,1{{ 3
6

3
1

2
33,1

2 =Ξ=Ξ=Ξ=Ξ + .                                                     (15)                                   

Then on combining equations (14) and (15) by substitution into (13), the full set of 

agent 1’s level 2 neighbourhood subcomponents in terms of its direct neighbours 

agents 2 and 3 can be obtained.  As we will see later, each i gets payoffs from its 

marginal contribution to each of its ki neighbours and their respective neighbourhoods 

up to level M, recursively defined as above.  In the case of M=2, for agent 1 his 

marginal contribution to neighbours 2 and 3 are calculated from (14) and (15) 

respectively.  When M=1, in the above example, agent 1’s marginal contributions to 

each of its two neighbours agents 2 and 3 are respectively calculated on the basis if 

the following sets :  

}5,1{2
22,1

1 =Ξ=Ξ +  and }6,1{2
33,1

1 =Ξ=Ξ + . 
 
3.  Modelling Dynamics in Social Networks 
3.1 Payoffs based on marginal contribution    
The principle of an agent’s payoffs being a function of the vector of his marginal 

contributions to the components (viz. maximally connected coalitions) he is part of is 

the fundamental aspect of the Shapley-Myerson value function.  In general, the total 

value function of a network is represented by   

                              v: {g |g ⊂ gN } →  R,  with v(gø) = 0.                                  (16)   

The set of all such functions is denoted by V. 

The vector valued  payoff allocation rule, Φ (v, g) = ( φ1(v,g), φ1(v,g), ……. φn(v,g)) 

in Rn  determines the payoffs of  each of the n players.   

The Myerson-Shapley Value (MSV), MSV
iφ (v(g)) , allocation rule is given in terms of 

a global ex ante calculation of the expected payoff to player i from the network g. 

This will be based on the marginal contribution of player i to all subsets, that contain i 
                                                           
12 In the recursion, when M=2 in mqj ,  ∈ {

1m,qj −
Ξ m}, we have jq,2 ∈{ }5,1{2

2 =Ξ }, that is 2’s 

direct neighbours are agents 1 and 5.  This implies that at  M= 2+1=3 strong/weak geodesic distance 
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, S⊆ N  and i∈ S, and in terms of its component, viz. the graph that contains all direct 

and indirect links to i for all j∈ S,  j≠ i :     

      MSV
iφ (v(c(g (S))   =   ))]\((())((([

:
, iSgcvSgcvp

SiNS
Si −∑

∈⊆

 .                         (17)    

 Here, the probability weights for each of the g-components of size |S|  where all 

permutations of members are equally likely is defined by:   

                  pi,s =  
!||

!)|||(|!)1|(|
N

SNS −−   ,    if  i∈ S.                                        (18) 

The marginal contribution of a player to the component that includes him for a given 

set S is given by the term in square brackets (17) 

                        MCi (v(c(g(S))   =    [v(c(g(S)) – v(c(g(S\i))].                             (19)   

The marginal contribution of agent i is given by the total value of the component less 

the value of the component without agent i. 

3.2 Boundedly Rational and Computationally Feasible Implementation  

We now replace the NP-hard problem associated with the calculation of the Myerson-

Shapley value of networks  by a computationally feasible procedure based on a simple 

boundedly rational experiential learning process that agents in the system can 

reasonably implement.  In a dynamic framework of network formation, time t is taken 

to be discrete and the network at time t will be denoted as gt, t =  {0,1,……..}.  Rather 

than starting with a network with no links, we will in all cases assume that agents 

have a fixed number of out degrees and initially these are randomly connected to 

others.  In a boundedly rational framework of local interaction, we consider M- level 

neighbourhood networks for player i at time t , gt (Ξi
M+), as the component of interest 

for the value function.  The payoff to an agent is a function of his marginal 

contribution to the M-level neighbourhoods of each of his direct neighbours.  The rule 

for retaining or breaking away from his neighbours is the simple one of self-interest, 

viz, of eliminating the neighbour who yields him the least payoff or equivalently to 

whom he makes the least marginal contribution.  The ‘weakest’ neighbour is replaced 

randomly by another who yields a better payoff. What are the characteristics of the 

weak neighbours ? What are the properties of the efficient networks, ie, those which 

maximize the total payoffs to an agent from all the neighbourhood components which 

constitute his network gt (Ξi
M+)?  

                                                                                                                                                                      
from agent 1who is at level 0,  we have agent 2 ’s  neighbours’ neighbours, viz. 
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For each i and each t, we will use a simple value function that is link based 

and is given by the number of links, determined by all the out degrees in an agent’s 

M- level neighbourhood network : 

    v(gt (Ξi
M+)) =  | gt (Ξi

M+))| = Kit .                                  (20) 

Benchmark case equal out degrees for all agents: k≥2 

 The cardinality of links in players i’s M-level neighbourhood with identical out 

degrees, k, for all i is given by 

               | gt (Ξi
M+)|  =   ∑

=

M

1m

mk =  (k + k2 + k3+….kM)  = Kit.                       (21) 

Note, the M relational levels is not along strong paths but can involve reciprocal 

paths.  Hence, in the former case a level 3 relationship for an agent i will involve 14 

other nodes while with reciprocal links where i becomes his neighbour’s own direct 

neighbour, a 3-level neighbourhood calculation can contain fewer distinct nodes than 

14.  However, to show a non-trivial difference between the efficient network 

structures that arise from payoff functions based on M=1 and M≥2 neighbourhood 

calculations, we need to have the number of agents to be N≥6 with outdegrees  k≥ 2.               

In general where ki is heterogeneous, the recursive relationship discussed earlier in 

(12) can be adopted.  To obtain the cardinality of all out degrees we sum over 

q=1,…ki, ie. all neighbours of i yields   

     Kit = | gt (Ξi 
M+)|   =   ∑ ∑∑

= Ξ∈

+

= −

Ξ
M

m j

m
jt

k

q m
mqjmq

mq

i

g
0 }{

1

1 1,,

,
|)(|  ,              (22) 

with  |gt( .0|||)(||) 011
1,0,

=ΞΞ=Ξ
−qq jitj andg  

At each time t, every agent i evaluates its marginal contribution, denoted as 

))((
1,,

+Ξ M
itji

gMC
q

 to each of its level 1 neighbours jq,1 ∈ 1
iΞ  and their respective M 

level  neighbourhoods.  This yields   

  ))((
1,,

+Ξ M
itji

gMC
q

  = | gt (Ξi
M+)|- ∑ ∑

= Ξ∈

+

−

Ξ
M

m j

m
jt

m
mqjmq

mq
ig

1 }{

1

1,,

,
|)\(|  .            (23)      

The terms involved in the summation of  |)\(| 1

,
ig m

jt mq

+
Ξ    yields the cardinality of  

i’s of the out degrees of neighbour jq,1 and his M-level neighbours’ neighbours’ 

without  i in each of the m-levels.   Note, the number of links in  Ξi\ i  is zero or the 
                                                                                                                                                                      

}4,2{},3,2{ 3
5

3
1 =Ξ=Ξ  
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number of links in i’s direct neighbourhood without i is zero.  Thus, 

.0|)\(| 1

,
=Ξ

+ ig m
jt mq

   The total payoff , TPi, to each i at each t is given by the sum of  

i’s marginal contribution to each of i’s direct neighbours and their respective M-level 

neighbourhoods: 

                     TPi (gt) =  ∑
=

+Ξ
i

q

k

q

M
itji

gMC
1

,
))((

1,
.                                             (24) 

Example 4: With M=1, i’s marginal contribution is given by:   

                        ))(( 1
, 1,

+Ξ itji
gMC

q
 =   |gt ( 1

iΞ )|  -  .|)\(| 2
1,

ig
qjt Ξ                   (25)     

In (25) we set i to be agent 1 in Figure 2, and his level 1 neighbour jq,1 to be agent 2. 

Agent 1’s marginal contribution to agent 2’s level-1 neighbourhood given that agents 

are confined to level 1 neighbourhoods is evaluated as follows.  The value of the 

network, |gt (
1
1Ξ )| = 2, viz. agent 1’s out degrees k1 = 2.  As agent 2’s neighbours are 

agents 1 and 5, |)\(| 2
2 igt Ξ  = 1, that is if agent 1 is removed from agent 2’s 

network, the number of links remaining is only 1. This yields a marginal contribution 

to agent 2’s neighbourhood to be, (2-1) =1.   Likewise, agent 1’s marginal 

contribution to the direct neighbour 3 is also 1 making the total payoff to 1, TP1= 2.   

 

3.3 Dynamic Improvements In  Network Payoffs and Efficient Networks 
The dynamics behind the evolution of the network structure is driven by self-

interested behaviour in that at each t,  each agent i evaluates the vector of marginal 

contributions { ))((
1,,

+Ξ M
itji

gMC
q

,  ….., ))((
1,,

+Ξ M
itji

gMC
ik

} and will break away 

from the neighbour to whom he makes the least contribution if another agent b,  b 

∉Ξi, and b’s M-level neighbourhood enables i to make a greater marginal 

contribution. 13 So what sort of neighbours does it pay for i to drop according to the 

rule in (23) ? 

                                                           
13 This is a simultaneous game and the strategies of each agent will be executed at the same time at 
each time step.  Each agent i executes the following operations: 

(i)computes    iqq
M
itji

jjgMC
q

Ξ∈∀Ξ + ,,))((
1,,

 using equation (23) 

(ii)finds ))}(({min
1,,

min +

Ξ∈
Ξ= M

itjiji gMCMC
qiq

 

(iii) randomly chooses another node b ∉Ξi  and agent  i will detach his link to the neighbour  with 

MCi min  and replace him with b if and only if: min

, ibi
MCMC >α .  Here α > 1 is the perturbation 
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For any agent i, his marginal contribution to m- level neighbourhoods of his 

direct neighbour jq,1 given in (23) has component wise evaluations given by : 

                    
⎪
⎩

⎪
⎨

⎧

Ξ∈−Ξ

Ξ∉Ξ
=Ξ

++

++

+

).26(1||

).26(||
|)\(|

11

11

1

,,

,,,

,

biif

aiif
ig

m
j

m
j

m
j

m
j

m
jt

mqmq

mqmq

mq
                          

This implies that marginal contributions and hence payoffs are enhanced for each i if 

the neighbour, jq,1, and the latter’s m-level neighbours reciprocate to i, ie., i is also 

their neighbour’s neighbours at each component level as in (26.b).  Intuitively, it is 

clear that one’s marginal contribution to those who are not linked back to one will be 

limited.   

Stable and efficient neighbourhood networks structures including each i 

denoted as  g*(Ξi
* ∪ i) are such that total payoff from it,  

                 TPi(g*(Ξi
* ∪ i))  ≥  TPi(g ), ∀g  ∈ G   .                                         (27) 

Three remarkable results followed from the self-organization process in terms of the 

network dynamics, gt, while converging to efficient network structures.  The low level 

rationality in the search process does not enable the agent to ‘knowingly’ seek those 

who reciprocate.  Indeed, all this is achieved by a self-regarding process by all of the 

agents following steps set out in footnote (13).  The main results can be summarized 

as follows: 

(i) The only critical difference in the efficient network structures occur at M=1 and 
M=2. 
(ii) For all values of M≥2, for equal out degrees k for all i, the efficient networks 

yielded the same complete, symmetric, reciprocal and segregated network structure 

with k+1 members.  Thus, starting from initial random in-degree distribution and 

network structure of a fully connect graph as shown in Figure 3a, the final self-

organized efficient network structures are given in Figure 3b. The only consequence 

of M > 2, and for k >2  is to scale payoffs according to Table 1b.  All members of 

every segregated efficient network with nodes equal to k+1 achieve the same total 

payoff. 14   For example the total payoff for each agent in Figure 3b can be read off 

Table 1b with k=3 and M=2 to give 6x3 =18. 
                                                                                                                                                                      
coefficient which is used to speed up the discovery of better neighbours.   Neighbourhood stability is 
determined when agents find no advantageous link changes as per (iii) and total payoffs  
TPi (gt) in (24) stabilize.  
14 In the experiments done with a distribution of agents with different ki , the self regarding process that 
leads to efficient networks resulted in agents with same k i to cluster together in segregated groups , 
with M≥ 2.     
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(iii) For M=1, k=2 an efficient network which displays reciprocity arises within a  

global component as in Figure 4.  The latter appears in both populations of agents 

with homogenous out-degrees and in the heterogeneous case.  No break away 

segregated groups ever appear. Link based level 1 spatio-social total payoffs are 

equalized for all identically endowed agents. In order to achieve this, the efficient 

stable network has to be a giant component where all 100% of agents are connected.  

Note, the initial graph for this experiment is omitted as it is a similar graph with 

random in-degree distribution to that given in Figure 3a.  

Table 1a gives the numerical values for the calculation of marginal 

contribution based payoffs from the formula in (23) for the benchmark case of equal 

out degrees k, and all agent i’s neighbours and m-level neighbour’s reciprocate in an 

efficient network equilibrium. 
 

Table 1a  Payoff Formula In An Efficient Network Equilibrium ( Based on Marginal 
Contribution (MCi) and Total Payoff (TPi); Case: Equal out degrees k >2 ) 

 
 M= 1 

Out 
Degree 

k=2 

 M=2 
Out 

Degree 2 
k=2 

M=3 
Out Degree  

 
k=2 

         Level  M 
Out Degree  
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Level M 
Out Degree k 
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  2*MC 

 
k*MC 

 
 

Table 2b Marginal Contribution based Payoff values for each agent based on Table 1a 
(For Total Payoff for each agent multiply entries in the Table by k) 

 
 M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10 

k=1 1 2 3 4 5 6 7 8 9 10
k=2 1 4 11 26 57 120 247 502 1013 2036
k=3 1 6 25 90 301 966 3025 9330 28501 86526
k=4 1 8 45 220 1001 4368 18565 77540 320001 1309528
k=5 1 10 71 440 2541 14070 75811 400900 2091881 10808930
k=6 1 12 103 774 5425 36456 238267 1527258 9651829 60352380
k=7 1 14 141 1246 10277 81270 624877 4710062 34985973 256995046
k=8 1 16 185 1880 17841 162336 1435945 12448360 106312481 897579056
k=9 1 18 235 2700 28981 298278 2984095 29253600 282456361 1356198184
k=10 1 20 291 3730 44681 513240 5730271 62683550 675263061 675263061
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Note, Table 2b also serves to show how quickly the size of calculations required to 

determine payoffs based on marginal contributions grow as the level M of 

neighbourhood increases beyond 2 and as the number of out degrees, k, grows. 

 
 
Figure 3a :Initial graph with random in-degree distribution (M=2 ;Nodes 32; 
k=3) 

 
Figure 3b Final Graph: Segregated Efficient Networks with 

reciprocity, symmetry and equity (M=2; Nodes=32; k=3) 
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 Figure 4 :Final graph : Global Wheel (M=1 ; Nodes = 32; 
k=2)

 
 
4. Concluding Remarks  

There have been a number of explanations for the prevalence of close knit 

bands based on reciprocity and equity amongst one’s kind that have been the bed rock 

of social order from the hunter gatherer stage and continues into modern times.   

There has been a long standing conundrum about the apparent inconsistency between 

reciprocity and equity in close knit groups and self-regarding behaviour and 

marginality based payoff functions in large market oriented networks.  The principle 

that payoffs are determined on the basis of one’s marginal contribution to the group or 

neighbourhood one belongs to, has been considered to be the most attractive feature 

of the Shapley allocation rule.  However, the potentially NP-hard nature of the 

evaluation of such calculations for all possible coalitions one can belong to has led to 

the exercise reported here on a boundedly rational calculation of how agents may 

dynamically choose neighbourhoods to maximize their payoffs with efficient network 

structures that self-organize from local interaction over time.  

Placing credence on the ‘social brain’ hypothesis that individuals have support 

cliques and that there is an inverse relationship between the size of stable social 

network structures and social distance, we have proposed a model of spatio-social 

myopia.  In order to incorporate the support clique, individuals consider 

neighbourhoods of level 2 or more. Thus, on evaluating one’s marginal contribution 

to a neighbour one needs to consider his neighbour’s support clique, thus, involving 

evaluations at a minimum of (geodesic) distance of  3 for each individual.  

Constraining individuals to operate relationally at level 1 neighbourhoods, on the 

other hand, corresponds to methodological individualism.  The self regarding criterion 

that an agent seeks to replace the neighbour from whom he receives the smallest 
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payoff  (and who is found to least reciprocate ) when simultaneously applied by all 

agents in level 2 or more neighbourhoods produced an outcome that was not 

anticipated by us -  viz. stable social network structures that can be identified as the 

benchmark social unit of a close knit, segregated cluster with perfect symmetry, 

reciprocity and equity.  These close knit social structures maximize individual, group 

and global payoffs.  In contrast, the exact same self-regarding application of the 

Shapley payoff principle based on marginal contribution at level 1 neighbourhoods 

produces a global wheel or a giant component.15 Thus, what is remarkable is that 

while marginality principle in the payoff function is relentless in equalizing payoffs 

among identically endowed players the critical differences between the efficient and 

stable networks structures occur at level 1 and level 2 neighbourhoods.  That all 

calculations beyond level 2 did not alter the above result on segregated cliques with 

symmetry, reciprocity and equity among identically endowed agents highlights the 

self-organising properties of the self-regarding dynamic to maximize the given payoff 

function based on myopic local interaction and without running into computational 

intractability.  In the model, endowments were the number of out degrees an agent 

possessed.   Experiments done at level 2 or higher with agents with heterogeneous 

numbers of out degrees, resulted in the case of ‘birds of a feather flock together’ with 

a hierarchy of cliques of different sizes where k+1 agents with k out degrees got 

together.  The self-regarding implementation of the marginality based payoff function 

does not produce skewed in degree distributions.        

In conclusion, our computational experiments show that both close knit 

segregated network structures and global network components naturally self-organize. 

These simulation results are important in that they overturn the widely held view that 

principles other than self-interested behaviour based on maximizing marginality based 

payoffs are needed to obtain close knit segregated social networks that manifest 

reciprocity and equity. 

 
 

                                                           
15 It is intuitively easy to understand why level 2 payoff calculations will force agents with k 
outdegrees each to break away from large networks and form reciprocal and complete network 
formations of k+1 members.  At level 2 , an agent i can maximize  his payoffs from his direct 
neighbour  only if all of the neighbour’s neighbours also has an in degree to agent i.   However, as all i 
have similar pressures, and each i with k outdegrees can only link to k others , one to all and all to one 
becomes the norm and groups of k+1 members will break off from larger networks.   In contrast, 
payoffs that come from level 1 relationships implies that agents is satisfied if his direct neighbour 
reciprocates and is not concerned by whether or not a neighbour’s neighbour is linked to one.   
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