Chapter 1

THE NEW EVOLUTIONARY COMPUTATIONAL
PARADIGM OF COMPLEX ADAPTIVE SYSTEMS

CHALLENGES AND PROSPECTS FOR ECONOMICS
AND FINANCE

Sheri M. Markose

Economics Department and Institute of Studies in Finance (ISF)
University of Essex, UK.

scher@essex.ac.uk

Abstract  The new evolutionary computational paradigm of market systems views
these as complex adaptive systems. The major premise of 18" century
classical political economy was that order in market systems is spon-
taneous or emergent, in that it is the result of human action but not
of human design’. This early observation on the disjunction between
system wide outcomes and capabilities of micro level rational calcula-
tion marks the provenance of modern evolutionary thought. However,
it will take a powerful confluence of two 20" century epochal devel-
opments for the new evolutionary computational paradigm to rise to
the challenge of providing long awaited explanations of what has re-
mained anomalies or outside the ambit of traditional economic analysis.
The first of these is the Goédel-Turing-Post results on incompleteness
and algorithmically unsolvable problems that delimit formalist calcula-
tion or deductive methods. The second is the Anderson-Holland-Arthur
heterogeneous adaptive agent theory and models for inductive search,
emergence and self-organized criticality which can crucially show and
explicitly study the processes underpinning the emergence of ordered
complexity. Multi agent model simulation of asset price formation and
the innovation based structure changing dynamics of capitalist growth
are singled out for analysis of this disjunction between non-anticipating
global outcomes and computational micro rationality.

Keywords: Complex adaptive systems; Emergence; Self-organized criticality; Algo-
rithmic unsolvability; Inductive search; Innovation; Market efficiency.
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Introduction

As with the contents of this book and with growing contributions of
the thinkers of the Sante Fe Institute (SFI) and others, notably, Nicolis
and Prigogine (1987), Chen and Day (1993), Dosi and Nelson (1994),
Axtell and Epstein (1996), Krugman (1996), Albin (1998) and Velupillai
(2000), there is clearly a resurgence of interest among economists in a
world view that market systems are complex adaptive systems. How-
ever, as pointed out by Arthur (1993a), thought habits of economists
dominated by a deductive/formalist methodology have in part been a
barrier to understanding the significance of the development of induc-
tive/evolutionary models of economic systems. In his strongest diatribe,
Simon (1981) is dismissive of the neoclassical economists’ lack of con-
cern with the procedural lacunae of rationality: ”rules of substantive
rationality that are not backed by executable algorithms are worthless
currency” (Ibid., p.43).

In so far as an intuitive notion of an algorithm or calculation can be
formalized, one of the major 20" century intellectual achievements is the
postulation in the Church-Turing thesis. By this thesis all finitely encod-
able sets of instructions defining algorithms implementable in a number
of equivalent ways, including that of the Turing Machine, can be for-
malized by the class of general recursive functions. The units of modern
adaptive models is what Arthur (1991) describes as ”parametrized de-
cision algorithms” or units whose behaviour is algorithmic and hence
brought about by finitely codifiable programs. However, in Church’s
Theorem we have the basic result on algorithmic unsolvability generi-
cally referred to as the halting problem (see, Cutland, 1980). In other
words, dynamical system outcomes produced by algorithmic agents need
not be computable. Typically, as the set of all (countable infinite) partial
recursive functions is co-extensive with the set of all Turing Machines,
problems for which no partial recursive function! or Universal Turing
Machine guarantees a solution are called undecidable or incomplete.

The purpose of this review is to highlight that a schism between the so
called formalist /deductive school and the inductive/evolutionary schools

1Note, a partial recursive function is number theoretic function, f: N — N, that is not
defined on the full domain of the set of all integers, N. In other words, on some n € N
which is its input, the computation being implemented by the partial recursive function will
not halt. Total recursive functions are defined on the full domain on N. The set of all total
computable functions is uncountably infinite and hence it is not recursively enumerable by
any Turing Machine (see, Cutland, 1980).
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is an outmoded framework of scientific discourse which has unfortunately
prevailed far too long. In Table 1,1 have summarized the framework of
discourse to assess the challenges and prospects of the new evolutionary
computational paradigm for economics. I will argue that a powerful con-
fluence of the 'new logic’ of the limits of formalistic calculation (column
II, Table 1) with the adaptive algorithms of inductive search (column
111, Table 1) is required for the new evolutionary paradigm to rise to the
challenge of providing long awaited explanations of what have remained
anomalies or outside the ambit of traditional economics analysis. In-
deed, in a discipline where its elites give pride of place to axiomatic and
formal analysis, it is unfortunate that they remain for the most part ig-
norant of the epochal results in formalist mathematics of Godel (1931),
Turing (1936) and Post (1944) on the limits of the formalist/deductive
methodology.

In Godel (1931) we have for the first time, a proof of an impossibil-
ity result that strongly self-referential system wide properties such as
a formal requirement of order in terms of internal consistency is not
one that can be established by an algorithmic decision procedure by an
internal observer who operates on codifiable information?. The unde-
cidable proposition which is known to be true to an internal observer
is without any unique recursive procedure in its derivation and hence
contradictory inferences can be drawn from the same information. This
also clearly sets a limit to knowledge that can be transferred in a codifi-
able form. Godel (1931) axiomatically derived a class of algorithmically
unsolvable decision problems, viz. the diophantine equations or poly-
nomial equations with integer solutions. With the formal conditions
for the incompleteness of predicate calculus also being identical for geo-
metrical patterns arising in tiling problems, Roger Penrose (1989), one
of the active proponents of a theory of patterns that do not have any
recursive implementation, has emphasized that non-recursive outcomes
rather than being a curiosum of science have an objective and pervasive
existence that theoretical and empirical investigators should explicitly
take on board as the probable explanation for many anomalies in the
domain of their sciences.

Thus, a formalist cognizant of the limits of formalist calculation will
be open to the necessity of trial and error style inductive inference while
in turn the latter can be fully justified by the existence of decision prob-

2Informally and in popular language, Godel’s Second Incompleteness Theorem implies that
the price for logical consistency is incompleteness or the algorithmic unsolvability of a decision
problem, see Binmore (1987).



Table 1.1.

The New Framework of Scientific Discourse

I . Formalist /
Deductive
Inference

fAxiomatic Proof

II. The New Logic

#Godel(1931):
Self-reference
Undecidability and

III. Inductive Inference

fTheory of Emergence
And Self-Organizing
Complex Systems

Theory Incompleteness
fNon-recursive Tiling
fModel Theory #Church-Turing-Post Problems
Algorithmic Unsolvability
And Limits of Formalist
Calculus

Formalistic Methods Computability Methods Methods of Adaptive
Computing
*Predicate and

Propositional Calculus

*Recursion Function/
Computability Theory *Cellular Automata
*Algorithmic and Stochastic | *Classifier Systems

Complexity Theory

*Classical methods of
optimization

*Genetic Algorithms and
* Classical Genetic Programs
Probability Models

*Neural Networks

*Numerical multi-agent
simulations

lems that are algorithmically unsolvable®. When search has to proceed in
domains that cannot be recursively enumerable or when patterns emerge
for which no recursive implementation exists, the mathematical and the
methodological framework given in column III is radically different to

3In 1998, when I put it to the recently departed master, Herbert Simon, as to how algorith-
mically unsolvable problems are resolved, the following is the verbatim text of his email reply.
? The world is full of problems that have no guaranteed solution method. .. With regard to
mechanisms for problems where there is no algorithm that guarantees solutions, I would urge
you to look hard at the word problem for semi-groups. (My addition, see, Penrose, 1988,
pp- 509-513).) The point here is that, although there is no partial recursive function that
guarantees solutions for all possible word problems, a particular partial recursive function
that you happen to execute may solve the word problem before you. The way we (people
and computers) get through life is by executing partial computing functions that sometimes
solve the problem. No guarantee though; sooner or later we miss and are dead.”
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traditional methods in column I of Table 1. The efficacy of classical
optimization algorithms requires a recursive bijective mapping between
actions and outcomes and this fails when the outcomes cannot be enu-
merated in advance?. For algorithmically unsolvable problems, in the
absence of an unique decision procedure, the hallmark of inductive in-
ference is that a multiplicity of decision procedures have to be consid-
ered, with issues of algorithmic unsolvability governing the search for
which decision procedures to include, how to alter existing procedures
and when to stop searching and so on.

Thus, as Table 1 shows the paradigm shift from traditional constraint
optimization methods of column I to adaptive methods of inductive in-
ference in column III is symbiotically related to the powerful axiomatic
limitative results on deduction and calculation given in column II. In
other words, the full recognition that there are problems, indeed all
non-trivial market related problems may be such, for which methods in
column I in Table 1 are of limited use, is slow in coming. The whole
thrust of adaptive computing methods in the form of Classifier Systems,
Genetic Algorithms (GAs) and Genetic Programs(GPs) pioneered by
John Holland (1975, 1998) and John Koza (1992), respectively, is to
evolve computer programs that can solve a problem from elementary bit
strings or units of several different programs. In the classical methods,
known solution algorithms are tried out sequentially or even in parallel
but they cannot be grown over time from simpler units as in the adap-
tive methods such as GAs and GPs where the programs coevolve as
the problems change. In an evolutionary framework, the domain of de-
cision rules contain implementable solution structures or objects which
are a subset of an uncountably infinite set of total computable func-
tions. As this set has no algorithmic decision procedure, the outcome of
an inductive search may often be far from a global optimum. Holland
(1975) pioneered the evolutionary principle for the selection of decision
rules. The latter are selected in proportion to their fitness relative to
the average fitness of the population of decision rules. In multi-species
environments, the rates of cross-over and mutation operators that can
improve fitness of decision rules may arise endogenously. As we will see,
oppositional structures that arise between species can encourage strate-
gic innovation and prevent entrapment in local optima.

41t is increasingly being understood that the standard Savage model of choice under uncer-
tainty is inadequate in the bigger scheme of things. See, Easley and Rustichini (1999) who
develop a framework of rational choice in a complex environment and attempt to relax the
assumption of a one-to-one mapping between actions and outcomes.



The adaptive computing method of neural networks (see Table 1,
column III) involve universal function approximators. Thus, while it
is the case that for any function there is a neural network able to ap-
proximate it, there is, however, no general way in which such a neural
network can be approximated in terms of the weights of the links and
the threshold values. Again the networks have to learn to recognize
patterns in a supervised or unsupervised way, by trial and error, Hertz
et. al. (1991). But, the complexity of the task that can be learnt is
unlimited and can exceed the human capacity to specify the task in
logical terms. The theory of validation in adaptive inductive inference
when the data generating process is unknown is still in its infancy. Al-
gorithmic and stochastic complexity theory of column II in Table 1 has
developed some necessary principles, while in column III, characteristic
features are now well known for macro systems with large numbers of
interacting agents at a micro level.

Building on the cellular automata® with the same recursive power
of a Turing Machine, John von Neumann pioneered the theory of self-
organizing and complex systems, Burks (1957). It is now well known
from the Wolfram-Chomsky scheme (see, Wolfram, 1984, Dawid, 1999,
Foley, in Albin, 1998, pp. 42-55, Markose, 2001a) that on varying the
computational capabilities of agents, different system wide or global dy-
namics can be generated. Finite automata produce Type 1 dynamics
with unique limit points; push down automata produce Type 2 dynam-
ics with limit cycles; linear bounded automata produce Type 3 chaotic
output trajectories with strange attractors. However, it takes agents
with full powers of Turing Machines capable of simulating other Turing
Machines® , a property called computational universality, to produce the
Type 4 irregular innovation based structure changing dynamics associ-
ated with capitalist growth. While in general, the computational agents

5These results show that the notion of symbol sequences associated with Turing computabil-
ity and formalism is not essential to computation theory. When conditions of pragmatic
implementation are at stake, it is useful to consider number theoretic computable functions
that have inputs and outputs that are integer encoded descriptions of finite objects. However,
as there are computable continuous functions with no computable solutions in the class of
ordinary differential equations (see, Pour-el and Richards, 1989) what is important is the
nature of the problem that brings about noncomputability rather than whether the function
is continuous or discrete. I'm grateful to Ken Burdett for pressing for this clarification.

6In other words, computationally universal agents have the full powers of deductive inference,
including that of self-reference, based on codifiable information. In section 3, I will sketch an
analytical proof as to why such full powers of deduction are necessary for innovation to arise
from rational strategic necessity in the Nash equilibrium of a game rather than from random
mutation.
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associated with higher types of dynamics can compute/learn lower type
of dynamics, Type 3 and Type 4 dynamics pose computational prob-
lems. Type 3 dynamics in the Wolfram-Chomsky schema though algo-
rithmically solvable, in principle, could pose problems of computational
intractability. In the latter case, the computational cost of solving a
problem optimally may place a barrier to the determination of global
optima leading to the decision rule being based on arbitrary local or
past conditions and/or being temporally myopic. Type 4 dynamics is
algorithmically unsolvable. The central issues that arise here are many.
We need to understand how computational agents produce such complex
global dynamics which pose either computational intractability or algo-
rithmic unsolvability in terms of their individual decision making. How
is order then brought about? How does such complex global dynam-
ics impinge on agents’ capability to learn, cope and operate effectively?
How do agents acquire computational universality, Langton (1992, p.69)
? The modern theory of emergent and complex phenomena deals with
this.

The 1977 Nobel laureate in Physics, Phillip Anderson, is considered
to be the father of emergent phenomenon. The seminal contributions
of Holland (1975,1992), Holland et. al. (1987), Koza (1992), Goldberg
(1989), Arthur (1993b), Kaufmann (1993) and others have made it pos-
sible to simulate heterogeneous computationally intelligent (CI) agents
in adaptive settings to give a material counterpart in computer or vir-
tual environments of the otherwise elusive phenomena of emergence and
self-organization. It is increasingly becoming a methodological tool that
will be used as a means of understanding complex social and other en-
vironments. The theory of emergent phenomena for intelligent adaptive
agents identifies at least five following characteristics of complexity.

@i). First, there are adaptive agents. Adaptive agents have algo-
rithmic capabilities that are not pre-programmed to respond in a fixed
fashion to changes in global states but have a non-linear feedback loop
that enable them to change rules of behaviour which in turn change
global properties to produce coevolving local and global systems.

(ii). The global properties of a heterogeneous adaptive set of agents
is not the scaled up version of the purposive behaviour or program of
any agent or group of agents in the system.

(iii). Knowledge of the local programs of agents gives no clue to the
global outcomes. The non-anticipating nature of global outcomes causes
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and retains heterogeneity in agents despite local self-organizing tenden-
cies and homogeneity characterized by convergence to attractors. It must
be noted that self-organized order as in the classic Schelling (1978) re-
sult on racially segregated neighbourhoods does not necessarily correlate
with what many regard to be desirable. Self-organizing” and emergent
systems produce typical statistical 'signatures’ in the macro dynamical
data such as the power laws, logistic curves, self-similar structures or
fractals and chains of interrelations that manifest long memory.

(iv). With adaptive learning in complex environments canalization
and lock ins can stabilize certain categories of behaviour within what
may be well adapted operational or shared schemes (see, Ackley and
Littman, 1992, Kaufmann, 1993). With the emergence of the latter,
learning becomes instinctive or habitual and atrophied into skilful be-
haviour. The Ackley and Littman (1992) Artifical Life simulation where
agents have neural network brains show that when the adaptive opera-
tional schema emerge they free up neural networks to do other things.

(v). As first postulated in the Wolfram-Chomsky schema, the Type
4 irregular structure changing dynamics, over and above those character-
ized solely by convergence to attractors, arise only in the case of agents
with powers of a Universal Turing Machine. Langton (1992) makes an
important observation that physical systems capable of complexity, ex-
perience a critical slowing down at the phase transition between order
(analogous to halting computations) and chaos, as they are in princi-
ple involved in a non-terminating computational loop that character-
izes an undecidable global ordering problem at that juncture. Langton
concludes that physical dynamical systems ”are bound by the same in
principle limitations as computing devices” (ibid. p.82). In system sim-
ulations with computational agents it has been found that cooperative
and competitive structures develop. Competitors soon learn, in what can
only be described as paradoxical conditions, the advantages of adopting
surprise or innovative strategies that their rivals cannot predict (see, Ray,
1992, Hillis, 1992). This can move the system in unpredictable structure
changing directions which are error driven and highly dissippative of the
old order.

"Bak (1996) style self organized criticality refers to order in large systems with many inter-
acting agents that is poised at the edge of chaos or at a phase transition. At the point of
criticality, minor disturbances can cause such a system to dissipate and to reorganize new
patterns.
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The above characterization of emergent complex system (ECS, for
short) adaptive agent models is not meant to be exhaustive of all the
work already done in this area. It should only to be taken as a working
hypothesis.

The properties of emergence that can be generated in computer sim-
ulated environments can aid in a deeper understanding of the nexus
between the non-anticipating nature of global outcomes and individ-
ual agent programs or rationality. The ACE (Adaptive Computational
Economist, see, Testfasion, 1998) is the species that has evolved after
decades of methodological entrainment of neoclassical economics that
simply failed to see that the domain of economic analysis cannot be
restricted to column I of Table 1. However, my preamble here aims
to guard against a cavalier attitude that emergent phenomena is what
ever that comes out of an ACE computer simulation or that non-trivial
mathematical issues of non-anticipating or ’surprise’ outcomes remain
unaddressed. It is clear that the mathematics of algorithmic unsolv-
ability and incompleteness along with algorithmic and stochastic com-
plexity theory of column II in Table 1 can give formal underpinnings
for adaptive learning in domains in which outcomes can be modelled as
non-anticipating or surprises®. Likewise, studies (see, Lux and March-
esi, 1999, Solomon, 2000, Solomon and Levy, 2001, and others) based on
techniques of column III in Table 1, suggest that power laws in macro
dynamical data such as in asset returns and investment wealth distribu-
tion are a manifestation of self-organized complexity in micro activity.
Chen and Yeh (2000), Arthur et. al.(1997), Challet and Zhang (1998),
Savit et. al. (1999) also raise some of these issues within the context
of economic dynamics from computer intelligent adaptive agent models
of stock markets. However, in terms of substantive details of economic
models regarding issues such as autonomy, innovation and decentraliza-
tion, learning Rational Expectations Equilibria (REE) and the Efficient
Market Hypothesis (EMH), this area is still in its infancy and what
constitutes emergent outcomes is still not beyond controversy.

Some of the recent advances in the mathematics of self-organized com-
plexity come from the study of physical systems rather than from adap-
tively intelligent micro agents. Do the principles of emergent outcomes

8See, Casti (1994, pp.143-149) for an informal discussion on the equivalence between the
theorems of formal systems which are the outputs of Universal Turing Machines and the
attractor set of a dynamical process. Casti (1994) makes the intriguing connection between
complexity and surprises with the latter formally corresponding to algorithmic unsolvability
and Goédel Incompleteness. See, also the Langton (1992) thesis on noncomputability and
complexity.
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that apply to inanimate particles such as in cloud formation and sand
piles need to differ in any way for systems with intelligent agents? The
main objective of this essay, is to convey the view that the necessity of
inductive inference and problems of self-reference that arise in emergent
outcomes with intelligent micro agents has no explicit counterpart in
large ensembles of inanimate particles?. There are as yet unexploited
benefits from cross-fertilization of methods in columns II and 111 of Ta-
ble 1 in understanding market systems as complex adaptive systems.

The rest of this chapter is organized as follows. Section 1 briefly out-
lines the classical 18" century provenance of evolutionary theories of
market systems and the thesis of spontaneous order or order without
design. 1 only highlight some aspects of this tradition in classical polit-
ical economy to show how the challenges of an evolutionary agenda for
economics remain perennial and wide ranging even though the domain of
scientific discourse has altered greatly. As decentralized heterogeneous
agents are crucial in the agenda of ECS adaptive agent models, in Sec-
tion 1.2, I briefly review the well articulated thesis on this from classical
political economy and assess also the logical/methodological impasse
that the neoclassical theory of decentralization ran into in the 1970s. It
is interesting to contrast the latter framework with one where the de-
termination of the degree of autonomy and decentralization of agents in
markets can fruitfully be viewed and modelled as emergent phenomena.
Section 2 focuses on price formation in stock/asset markets. It is an im-
portant area where the algorithmic unsolvability of rational expectations
equilibria, Spear (1989), the necessity of heterogeneous inductive mod-
els for trading and the above cited properties of complex systems can
throw light on ongoing discussions ( Friedman and Rust, 1993, Arthur
et.al. 1997, Chen and Yeh 2000, Challet and Zhang, 1998, Solomon and
Levy, 2001, and others) on the nexus between non-anticipating global
nature of asset market prices and individual rationality. Section 3 sur-
veys the ubiquitous rivalrous structure of capitalism that has produced
unprecedented novelty to the system. However, it is error ridden. In no
other area has the classical methods of constraint optimization (column
I, Table 1 ) failed economic analysis more than in the explanation of ir-
regular structure changing innovative growth in market systems. Again

9Indeed, one might say that with ACE agents being computer programs, there is already
the potential for dynamics of information as opposed to the pure dynamics of energy that
characterize simple physical systems, Langton (1992, p.42). Hence, the conditions leading to
complexity defined as those under which "we expect a dynamics of information to emerge
spontaneously and come to dominate the behaviour of the physical system” (ibid) are less
problematic.
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I hope to show how point (v) on ECS on the emergence of surprises or
novelty from complex system simulations with adaptive computational
agents has an analogue in formally undecidable systems. This is followed
by a brief concluding section.

1. The Classical and other Precursors of
Spontaneous or Emergent Order: The
Challenges Outlined

1.1. The Classical Legacy

The provenance of evolutionary theories of society that goes back to
the classical forebears of Economics with the Scottish Enlightenment
is known to predate even Darwin’s evolutionary thesis on the origin
of species, Hodgson (1993). On observing the unfolding of early west-
ern capitalism and the libertarian market forms, the classical Scottish
thinkers were led to conclude that the elaborate structures of society
ranging from language, civil society, monetary exchange, laissez faire
and economic progress did not appear as if they were the product of
human execution of a human plan. These outcomes were not produced
by intentional design. Spontaneity of the order or pattern, therefore,
refers to the absence of direct intentionality of a designing mind in the
emergence of such observable outcomes. The following epigrams were
coined: nations ” stumble on establishments that are the result of human
action and not the execution of any human design'®” (italics added); or
civil society is ”"the unintended consequence” of actions of individuals
pursuing some other proximate objective which in the hands of Bernard
Mandeville may seem like private vices. Adam Smith’s famous ”invisible
hand” explanation refers to the elusive nature of the ordering principle
manifesting entirely as observable outcomes of individuals’ actions es-
pecially in the case of equilibrium in multiple markets, rather than the
proximate objective of anybody within the system implemented by ra-

tional calculation®?.

There is a direct parallel here on the spontaneous development of a
system of legal and moral rules governing cooperation and competition in
interactions between individuals capable of producing stable outcomes

10T his is attributed to Adam Fergusson, 1767.

110n the emergence of division of labour which he sees as the engine of progress, Adam Smith
(1976, p.25) states that it is not ”originally the effect of any human wisdom, which foresees
and intends the general opulence to which it gives occasion. It is the necessary though very
slow and gradual consequence of a certain propensity to truck, barter and exchange one thing
for another.”
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in society with what is found in Smith’s arbitrageur in the economic
realm. It is in the work of David Hume that we have the clearest state-
ments on the non-constructivist view of reason’s role in the development
of the moral and legal rules of liberty and just society. Thus, ”the rules
of morality are not the conclusions of our reason,” Hume (1888). Fur-
ther, Hume couches the non-consequentialist nature of the abstract and
general structure of the rules of justice with their independence from
satisfying any particular desires of agents”: these rules are not derived
from any utility or advantage which either the particular person or pub-
lic may reap from his enjoyment of any particular good”, Hume (1888).
Kant (1965) is known to have given a formal characterization of the rules
of just society in that coercively applied rules are end neutral and by
their operation do not bring about predetermined outcomes in society.
Absenting knowledge of the utility that rules produce in particular in-
stances is seen by many a liberal theorist (see, O'Neill, 1989) as a useful
methodological ploy often called the ’veil of ignorance” in the construc-
tion of rules of justice so that they are not instruments satisfying the
invidious interests of elites or special groups'?. Nevertheless, it is still not
fully understood how or why libertarian market systems evolved rules
which possess the formal quality of their end neutrality and specifically
why their capacity to produce non-anticipating outcomes in society is
upheld as an important normative property in liberal Kantian political
philosophy. Likewise, the Humean position that no a prior: rationalism,
can succeed in designing these system of rules, de novo, that would pro-
duce the desired outcome of liberty, to this day, remains one of the most
baffling tenets of classical liberalism (see, Suzumura, 1990).

Modern theorists of emergent phenomena will no doubt see parallel
between the late 20" century theory and the classical thesis on spon-
taneous order. Thus, the classical theorists saw that system outcomes
though the result of agents’ actions is removed from the agents’ ob-
jectives and hence the global outcomes is non-anticipative in terms of
individual rationality. Just as market clearing, rules of morality, law
and other system wide operating schemas or institutions, the classical
thinkers viewed as the product of evolution. Hence, the issues covered
in an evolutionary agenda on spontaneous order are very far reaching
indeed: it includes explanation of autonomy, decentralization, market
institutions and even libertarian morality in its ambit.

121t has been suggested in Markose-Cherian (1991) that the classical Kantian view that rules
of just society satisfy no predetermined outcomes may formally mean that the dynamical
outcomes of such rules of engagement are formally undecidable.
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However, despite its venerable origins, the classical tradition of spon-
taneous order in the two centuries that followed, more often than not,
fell prey to the ultra-rationalist riposte that the patterns of spontaneous
order "look to be the product of someone’s intentional design”, Nozick
(1974, p.19) or "appear to be a product of some omniscient designing
mind”, Barry (1982, p.8). As the feeble foundations of the evolution-
ary tradition made arguments to the contrary seem theoretically uncon-
vincing (see, Ullmann-Margalit, 1978), the 19" and early 20"" century
political economy was dominated by experiments to exert rational and
centralized control on society. In this context, Ullmann-Margalit’s state-
ment that ”it took the powerful minds - and all the logical arsenal at
their disposal - of Hume and Kant, as well as the works of Darwin and
Mill, to explode the logic of this Argument from Design” (ibid, p.268)
as if to say that the task at hand was successfully accomplished by the
said luminaries, is hopelessly optimistic. In other words, it was not
well into the 20" century that the twin theoretical pillars for an evo-
lutionary thesis on markets were in place. The first pillar is the contra
Argument from Design which requires an impossibility result on why
no agent or agents in a system can bring about determinate systemic
outcomes when all agents have computational capabilities of simulating
other such agents. Indeed, not till Gédel (1931) and undecidability of
the Church-Turing halting problem could the mathematical principle of
non-recursiveness or algorithmic unsolvability, namely a logical impos-
sibility result on the limits of finitary procedures, be brought to bear
on the anti-creationist principle at the heart of evolutionary systems'.
As observed earlier, Penrose (1988) can be credited to be the first to
have explicitly mentioned the connection between non-recursive or non-
algorithmic implementation as the sine qua non of emergent patterns in
nature and in artificial settings.

The second major pillar of the evolutionary thesis is the demonstration
of emergent phenomena in the absence of a blueprint or of an encoding
for system wide outcomes. Not till the seminal work of von Neumann in
the 1950’s on cellular automata and then of Holland, Koza and thinkers
of the SFI, did we have the necessary tools to pin down the elusive and
central tenet of evolution that is of its spontaneous and emergent prop-
erties specifically in terms of orderliness and patterns. The system has

13To understand that there is indeed a non-trivial mathematical problem in the modelling of
complex adaptive intelligent systems, see, the account in Sugden (1989) on what is sponta-
neous order which makes no mention of the methodological developments in columns II and
IIT of Table 1.
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to run its course as there is a lack of algorithmic predetermination of
outcomes. To be in position at the end of the 20" century to recreate
dynamical systems of heterogenous agents with computational intelli-
gence of varying degrees that can evolve complexity and self-organize in
virtual environments of the computer is an outstanding achievement.

1.2. F.A Hayek: Decentralization and
Autonomy As Emergent Phenomena

For most part in equilibrium theory of decentralized markets, decen-
tralization refers to both the units of decision making in terms of their
autonomy of action and the informational setting that guides their de-
cisions. Adam Smith’s invisible hand argument was seen by Arrow and
Hahn (1971) as the "poetic expression” of the fact observed by early
18t" century economists of the absence of central direction in the re-
source allocation process with regard to what, when and how much to
produce and whom to distribute it to in terms of demand. In the for-
mal equilibrium theory of markets, it was thought that the burden of
proof placed by the invisible hand type argument involved the establish-
ment of a formal possibility or an existence result on an equilibrium in a
decentralized economy where individuals motivated by self interest and
guided by price signals alone will result in a resource allocation that not
only satisfies the consistency of the economic plans of the individuals but
also one that is most efficient. It was never in the domain of discourse
that the emergence of decentralized market systems with the dynamical
properties described by the classical economists also placed a burden of
proof along the lines of what John Rust (1987) has called computational
decentralization, viz. the impossibility'* or the non-existence of an over-
arching program that can control programs of all agents in the system
in the determination of system wide outcomes.

MRust (1997) only hints at the logical necessity of the impossibility result on computa-
tion that underpins evolutionary and emergent phenomena with decentralized decision units.
Lewis (1985,1988) was the first to rigorously prove that the two most basic problems of eco-
nomic theory viz. micro rational choice and Walrasian general equilibrium outcomes are not
Turing computable. Indeed, Lewis has asserted that his results have ”serious consequences for
the foundations of neoclassical mathematical economics...... that the foundations of neoclassi-
cal economics are hopelessly non-effective computationally and therefore must be considered
irrational from the standpoint of computational viability” (Lewis, 1985,p.46, p.72, italics in
the original). How do we come to terms with the growing number of theoretical results that
state that virtually all of what is considered to be of fundamental interest to economics is
outside the domain of Turing computability or uniform procedures ? The answer is, ofcourse,
to make a laborious intellectual journey from column I to column IIT of Table 1.
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The main bridgehead between the classical thesis on spontaneous or
emergent order and the modern one is F.A Hayek. In a pair of papers,
Hayek (1937, 1945) cites the two most commonplace but singularly in-
tractable informational constraints in society as being part of the ratio-
nale for decentralized systems. First, information in society is found in
a dispersed form subject to time and place matrices and it is perceived
by individuals in a subjective fashion. Second, it is impossible to cen-
tralize all information by communication alone as the knowledge needed
to make decisions is tacit and not in a codifiable form. Hayek’s much
quoted observation on this is that:” We cannot expect that this problem
will be solved by first communicating all this information to a central
board which, after integrating all knowledge, issues its orders the prob-
lem is to show how a solution is produced by the interaction of people
each of whom has partial knowledge 7, Hayek (1945, italics added).

Hayek’s third postulate on markets is remarkable in that he had well
before 1950 made the connection that many economists have yet to do
so, that is, market institutions that have coevolved with human reason
enable us to solve problems that is impossible to do so by direct rational
calculation. He called the latter the limits of constructivist reason and
on why we failed for so long to acknowledge these limits he relates back
to Cartesian rationalism, Hayek (1967).

Hayek’s fortuitous Viennese connection with Kurt Godel led him to
see that there was a logical impossibility result on why algorithmic cen-
tralized control is impossible. There is ample evidence that Hayek’s
rampant evolutionary thinking on morals to markets to price forma-
tion and human reason itself arose as he traversed the modern Godelian
route from column II to III in Table 1. There is explicit reference to
the Godel incompleteness result and its implications for his work on The
Theory of Complex Phenomena, Hayek (1982) and also in his work on
cognition and the brain as complex and incomplete phenomena in The
Sensory Order (see, Hayek, 1953, 1982, Weimar, 1982). Hayek saw

15Needless to say, many of Hayek’s commentators have failed to see the Godelian input in
Hayek’s evolutionary position. This is despite the above explicit references by Hayek to the
Godel incompleteness result, and his informal exposition of it in terms of Cantor’s proof of
the uncountable, Hayek (1967). Hayek’s methodological position on the limits of ’construc-
tivist’ reason and hence his view on evolutionary solutions constitutes a formal Godelian
one rather than an empirical one that for instance, Suzumura (1990) is prepared to accept :
”as an empirical observation on the historical evolution of social orders and/or institutions,
Hayek’s negative verdict on constructivist rationalism is quite convincing” (italics, added).
Unfortunately, in an otherwise appreciative account, Vriend (2000) perpetuates the erroneous
view that ”Hayek’s work was firmly rooted in the ”antirationalistic” approach of the English
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that complexity and incompleteness are two sides of the same coin and
that as such domains make problem solving by direct rational calculation
impossible he was led to the necessity of evolutionary solutions.

Not withstanding problems of localized information, Hayek clearly saw
that autonomy of action is also necessary on account of tacit knowledge
or cognitive incompleteness. The latter which is a by product of evolved
complexity of the brain (Hayek, 1953) permits the agent no algorithmic
access to rules of inference which prompt action. Much tacit knowledge
will be lost to the world unless it can be directly precipitated in action
in a manner that warrants no verbal or algorithmic justification. Thus,
Hayek’s work (Hayek, 1967, 1953) does lend itself to the interpretation
that classes of tacit knowledge can fall into two respective categories of
(i) emergent phenomena and (ii) the products of canalization from the
evolution of the species or from learnt behaviour in the process of so-
cialization. Groups become dominant from selective pressure on account
of individuals being carriers of successful norms or rules of engagement
which in turn select successive institutions. Thus, Hayek has provided
a cogent bridgehead to the classical liberal tradition and particularly
to the Kantian normative injunctions on the end neutrality of coercive
rules of the state which then give scope to emergent phenomena with
autonomous actors. Interestingly, no thinker is more struck by the irony
of evolutionary selection especially in reference to libertarian values on
which the West owes its unprecedented material success : these are best
served when they operate as category (iv) in the ECS schema (see, In-
troduction) as habitual and atrophied skilful behaviour. Thus, as we will
see, Hayek’s observations on the economy of information and calculation
that the market price setting institutions permit in the emergence of ef-
ficient allocations also correspond to category (iv) in the ECS (schema).
With these provisos in place, Hayek may well qualify to be an ACE, as
Vriend (2000) puts it.

Decentralization in society, thus, necessarily presupposes the granting
of some degree of autonomy to the individual decision maker. Economists
(e.g. Marschak, 1959, Arrow and Hurwicz, 1977) were quick to in-
corporate Hayek’s postulate on the local nature of information which

(sic) individualism as known, for example, from Adam Smith’s Invisible Hand..”. Hayek’s
thesis on the limits of constructive rationalism was far from ”antirationalistic” in that he
more than any economist to date was well aware of the Godelian mountebank who ignorant
of the limits of his rational capabilities attempts proof of his own logicality and becomes cul-
pable of antirationalism and illogicality (see, Markose-Cherian, 1991, for an early discussion
of this).
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constrains the resource allocation problems in an economy. In the main-
stream literature on decentralized decision making initiated by Marschak
(1959), the optimal level of decentralization determining the extent or
degree to which decision making entities should be given autonomy to
make decisions on the basis of private information, requires direct and
rational calculations of the relative speeds and costs involved in the
alternative systems of communication and control. The logical and an-
alytical impasse such an approach to decentralization posed was soon
detected by Hurwicz (1960). Hurwicz’s seminal development of the no-
tion of incentive compatibility suggests that the reporting protocol was
open to abuse as agents find it in their interest to misrepresent their
endowments and preferences. He concluded that ”it is the characteris-
tic of the current state of the literature on decentralization, that one
may be provided with a definition of what it means to have a more or
less centralized command (italics added) economy”; virtually nothing
is known about the decentralizing processes of the market system. A
consistent paradigm for the existence of decentralized systems requires
in particular that the process that determines the level of decentraliza-
tion in the system should itself conform not only with the informational
constraint but with what Rust (1997) calls decentralized computational
coustraints. Thus, Athans (1975) has indicated the potential analytical/
mathematical impasse inherent in viewing decentralized systems of con-
trol as an extension of the centralized paradigm of control in classical
control theory, viz. the 'top down’ approach. Within the latter frame-
work as Athans (1965) notes that a mere imposition of the first, but
not the second and I might add the third of the Hayekian postulates on
decentralization in markets, may still lead to the mathematical result on
the non-existence of decentralized decisions: it is optimal for the centre
to cancel local decisions. In other words, the operative non-redundant
aspect of decentralized decision making is the algorithmic unsolvability
by agent or agents of the global system wide outcomes. How do mar-
ket systems actually put in place a self-enforcing structure of rules that
brings about non-anticipating global outcomes 7

In Markose-Cherian (1991) the political economy of expanding mar-
ket societies of Europe is studied to glean insights into how in fact a
larger market order is formed. In the creation of a larger market order
with the European Economic Community, end neutral or end indepen-
dent rules can be observed to emerge from a negative selection process
of rule elimination. Through a decentralized litigious process initiated
by individual litigants who challenge rules for their inability for gen-
eral implementation, rules are progressively eliminated as unjust as they
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cannot be ’universalized’ over what is now a larger territory and peo-
ples. In Section 3, an even more powerful and commonplace hypothesis
is put forward for the development of legal rules that favour laissez faire
type non-anticipating systemic outcomes. Regulation that aims to bring
about specific predetermined outcomes can be rendered dead letter by
regulatory arbitrage when private individuals find it profitable for them
to contravene these rules. As individuals rule break and attempt to
exit from given regulatory systems, it is rationally strategic for them
to innovate as they step out. Many policy rules whose outcomes are
predictable may in fact suffer elimination as they fail to be Nash imple-
mentable in the face of such contrarian strategic behaviour on part of
regulatees. This is part of a very large literature on the regulatory dialec-
tic that has recently enjoyed great resurgence of interest as a process of
institutional innovation (e.g., Miller, 1986, Schanze, 1995, and others).
However, what is interesting, for our purposes, is that we can relate the
above issues on autonomy and decentralization in markets to the Type
4 structure changing dynamics in the Wolfram-Chomsky schema pro-
duced only by agents with computational universality or capability of
self-referential mappings.

2. Emergence of Efficiency In Asset Markets
and Individual Rationality

In the previous section the emphasis was on the open ended structure
of the constitutional rules of market systems which appears to permit
the evolution of complexity and emergent outcomes. In this section, the
focus is on a specific class of markets, viz. financial markets, in which
controversy and hence a lack of understanding of the nexus between
the non-anticipating nature of global outcomes relative to individual
agent programs or rationality has featured in a big way. Here we will
address two issues: (a) Why does asset price formation cause problems of
inductive inference? (b) Is asset market efficiency an emergent outcome?

2.1. Inductive Rationality and Heterogeneous
Beliefs

Let us start with the as yet unproved premise that the stock price is
a strongly self-referential mapping of system wide information of market
conditions'®. It is emergent from trading activity of agents and hence
manifests a non-anticipating quality with respect to individual agent ra-

16 Arthur et. al. (1997) refers to the problem of reflexivity or self-reference for deductive
inference posed by the fact that prices are generated as the result of trader’s expectations of
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tionality or computing. The latter can, indeed, be interpreted to mean
exactly what the Fama type assertion on efficient market hypothesis
(EMH) states: prices, P, that contain all (publically) available informa-
tion, H, follow a martingale such that price changes are random and
not serially correlated. If the theory of emergence or algorithmic unde-
cidability of strong reflexive encodings is not explicitly considered, it is
easy to become a victim of the fallacy of composition. It can be held
that the global outcome of non-anticipative prices is the consequence of
rational agents who believe this to be the case. That is, if i indexes all
N agents, the following states that all agents have homogenous beliefs
that the asset price is a random walk

VE;(Py1 | H)) = P, i =1,2,.,N.

In the case when assets are traded for purely speculative reasons,
viz. for pecuniary gains based on price expectations, homogenous price
expectations results in the non-existence of speculative trading. We have
the paradox that with the cessation of trade, the price at t+1, Piyq
never gets determined. If one is to take the Samuelson (1965)!7 view that
'proper’ anticipation of prices implies taking conditional expectations,

E(Py1 | Hy),

it is clear that this is without unique procedural content. In Arthur
et. al. (1997) they make a case for heterogeneous multi-agent models
where each agent uses genetic algorithms to arrive at future price predic-
tions. ”Agents, in facing the problem of choosing appropriate predictive
models, face the same problem that statisticians face when choosing ap-
propriate predictive models given a specific data set, but no objective
means by which to choose a functional form. The expectational mod-
els investors choose affect the price sequence, so that our statisticians
very choices of model affect their data and so their choices of model”

prices formed on the basis of anticipation of others’ expectations of others’ expectations of
prices.

17The well known Samuelsonian tenet states 'properly’ anticipated prices fluctuate randomly.
Here by ’proper’ anticipation is meant that conditional expectation, represented as E(P;41|H¢
) are taken. However, as conditional expectations operators by the Tower/iterated property
satisfies the martingale condition, random fluctuations in properly anticipated prices is sat-
isfied by tautology. Thus, by the Tower property E(E(P¢+1|H¢)|Hi—1) = E(Pgg1|He—1)
implying that E(Pt41|H¢) - E(P¢41|H¢—1) = €¢, where € is white noise.
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(ibid. p.305, italics added). The message here is that it is not tenable
to justify EMH on truisms such as rational agents do not make system-
atic errors. In algorithmically unsolvable problems the domain of the
decision problem is not a recursive one and agents have no systematic
way of determining the fixed point mapping for the rational expectations
equilibrium of the price'®. Agents will make systematic prediction er-
rors for the future price from the vantage of their respective misspecified
models. Thus, in the framework of emergence as being set out here, one
first needs a justification for the existence of agents with heterogenous
models of the world. In other words, in the emergent efficient market
hypothesis on asset prices (EEMH, to distinguish from the traditional
view) what is being challenged is the necessity of micro behaviour of
all agents to converge to that of homogenous martingale believers to
necessitate unpredictable price dynamics.

To pin down the algorithmically unsolvable nature of a rational expec-
tations price or the absence of an unique objective decision procedure for
agents to compute the functional fixed point mapping, 1 will outline the
issues on inductive inference learning first raised in Spear (1989). The
model is tailored to suit an asset market equilibrium for a single asset
that can be bought and sold in standardized units where the total quan-
tity of the asset is Q. Time is discrete and denoted by t =0, 1,2, ...... ,T.
There are N agents indexed by i = 1,2, 3, ...., N. Agents can choose to be
buyers (Nyp) or sellers (Ns), N + Ng < N. In a one period ahead forecast
horizon for agents, in the absence of any fundamental value determining
factors for the asset price, we will consider the minority game studied
in Challet and Zhang (1998) and Savit et. al. (1999). The prototype of
this was first considered in the Arthur (1994) El Farol game.

The minority game is ideal to study pure speculative behaviour when
spot price dynamics is entirely generated by endogenous uncertainty.
Agents execute their trades at t, having information (to be specified) up
to t. Their payoffs are related to the price at t+1, P;y1. Performance is
assessed period by period. In a minority game it pays buyers to be in the

18For instance if we are to take the definition ” noise traders form erroneous beliefs about

the future distribution of returns on a risky asset”, Schleifer(2000, p. 33) this must be the
rule than an exception in decision problems that are on non-recursive domains. Schleifer goes
on to say that this is may because agents are ”subject to one of the behavioural biases in
processing information and forecasting returns” (ibid. p.33). However, it is customary (see,
Brock and Hommes, 1998) to refer to noise traders as those who use technical trading rules in
contrast with the ’smart money’ traders who believe that the price of an asset is determined
solely by it fundamental value.
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minority and likewise for the sellers of the asset. The price function as we
will specify will enhance profitability or payoff monotonically with the
smallness of the minority and hence reinforces learning in the direction
of being contrarian. That is when agents compete to be in a minority,
it pays to be first to break ranks and do the opposite of what others are
doing especially when a majority is forming in the selling or the buying
direction. Further, random walk believers will not trade and hence as
only trading can net profits there is an inbuilt pressure for speculative
agents not be ’rational’ as in the no trade results. 1 will assume that
agents can buy or sell only one unit of the asset. This is to abstract from
features such as build up of speculative inventories by agents and also
for the winning outcome to be directly ascertained by a simple condition
based on the relative size of the numbers of buyers and sellers.

The payoff for those who trade is given by

(r-P¢41) > 0 if N, < Ns = Buyers win: 1 (a)
T =< (1-P41) <0 if Ng < Np = Sellers win: 0 (b) (1)

r+e, e ~ N(0,1) if Ny = N, = (1,0) with probability .5  (c)

Above, 1 is the reservation price which is the same for all agents. If r
is taken to be the long run mean of the price, the above conditions that
determine agents’ payoffs and in turn their strategies can set in motion
strong mean reverting properties. Condition (1.c) stipulates the random
walk model when the price fluctuates around r by a white noise error, ¢.

We will consider two classes of information sets. (i) All agents observe
the past history of prices including the current price, H;*= P;_; i =
0,1,2,..t. ; (ii) All agents observe past history of prices and the total
number of buyers and sellers from ¢y to t, Hy**= P;_1 , ( Ny, Ng—;)
, i =0,1,2,..t. As a result of (1.c), even though H;* is a bijection on
(1,0) at each date, it is a noisy signal as to the actual numbers who play
the winning strategy relative to the numbers who lose.

For computational agents, their decision procedures and forecast rules
are computable functions. Each agent’s prediction function of price at
t+1 given H;* is given by f; is a mapping from the information set to
set of spot prices for the asset,

fi  Hf — {Piya}. (2)
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Note there are three pure strategies to buy , sell or not to trade, {b,
s, f}. Agents’ decision procedure in pure strategies is defined as

If f; —r<0 then 1, buy, and f; (a)
bi: (Hf,f;)—{ If f;—r>0 then0,sell, and f;,  (b) (3)

If £, =r then no trade, and f#.  (c)

The decision rule for speculation is simple: agent i buys (sells) if the
spot price at t+1 is predicted to make i a winner and does not trade
if the agent is a random walk believer, fiﬁ in (3c¢), and the expected
return is equal to r. In other words, it is plausible to assume that a
speculator will not trade unless he is expects to win. The spot market
prices are determined by a total computable function g which is mapping
from agents’ decision rules based on their forecast functions to the set
of admissible spot prices,

g: (bit,fi;,Vi,’L' — 1, ..... N) — Pt+1.

The spot market price function g is given by

(PP > r4e) if 3 fi° >3 £, or Np > AL (a)
i J
g= ({P}Py1 <7 +e) if Zfzs > Zf;b,i orV; fi = ffand Piy1 =0 (b) (4)
i J
(PP =r4e), if L =215 i#7. (c)
i j

Here, ¢ is a white noise term, é~N(0,1). The market price function
g precisely determines the payoff for the minority speculative market
game. In (4a) it yields the set of prices {P’} which leads sellers to win
given they are in the minority as stated on the RHS of (4). {P%} is an
increasing function of the size of the majority implying that larger the
buying majority the more profitable is it for j to be a seller. Likewise,
in (4b), the set {P!} makes it a win situation for buyers given they are
in a minority. The extreme case of P,y1 = 0 is obtained when no trade
occurs and when all agents become random walk believers.

Assumption 1: The spot market price function g is a total com-
putable function given in (4) which given appropriate encoding of the
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domain and range of the function is a number theoretic function, g:
N — N. By the Second Recursion Theorem (Cutland, 1980), for any
total computable function g and for a fixed enumeration of partial com-
putable functions ¢g,¢1,02, ........ , g has a fixed point in the sense that
there exists computable functions ¢, such that ¢4,)= @a-

Definition 1 : In a rational expectations equilibrium (REE) there
exists some computable forecast function f = ¢, such that

Py = Pas (5)

then a is a fixed point of the market price function®’.

Note, a is the encoding of the algorithm or program that computes
that output of the market game when the market price function g that
determines the outcome is consistent with agents’ prediction functions
for P¢41. In the absence of perfect information on the population distri-
bution of forecast rules, in principle an agent has to find a meta forecast
rule as on the RHS of (5). That is, the agent has to identify a proper
subset of the set of all partial computable functions, ¢g, ¢1,¢2, ........ ,
such that only the fixed points of the total computable function g are
identified, viz.

{m | ¢g(m) = Pm}- (6)

By Rice’s Theorem (see, Spear, 1989) there is no recursive/ algorith-
mic procedure to identify the set of indices in (6) and hence to learn the
REE of the market price function g. Inductive trial and error processes
that begins search in an arbitrary subset of diverse forecast rules spec-
ified in Column III Table 1 have to used to. Before a survey of these
are undertaken in the next section, we will formalize why a homoge-

9Note, each computable function is identified by the index or code of the program that
computes it when operating on an input and producing an output if the function is defined
or the calculation terminates at this point. Following a well known notational convention,
Cutland (1980), we state this for a single valued computable function as follows f(z) &
¢a(x) = q . That is, the value of a computable function f(x) when computed using the
program/Turing Machine with index a is equal to an integer ¢q(z) = q, if ¢q(x) is defined
or halts (denoted as ¢a(x) |) or the function f(x) is undefined (~) when ¢q(z) does not halt
(denoted as ¢q(x) 1).

20As stated in Spear (1989) it does not follow that g(a) = a. It is only required that both a
and g(a) identify functions that produce identical outputs.
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nous computable REE cannot exist in market games that resemble the
minority game.

Definition 2: We say agent i has rational expectations of the spot
price if f; = ¢, and a is the fixed point in (5).

Definition 3: The REE of the minority market game has a com-
putable fixed point if (5) is computable and ¢4,y = ¢po = Pri1-
Then the RHS, ¢q, and the LHS ¢~ of (5) must produce the same
outcome here in the classes of {P'}, {P°}, {P?} and hence which is the
appropriate pure strategy for t+1 is predictable at t.

Definition 4: A homogenous REE (HREE) is one in which, V;,i =
1,....N, there exists a f; , such that f, = ¢,.

Theorem 1: Given that the total computable market price function
g always has a fixed point, there is no computable homogenous RE
equilibrium for the minority speculative market game in the three pure
strategies buy, sell or no trade {b,s, f}. There is no algorithmic decision
procedure to determine optimal winning strategies in (3) or P;41 is not
predictable.

Proof : We consider two cases. Assume that (5) is computable and
for V;,i = 1,....., N there exists a f; such that f; = ¢,.

Case 1: For the pure strategies to sell or buy: By ¢, on the RHS
of (5) let (4a) hold and {P°} be the predicted outcome. This, however,
results in the decision rule (3b) to follow for all agents. Hence, all agents
become sellers which results in ¢g, to output {P'}. As this leads to

the RHS and the LHS in (5) to yield contradictory outcomes { P’} and
{P1}, we conclude that (5) is not computable.

Case 2: For pure strategy not to trade : By ¢, on the RHS of (5)
let (4c) hold and {P*} be the predicted outcome which leads to agents’
decision rule (3c) to follow for all agents. Thus, when all agents do
not trade the LHS of (5) produces the outcome {P!} as the minority
outcome. Thus, a contradiction follows and there is no computable
homogenous REE in pure strategies.

The upshot so far is the following : learning REE is in general induc-
tive or non-recursive, viz. with no unique decision procedure. With no
computable fixed point as above, homogeneity of agents’ forecast rules
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is impossible in stock market models where contrarian actions are rein-
forced. Is there a stable Nash equilibrium in mixed strategies where in
all agents randomly buy or sell with probability a half and with prices
converging to a random walk? What are the conditions for self-organized
criticality or of emergence of efficiency in asset markets? The evidence
from a number of computational multi-agent stock market markets will
surveyed in Section 2.3.

Thus, in the absence of a unique algorithmic decision procedure for
the market price, agents resort to heterogeneous adaptive computing
models for the price. This makes it tenable that even agents with the
full powers of a Turing Machine must to agree to disagree with regard
to price predictions. Likewise, an algorithmic unsolvable problem may
prompt an evolutionary solution along the lines of the emergence of an
adaptive operating schema or institution (see, category (iv) in the ECS
schema in Introduction). Both these possibilities have been the subject
of intense discussion in recent years.

2.2. Price Formation in Double Auction (DA)
Markets: Why Zero Intelligence?

The rules of double auction that determine transactions prices in
goods with standardized units are known to have been adopted in mar-
kets that we now call organized markets at least as early as the advent
of the London Stock Exchange in the 17" century. In continuous DA
agents simultaneously post bids (the price at which they will buy) and
offers (the price at which they will sell). The success of the DA in
achieving transactions prices close to equilibrium market clearing prices
rests on the simple institutional rule that traders can get their bids/offers
accepted only if they are the best prices at a given time. The best price
rule requires that the bid is the highest quoted and the ask is the lowest
at time of transaction.

The problem as critiqued by papers in Friedman and Rust (1993) of
the institution free analysis of price formation is that in the absence
of institutions, agents have to show extra ordinary powers of computa-
tion to work out the Bayesian Nash equilibrium of a continuous double
auction. The latter has no analytical solution and specifically "nobody
has yet been able to calculate the exact timing and size of bids and
offers” (Ibid. p.xxi). One of the important insights from multi-agent
adaptive simulations such as by Ackley and Littman (1992) is the in-
verse relationship between the need for explicit calculation and learning
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and the evolutionary development of system wide well adapted opera-
tional schema or institutions. Once the latter are in place agents need
to exercise very little intelligence to get things 'right’. What explicit
learning was initially needed when fully adapted becomes instinct and
atrophied into skilled behaviour. It is precisely and only in this frame-
work that one must interpret Hayek’s early observation (Hayek, 1945)
on how market institutions in the context of equilibrium price setting
facilitates the emergence of the latter with agents trading on the basis
of limited information, calculation and explicit learning of their environ-
ment. The bounded rational behaviour observed in contexts such as of
double auctions can be interpreted to be the product of evolution.

The recent experimental behavioural studies surrounding the variants
of double auction show that the market in action can produce easy con-
vergence to competitive market clearing prices with very few traders
who use a minimum of strategic behaviour at that. Easley and Ledyard
(1993) led the way by showing that the Bayesian game against nature
strategies, played by agents who ignore the impact of their decisions on
that of their opponents, successfully generate competitive equilibrium
trajectories. In a now celebrated paper, Gode and Sunder (1993) show
that continuous DA markets populated by zero intelligent agents are
highly efficient in extracting gains form trade and price trajectories con-
verge to competitive equilibrium prices. Zero intelligence corresponds to
simple computer programs that generate random bids (or asks) subject
to a no loss constraint. The latter means that traders cannot buy above
their redemption values or sell below their costs and no attempt is made
to maximize profits. This was sufficient to obtain 98% of the gains from
trade. It is highly conceivable that successful market making in spe-
cialist markets bolstered by non-disclosure rules on bloc trades does not
involve strategies that are more complicated than the zero intelligence
one. The best price rule of execution is a simple but powerful device to
obtain competitive outcomes with the great economies of computation
and information that Hayek emphasized.

Carmerer and Weigelt (1993) introduce token valuations that are not
set by the experimenter but is endogenously determined by traders who
form expectations of the prices. Then, we no longer have an objective
criteria of what constitutes gains from trade. Even with the rules of the
double auction in operation, the situation becomes one where traders
use heterogenous beliefs to guide their trades. As we will see, this leads
us to as yet fully resolved issues on efficient market prices as emergent
phenomena and on individual rationality.
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2.3. Emergent Efficient Market Hypothesis
(EEMH) in SFI Related Artificial Stock
Markets and Minority Game Models

Robert, Shiller (1981) marks the beginning of the end of an exten-
sive period of methodological rigidity when informational efficiency of
asset prices was asserted to be a property of an unspecified capability
for rational calculation by agents. The simple random walk model of
asset prices has given way to a current consensus which favours the fol-
lowing class for asset market prices. Stock market returns are serially
uncorrelated?? but their variance is long memory fractally integrated
process rather than GARCH (Generalized Autoregressive Conditional
Heteroscedasticity). The latter has an autocorrelation function that dies
down far too fast at an exponential rate while long memory in volatil-
ity of stock returns shows persistance and follows a power law decay.
The professed goal of the growing number of papers in the area of the
multiagent simulated asset market price dynamics has been to see what
type of microbehaviour can generate in the simulated asset prices the
properties of fat tails, volatility clustering, crashes and the like that have
been observed in traded asset market prices.

Following the pioneering work of Arifovic (1994) much attention was
focused on how a population of agents with heterogenous G A forecasting
rules produces a global/market price process that converges to the REE.
It is also the case that forecasting rules of all agents also converge with
the conclusion here being that there is inductive learning of the unique
REE asset price. In contrast the formal arguments made in section
2.1, in asset markets where there are profits from contrarian strategies,

21The fractal Pareto-Levy Stable distribution (with infinite variance) but independent incre-
ments with rich volatility related dynamics is a possible contender for asset price returns. It
is interesting to note how Mandelbroit (1966) theoretically justifies the Pareto-Levy stable
distribution in asset price dynamics in one of the early studies on how EMH is achieved by
‘perfect’ arbitrage. Starting with an assumption of stationarity (Gaussian) and finite vari-
ance for the unobserved non-arbitraged price process, if perfect arbitrage with infinite horizon
least squares prediction is made, the distribution of the arbitraged price changes will be a
known distribution rescaled by an infinite constant,viz. a Gaussian with divergent variance,
which is absurd (ibid. p. 228). For this Mandelbrot proposes a way out by starting with
an unobservable process for the unarbitraged price changes (the so called ”function of causes
” with the exception of arbitraging itself ) which is non-Gaussian with finite variance. The
appropriate perfect arbitrage which does not entail linear least squares prediction will bring
about a Pareto-Levy distribution for the arbitraged price increments. Methodologically, as
there is only one price process, Mandelbrot’s set up of a relationship between the 'price before
arbitrage’ and ’the price after arbitrage’, as if there is any objective status to the former will
be in stark contrast with the latest attempts to justify the Levy Stable distribution for asset
returns.
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homogeneity of beliefs or forecast rules is clearly inconsistent with the
notion of a REE. The pressure to be in a minority make agents to
be contrarian of any global attractor that is building up and the price
regimes will irregularly cycle between periods of bullishness, bearishness
and quiesence.

Chen and Yeh (2001) make an explicit case for EEMH (Emergent
Efficient Market Hypothesis). Homogeneous micro rational behaviour
based on random walk believers is no longer considered to be a necessary
condition of macro-level unpredictability of prices in terms of serially
uncorrelated returns. Hence, a combination of the latter with a critical
level of heterogeneous agents with diverse forecast rules is considered
necessary to EEMH?2. The important point in Chen and Yeh (2000) is
that agents who are non-random walk believers are not deluded; some
significant proportion of them at any one time make profitable trades.
In other words, till recently the EMH was at odds with technical trad-
ing which is seen as a sign of irrationality that will in time be driven
out of the market. However, the view here is that the generic algorith-
mic unsolvability of learning REE or the absence of a unique decision
procedure for this will produce, to use the language of SFI, a coevolving
ecology of traders with heterogeneous belief models.

Unfortunately, given the diverse micro architecture of extant artificial
stock markets to date, it is not easy to draw definitive conclusions re-
garding what if any generic conditions for self-organizing apply to these
simulated markets. We will briefly consider two classes of artificial stock
market models in this section and leave a further third class to the next
section. There are those based on the SFI micro architecture for a single
risky asset which generally has a fundamental value determined by an
AR(1) process for the dividends. In contrast, there are minority game
stock market models which is not unlike the structure of Arthur’s (1994)
El Farol game. In these models (see, Section 2.1), the asset price does
not have an explicit fundamental value determining process. The SFI
stock market models build on the standard portfolio choice of a single
risky asset that uses the Sharpe ratio (see, Arthur et. al.,1997). Signifi-
cantly, in all variants of the SFI stock market model (eg. Chen and Yeh,
2000, Brock and Holmes, 1998, Le Baron, 2001, etc) as well as the mi-

221t is interesting to note from Chen and Yeh (2001) that heterogeniety of trader beliefs
and strategies is not sufficient to generate unpredictable asset market prices. For a certain
multi-agent micro architecture of learning, the market asset price dynamics was simply an
ARMA process.
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nority stock market games, agents are identical except in how they make
inductive inference. There is a finite set of forecast rules at the start.
Agents are either randomly allotted a subset of these or have access to
all of them with selection of and innovation to forecast rules proceed-
ing according to evolutionary computing methods given in column III of
Table 1.

A number of common themes can be gleaned from the simulation re-
sults of the first two classes of models. As the market environment is
maintained relatively stationary with a low intensity of search by GAs
or GPs, the unique homogenous rational expectations HREE result
followed in Arthur et. al. (1997). In contrast when the rate of GA ex-
ploration for ’better’ predictors was speeded up, the stock market prices
began to show historically observed properties of volatility clustering.
Further, convergence to at least two belief classes of agents followed. In
countrast, in Brock and Holmes (1998) the intensity of search parameter
is endogenous. In cases where agents’ memory was lengthened as in le
Baron (2001) and Brock and Holmes (1997) (and costs of rational ex-
pectations are zero) non-random walk believers will be driven out and
the market converges to a HREE. In other words, factors that lead to
inertia in inductive experimentation results in a more stationary trading
environment, making it possible to incrementally learn the fixed point
of the market price function.

In the standard minority game where all N traders buy, Ny, or sell,
Ny (viz. there is no option of not to trade as specified in 3.c) the ’social’
gains from trade are optimized when after some large number of trading
periods the following variance function

2 1 d N o

0" = T;(th 5) (7)

is at a minimum. What is interesting is that the mixed strategy Nash
equilibrium where agents randomly buy or sell with probability half is
not in fact Pareto optimal or the emergent outcome. There is a generic
degree of heterogeneity of strategies® denoted by m* for any N and the
total number of strategies is m, m > mx, from which selection is being
made. Note that N is assumed to be odd and N > m. At such a m*,
the o2 function in (7) is minimized at well below what is obtained by

23Note, Cavagna (1999) has proved that what is important here is not the length of past
historical data points that agents were allowed access , viz. memory, but rather the size of
the strategy set.
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the Nash equilibrium random mixed strategies. Savit et. al. (1999)
use mean-field-like arguments to show that ¢2/N is a function of z=
2™ /N , where 2™ is the dimension of the strategy set. Further, it was
discovered that for numerous runs of the minority game with different
N and m, the plots for 0?/N with respect to z = 2™/N fall on the
same curve. The minimum of this generic curve is near z = 2™/N =
0.5. Thus, the microsimulation of agents shows remarkable emergent
coordination where by the agents adaptively adopt the precise m* which
brings about the optimal level of social coordination, viz. the o2 in (7)
is well below that for the Nash equilibrium random mixed strategies.
This is remarkable because only the experimenter and not the agents
knows the o2 function and all local Hayek information constraints exist.
However, once no trade strategy as in (3c) is allowed and gains from
being in the minority are not unitary, it is clear that the criterion as
in ( 7) is no longer capable of assessing what constitutes optimal social
coordination.

The observed features of historical price dynamics in terms of their
power laws clearly requires non-convergence to a HREE. Indeed, the
main finding of the micro-simulations literature is that the EMH on
the absence of arbitrage opportunities is that a critical degree of non-
homogeneity of trader forecast rules or strategies must exist. This must
also sustain the observed volatility clustering, non-Gaussian fat tails in
asset returns and other features that are associated with power laws
produced by emergent coordination that is endogenous to asset market
trading.

2.4. Power Laws In Investor Wealth
Distribution and EEMH

Certain macro dynamic variables arising from large numbers of mi-
cro interacting agents in both natural and social settings are known
to display the power law distribution. Till recently few have ventured
an endogenous explanation for power laws. In the case of stock mar-
ket returns, Solomon (1998, 2000) and Levy and Solomon (1996) have
made one such explanation using a micro architecture similar to the SFI
model. As will be briefly outlined below, in these papers the efficient
market outcome emerges from the coevolution of agents’ forecast rules
with efficiency and the no arbitrage result are clearly an unintended
consequence of traders’ objectives. In contrast, Kirman and Teyserrie
(1991), Lux and Marchesi (1999) use a micro-architecture in which there
are two fixed classes of traders: the fundamentalists who expect the price
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to follow the discounted value of expected future earnings and the noise
trader who uses trading strategies based on price trends and by imitat-
ing other traders. Based on certain specification of trader reaction to
economic signals, there are endogenous probabilities of switching from
one or the other group with waves of optimism and pessimism in buying.
The stock prices are endogenously adjusted according to excess demand
(supply). The power law is observed in the asset returns as well as long
memory in the volatility of returns®*. High volatility is seen to coincide
with a larger proportion of noise traders.

In the Levy-Solomon thesis on endogenous emergence of power law in
stock returns, the power law is defined in terms of the distribution of
investor wealth in large microagent system of N agents. The probability
distribution (or the proportion of individuals in a population with wealth
of size w) is given as

P(w) ~ w172 (8)

Here, w ( integer valued)?” is a certain value of wealth w in the popula-
tion. The total wealth is generated from the N sub/micro agent systems

is
W(t) = Wi(y) + Wa(t) + e + ’U)N(t). (9)

Solomon and Levy discovered that dynamics characterized by gener-
alized Lotka Voltera equations for each micro system can under certain
conditions bring about the power law distribution in (8). The general
form of this is

wi(t +1) = Ni(H)w;i(t) — W (t) + oW (t),i = 1,2, ....... ,N. (10)

Here, \;(t) is the random multiplicative wealth generating factor which
arises due to the performance of each agent’s forecasting model and strat-
egy to buy, sell or not to trade in relation to the market’s generation of
the spot price which is common to all traders. Factor ¢ in (10) relates to

24Kirman and Teyssiere (2000) is not aimed at an endogenous explanation of power law in
asset returns nor on the emergence of efficiency in markets.

25Note that P(w) = 0 for w < 0 and lim P(w) = 0 as w — oo . That is, the distribution is
zero if w is negative or tends to infinity.



32

the interaction (such as correlation) between individual wealth held in
asset i and total market capitalization W(t). The factor v in (10) relates
to the amount received from external sources.

I will summarize below the main results from Levy and Solomon
(1996) and Solomon (2000). Levy-Solomon Result 1: The power law
in (8) follows if and only if the multiplicative coefficient A;(¢) in (10) on
agent’s wealth, at a point of emergence, becomes independent of agent
i factors and all agents’ payoffs from strategies must be drawn from a
uniform probability distribution. The emergence of the efficient market
hypothesis and the absence of arbitrage opportunities follow when the
population of strategies/ forecast rules that evolve are precisely ones
that have the same probability of obtaining a payoff in a given finite
range. That is, on average no strategy has an undue advantage over
another strategy in obtaining higher than average payoff at each t. The
important point here is that this is an emergent phenomena amongst
traders who are each trying to find rules to 'beat ’ the market and
assiduously select 'good’ forecast rules by generic evolutionary fitness
criteria of rewarding those rules that increase investor wealth shares,
w;(t)/ W(t). Thus, EEMH is sustained in microsimulation models un-
der circumstances very different from what is traditionally associated
with trader rationality. That is, under EEMH at each t a range of
strategies/forecast rules are used so that investor wealth distribution
far from being egalitarian or equal on average over time (as might be
the case if agents were making random choices), satisfies the power law
distribution in (8).

The steps in the proof of the result requires that the o parameter in
(8) has to be positive. For this Solomon et. al. specify that there has to
be a lower bound, wy,,;,(;), which dictates that the central limit theorem
no longer applies at large t and log normal distributions do not follow
for w;(t). The lower bound w,,;, ) is specified as

wmzn(t) = qm(t), (11)
where w(t) = W(t)/N, ie. w(t) is the mean income at time t.

Consider the wealth dynamics for an agent in a single asset market
with the second term in (9) is zero and there is no new injection of
resources at each date ( viz. v in (9) is zero). On placing the lower
bound constraint on minimum wealth given above, the income dynamics
for each agent is defined as
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wi(t+ 1) = N (t)w;(¢) (12)

with the lower cut-off,

w;(t+1) > qu(t). (13)

Levy-Solomon Result 2: When the power law in (8) holds for the
system dynamics in (12,13), for given N and q , q in range of 1 > ¢ > 1/In
N, the exponent « in (8) is given by

a=1/(1-q). (14)

Typically financial stock market data gives a ~ 3/2 and q ~ 1/3 with

q being interpreted as the 1/r where r is the long term market impact
factor.

Levy-Solomon Result 3: Short term returns distribution on stocks
satisfies the truncated Levy stable distribution (see, footnote, 21). This
follows because the returns appropriately defined is the sum of the N(t)
agents’ trades at time t where each w;(t) satisfies the power law.

It may be said that \;(t) in (12) satisfies i-independence as a conse-
quence of the ergodic properties of logarithmic scales. Further, Solomon
(2000) claims that ” almost every realistic microscopic market model
we have studied in the past shares this characteristic of w-independent
IT(\) distribution”. However, as the i-dependence of \;(t) is due to the
stochastic performance of the inductive choice by agent i of its forecast
rule fZ-A , what has not be sufficiently investigated is the emergent nature
of i-independent strategies by traders who are attempting to achieve the
opposite. Secondly, it can be conjectured that the w-independence of the
strategies is the consequence of the feature called the Red Queen Effect
, Ray (1992) when it gets harder and harder to maintain the superiority
of a strategy in a population of coevolving strategies. Finally, the con-
trast between the Levy-Solomon endogenous theory of the power law in
asset prices and that of the herding models of Lux-Marchesi cannot be
greater. In the former, market efficiency and no arbitrage with power
law in asset prices emerges only when there is no statistical distinction
whatsoever in the payoffs to any strategy in terms of categories such as
smart money /fundamentalists and chartists/noise traders. In the herd-
ing models these distinctions are retained. Thus, while great advance
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has been made for a better understanding of the endogenous reasons for
market efficiency, more work needs to be done to be able to discriminate
more finely as to what micro architectures in artificial stock markets are
necessary and sufficient for the emergent properties of EMH.

3. The Ubiquitous Structure of Opposition,
Emergence of Innovation and Irregular
Structure Changing Dynamics

Despite many an astute observer’s views of capitalist growth that it
is inevitably accompanied by dislocating changes, creative destruction
and the like, innovative growth has remained a veritable loose cannon
on the deck of neoclassical economic theory. The evolution of coopera-
tion, Axelrod (1984) has received a lot of attention. But, the ubiquitous
structure of opposition that necessitates secrecy and emergence of inno-
vation though intuitively familiar has not received formal attention in
economic models. Recent work in this direction by Ray’s Tierra (1992)
and Hillis (1992) show how in complex system simulations both cooper-
ative and competitive structures develop where competitors soon learn
the advantages of adopting secrecy and surprise or innovative strategies
that their rivals cannot predict when there is competition for scare re-
sources. This can move the system in unpredictable structure changing
directions which are highly disippative of the old order.

In extant game theory?® whether eductive or evolutionary there is no
notion of innovation being a Nash equilibrium strategy let alone one that
is necessitated as a best response by a structure of opposition. Innovation
is either brought about by random mutation or is an ad hoc addition in
the form of trend growth.

I will briefly make two points here to show how the confluence of the
mathematics of incompleteness and non-recursiveness with the tools of
emergent phenomena (Columns II and III in Table 1) is essential to
handle the theoretical and analytical demands of innovation and irregu-

26There is, however, a long tradition in the macro policy literature design seminally put
forward by Lucas (1972). Lucas postulated the necessity of secrecy, ambiguity and surprise
strategies in policy against the possibility of a private sector that can contravene policy and
render it ineffective if policy outcomes can be rationally expected. The Lucas Critique in
Lucas (1976) indicates that there is a problem of predictive failure of policy outcomes by
meta (econometric) models. Though not fully recognized yet (see, Markose, 2001b) this is
the exact same logic from formalist settings that demonstrate incompleteness and undecidable
dynamics.
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lar structure changing dynamics in complex economic systems?’. First,
as perceptively observed by Witt (1993, p.92) in extant economic the-
ory ”the methodological implications of the nonanticipability condition
” of innovations are violated due to the absence of an appropriate mathe-
matical paradigm that can model the structures of surprise. Witt claims
that a number of papers that deal with innovation use the optimization
algorithm and hence ”presuppose systematic knowledge on the part of
the decision makers concerning the innovations - knowledge which sim-
ply does not exist in the pre-revelation context” (Ibid., p.92)?%. T intend
to show why both in the Ray’s Tierra simulation of complexity with
computational agents and in the Wolfram-Chomsky Type 4 dynamics
with continuing innovation, agents with powers of making self referencial
mappings are necessary. Secondly, the non-recursive implementation or
the emergent nature of self-organizing change in an evolutionary system
has some profound consequences notably on the endemic role of error
that economists confined to problem solving on the classical domain
(Column I, Table 1) have had no need to address.

3.1. A Computational Theory of Actor
Innovation

Goldberg (1995) claims that the mystery shrouding innovation can
be dispelled .. ”by a heavy dose of mechanism. Many of the difficul-
ties in the social sciences comes from a lack of a computational theory
of actor innovation . . population oriented systems are dominated by
what economists call the law of unintended consequences (which is itself
largely the result of the innovative capability of the actors ) and inter-
acting with GAs provides hands-on experience in understanding what
for most people is counterintuitive behaviour”, (Ibid. p.28).

Despite Binmore’s (1987) seminal work that introduced to game the-
ory the requisite dose of mechanism with players with powers of Turing
Machines, and along with it ’the spectre of Godel’, the computational
theory of actor innovation did not follow. Binmore’s critique of tra-
ditional game theory is that it cannot accommodate a generic model

27Kaufmann (1993, pp 369-404) suggests the use of random grammars to model the evolution
of complexity and novelty which necessarily incorporate computationally incomplete and
undecidable problems.

28See also, Martens (2000, p.16):” Neoclassical paradigm of perfect competition based on
perfect information and exogenously fixed consumer preferences and production technology,
is an unsuitable starting point from which to introduce innovation into economic models.
Attempts to do so by so called endogenous growth theory and by neo-Schumpetarian School
has ended up in models that are basically inconsistent with the neoclassical paradigm”.
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of a rule breaker. The centre piece of Godel (1931, p.19) is a formal
analogue of the Liar? which proved the limits of calculation in self-
referential structures. The Liar strategy in a two person game is defined
as being capable of systematically contradicting the mutually predicted
outcomes of the other person’s strategy>?. This structure of opposition
is universal and ipso facto renders the transparent or predictable rule
inoptimal. In Ray’s Tierra (1992) when there is recognition on part of
some agents that others are parasitic on them if their whereabouts is
public knowledge, secrecy and unpredictable strategies are adopted. We
will proceed to show that when there is mutual knowledge of the Liar
qua rule breaker, viz. at the fixed point with the Liar, we are at Godel’s
famous uncomputable fixed point. Technically, from the latter the only
total computable best response function is one that maps into a domain
of the player’s strategy set that cannot be algorithmically enumerated.
Further, we can show that this surprise strategy function can imple-
ment a new action/institution outside extant action sets. Formally, as
the surprise or innovative strategy involves a total computable response
function that corresponds to the productive function, the encoding of
which provides an ever extendible set of explicit 'witnesses’ for incom-
pleteness in set theoretic proofs of the 1931 Gddel result developed by
Post (1943) (see, also Cutland,1980). The analogue of this in the for-
malisation of a game with computational agents is that when they have
mutually identified the Liar or the structure of opposition, then not only
does secrecy become paramount for their objectives, but it also follows
that the only Nash equilibrium strategies thereof are surprises imple-
mented by the productive function.

With computational agents, all decision procedures for the determina-
tion of Nash equilibrium strategies involve computable functions and so
do their best response functions. It is the latter in that they correspond
to finitely encodable procedures fully defined in all states, viz. a total
computable function, that will permit a mathematical characterization
of an institutional innovation that differs from existing actions in an al-
gorithmically non-anticipating way. As we will see, the innovation itself
is emergent, but only agents with full powers of Turing Machines capable

29Go6del’s analogue of the Liar proposition is the undecidable proposition, say A, which has
the following structure : A <> ~P(A). That is, A says of itself that it is not provable (~P).
However, there is no paradox here as it is indeed true that this is so. Any attempt to prove
the proposition A results in a contradiction with both A and ~A, its negation, being provable
in the system.

30Gelf-subversion is possible. In this case, the player breaks his own rule when its outcomes
are desired by the other.
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of self-referential mappings can deduce the necessity to innovate. To do
so is also the Nash equilibrium of the game. These main points can be
sketched for a two person game.

A major implication of computational agents is that all meta-information
with regard to the outcomes of the game for any given set of state vari-
ables, s € S, can be effectively organized by the so called prediction
function ¢, ,)(s) in an infinite chequer board like matrix = of the enu-
meration of all partial computable functions, given in Figure 1, Cutland
(1980). The tuple (x,y) identifies the row and column of this matrix =
whose rows are denoted as Z;, i= 0,1,2,...... .

B0 o0 90(0,1) 90(02) ¢0(03) --do(0y)
Bl do0 ¢o(1,1) Po(12) P0(1,3) o1,y
B2 do@0) P0(21) ¢o(22) ¢o(1,3) --do2y

[11

o]

b0 x,00 P0xl) P02y P03 -0 (xx)

Figure 1.1.

The function ¢y, (s) if defined at a given state s and o(x,y) yields

¢U(a:,y) (s) =q. (15)

Here in (15), q in some code, is the vector of state variables determin-
ing the outcome of the game. Note, o(x,y) is the index of the program
for this function ¢ that produces the output of the game when the first
player plays strategy x and the second player plays a strategy that is
consistent with his belief that the first player has used strategy 1.

We will now adopt this generic framework for the analysis of a two
person game with computational agents. The game can best be inter-
preted as one of regulatory arbitrage where an oppositional structure
can arise between the players.
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The policy game is played by the authorities (g) and the private sector
(p) where with no loss of generality the codes (g,p) denote their respec-
tive objective functions. Each player optimizes using strategies denoted
by (85, 8;) which involve computable functions that specify the optimal
response functions (f, , f;) which incorporate elements from the respec-
tive action sets A= (A, ,Ay) and given mutual beliefs of one another’s
optimal strategy. Here, b;o denotes (codes of ) p’s meta -representations of
g’s optimal strategy and b; denotes (codes of) g’s meta-representations
of p’s optimal strategy. Further, (g,p), (A, ,A4) and all archival infor-
mation of past and current state variables (where s is a given vector
of state variables) are assumed to be in the public domain. All meta
calculations on the strategies played and capable of being played in the
game are based on this information and recorded in the matrix Z=.

The determination of Nash equilibrium strategies®' involve the use of
total computable best response functions (f, , f;) which operate directly
on points such as o(z,z) to effect computable transformations of the
system from one row to another of matrix = with special reference to its
diagonal array, see, Figure 1. Thus,

¢fio(m,:r)a (AS ( 79)- (16)

Again, proceeding very informally, all fixed points and Nash equilibria
have to be elements along the diagonal array of this matrix. A typical
Nash equilibrium are at points defined by o(x, ) , viz. player p plays x
and g correctly identifies this. Off diagonal elements along any row de-
fined by strategy, say y, employed by the private sector, cannot be Nash
equilibria, as these off diagonal terms imply that authorities are choos-
ing their strategy assuming the wrong meta representation of p’s play.
Consistent alignment of beliefs by which we have o(z,z) is a necessary
condition of a Nash equilibrium as is the condition that there is ratio-
nal expectations and both agents choose their optimal Nash equilibrium

31Thus, the codes for the optimal strategy functions (,3;, ,@;‘) are obtained recursively from
the respective codes used in the calculation f, , f; and the codes of the players’ meta rep-
resentations of one another’s play. In the calculation of Nash equilibrium strategies, codes
denoted by (bg ,bf), in general, we need to specify two iterations. Note, the objective func-
tions of players are computable functions II; , i € (p,g) defined over the partial recursive
payoff/outcome functions specified in state variables in (15). Thus,

Arg]\la,:rbieBi Hi(¢o(bi7b;)(5))’ i,j € (p,9)-
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strategies such that each identifies the same function as producing the
outcome of the game.

The best response functions f;, i € (p,g) that are total computable
functions can belong to one of the following classes -

1 (Identity Function) - Rule Abiding
£ - Rule Bending
fi= (17)
f; - Rule Breaking (Liar Strategy)
f;! - Surprise

such that the codes of f; are contained in set ¥,
R = {m|fi = ¢m, ¢m is total computable}. (18)

The set R which is the set of all total computable functions is not
recursively enumerable. The proof of this is standard, Cutland (1980).

As will be clear, (18) draws attention to issues on how innovative
actions/institutions can be constructed from existing action sets. The
remarkable nature of the set R is that potentially there is an uncountable
infinite number of ways in which 'new’ institutions can be constructed
from extant action sets A. In standard rational choice models of game
theory, the optimization calculus in the choice of best response requires
choice to be restricted to given actions sets. Hence, strategy functions
map from a relevant tuple that encodes meta information of the game
into given action sets

ﬁi(in'(.’E,ﬁ)),S,A) — A and f’L = ¢’m7m € A,Z € (pvg) (19)

Unless this is the case, as the set }t is not recursively enumerable there
is in general no computable decision procedure that enables a players to
determine the other player’s response functions. However, in princi-
ple, a strategic decision procedure (3., ) for choice of best response,
fi = ¢m,m € R,i € (p,g), can map into R — A, implying that an inno-
vative action not previously in given action sets is used. We define the
surprise/innovation producing strategy as follows:

Bi(fio(x,x)),5,A) = R—Aand f; = f} = pm,m € R — A,i € (p, g).
(20)
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It has indeed been noted in passing by Anderlini and Sabourian (1995,
p.1351), based on the work of Holland (1975), that heterogeneity in forms
do not arise primarily by random mutation but by algorithmic recombi-
nations that operate on existing patterns. However, a number of precon-
ceptions from traditional game theory such as the ’givenness’ of actions
sets prevent Anderlini and Sabourian(1995) from positing that players
who as in (20), equipped with the wherewithal for algorithmic recombi-
nations of existing actions, do indeed innovate from strategic necessity
rather than by random mutation. The innovation per se is emergent
phenomena, but the strategic necessity for it is fully deducible. Hence,
it is adduced that in the Wolfram-Chomsky schema on dynamical sys-
tems with computationally intelligent agents, agents with full deductive
powers of Turing Machines capable of self-referential calculations are
necessary to bring about innovation based structure changing dynamics.
It only remains to show the specific structure of opposition that logically
and strategically necessitates surprise strategies in the Nash equilibrium
of the game.

Consider the state of affairs given by
¢0’(ba,bb) (S) = q7 (21)

where outcomes of a policy rule a is predictable and q is the desired
outcome that g wants in state variables when applying this policy rule
a. Here, in our two place notation o(b,, by), the first b, is the code of
the program, as adopted by p to simulate the impact of the policy rule
a that p believes that g will follow and the second place b, denotes that
g believes and acts on the basis that the private sector has simulated
policy rule a . It is convenient to assume that policy rule a is optimal
for g if the private sector is rule abiding. By rule abiding is meant that
p will leave the system unchanged in terms of the row b, of matrix =.

However, for player p, for the given (a,s) it is optimal for p to apply
the Liar strategy, f," o(bs,by), the code of which is, say, b, . Formally,
the Liar strategy has the following generic structure. For any state s
when the rule a applies,

Dfroabs)(8) =474 & Eoy, = oy, 0, (8) = 4,9 € By, (22)
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For all s when policy rule a does not apply,

fp' = 0,viz. do nothing. (23)

The Liar can successfully subvert with certainty in (22) if and only
if («») the policy rule is transparent with predictable outcomes and f,’
itself is total computable. Also, f,' = ¢y, m € Ay , must include a cod-
ified description of an action rule if undertaken by the Liar can subvert
the predictable outcomes of the policy rule a. Formally, if q is predicted
then the application of f" to 0(bg, bs) will bring about an outcome ¢~
¢ Es,, which belongs to a set disjoint from the set that contains the
desired output of rule a for all s for which rule a applies, viz. Fy,_ ()
B, - = (). The outcomes (¢~ , q ) can be zero sum but in general
we refer to property ¢~ ¢ Eg, in (22) as being oppositional or sub-
versive. This underpins the intuition behind Ray’s Tierra simulation
where agents recognize the necessity for secrecy. This is also well known
from the Lucas (1972) postulate on policy ineffectiveness in the case
of fully anticipated policy and the wisdom behind the panacea that to
forestall subversion, the policy rule must be undefined and fraught with
ambiguity.

Thus, we come to the point as why agents who precipitate the Wolfram-
Chomsky Type 4 dynamics with innovation have to have powers of self-
referential calculation. Firstly, g acknowledges the identity of the Liar
in (22) and understands that transparent rule a cannot be implemented
rationally as the outcome defined®? by Go(b7,bs) = 4 - The latter is out
of equilibrium. Player g, updates beliefs so that formally we obtain the
fixed point involving the Liar which is o(b;,b,) where b33 is the code
for the Liar strategy in (22). Now, the Liar, p, knows that g knows that
p is the Liar. The prediction function indexed by the fixed point of the
Liar/rule breaker best response function f," in (24) is not computable
and corresponds to the famous Gddel uncomputable fixed point.

Dfr0(bz.07)(5) = Po(vz b7)(S) (24)

a

32In out two place notation, the first by~ is code for p’s Liar strategy and ba is code for g’s
mistaken belief of p’s strategy.

33Formally, b, may be viewed as the g code of a refutable proposition in a formal system.
A refutable proposition is one whose negation (bs here) is provable in the system. As theo-
remhood is a computable relationship, the g code of the refutable proposition cannot belong
to the domain of any computable function. However, as b, is provable, the set of all such
refutable functions is a recursively enumerable subset of the domain of calculations such as
¢z (x), for all x, do not terminate.
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The proof is standard®? .

There is no paradox in stating that as both players can prove the
non-computability of (24) they will have mutual knowledge that the only
Nash equilibrium strategies for both players that is consistent with meta
information in the fixed point in (24), is one that involves strategies that
elude prediction from within the system. On substituting the fixed point
o(b,,b,) in (24) for o(z,x) in (20), g’s Nash equilibrium strategy 65
with code bf implemented by an appropriate total computable function
must be such that

BE(fyo(by.by).s,A) = R—Aand fy = fo! = pp,m e R— A, (25)

That is, f,! implements an innovation and bf ! is the code of the
surprise strategy function in (25) and hence is the fixed point of f,! .

Likewise for player p, f,! implements an innovation in (26) and bf !
is the code of the surprise strategy function viz. the fixed point of f,! .
Thus,

BE(foo(by.b).s,A) = R—Aand f, = f)! = ¢, m e R— A (26)

The intuition here is that from the uncomputable fixed point with
the Liar, the total computable best response function implementing the
Nash equilibrium strategies can only map as above into domains of the
action and strategy sets of the players that cannot be algorithmically

enumerated in advance®.

As in the Tierra and Hilles simulation models, once computational
agents have enough capabilities to detect rivalrous behaviour that is
inimical to them, they learn to use secrecy and surprises. In a two
person game with computational agents, this can be fully formalized
using the Godelian result on incompleteness. To show how with parallel
computing agents, we have cooperation and competition not simply as
in Prisoners Dilemma, but with the use of periodic adoption of new
institutions outside of extant action sets, we need the new technology of
virtual models of emergent phenomena.

34 Assume (24) is computable and the RHS of (24) produces the output ¢™ and the LHS by
the definition of the Liar strategy produces output q. However, if (24) is computable then
we have ¢ = ¢™ which is a contradiction.

35 A rigorous proof of this is omitted here and can be found in Markose (2001b).
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The logician Koons (1992) has noted that the ubiquitous structure
of the Liar ”"will play a crucial role in effecting the transition from ra-
tional agent model to understanding society in terms of institutions,
rules and practices (Ibid, ix) ...the cognitive blind spots have a wider
set of implications concerning the relationship between institutionalist
social theory and the rational agent model, and, in ethics, the relations
between deontic rule based ethical theories and consequentialism” (Ibid,
p.151). The latter is intended to mean that the vulnerability of formalist
control of society to the Liar and innovative behaviour makes unwrit-
ten constitutions, deontic virtue, truth, meaning and such tacit values
the predominant guides to spontaneous order. In the new regulatory
arbitrage theory of institutional innovation (see, Miller,1986, Schanze,
1995, etc.) the latter is brought about by rule breaking regulatees who
in their attempt to contravene regulation with predictable outcomes do
so by ’exit’ and innovation. Schanze (1995) calls such innovation regula-
tory bifurcation for which the constitutional structure of rules may have
to be modified to accommodate innovation.

3.2. The Endemic Role of Error in
Non-Recursive Systems

On the nature of the error driven path of the capitalist mode of pro-
duction, the work of Karl Marx remains one of the best accounts of
how in fact selection takes place among the rivalrous entrepreneurial
goals and objectives in the system. Marx’s so called ”"impersonal” mar-
ket forces determine the economic fate of individuals that produce and
trade in the system. The nature of the periodic crisis of overproduction
and subsequent slumps are also described in great detail. ” The capitalist
mode of production, while on the one hand, enforcing economy in each
individual business, on the other hand, begets by its anarchical system
of competition, the most outrageous squandering of labour power and
of means of employments, at present dispensable, but in themselves su-
perfluous”, Marx (circa 1869). As a way of dealing with the wasteful
nature of the selective process of emerging patterns in capitalist growth,
the Marxist agenda of Scientific Socialism sought radical institutional
reform favouring the communal ownership of capital to avoid the possi-
bility of a multiplicity of conflicting and competing investment decisions.
Neoclassical economics sought solace in viewing market outcomes solely
from equilibrium outcomes where inconsistent objectives of agents are
assumed to be resolved and no agent needs to be thwarted in his ex-
pectations or actions. The excessive focus on equilibrium positions has
come at a great price of our continuing ignorance of the nature of error
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in a system where the global ordering principle has no recursive imple-
mentation.

I will now suggest a new way of understanding what many have ob-
served to be typical of the growth in capitalist systems by drawing
an analogy between this and the Penrose theory of the non-recursive
patterns pertaining to quasi-crystalline growth structures. The latter
display a simultaneous emergence of not one but many alternative ar-
rangements of attaching atoms and these must coexist till an particular
arrangement or a reduced superposition of the same is singled out by
some non-recursive process that is known to govern general tiling prob-
lems (Penrose, 1989, p.436-438). What is significant here is that in the
non-recursive nature of emerging patterns in which tiles abut one an-
other in specific ways, it becomes necessary that some sections of the
preexisting structures of tiles have to be discarded to make way for the
new order in such a fashion that at no time can the entire order be
brought about by an act of construction that can avoid the profligate
abortions of preexisting structures even if the latter may satisfy lowest
energy configurations locally. Why the system can not move directly
to a particular pattern without the intervening stages of several alter-
native arrangements, many of which are then aborted, is the precise
consequence of the pattern having no recursive implementation. On a
non-recursive domain, as there is no effective procedure that can de-
termine in an a priori way on the effectiveness or the so called halting
behaviour of any given set of alternative arrangements within the over-
all pattern and hence there is no mechanism that can circumvent the
abortion of the many accretions that do not fit the whole. Many would
identify such profligate wastefulness of resources in all evolutionary and
emergent processes.

Path breaking work by Anderson, Bak, Priyogne, Penrose and oth-
ers, have enhanced our understanding as to why nature resorts to such
dissipative forces with the seemingly wasteful use of resources in the
implementation of non-recursive patterns. In parallel, there is Godel’s
discovery that a global criterion such as the internal consistency of formal
systems, the hall mark of a rational order is an undecidable proposition
within it has no recursive implementation. The latter, we saw is on ac-
count of computationally intelligent agents who can by contra positions,
qua the Liar, exit and innovate from any given listable formalistic struc-
ture with predictable outcomes. Thus, interestingly, we may currently
have an easier task of explaining the pervasive existence of spontaneous
or emergent order with non-recursive selective processes in the complex
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institutions of society with computationally creative agents rather than
in purely physical systems!36

4. Concluding Remarks

The sciences of complex adaptive systems have been a truly interdis-
ciplinary venture being spearheaded by physicists, biologists, computer
scientists, mathematicians, economists and others. In the case of the
evolution of complexity in intelligent social systems, it is not far off the
mark to say that the modern evolutionary agenda on spontaneous or
emergent order was clearly identified at the provenance of Economics
in the 18" century. A survey of classical political economy has been
given here to redress the balance in the growing contributions by physi-
cists and mathematicians on the evolution of complexity. The sin qua
non of a system capable of complexity is manifested in the disjunction
between system wide outcomes and the micro level computational capa-
bilities and also in the non-anticipating or surprise producing features
of the system. The normative necessity of a structure of constitutional
rules that permits this was clearly articulated in classical liberal tra-
dition even if its implications were and are not yet fully understood.
Over two centuries have had to elapse till we have the methodological
tools necessary to counter, on grounds of computational impossibility,
the ultra rationalist position that sees no distinction between what can
be constructed by calculation and what can only emerge. Scientifically,
the latter category of events has had a tenuous status till recently. The
advances in the mathematics of non-linear dynamics, emergence and
evolutionary computation has made it possible to pin down the elusive
properties of non-computable dynamics produced by computationally
intelligent agents.

I started with the premise that when the domain of a decision prob-
lem is non-recursive, the loss of a categoric decision procedure prompts
a multiplicity of models for inductive inference. Indeed, we saw a critical
degree of competing heterogeneous 'world views’ are needed to achieve
the emergent coordination and enhanced social welfare even in the simple
minority game. The explanation of power laws in asset prices as a mani-
festation of ever persisting endogenous heterogeneity of agent behaviour
has progressed greatly. Section 3 sketched a computational theory of ac-
tor innovation based on the mathematics of Godel incompleteness which
permits computational agents to exit and innovate when caught up in

36See, footnote 9 and the Langton (1992) thesis on this.
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an oppositional structure. This ubiquitous dynamic behind innovation
has been observed in Type 4 dynamics of Wolfram-Chomsky cellular
automata and more recently been seen in the Tierra and Hillis (1992)
Artificial Life simulations. Despite efforts in this direction as in Easley
and Rustichini (1999), it is clear that economists have a long way to go
to understand complexity in terms of the Langton-Kaufmann novelty
producing world with attendant problems of incompleteness and unde-
cidability. Section 3.2 was included to highlight the less palatable side to
the evolution of complexity and the inevitable consequence of decision
procedures being on non-recursive domains. KError is endemic in such
systems and they have real consequences. To conclude, therefore, the
formalist limits on algorithms and adaptive methodology of evolution
and emergence (viz. columns Il and III of Table 1)are two sides of
the same coin that should be brought to bear on discussions of complex
adaptive systems.
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