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Abstract 
To control and price negative externalities in passenger road transport, we develop an 
innovative and integrated computational agent based economics (ACE) model to 
simulate a market oriented “cap” and trade system. (i) First, there is a computational 
assessment of a digitized road network model of the real world congestion hot spot to 
determine the “cap” of the system in terms of vehicle volumes at which traffic 
efficiency deteriorates and the environmental externalities take off exponentially. (ii)  
Road users submit bids with the market clearing price at the fixed “cap” supply of 
travel slots in a given time slice (peak hour) being determined by an electronic sealed 
bid uniform price Dutch auction.  (iii) Cross-sectional demand data on car users who 
traverse the cordon area is used to model and calibrate the heterogeneous bid 
submission behaviour in order to construct the inverse demand function and demand 
elasticities.  (iv) The willingness to pay approach with heterogeneous value of time is 
contrasted with the generalized cost approach to pricing congestion with homogenous 
value of travel time.   
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1. Introduction 
Agent based Computational Economics (ACE) and its pragmatic arm of 
computational mechanism design which involves human experimental input and 
computational “wind tunnel testing” (see, Friedman and Sunder (1994), Roth (2002), 
Dash et. al. (2003), Ledyard and Szakaly-Moore (2004), Arifovic and Ledyard, this 
issue, Markose and Sunder (2007)) is a fast growing new subfield of economics and 
computer science. It has also become the norm for the design of institutions. 
Economic agents are effectively computer programs representing decision rules for 
behaviour within an artificial environment. Agents can have varying degrees of 
computational intelligence and autonomy to learn and adapt to their environment. 
Likewise, the environment can be represented in a stylized way or in terms of what 
has been called “model verité” viz. with the full capacity to represent real time data, 
Markose and Sunder (2007). Economic agent modelling is increasingly being used to 
“wind tunnel” test market protocols and their variants in advance of implementation. 
It is useful to know if the proposed design will achieve intended outcomes or bring 
about unintended consequences that are socially undesirable. The latter arise directly 
through poor design of protocols or indirectly through strategic behaviour permitted 
or even encouraged (inadvertently) by the protocols. Agent based models have been 
used to understand the properties of auction design (Andreoni and Miller (1995), 
Koesrindartoto (2004)) and more recently they have been used for real world design 
applications such as reforming of electricity markets (Bower and Bunn (2001), Bunn 
and Oliveira (2001), Koesrindartoto and Tesfatsion (2004)). 

Traditional modelling for policy design uses econometric or analytical 
methods. Econometric methods run into what is known as the Lucas critique that 
arises from the lack of structural invariance as agents game the system (see, Markose, 
2005).  In other words, the estimated parameters of behavioural equations are no 
longer valid after the change of policy rules. Further, analytical methods use 
simplifying assumptions for tractability and cannot in many cases give “ball park” 
figures for the actual responsiveness of the system. 

In this paper, to control and price negative externalities in passenger road 
transport, we develop an innovative ACE model to simulate a market oriented “cap” 
and trade system. The ACE model provides an integrated framework that can be used 
for most road network systems. The core of the design is a Smart Market which elicits 
valuations from potential road users through an on-line bid submission process with a 
Dutch auction protocol to determine the market clearing price and the determination 
of winners and losers, hence, the acronym of SMPRT which stands for Smart Market 
for Passenger Road Transport. The smart market concept with the use of a bid 
submission process that signals willingness to pay for immediacy or priority of 
service in the context of Internet congestion was first suggested by Mackie-Mason 
and Varian (1995).1  The approach based on the willingness to pay which reveals road 

                                                 
1 McCabe et. al.(1991) discuss how  smart computer-assisted markets involve online aggregation of 
decentralized information such as on the preferences, valuations, capacity and budget constraints of 
potential users or suppliers of a resource  with a centralized market/auction protocol or algorithm that 
determines prices and allocations.  The design behind a smart market is critical for it to work 
effectively as a coordination device and  to solve resource allocation problems in specific cases with  
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users’ different valuations of travel time marks a departure from the traditional 
generalized cost approach to congestion externality (see, Walters (1961), Vickrey 
(1969)) which assumes a homogenous value for travel time.  

 The recent introduction in California of the dynamic and ambient congestion 
pricing3 of “Express” lanes of certain commuter interstate routes at peak time  
improves the welfare of those with higher valuations of travel time.  They seek to 
avoid congestion on the free lanes and enhance predictability in travel time by paying 
the toll4 (see, Small et. al. (2005), and Brownstone et. al., (2002)). This approach 
works when there are alternative non-priced roads for travel for the relevant origin-
destinations.5  Further, in this design of road pricing, there is no concern about 
maintaining overall efficient use of fixed road capacity and hence there is no analysis 
on whether the price charged on the Express lanes is sufficient to cover the road user 
externality costs in both the priced and non-priced lanes. As there is no evidence of a 
reduction in the number of road users on the route, this may indeed be unlikely to be 
the case.  

The “cap” and trade approach used in our design of SMPRT is inspired by the 
principle of assigning property rights to the “bads” of economic activity as a means of 
controlling negative externalities.  A landmark application of  the latter arose with the 
Title IV of the 1990 Clean Air Act Amendments in the U.S6 which aimed at reducing 
sulphur dioxide (S02) emissions from coal and oil fired electricity generating plants  
(see, Schmalensee et. al. (1998), Joskow et. al. (1998)). Significant to this framework, 
as opposed to traditional command and control methods where a plethora of 
prescriptive engineering and performance standards on the abatement technology is 
imposed at the level of the individual polluter, is the shift of focus to the total  
acceptable amount of the negative factor from the economic activity at a collective 
level. While often as in pollution control, the “cap” is determined by some 
grandfathering principle, in our model of road user charging, the “cap” refers to the 
efficient volume of traffic which determines the fixed supply of travel slots, denoted 
by X#, in a given time slice (8am-9am week-day morning peak hour) on a cordon area 
of a road network identified as a congestion “hotspot”.  This efficient volume of 
traffic is determined by a state of the art road traffic micro-simulator whereby the so 

                                                                                                                                            
complex features such as, in this case, the pricing and control of  negative externalities from an 
economic activity.    
 
3 The prices adjust typically every 6 minutes to maintain traffic at free flow levels which involves a 
density of less than 27 vehicles per lane per mile.  The fee is posted upstream from the entrance to the 
lanes and road users decide ‘on the spot’ whether to pay to use the Express lanes or to use the non-
tolled lanes.   
4 Tolls are collected on a per trip basis electronically by a system called Fast Trak which requires users 
of tolled roads to subscribe. 
5 Sheri Markose is grateful to Frank Kelly for bringing this to her attention. 
6The proposed target of  sulphur dioxide (S02) emissions from coal  and oil fired electricity generating 
plants was a 10 million ton per year reduction  (totalling about 50% ) from 1980 emissions levels to be 
achieved by the year 2000 and starting in 1995.  Owners of existing affected units were given fixed 
numbers of tradable permits each year. These were called “allowances” and the rules governing their 
allocation depended  primarily on historic emissions generation and fuel use. New entrants to the 
industry would be obliged to buy their allowances from existing units or at the Environmental 
Protection Agency (EPA) auctions.   
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called production function of traffic with total distance travelled by all vehicles 
demanding service, taken as the total positive “output” of the system, begins to drop 
with incremental growth in vehicle volumes. This is taken as a measure of how the 
benefits from travel fall when many who may have successfully traversed the cordon 
area within a given time, can no longer do so due to the gridlock. This is also the point 
at which the environmental externalities from vehicular emissions were found to take 
off exponentially. Thus, although we adopt a ”cap” and trade approach used in 
pollution control, it is important to note that there is a crucial difference between a 
fully tradable system of permits for negative externalities abatement and the bid-only 
market for fixed slots. In the first, all participants are given an incentive not merely to 
seek out cheaper alternatives but also to use revenues received from sales to make 
necessary abatement investments. A large part of the auction design in the case of 
pollution permits is geared toward achieving that objective. In the bid-only system for 
travel slots, the revenues are collected solely by a transport authority and the latter 
alone has access to funds to make the technological improvements for abatement of 
the externality. In keeping with the rationale of the “cap” and trade approach, it is 
critical that revenues collected incentivize a new wave of technological innovation for 
low impact transport modalities. Indeed, the prescription of the ‘cap’, beyond which 
congestion reduction is not necessary, is a useful device to prevent monopoly pricing 
that could follow from the bid-only framework of road user charging. 

The SMPRT simulator was applied to price congestion in a real world city 
centre congestion ‘hot spot’ in central Gateshead in the U.K.   Extensive data analysis 
was done by Peter Allen to identify the heterogeneous demand characteristics that 
correspond to actual income, demographic and socio-economic classes of the 
commuters who traverse the cordon area.  Thus, the simulation of the bid submission 
process by road users was done in a fully disaggregated way based on this demand 
analysis.  The results of the agent based SMPRT simulations of the heterogeneous bid 
submission process of actual road users have been very illuminating and yields new 
insights for issues regarding willingness to pay and the value of travel time. The 
application of a uniform price auction rather than a discriminatory one is related to the 
need to determine unique market clearing prices and an inverse price function.7 The 
heterogeneous value of time is determined by the marginal road users who 
respectively clear the market at different levels of biddable travel slots.   This can be 
contrasted with the econometric panel data analyses based on reported and stated 
preference for value of travel time that have been used in the case of the dynamic 
congestion pricing in Express lanes in California  (Small et. al. (2005), and 
Brownstone et. al. (2002)).  Compared to the traditional generalized cost function 
models for road use, the auction based approach enables the experimenter to probe the 
system for demand elasticities with respect to the road user price both on an aggregate 
and cross sectional basis across different socio-economic classes. Indeed, as will be 
discussed later, in the generalized cost approach to congestion charging, the aggregate 
demand elasticity is not integral to the model and has to be obtained in an ad hoc way. 
Further, the identification of the winners and losers, in the agent based SMPRT 
framework, can be linked to the home-work spatial locations of the region for 

                                                 
7 At the levels of excess demand currently present and forecasted to persist in the medium term future, 
our robustness analysis shows that the uniform price auction generates more revenues than the 
discriminatory auction (see, Markose et. al. (2006) and Koesrindartoto (2004)). 
9 Allen (1997, a,b) has recommended that such ACE models be used for an integrated analysis of 
transport and land use models. 
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simulations on the longer term implications of road user charging and for the more 
efficient provision of public transport.9   
  A final important aspect of the empirical implementation of the SMPRT 
simulator is the finding that the simulator can be applied in two distinct ways. For 
this, it is useful to distinguish between road networks that have a high proportion of 
habitual car users (example, peak time week day city centre traffic) and those with a 
high proportion of road users that vary from one day to the next (for example, the 
M25 London orbital road, especially on weekends and bank holidays).  In both cases, 
the determination of the optimal “cap” for the road network system is the benchmark.  
In the case of habitual road users whose home-to-workplace origin destination (OD) 
matrix and demand distributional characteristics is available, this data can be used to 
calibrate the SMPRT simulator to determine the “cap” related price for congestion 
and environmental externalities.  However, the actual implementation of the SMPRT 
to operate as an opening call market to determine the market relevant price for peak 
time road use may be necessary only in the case of road networks where the actual 
users have demand distributional characteristics that are highly variable over time.  
Where an actual bid submission process needs to be implemented, the mechanism 
designer has to provide a robustness analysis of the feasibility of the auction protocol 
to deliver the requisite revenue from the bids. This crucially depends on whether 
agents will bid their true values, an assumption that is made in the simulated format of 
the SMPRT. Again, an ACE approach based on the Erev-Roth (1998) reinforcement 
learning was developed to show how, under conditions of strategic bidding, the 
critical level of demand pressure (relative excess demand to the “cap” supply) needed 
for the proposed SMPRT protocol to work in practice. However, due to space 
constraints, the results from these are reported elsewhere Markose et. al. (2006).       

The rest of the paper is organized as follows. In Section 2, we first give a brief 
introduction to the rationale for pricing road use externalities and some issues raised 
by the London congestion charging experience. The generalized cost approach to 
pricing congestion externality is given in Section 2.3 followed by the auction based 
approach. Section 3 outlines the determination of the “cap” based on the transport 
micro-simulation of central Gateshead.  The congestion costs in time and other traffic 
induced output from the transport simulations are recorded as vehicle volumes are 
scaled up and down from existing demand. Section 4 gives a discussion of the 
demand analysis and the bid submission data for road users who currently traverse the 
cordon area in morning peak hour of 8-9am. Section 5 gives the SMPRT inverse price 
function and the estimates for demand, income and speed elasticities. The SMPRT 
price which equals marginal social cost is found to be less than the price that clears 
the market at the “cap” determined by the transport simulator. The generalized cost 
function estimates for congestion externality cost is compared with the estimate given 
in the case of heterogeneous value of time. Section 6 gives concluding remarks and 
indicates future work needed.10       
  
2.  Pricing of road use externalities: generalized cost approach and bid 
based smart market for congestion pricing   
 
                                                 
10 Note, all SMPRT inputs and outputs relating to the clearing prices and winner determination can be 
obtained by running the Smart Market simulator at 
http://www.essex.ac.uk/ccfea/research/ACE/ace_research.htm .  See also the Foresight report of 
Markose et. al. (2006). 
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2.1 Why control and price negative externalities of road use? 
  The traditional view is that economic development with its ever increasing 
demand for road transport and the consumption of non-renewable energy sources in 
this mode of transport, with their respective consequences of congestion and 
pollution, are necessary evils that must be collectively borne. A program of economic 
development that fully prices and internalizes the externality costs that the private 
cost-benefit calculus cannot incorporate, is increasingly being seen as essential to 
prevent the overuse and degradation of resources. The latter is powerfully brought out 
in Garett Hardin’s classic paper on the “Tragedy of the Commons” (Hardin, 1968), 
where a decline in social welfare and total output occurs when there is no institution 
to signal and correct for the negative impact of private behaviour on society as a 
whole. 

Congestion, pollution and other environmental negative externalities from 
road transport arise when the volume of traffic exceeds the free flow capacity of the 
road network and when any additional vehicle causes increased delays to other 
vehicles with a knock on effect of higher environmental costs to society as a whole. 
Road users incur only their private costs and not the full marginal social costs of 
congestion and hence over-use occurs because there is no publicly available signal 
when total social benefits start falling. The implementation of road pricing schemes 
such as toll cordons to cover such externality costs, rather than to raise revenue or to 
recover costs of road building and maintenance, is relatively new.11 Optimal road 
pricing can be viewed as the application of a corrective Pigouvian tax (Pigou, 1920) 
that seeks to internalize the costs of the negative externality via a marginal social cost 
principle. However, till recently, the negative externalities from road use were 
notoriously difficult to estimate, let alone cost. Marginal social cost pricing of road 
use externalities has been considered by many to be impractical to determine and 
implement and when it manifests as a spot price applying in a person-place-time 
specific form, it has been criticized on the grounds that road users need to know what 
to pay before the journey, Nash and Sansom (2001).12  Further, political constraints 
are cited for why the use of road pricing has failed to materialize except in a limited 
number of cities, despite the growth of traffic congestion. Nevertheless, the continued 
and predicted growth in the ownership of cars and the use of HGVs for the 
distribution of goods, along with environmental concerns of expanding road capacity 
has led to innovative traffic management and demand mitigation strategies being 
actively sought by governments of many countries and especially in the U.K. 
 
2.2 Some issues with London congestion charging 
 The London congestion charging scheme which was introduced on 17 
February, 2003, involved a single charge of £5 on vehicles to drive or park in the 
central London zone from 7am-6.30 pm. It is a major example of a successful social 
experiment, in addition to the ones in Singapore and Durham, in that the public has 
                                                 
11 In the U.K., the Ministry of Transport Smeed Report of 1964 first proposed the idea of pricing roads 
as a function of congestion costs.   
12 The ADEPT (Automatic Debiting and Electronic Payment for Transport) project, which conducted a 
field study in Cambridge over a  period of  three years from October 1992, is such an example of spot 
pricing  (Blythe, 1993, and Blythe and Hills, 1994).  By all accounts, the field study signalled the 
feasibility of the technology involved in monitoring and charging traffic in a radially configured 
cityscape with a fixed (18) number of entry points.  The ADEPT scheme relied on an on-board device 
that was electronically activated and deactivated on entry and exit from the city limits.  Once activated, 
the device connected to the odometer of the vehicle and would charge by debiting from a smartcard 
only during periods in which the speed and distance travelled signalled a state of congestion.     
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complied with a congestion charge. The London congestion charge was recently 
increased to £8. However, it is far from the case that the determination of the fixed 
charge, the increase in it and the analysis of the economic implications of the charge 
along a number of relevant dimensions have been based on a set of modelling tools 
that can be tested out or reproduced in a coherent and integrated manner. Shaffer and 
Santos (2003) claim that the estimated fall in the volume of vehicles in the Central 
London zone after the introduction of the charge has been about 15% and that it has 
resulted in a 21 % increase in speed, thus implying that the congestion charge of £5 is 
about right according to a “generalized” marginal congestion cost calculation done ex 
post. The moot point is that the £5 charge and the increase to £8 were not based on an 
identifiable notion of efficiency of road use in the cordoned area and there is no target 
optimal volume of “passenger car units” (PCUs, for short). Note, the latter is a 
standardized measure for vehicles of different sizes. Hence, apart from noting that 
there have been improvements in congestion in London, there is no means of 
assessing the extent to which congestion abatement is to be pursued.13  Further, while 
some  estimates of price elasticity of aggregate demand are made, there is little scope 
to gauge the price elasticities of demand for the different socio-economic and income 
groups of road users and hence of the impact of the charge on the less well off.  Last 
but not least, as there has been no transparency with regard to the allocative rules 
governing the revenues raised, the public authorities can exploit their monopoly status 
by raising the congestion charge by a large margin in the face of inelastic demand.   
 
2.3 Homogenous opportunity cost of travel time 

Typically, all costs from road transport are found to grow inversely with the 
average speed of traffic, and congestion costs arise from increased journey time, T.  
With volume of traffic, X, given in standardized passenger car units, PCU14, the 
average speed per hour is defined in terms of the average number of kilometres 
travelled, AKT(X).  Then, the average journey time in hours, AT, for the unit distance 
of a kilometre is:  
 

    AT(X) =  
)(

1
XAKT

  .                          (1.a) 

 
The total journey time in hours for all X vehicles is   
   

    TT(X) = 
)(XAKT

X     .                           (1.b) 

  
The well established concept of congestion externality cost (see, Walters 

(1961), Vickery (1969)) follows from the fact that while the individual road user only 
experiences the average travel time related cost, he is unable to “internalize” the 
marginal impact on the total journey time of all X road users. Marginal total journey 
time in hours, MTT,  

                                                 
13 Indeed, currently as reported in the Transport for London  (TfL) document (2003, p.46) apart from 
the notion of free flow conditions of traffic, there appears to be  no methodology being used to 
determine the optimal level of congestion.  The TfL document considers that while there is an 
“optimal” level of congestion, it is too difficult to determine what it is. 
14 Note, however, we will use terms such as vehicles, commuters or road users interchangeably when 
referring to PCUs.  
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X
X
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is the elasticity of speed to volume of traffic.15  Equation (2) implies that for every 
increment in traffic results in Xs /ε times more travel time inflicted on the rest of the 
road users than what is experienced by the added vehicle. The congestion externality 
in travel time in hours, is thus: 
 

                       ET =  MTT – AT  =   
)(

/

XAKT
Xsε

.                                      (4) 

 
The generalized travel cost approach used in many current calculations of congestion 
charging (see, Newbery (1990), Blake and Santos (2003)) assumes an average cost 
per vehicle journey for a unit distance of a kilometre, C(X). The so called generalized 
cost function C(X) has two main components16: (i) a standardized vehicle operating 
cost, VOC, which includes costs such as fuel, maintenance, insurance and road tax, 
and (ii) a homogenous value of journey time, VOT, for all commuters.  Thus, the 
generalized travel cost function when applied to (1.a) above gives: 
 

                C(X) =  VOC   +   
)(XAKT

VOT Dist .                                              (5) 

 
Here, Dist is the average trip length. 
With X volume of traffic, the social cost with SC =  XC(X), yields the 
marginal social cost for congestion externalities, MSC :  
 

         MSC (X) = 
X
SC

∂
∂  =  VOC +  

)(XAKT
VOT Dist  +  

)(XAKT
VOT

xs /ε Dist.  (6) 

 

      =   C(X) +  
)(XAKT

VOT  xs /ε Dist. 

                                                 
15 Note the evaluation of elasticity at X when implemented in terms of discrete changes with ΔX>0 is 

given by:   

X
X

XAKT
XAKT

Xs Δ

Δ

= )(
)(

/ε =  .
)(

)(
XAKT

X
X

XAKT
Δ

Δ
  We follow the convention that 

elasticities are given in absolute terms. 
16 It is also possible to include a third generalized cost, viz. the environmental cost of  road use.  This is 
often included as a generalized unit cost rather than one which is a function of speed or AKT per hour.  
In the traffic micro-simulation, the latter was found to be the case, which implies a further environment 
externality cost in addition to the unit cost.  Again, for reasons of space constraints, the analysis 
of environmental costs of road use is omitted here.  
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Here xs /ε  is the elasticity defined in (3).  As the marginal social cost, MSC, is greater 
than the unit cost C(X), the congestion externality cost , E,  is what needs to be added 
on to the unit C(X) for road users to “internalize” it and reduce traffic.  However, the 
evaluation of this must be done at the volume of traffic formally denoted as X* at the 
social optimum where the marginal social benefit of travel equals the marginal social 
cost.17  From (6), the pure congestion externality cost,  E, can be formally given as:  
 

  E(X* ) =  MSCc(X*) - C(X* ) = 
)( *XAKT

VOT  x/sε Dist.         (7) 

 
While data on vehicle operating costs can be standardized, the main drawback 

of the generalized cost approach is that as the opportunity cost of time, VOT, is taken 
to be the same for all road users, it has no bearing on how the growing congestion will 
affect demand for road use by commuters with different time costs. Further, within 
the framework, there is no means of determining the aggregate demand curve for 
travel associated with congestion charging at different traffic volumes X. In other 
words, all manner of assumptions have to be made to estimate actual price demand 
elasticities (see, Walters (1961), Goodwin (1992), Oum (1999)) which is crucial even 
for the evaluation of (7).  
 
2.4 Heterogeneous opportunity cost of travel time and willingness to pay 
 

Commuters who traverse the cordon area belong to G different “types” or 
socio-economic groups with corresponding income distributions. Let gn  denote the 
total number of commuters of each type g = 1, 2, …… G  and  nig  refers to the ith 
agent in his group with gig nn ........,2,1= . Note X denotes the total number of 
commuters of all types who travel in a given hour, 
 

         X =  ∑∑
==

ig

ig

n

1n
ig

G

1g
n    .                                   (8) 

 
Note, notation involving X,  X#< X* <X0, will also refer to the rank order of  

commuters such as in the case of all nig with the X highest valuation.   
 

As the bulk of peak time, week day demand for road use is a derived demand 
from work, the budget for commuting and the value of time is related to commuters’ 
income. Denoting the pro rata daily income and hourly income of the nig road user, 
respectively, as yd(nig) and yh(nig) and assuming that a fixed proportion, α, of daily 
income is spent on commuting to work, the total net private budgetary benefit from 
the trips is given by : 

                                                 
17 Indeed, Varian (1993, p.553) has noted that the problem with this Pigouvian tax approach is that we 
need to know the optimal level of the negative externality (viz.,  the optimal level of congestion in this 
case) in order to impose the tax or charge. Varian goes on to say that if we knew the optimal level of 
say congestion, then we could just control the level of traffic volume “and not have to mess with this 
taxation/charging scheme.”  In effect, the SMPRT is doing precisely this, ie., we control the desired 
volume of traffic and determine the market clearing price and demand curve. 
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)
)(

)(
)((

1 1
Dist

XAKT
ny

VOCny
G

g

n

n

ig
h

ig
d

g

ig

∑ ∑
= =

−−α  .                      (9) 

 
Thus, with VOC the same as in (5), different user types are distinguished by the size 
of their travel budgets, αyd(nig), and their travel time valuation. The value of travel 
time, VOT, or its opportunity cost for each commuter for every unit kilometre, is 
given by the pro rata hourly rate, yh(nig). The average journey time of 1 kilometre 
with X volume of PCUs is, as before, given by 1/ AKT(X).  At the given zero price 
current level of demand, X0, in the cordon area with average trip length within it, Dist, 
(9) above must be assumed to be greater than the net budgetary benefits from any 
other alternative mode of transport. The price as the maximum willingness to pay for 
road use in the cordon area by the nig agents present is determined as follows:            

0
)(

)(
)( 0 =−− Dist

XAKT
ny

VOCny ig
h

ig
dα :For marginal nig at P( X0)=0 .        (10) 

0
)(

)(
)( 0 >−− Dist

XAKT
ny

VOCny ig
h

ig
dα  :For intra-marginal nig ,P(X0)=0.    (11)                                       

                  Note that equation (10) states that at zero price, P(X0)=0, the marginal 
X0 th road user is one whose pro rata daily and hourly income yields zero net benefit 
from travel and α in (10) is calibrated to satisfy this.  Such a calibration of α, at the 
existing price of zero, can be justified to manifest the revealed preference of marginal 
road users whose net benefit and hence willingness to pay is zero. Thus, if (10) is 
negative for the given volume X0, then those nig decide not make a trip into the cordon 
area. In contrast, condition (11) holds for the infra-marginal road user. Equations (10) 
and (11) relate to nig agents’ true monetary values for work related trips at each traffic 
volume X and this will be  denoted as V(X).  This yields a B(V(X)) bid schedule. 
Graphical presentation of the uniform-price sealed bid Dutch auction is given in 
Figure 1. The empirical analysis on the bid values for equations (10) and (11) and the 
different bid schedules at different traffic volumes will follow in Section  4. 
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When X#, the desired  “cap” or any fixed supply of travel slots X* less than X0  
is imposed, with  X# < X*< X0, the sealed bid uniform Dutch auction algorithm  ranks 
the bids of all X bidders from the highest to the lowest and the market clearing price, 
P(X*) is given by the X*-highest bid in the bid schedule B(V(X*)) :    

  P * = P(X*)  = 0
)(

)()( *

*
* >−− Dist

XAKT
XyVOCXy

h
dα .  (12)  

The inverse demand function in (12) directly determines (X0 – X*) bidders who are 
willing to pay less than the X* highest bid in the bid schedule function B(V(X*)).  In 
other words, if P(X*) is charged then (X0 – X*) bidders will have negative net private 
benefit from the trip and will be priced out of the market.  As will be seen, their socio-
economic cross sectional composition can also be identified.  Hence, the price 
demand elasticity of the system can be probed for any fixed capacity, X# < X*< X0, by 
the operation of the uniform Dutch auction market clearing price rule.     
 
2.3 Market inverse demand function and congestion externality cost: heterogeneous 
VOT  
            As heterogeneity of incomes and the implied value of time of the marginal 
market clearing agent at different volumes of road users, X, is the main determinant of 
the equilibrium prices generated by the SMPRT Dutch auction algorithm as in 
equation (12), it is important to estimate the congestion charge, E, under this 
assumption and compare it with the P(X) function. In the case of heterogeneous VOT, 
the private cost function is given as: 

    C(X, yh(X))  =    VOC   +  
)(

)(
XAKT

Xy h

Dist.                 (13) 

The social cost function, SC(X), integrates the impact of the marginal driver on all  
infra-marginal drivers with the highest valuation drivers starting at X=0 up to the 
marginal driver, X.   Thus, 
                

Price 

Quantity  X*

P* 

 X0  

    

        

Figure 1: Price determination in uniform Dutch auction 
with fixed supply of X* travel slots and actual demand of X0  

X* highest bid on 
the bid schedule 
B(V(X*))  

Bids ranked 
from high 
to low 
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             SC(X)  =  ∫
X

h dssyXC
0

))(,( = XVOC +  
)(XAKT

Dist
∫
X

h dssy
0

)( .  (14) 

 
This implies the marginal social cost, MSC(X) of travel which includes congestion 
externalities in the heterogeneous value of time case is given by :  
 

      Xs

h
h

h
X

XAKT
yXyXC

X

dssyXC
XMSC /

0

)(
)(,(

))(,(
)( ε+=

∂

∂
=

∫
Dist   

                                                        
                              =  C(X, yh(X))  + E(X).                                             (15)    
 
Here,  C(X, yh(X))  is given in  (13) and  

  
X

dssy
y

X
h

h
∫

= 0

)(
         and         

)(
)(

XAKT
yXVOT

h

= Dist                  (16)                                                

are, respectively, the average pro rata hourly annual income of infra-marginal road 
users and  )(XVOT  is the average value of time of the infra-marginal road users for 
the average journey length.    

With the SMPRT determined inverse demand function where the price at any 
X,   X#<X < X0  is set to reduce demand to that point, it can be easily shown that only 
for the social optimum, X*,  will the congestion externality cost E (X*) equal the price 
P(X*) .  The social optimum, X*, is obtained when the marginal social cost, MSC, 
equals the marginal social gross benefit, MGB, from the trip.18  This yields: 
     

MGB(X*) =  α yd(X*)=  C(X*, yh(X*))  +  E (X*)= MSC (X*).        (17)     
 
This implies that at X*, 
 
                  P(X*) =  (α yd(X*) - C(X*, yh(X*)) = E(X*).                                (18)   

 
As the private net benefit of the marginal road user, (α yd(X) - C(X, yh(X)) is 

equal to the price, P(X), what the willingness to pay approach indicates is that, to 
choke off demand and to accomplish demand consistent with any fixed “cap” X,  
P(X) determined by the SMPRT simulator, has to be levied.  The advantage of this is 
that the SMPRT price can be applied to achieve any desired fixed “cap”, such as X# 
selected in the next section as one beyond which a reduction in congestion may not be 
required on the grounds of traffic efficiency.   In contrast, the congestion externality 
charge, E(X), is valid only at the social optimal X*.  As identifying the social 
optimum X* is problematic, at other values of X, X>X*, charging the difference 
between the private cost and the social marginal cost will contract demand far more 
than is needed.  It is also clear that willingness to pay determined by the inverse 
demand function P(X) is less than the congestion externality cost for X > X*.   Figure 

                                                 

18 Social gross benefit is ∫
X

d dssy
0

)(α  or the gross daily income of all the infra marginal commuters. 
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2 illustrates these points and it has been calibrated in terms of the actual data obtained 
from the SMPRT simulations done for central Gateshead.  First note that at zero price 
P(X0) =0, the gross benefit or the travel budget of the X0 marginal commuter,  
α yd(X0),  is exactly equal to the private unit cost  C(X0 , yh(X0)).  The social optimum 
X* in Figure 2 is obtained at PCU volume, X*= 12136 where the marginal social cost 
curve intersects with the marginal gross benefit curve.  Here, the price P(X*) = E(X*).  
If the chosen cap is X# with X#  <  X*,  the price P(X#) exceeds the pure congestion 
cost, E(X#) related to MSC at X#, and there is some margin to include environmental 
costs of road use.    
             
  
 
and  
 
   
  
 
 
    
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     
 
 
 
 
 
 
 
 
 

 

  
 
 
 
 
 
 
 
 
£1.22 

P(X#) 
£2.90 
P(X*) 
£2.76 
 
 

Figure 2: Integration of willingness to pay and inverse demand function P(X) with  
congestion externality costs E(X) at social optimum, X* 
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3. How to determine the “cap” for the road network system 
 
3.1 The traffic micro simulation of congestion 

 Though the situation of free flow at permissible/legal speeds per hour is often 
used as a bench mark to measure the state of congestion, it is well known that zero 
congestion20 is neither socially optimal nor one that coincides with efficient traffic 
conditions.  However, to date, there has not been a consensus methodology on how to 
gauge the efficiency of traffic in a road network system. As explained in the 
introduction, in the “cap” and trade approach to the control of negative externalities of 
passenger car use, it is important to be able to set the “cap” in terms of the total 
biddable travel slots that entitle commuters to travel at a minimum average kilometres 
per hour in a given time slice.  Here, we explain how the “cap” can be determined by 
an identifiable optimal level of congestion evaluated in terms of physical traffic 
conditions in the relevant cordoned area of road network.  For this, following the 
philosophy of  model vérité  (Markose and Sunder, 2006), which is well understood in 
the application of traffic micro-simulators, the virtual or digitized physical 
environment of the cordon area of road network system of the cityscape is designed to 
include all relevant features such as traffic lights, topography and extant speed rules. 
A powerful state of the art transport micro simulator implemented by TORG derives 
the so called production function for traffic where total distance travelled by cars 
entering the cordon (the total “output”) is recorded when there is incremental growth 
in vehicle volumes, given in standardized units of passenger car units.  The 
increments in PCU volumes are achieved by the “scaling” of demand from baseline 
demand given by the existing OD (Origin-Destination) matrix of the peak time (8am-
9am) road users in the cordon area.  The validation of traffic flow for extant traffic 
volumes for morning peak time traffic is achieved by using a combination of dynamic 
and static route assignment algorithm. The “cap” for the road network system is 
identified as the point at which the total output of the system measured in total 
distance travelled falls as volume of vehicles increase. This is accompanied with an 
increase in total travel time for all the vehicles.  

The method of “factoring” or scaling corresponds to the notion of probing the 
“production technology” of traffic when increasing vehicle demand is combined with 
a fixed supply of road network of the cordon area. In economic analysis, this is a well 
understood concept for determining the point at which there are decreasing returns to 
scale from a factor of production. Such an analysis is critical for identifying optimal 
traffic conditions.  Thus, relative to the baseline demand taken as factor 1, traffic 
volumes that demand entry in the time slice are scaled up or down at the rate of 10%  
from the baseline demand, 16,740 PCU, and factors from .1 to about 1.7 are simulated 
for their traffic induced outputs for the cordon area. 21 Table 1 and Figure 3 below 
                                                 
20 Free flow speed with zero congestion in practice implies a congestion externality cost in time of 
under a minute. 
21 This is a computationally intensive method with execution times for factor 1.7 (ie, 70% more 
demand than existing demand) taking over 40 hours.   
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give the results for the traffic induced outputs which include average kilometres 
travelled (AKT/PCU per hour), total travel time, total distance travelled and the travel 
time congestion externality estimated in minutes. 
 
 
 
3.2 Traffic induced output and the optimal level of congestion 

We omit here all details of the traffic micro-simulation that was done for the 
congestion “hotspot” in the city of Gateshead in the north of England 22and report 
only the main results of the analysis. As seen from Table 1 and Figure 3 , factor 1  
in the peak hour traffic period of 8-9am (marked by a shaded band), some 16,700 
PCUs pass through the congestion hotspot in Gateshead slowing traffic down to about 
4 kmh with the cost in minutes of the congestion externality (column 7 in Table 1) 
rising to about 56 minutes.  Any further increases in traffic can tip the system into 
complete gridlock where a one kilometre journey adds a burden of 1.5 hours in terms 
of time cost of congestion externality.  Note, the average trip length in the cordon area 
is 1.8 kms.   
 
Table 1 
Average speed (AKT), total journey time per kilometre, total distance travelled per hour, for 
different levels of demand. (Current level of demand is highlighted.) 
 

Demand 
(factor) 

X 

Average speed, 
average km 
travelled/hr 

(AKT/hr) 
(smoothed23 ) 

Average 
journey  

time for 1 
km  trip 
1/AKT 

Total 
journey time  
(smoothed) 

Total 
distance  
travelled 

by all 
PCUs 

per hour 

Elasticity 
Eq(3)

AKT
PCU

PCU
AKT

XS

×
Δ
Δ

=/ε
 

ET in 
hours 
Eq. (4) 

AKT
XS /ε 24 

 
ET in 

minutes25 

 
Marginal 

total 
travel 
time 

cost 26 
 

1 2 3 4 5 6 7 8 9 
[PCU] [km/h] [h/km] [h] [km]  [h] [mins] [mins] 
1674 
(0.1) 33.67 0.030 133.7 4501.1 -0.05 -0.002 -0.12 - 

3348 
(0.2) 35.38 0.028 243.3 8607.5 -0.01 0.000 0 0 

5022 
(0.3) 35.55 0.028 346.80 12329.0 0.12 0.003 0.18 1.8 

6696 
(0.4) 34.17 0.029 492.6 16834.5 0.34 0.010 0.6 2.34 

8370 
(0.5) 31.23 0.032 671.7 20976.7 1.17 0.038 2.28 4.2 

10044 23.91 0.042 956.3 22865.3 1.27 0.053 3.18 5.7 

                                                 
22 Full details of the TORG analysis can be obtained from the authors. 
23 The traffic induced outputs from the TORG simulation for each of the demand factors should in 
principle be the average of a number of trial runs.  This is because due to the stochastic nature of  route 
assignment simulations, while a single set of simulations have produced clear trends, there are some 
fluctuations around this.  However, given the computational intensive nature of completing a single set 
of runs for demand factors .1 to 1.7, we have had to “smooth” the data points in some cases to follow 
the trend rather than average across several runs.   
24 ET or time congestion externality cost in hours

AKT
XS /ε in column 7 is obtained by multiplying column 

3 figures with those in column 6. 
25 This is obtained by multiplying figures in column 7 by 60 to get the time congestion externality cost 
in minutes.    
26 Marginal total travel time cost in column 9 of Table 1 and in Figure 3 is given in minutes and is 
obtained by adding  60/AKT to time congestion externality cost in minutes reported in column 8 of 
Table 1.   
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(0.6) 
11718 
(0.7) 18.85 0.053 1502.5 28324.4 1.80 0.096 5.76 8.94 

13392 
(0.8) 13.99 0.071 2005 28049.9 2.99 0.214 12.84 17.1 

15066 
(0.9) 8.76 0.114 3091.43 27080.9 4.78 0.545 32.7 39.54 

16740 
(1) 4.11 0.243 6265.0 26112.6 3.87 0.941 56.46 71.04 

18414 
(1.1) 2.51 0.398 8081.27 20284.0 3.89 1.55 92.89 116.77 

20088 
(1.2) 1.97 0.495 9727.8 19234.0 3.80 1.72 103.41 133.11 

21762 
(1.3) 1.40 0.71 11074.9 15530.2 2.29 1.63 97.63 140.23 

23436 
(1.4) 1.15 0.495 13209.42 15229.9 - -   

Our analysis shows that free flow of traffic at the average speed of about 35 
km/hr corresponds to zero or under 1 minute (see, Table 1 column 8) of time 
congestion externality costs and is not optimal in terms of the production function for 
traffic.  There are ‘productivity’ gains from increasing traffic beyond free flow. 
Indeed, the target of free flow for all vehicles for all times and all roads corresponds 
to a costly over provision of road space. The decline in total output in terms of total 
distance travelled by all cars which demand entry happens  after the precipitous 
decline of the AKT curve (see Figure 3 ) and well beyond speeds associated with free 
flow. Thus, it is it is only at about factor .7 with PCU volume of 11,718 that the total 
output of the traffic system given in terms of total distance travelled by all PCUs 
starts to decline. At this point, benefits from using the cordon area falls as nobody by 
his/her travel can benefit without making everybody else worse off.  Indeed, many 
who could have made it to work on time within the hour, before demand increased to 
more than 11,718, are now unable to do so due to the gridlock.  

Marginal total journey time cost in Figure 3, given in minutes, is obtained by 
adding average time of the journey in minutes, viz.60/AKT, with the time cost of 
congestion externality in minutes reported in column 8 of Table 1.  Thus, in the case 
of factor 1 demand of 16740 PCUs, the marginal total cost of a kilometre trip is given 
by adding 14.59 minutes to 56.46 minutes, which gives about 71 minutes (see column 
9 in Table 1). Further, along all the critical aspects of negative externalities from road 
transport, it was found that at this point, at factor 0.7 with PCU volume of 11,718, the 
growth of total travel time and that of vehicular emissions altered from being linear to 
an exponential rate. Thus, we conclude that for the cordon area for central Gateshead, 
a “cap” of about 11,718  PCUs can be recommended.  This effectively requires a 30% 
reduction in demand.    
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Figure 3: Congestion Externalities in Distance/hour and Journey Time/km 
The production function for traffic (total distance traveled in km/h by all PCUs) 
AKT/hr-curve for average speed 
Marginal total journey time minus average journey time = congestion externality in travel 
time 
 
4. The bid submission process and smart market (SMPRT) algorithm 
 
4.1 Empirical analysis of the bid submission process  

In order to understand how road users will bid for slots to travel in a given 
time slice, and also to establish the efficacy of the SMPRT algorithm as a means of 
determining the road user charge to achieve the desired level of congestion at the 
“cap” for the cordon area, an extensive analysis of the socio-economic and income 
distribution characteristics of the commuters who traverse the cordon area of 
Gateshead was done.  
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This is because, as discussed earlier, equations (10) and (11) which determine 
whether road users travel or not through the cordon area during morning peak hour 
and their maximum willingness to pay is based on their pro rata daily and hourly 
income.  Note, the value of travel time VOT is imputed from the willingness to pay 
function of the marginal commuter whose bid clears the market for a given fixed 
supply of travel slots.     

 
Table 2 
Percentage of commuters in each socio-economic group 
 

 
 
The range of incomes in each of these groups yields Table 3. 

On superimposing the origin-destination statistics for the region with those for 
the cordon area, we are able to cross-correlate the peak time road users who traverse 
the cordoned area with the socio-economic classes of commuters in the region given 
in Table 2.  
 
Table 3 
Income range of each socio-economic group in the north of England 
 

 
 
 

Based on the multi-modal study of commuters in the region (Ove Arup 
Report, 2002), we know that 78% of commuters are car drivers, and that the 
distribution of drivers is skewed towards the high earners. We do not have car 
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ownership data for the socio-economic classes. Therefore, we choose a threshold 
under which we assume an individual could not afford to drive a car. A threshold of 
£10,500 when applied to the disaggregated income data in Table 3 gave us the 
required outcome that 78% of commuters are car drivers. Further, on assuming the 
total population of car users to be 16,740, we obtain the income distribution given in 
Figure 4.     
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Figure 4: Income distribution of car drivers (mean annual income is £ 21,990.39)  
 
4.2 Empirical bid schedules of different socio-economic groups of road users 

Using the income data for each of the 16740 road users and with the 
standardized Vehicle Operating Costs (VOC) calculated to be 47.48 pence 27 for the 
cordon average trip length of 1.8 kms,  equations (10) and (11) in Section 2.4 were 
used to determine their bids.  Further, the data on AKT/hr for the PCU volume from 
Table 1 is used.  Note, also α,  the proportion of pro rata  daily income which 
determines the travel budget, is determined to be .066 by calibrating equation (10) so 
that the market clearing bid at current demand of 16,740 equals zero. The following 
Table 4 gives the bid schedules for the average agent in each of the professional 
categories where a bid has to be made for a travel slot to travel at a speed given in top 
row of Table 4.   

The bid schedules given in Table 4 are plotted in Figure 5 with a colour code 
for each group. With AKT/hr on the vertical axis and £ value of bids on the horizontal 
axis, the representative agent from the higher income group has a bid schedule further 
to the left (viz. higher £ value) than those in lower income groups.  Note from 
equations (10) and (11) in traffic conditions of close to free flow speeds, size of bids 
is primarily determined by the size of commuters’ daily travel budget, α yd, as the 
time cost of congestion  1/AKT is small. 

 
 

                                                 
27 This based on recent figures given in Shaffer and Santos (2005).  
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Table 4 
Bid schedules at different volume of PCUs for the average/representative agent in each group 
*( Pro Rata daily average income is given in brackets)  
 

AKT/hr 18.85 13.95 8.76 4.11 
PCU/hr 11718 13392 15066 16740 
Managers 
 (£115.48)* 
Bid £3.77 £3.44 £2.67 £0.35 
Professionals 
(£99.41)* 
Bid £2.97 £2.71 £2.08 £0.19 
Semi-routine 
(£85)* 
Bid £2.44 £2.22 £1.69 £0.09 
Administrative 
 (£67.90)* 
Bid £1.86 £1.68 £1.25 £0.00 
Personal service 
 (£60.50)* 
Bid £1.59 £1.43 £1.06 £0.00 
Sales 
 (£61.14)* 
Bid £1.65 £1.48 £1.10 £0.00 
Routine 
 (£99.41)* 
Bid £1.75 £1.58 £1.17 £0.00 

 
For the higher income group (managers) with greater opportunity cost of time, 

the willingness to pay at higher speeds is relatively greater than at lower speeds. For 
example, the average range of bids for the managerial group goes from close to £4 to 
as little as 35 pence.   

 
Figure 5: Bid Schedule of representative agent from each socio-economic class 



 21

 
In contrast, those whose value of time is low (lower income groups) the bids 

remain more constant (viz., vertical in Figure 5) starting at relatively low values of 
about £1.56 for those in personal services, for example. This is because their VOT 
with pro rata hourly wage, being relatively small, they are less responsive to 
increasing time costs of congestion, Table 5.  

 
Table 5 
Sensitivities for bid values to change in journey time for representative agent in each group 
(sensitivity calculated as (Δ Bid/ Δ(1/AKT)) 
 
PCU 11718 13392 15066 16740 
Managers 5.0 2.7 0.8 0.1 
Professionals 4.9 2.7 0.7 0.1 
Semi-routine 4.9 2.7 0.7 0.1 
Administrative 4.7 2.6 0.7 0.0 
Personal service 4.6 2.5 0.6 0.0 
Sales 4.5 2.4 0.6 0.0 
Routine 4.5 2.5 0.6 0.0 

 
 5. Description of SMPRT simulator and results 
5.1 SMPRT simulator inputs: AKT-curve and bid submission 

The workings of the SMPRT simulator is displayed in a 4-quadrant plot 
referred to as Panel A , Panel B, Panel C and Panel D.  Panels A and B contain the 
two main inputs to the Dutch auction pricing algorithm while Panels C and D give the 
main results.  Panel B displays the so called AKT-curve obtained from the TORG 
traffic simulator for the cordon area which gives the relationship between the speed 
and the volume of PCU. Below, the cursor is set at the AKT/hr of 18.85 km/h at the 
“cap” for the system identified earlier in Section 3.2 at 11,718.  

 
 
Figure 6: AKT/hr function with the cursor at cap of 11,718 PCU yield an average speed 
(AKT/hr) of 18.85 Km/h). 
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Panel A of the SMPRT simulator, in Figure 7 below, gives all 16,740  bid 

schedules as a function of AKT/hr given on the vertical axis. Note that the bids are 
colour coded to indicate the professional group of the bidder. (Typically, a horizontal 
blue line cursor in Panel A marks the cross section of bids for the AKT/hr at the 
chosen level of PCU.)  At close to free flow AKT/hr of 24 km/h, bids start at about 
£13 while at the current road use demand, by construction bids are zero. Figure 7  
shows that at about 8 km/h, as the system gets into a state of gridlock, bids from 
across the board begin to converge to zero. 
 

 
Figure 7: All 16,740  bid schedules with of AKT/hr given on the vertical axis. 
 
 
5.2 SMPRT simulation outputs: market price and market demand curve  

As explained in Figure 1 in Section 2.4, the SMPRT Dutch auction protocol 
ranks bids from highest to lowest, to obtain the market demand/aggregate bid 
schedule for a particular AKT/hr associated with the PCU level. This is plotted in 
Panel C of the SMPRT Simulator and shown in Figure 8.  What is important to note is 
that if all agents have a constant bid schedule for all speeds with relevant PCU 
volumes (such is the case when agents bid a constant proportion of their daily pro 
rata income and set their sensitivity to travel time costs from congestion to zero, see 
Appendix 1)) then the market demand/aggregate bid schedule is the same for all 
levels of PCU.  However, using the willingness to pay function in equations (10) and 
(11), there is a different market demand/aggregate bid curve for each PCU volume 
with its corresponding AKT/hr.  In Figure 8, we show four market demand/aggregate 
bid schedules, one for each PCU level. The top curve corresponds to the X# cap of 
11,718 PCU28, while the lowest curve corresponds to the demand/aggregate bid 
function at current levels of traffic, i.e., PCU of 16,740. Note, how the clearing price 
at current market demand is zero. 

                                                 
28 The SMPRT algorithm rounds off the optimal X# ‘cap’ value to be 11,720 rather than 11,718.  
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Figure 8: Inverse demand function P(X): curve connecting the SMPRT determined market 
clearing bids given as dots for the respective supply of PCU slots.  
 

The SMPRT algorithm determines the clearing price as the X* th highest bid 
for the fixed X* supply of PCU slots which is less than the current demand of X0.  The 
clearing price (the curve with dots in Figure 8) needs to be read off from the 
appropriate market demand/aggregate bid curve. Thus, the market clearing price of 
£2.90 at the “cap” of 11,720 PCU is indicated by the vertical cursor in Panel C. The 
curve connecting the market clearing price at the different chosen levels of fixed 
supply of travel slots given in Panel C is the inverse equilibrium market demand 
function P(X) defined in equation (12) of Section 2.4. Note R-cap of 1.43 referred to 
in Figure 8 represents the relative excess demand of 5020 and is given by ratio of the 
current demand and the optimal physical “cap” of 11, 720. 
 
5.3  SMPRT prices, demand and value of time  
         The SMPRT algorithm is designed so that the uniform application of the market 
clearing price P(X) to all bidders will reduce excess demand from X0 to X. Thus, 
starting at zero clearing price at current demand, as supply of travel slots are reduced, 
the price increases along the inverse equilibrium demand function P(X*)  till the price 
of £2.90 at the “cap” of 11,720 is obtained.  At this point, AKT/hr has increased to 
18.85kms from 4.11kms. These SMPRT prices are reported in Table 6 along with the 
demand elasticities, PX /ε , the speed elasticities, XS /ε , with the former defined in a 
similar way as in (3). These are evaluated at points X# < X< X0  with demand and 
prices modelled as changing incrementally.  Thus, εX/P = 0.71 will be taken to be the 
demand elasticity at the cap  X# = 11718 when demand is reduced from 12555.  If 
demand is reduced to points X from X0 at zero price, the relevant data is given in 
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brackets in Table 6.  As seen in Table 6, the demand elasticities, PX /ε , are inelastic 
and less than one in the relevant range of demand and the elasticity ranges from 0.11 
to 0.71 at the cap volume X# = 11718.   
 

Table 6 Prices and elasticities of SMPRT model for different PCU volumes. (Note: PX /ε  
takes negative values.)  

PCU 
X AKT(X) 

Clearing 
price 

SMPRT 
model 

Change in 
demand 
ΔX% 

Change 
in price 

ΔP% 

Change 
in 

AKT(X) 
ΔAKT% 

Elasticity 
of AKT to 

PCU 

XS /ε  

Elasticity 
of 

demand 
to price 

PX /ε  

11718 18.85 £2.90 0.071 
(0.43) 

0.10 
(1.00) 

0.128 
(0.78) 

1.81 
(1.82) 

0.71 
(0.43) 

12555 16.42 £2.61 0.06 
(0.34) 

0.11 
(1.00) 

0.148 
(0.75) 

2.40 
(2.21) 

0.57 
(0.34) 

13392 13.99 £2.32 0.13 
(0.25) 

0.34 
(1.00) 

0.71 
(0.71) 

2.99 
(2.82) 

0.36 
(0.25) 

15066 8.76 £1.52 0.11 
(0.11) 

1.00 
(1.00) 

0.53 
(0.53) 

4.77 
(4.77) 

0.11 
(0.11) 

16740 4.11 £0.00 - - - - - 
 
                  Table 7 reports the pro rata daily and hourly income of the different 
marginal bidders who clear the market at the respective PCU volumes.  This then 
determines the value of time, VOT, for these marginal drivers as travel time increases 
with a reduction in speed caused by congestion.  This is to be compared with VOT , 

viz. the average value of time of the infra marginal driver with hy defined in equation 
(16).   Note VOT  for all the infra marginal users is greater than, VOT, which applies 
to the marginal user.   
Table 7 :Value of time (VOT) of marginal user, private unit cost of travel and VOT , 

Average value of time of infra marginal users 
 

 
PCU 

 
 
 
 

1 

 
yd 

Daily income of 

marginal 

 user 

 

2 

 
yh 

Hourly income of 

marginal  user 

 

 

 

3   

 

VOT 
yh/AKT(X) x 

Dist 
 
 
 

4 

dy  
Average 

daily 
income 

infra 
marginal  

user 
 
 

5 
 

hy  
Average 

hourly income 
infra marginal  

users 
 

Eq (16) 
 
 

6 

VOT  
Average of 
infra marginal 
user 

hy /AKT(X) 
x Dist 

Eq (16) 
 

        7 
 

11718 £62.44 £7.80 £0.75 
 

£103.09 
 

£12.87 £1.23 

12555 £59.19 £7.39 £0.83 
 

£100.14 
 

£12.51 £1.37 

13392 £55.95 £6.99 £0.90 
 

£97.84 
 

£12.23 £1.57 

15066 £49.63 £6.20 £1.27 
 

£93.22 
 

£11.65 £2.39 

16740 £42.00 £5.25 £2.30 
 

£88.47 
 

£11.05 £4.84 
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(Note : The * values are interpolated; VOC is £0. 47; the pro rata hourly income is 
obtained by dividing the daily rate by 8 working hours).   

In Table 8, we first note that the SMPRT willingness to pay approach for the 
given volume of traffic and speed yields the market clearing price as the marginal 
gross benefit net the private cost of travel of the marginal user. Thus, the SMPRT 
prices are obtained from the data in columns 3 and 4 of Table 8.   The row that has 
been highlighted shows that social optimum volume of drivers,  X* = 12136.  Here 
the MSC = MGB at approximately £4.00.  As per equation (18), we have the SMPRT  
P(X*) is equal to the congestion externality cost of £ 2.76.  At the cap, X#= 11,718, we 
see that the price of £2.90 signals the willingness to pay by the marginal 11,718  
highest net value commuters.  At this cap level, the price of £2.90 is greater than the 
congestion externality cost of £2.24 given in column 7 of  Table 8.    Indeed, there is 
scope for the inclusion of costs from environmental externalities of about £0.66 (ie. 
£2.90- £2.24) and maintain demand at 11,718.   Note, Figure 2 has been calibrated in 
terms of the data given in Table 8.  The power of the method lies in the fact that the 
inverse demand function in Figure 2 has been obtained from the equilibrium market 
clearing price function (the dotted curve) obtained from the SMPRT simulator shown 
in Figure 8.  
Table 8 
 Social optimum and SMPRT Price compared to congestion charge with homogeneous VOT 
(GCF) and with heterogeneous VOT  

 
 
 

PCU 
X 
 
 
 
 
 

1 

 
 
 

Clearing 
price 

SMPRT 
model 

 
 

2 

 
Marginal  

social 
gross  

benefit 
 
   αyd  
 
 

3 
 

Private cost: 
VOC+VOT 

 
(VOT given in 

Table 7 
column 4 plus 
VOC= £0.47) 

                
            4 

 
Marginal  
social cost 
heterogeneous  
case 
MSC= 

private cost + 
E(X) 

  Eq. (15) 
5 

 
Congestion 

charge 
generalized  

cost  function 
approach 

(GCF) 
 
 
 

6 

 
Congestion 

charge  
heterogeneous 

case 
E(X) =VOT  

XS /ε  
Eq. (16) 
           7 
 

 
11718 

 
£2.90 

 

 
£4.12 £1.22 

 
£3.46 

 
£2.04 

 
£2.24 

 
12136* 

 
£2.76* 

 
£4.00* £1.26*  

£4.02* 
 

£2.67* 
 

£2.76* 
 

12555 
 

£2.61 
 

£3.91 £1.30  
£4.58 

 
£3.30 

 
£3.28 

 
13392 

 
£2.32 

 
£3.69 £1.37 

 
£6.06 

 
£4.56 

 
£4.69 

 
15066 

£1.52 £3.28 £1.75  
£13.15 

 
£11.62 

 
£11.40 

 
16740 

 
£0.00 

 
£2.77 £2.77 - - - 

Note: The asterisk * denotes that this row has been interpolated. 
 

Finally, we will compare the estimates for congestion externality cost using 
equations (15) and (16) in the heterogeneous VOT case and variants in the literature 
based on the generalized cost function (GCF) approach. We shall assume the 
homogeneous value of time VOT for road users in the North East is 2/3 of the VOT of 
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£17.76/hr, recently used for London and the South East (Santos and Shaffer, 2005). 
Using equation (7) multiplied by the average trip length of 1.8 kms, this yields the 
figures given in column 6 in Table 8.29  Absenting knowledge of price demand 
elasticities and the inverse demand function for the traffic system, which is not 
integral to the GCF approach, it is not clear which volume of X is the appropriate one 
at which the congestion charge will secure demand approximately consistent with the 
GCF charge.  Given the demand elasticities estimated here, the GCF congestion 
charge will be a blunt instrument being either too high at £3.30 or too low at £2.04 to 
fine tune demand to either 11,718 or 12,555.   At the social optimum of  X* = 12136, 
the GCF externality cost at £2.67 is about 10 pence less than the one calculated by the 
SMPRT model. 
 
5.4 Winners and losers across socio-economic groups from road user charging    
                     

From the bid submission process and the winner determination algorithm of 
SMPRT, Panel (i) in Figure 9 below reports the percentage of total commuters that 
belong to the different socio-economic groups.  The largest group of commuters 
belongs to the semi-routine group (36%) followed by the managerial group (21%), 
professionals (17%), administrators (14%), sales and routine at 7% each and finally, 
personal services at 2%.  In Panels ii, iii and iv of Figure 13, the supply of slots has 
been reduced by 10%, 20% and 30%, respectively, from existing demand.  How the 
rise in the market clearing price affects the different socio-economic groups is given 
as the new percentage of commuters from each socio-economic group relative to the 
original demand. Thus, using Table 9, with a reduced supply of travel slots at 15,066, 
total numbers of commuters belonging to the semi-routine groups has fallen to 5,590 
and this constitutes about 34% of the original number of road users. Thus, 
distributional impact of road pricing can be assessed in an integrated way using the 
bid based approach to road pricing.  

 
Table 9 
Absolute numbers of “winners” in socio-economic groups 
given prices at each PCU volume 
 

PCU 11718 13392 15066 16740 
Managers 3050 3280 3380 3500 
Professionals 1950 2030 2120 2160 
Semi-routine 4430 5000 5590 5990 
Administrative 1060 1490 1920 2400 
Personal service 130 150 230 300 
Sales 530 750 980 1200 
Routine 560 680 840 1150 

 
 
 

                                                 
29 For example £2.04 at PCU volume of  11718 we have: 

.04.2£8.181.1
85.18
82.11£

)(

76.17£
3
2

)Charge(X Congestion GCF |
# === xDist

XAKT XSε  
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(i) (ii) 

 

 (iii) 

 

 
(iv) 

Figure 9: Winners and losers across socio-economic groups 
 
6. Concluding remarks and future work 
 

The SMPRT project has delivered an integrated, agent based methodology 
based on the “cap” and trade approach for the pricing and control of negative 
externalities to determine peak time congestion charging in a cordon area of a road 
network system. The demonstrated principles and steps in its implementation can be 
followed in any road transport congestion pricing problem where congestion hot-spots 
in the road system have been identified. The methodology for determining the “cap” 
in a cordon area of the road network, though computationally intensive and based on a 
micro-simulative transport model of fine granularity, is within the scope of state of the 
art transport micro simulators. The “cap” is the point at which the so called total 
output function of road travel, which is total distance travelled in the cordon area by 
all cars for the fixed time slice, falls with incremental increases in volumes of traffic.  
This is a point at which the traffic efficiency and social welfare gains from travel 
begin to diminish rapidly. The electronic Dutch auction heterogeneous bid submission 
process, based on the actual distribution of income and the socio-economic 
characteristics of road users who traverse the cordon area, has obvious advantages 
over extant generalized cost function methods for estimating congestion charging. 
These include the capacity to derive the inverse demand function for the traffic 
system and also better capabilities for probing the system for demand elasticities, 
especially for the different socio-economic classes.  Further, our approach clearly 
indicates that an arbitrary increase in road user charging beyond the “cap” implied 
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price only contributes to the coffers of the monopoly provider and cannot be justified 
in terms of gains in traffic efficiency.  The transparency of the SMPRT algorithm 
should provide a bulwark against over-pricing. 
 The simulation of the willingness to pay, based on the pro rata daily income 
distribution across the heterogeneous groups of road users and which is calibrated to 
satisfy the revealed preference in the current situation of zero price and hence zero 
willingness to pay, provides an important source of data analysis of the value of travel 
time. This approach can be contrasted with the econometric based analysis of revealed 
preference of road users in the dynamic pricing on designated express lanes and of the 
stated preferences arising from hypothetical responses to questionnaires on road 
pricing (Small et. al. (2005), and Brownstone et. al. (2002)).   

The SMPRT bid only pricing, like the London congestion charge, can be 
regressive. The SMPRT algorithm and its agent based approach can identify who is 
being priced out and can help in targeting better public transport or other welfare 
measures.  In a double sided auction with fully tradable permits, those who sell the 
permits receive the incomes and hence, avoidance of road use is not only less 
regressive but also provides direct economic incentives to road users and to others 
indirectly to economize on road use and use the money to use other transport 
modalities.  The design of a system of fully tradable road user permits, however, is 
more complex in terms of property rights allocations, and the full study of its socio-
economic consequences is beyond the scope of this project.  

Finally, it is important to report the robustness tests for the efficacy of the 
proposed auction protocol in delivering the prices and revenues obtained under the 
assumption that agents bid true values. These tests have been done and it has been 
found that the large numbers of bidders with excess demands of 20% or more are 
sufficient for the marginal bids to reflect true value.  A fuller discussion of this can 
found in Markose et. al. (2006). 
 
Appendix A 
 
Here we show the nature of the bid schedule if agents use a constant bid function in 
terms of their fixed gross budget αyd(nig ) rather than the net benefit rule in equations 
(10) and (11)  where the increase in travel time costs are deducted. This implies 
inelastic bids given in Figure A1 and agents do not have a different bid for each PCU 
level and the corresponding speed, AKT.  
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Figure A1: Constant bid functions based solely on a fixed budget αyd(nig)  
The SMPRT algorithm that determines bids from highest to lowest obtains a single 
market demand function and the fixed supply determines the market clearing price at 
each X as shown below. For the same income distribution, the cap price at X= 11,720 
is £4.07 as compared to £2.90 in the case of a congestion sensitive bid function. 
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