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Abstract

This article concerns a class of groups of Fibonacci type introduced by Johnson and Mawdesley

that includes Conway’s Fibonacci groups, the Sieradski groups, and the Gilbert-Howie groups. This

class of groups provides an interesting focus for developing the theory of cyclically presented groups

and, following questions by Bardakov and Vesnin and by Cavicchioli, Hegenbarth, and Repovš, they

have enjoyed renewed interest in recent years. We survey results concerning their algebraic proper-

ties, such as isomorphisms within the class, the classification of the finite groups, small cancellation

properties, abelianizations, asphericity, connections with Labelled Oriented Graph groups, and the

semigroups of Fibonacci type. Further, we present a new method of proving the classification of

the finite groups that deals with all but three groups.
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1 Introduction

Let w = w(x0, . . . , xn−1) be a word in the free group Fn with generators x0, . . . , xn−1 and let θ : Fn →

Fn be the automorphism of Fn given by θ(xi) = xi+1 for each 0 ≤ i ≤ n − 1 (subscripts mod n). The

presentation

Gn(w) = 〈x0, . . . , xn−1 | w, θ(w), . . . , θn−1(w)〉

is said to be a cyclic presentation and the group Gn(w) it defines is a cyclically presented group. As part

of the programme of research into Fibonacci groups and their generalizations the groups of Fibonacci

type Gn(m,k) = Gn(x0xmx−1
k ), defined by the presentations

Gn(m,k) = 〈x0, . . . , xn−1 | xixi+m = xi+k (0 ≤ i ≤ n − 1)〉

(0 ≤ m,k ≤ n− 1) were introduced in [29]. Following the appearance of the groups Gn(m, 1) in [21] in

connection with Labelled Oriented Graph groups and the independent re-introduction of the groups

Gn(m,k) in [8] they have enjoyed renewed interest over the last decade [1],[9],[27],[46],[47],[48]. The

groups Gn(m,k) generalize various groups that have previously been studied: Gn(1, 2) are Conway’s

Fibonacci groups F (2, n) of [12], the groups Gn(2, 1) are the Sieradski groups S(2, n) of [41], and the

groups Gn(m, 1) are the Gilbert-Howie groups H(n,m) of [21]. (We shall write F(2, n),S(2, n),H(n,m)

for the corresponding presentations.) The groups Gn(m,k) fit into the wider classes of cyclically pre-

sented groups R(r, n, k, h) of [7] and P (r, n, k, s, q) of [38]. The related groups Gn(x0xmxk), introduced

in [10], were studied in detail in [19].
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As well as being of interest in the context of the Fibonacci groups, the groups Gn(m,k) provide

a hub around which to develop the theory of cyclically presented groups and they have prompted re-

search in combinatorial and computational group theory, semigroup theory, low dimensional topology,

algebraic number theory, and linear algebra. In this survey we review current knowledge about their

algebraic properties and, in some cases, provide new proofs of known results.

2 The finite Fibonacci groups and Sieradski groups

The classification of finite Fibonacci groups F (2, n) is now well known and a survey of the results that

led to it is provided in [43].

Theorem 2.1 ([43]) The Fibonacci group F (2, n) is finite if and only if n = 2, 3, 4, 5, 7.

Since the appearance of that survey there have been some further developments that are relevant

here. The last of the Fibonacci groups, F (2, 9), was first proven to be infinite by Newman [33] using

computational algebra: the proof applies a theorem involving a Golod-Shafarevich type inequality to

an index 152 subgroup. Holt [24] subsequently used KBMAG to prove that F (2, 9) has an automatic

structure and that its generators have infinite order. Chalk [11] proved that F (2, n) is infinite for all

odd n ≥ 9 using curvature methods. As well as giving a manual proof that F (2, 9) is infinite this filled

an important gap in the literature as Lyndon’s proof that F (2, n) is infinite for all n ≥ 11 remains

unpublished. There were already alternative proofs that F (2, n) is torsion-free and infinite for all even

n ≥ 8 – see [22],[43]. In connection with this it is worth pointing the following result of Bardakov and

Vesnin. (Exercise 12 of [28, page 84] is sometimes, erroneously, cited as a proof.)

Theorem 2.2 ([1, Proposition 3.1]) If n is odd then F (2, n) has non-trivial torsion.

For the Sieradski groups S(2, n) we have the following, which answered a question of Ann-Chi Kim.

Theorem 2.3 ([44]) The group S(2, n) is infinite if and only if n ≥ 6. It contains a non-abelian free

subgroup if and only if n ≥ 7; S(2, 6) is metabelian.

For n ≥ 6 the proof works by showing that the Zn extension of S(2, n) has a presentation as a

generalized triangle group that has a homomorphism onto an infinite or non-elementary subgroup of

PSL(2, C).

The groups F (2, n) and S(2, n) are also important for geometrical and topological reasons that are

described, for example, in [31],[22],[41].

3 Isomorphisms

Lemma 3.1 ([1, Lemma 1.2]) The group Gn(m,k) is isomorphic to the free product of (n,m, k)

copies of GN (M,K) where N = n/(n,m, k), M = m/(n,m, k), K = k/(n,m, k).

Lemma 3.2 ([1, Lemma 1.1(1,2)]) (a) Gn(m, 0) = Gn(m,m) = 1;

(b) Gn(0, k) is isomorphic to the free product of (n, k) copies of Z2n−1.

By Lemmas 3.1 and 3.2 we may assume (and often will) that (n,m, k) = 1 and 1 ≤ m 6= k ≤ n−1.

Lemma 3.3 ([1, Lemma 1.1(3)]) Gn(m,k) ∼= Gn(n − m,n − m + k).
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By Lemma 3.3 we may also assume m < k (though we will do so less frequently). The following

tells us that in certain cases Gn(m,k) is isomorphic to a Gilbert-Howie group.

Lemma 3.4 ([1, Lemma 1.3)],[47, Lemma 7]) (a) If (n, k) = 1 then Gn(m,k) ∼= H(n, t) where

tk ≡ m mod n;

(b) if (n, k − m) = 1 then Gn(m,k) ∼= H(n, t) where t(k − m) ≡ n − m mod n.

Similarly we have that if (n,m) = 1 then Gn(m,k) ∼= Gn(1, k′) where k′ = kt where tm ≡ 1 mod n

([1, Lemma 1.4]). Further isomorphisms are given by the following theorem ([9, Theorem 2]), which

is a corrected simplification of [1, Theorem 1.1]. Although developed independently, it is in fact a

generalization of [21, Lemma 2.1] which deals with the case k = k′ = 1.

Theorem 3.5 ([1],[9]) Let Gn(m,k) and Gn(m′, k′) satisfy (n,m, k) = 1 and (n, k′) = 1. If m′(m −

k) ≡ mk′ mod n then Gn(m,k) ∼= Gn(m′, k′).

For each n ≥ 3 let f(n) denote the number of pairwise non-isomorphic groups Gn(m,k) such that

1 ≤ m 6= k ≤ n − 1 and (n,m, k) = 1. Question 2 of [1] asks if f(n) can be computed and this was

investigated in [9]. Using the isomorphisms above, computer searches were used to obtain an upper

bound U(n) on f(n); invariants of groups (usually the abelianization) were then used to obtain a lower

bound L(n). In many cases U(n) and L(n) were found to coincide, therefore giving the value of f(n).

For 3 ≤ n ≤ 27, n 6= 17, 19, 21, 23 the exact value of f(n) and representatives from each isomorphism

class were found [9, Table 1]. In the excluded cases U(n) and L(n) differed by 1 and pairs of possibly

isomorphic groups, whose resolution would give the exact value of f(n), were listed. For odd primes

p and l ≥ 1 it was shown that f(p) ≤ (p − 1)/2 ([9, Proposition 7]) and the values of f(pl) and f(2l)

were conjectured ([9, Conjecture 8]).

4 The groups with n ≤ 9

For n ≤ 6 all groups Gn(m,k) were identified in [29] (see also the tables of [1, Section 4]). In light of

Section 3 we assume (n,m, k) = 1, 1 ≤ m < k ≤ n − 1.

Theorem 4.1 ([29]) Let (n,m, k) = 1, 1 ≤ m < k ≤ n − 1. For n ≤ 6 all the groups Gn(m,k) are

as follows:

G3(1, 2) ∼= Q8, G4(1, 2) ∼= G4(1, 3) ∼= Z5, G4(2, 3) ∼= SL(2, 3),

G5(1, 2) ∼= G5(1, 4) ∼= G5(2, 3) ∼= G5(2, 4) ∼= Z11, G5(1, 3) ∼= G5(3, 4) ∼= SL(2, 5),

G6(1, 3) ∼= G6(1, 4) ∼= Z7, G6(2, 3) ∼= G6(2, 5) ∼= Z9, G6(3, 4) ∼= G6(3, 5) ∼= Z
3
2 ⋊ Z7,

G6(1, 5) ∼= G6(1, 2) = F (2, 6),which is infinite,

G6(4, 5) ∼= S(2, 6),which is an infinite metabelian group.

(Strictly, in [29] it was established that G6(2, 3) is soluble and of order 56; it was identified as

Z
3
2 ⋊ Z7 in [21].) Consider now the case n = 7. The isomorphisms of Section 3 show that there are

three groups: F (2, 7), S(2, 7), H(7, 3) (see also [9, Table 1]). The group F (2, 7) ∼= Z29; S(2, 7) contains

a free subgroup of rank 2 by Theorem 2.3. Thomas showed that H(7, 3) has a normal subgroup of

index 256 that is free abelian of rank 8, so is infinite (this is reported in [21]). We summarize this as
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Theorem 4.2 Let n = 7, 1 ≤ m < k ≤ n − 1. Then all the groups Gn(m,k) are

G7(1, 2) ∼= G7(1, 6) ∼= G7(2, 4) ∼= G7(2, 5) ∼= G7(3, 4) ∼= G7(3, 6) ∼= Z29,

G7(1, 3) ∼= G7(1, 5) ∼= G7(2, 3) ∼= G7(2, 6) ∼= G7(4, 5) ∼= G7(4, 6) ∼= H(7, 3),which is infinite,

G7(1, 4) ∼= G7(3, 5) ∼= G7(5, 6) ∼= S(2, 7),which is infinite.

Consider now the case n = 8. Up to isomorphism there are six groups: F (2, 8), S(2, 8), H(8, 3),

H(8, 4), H(8, 5), H(8, 6). The group F (2, 8) is infinite by Theorem 2.1; S(2, 8) contains a free subgroup

of rank 2 by Theorem 2.3; and H(8, 5) ∼= Z17. As was reported in [1, Section 4] GAP [20] may be used

to establish that G = H(8, 3) is finite of order 310 ·5 = 295245; it may further be used to show that it is

soluble of derived length 3 with first, second, and third derived quotients Z5, Z
4
3, Z

6
3, respectively. This

group provides a rare example of a finite, non-metacyclic, cyclically presented group. Other examples

are given (for example) in [6]. I am not aware of any cyclic presentation Gn(w) with n > 8 that defines

a finite non-metacyclic group. The groups H(8, 4), H(8, 6) were proved to be infinite in [21] using the

asphericity techniques that we will describe in Section 7, but we can see this directly by using GAP

to show that their second derived quotients are Z
8 and Z

12, respectively. In summary

Theorem 4.3 Let n = 8, 1 ≤ m < k ≤ n − 1, (n,m, k) = 1. Then all the groups Gn(m,k) are

F (2, 8) = G8(1, 2) ∼= G8(1, 7) ∼= G8(3, 5) ∼= G8(3, 6),which is infinite,

G8(2, 5) ∼= G8(6, 7) ∼= S(2, 8),which is infinite,

G8(1, 3) ∼= G8(1, 6) ∼= G8(5, 6) ∼= G8(5, 7) ∼= H(8, 3),which is finite of order 310 · 5,

G8(4, 5) ∼= G8(4, 7) ∼= H(8, 4),which is infinite,

G8(1, 4) ∼= G8(1, 5) ∼= G8(3, 4) ∼= G8(3, 7) ∼= H(8, 5) ∼= Z17,

G8(2, 3) ∼= G8(2, 7) ∼= H(8, 6),which is infinite.

Consider now the groups Gn(m,k) for n = 9. Up to isomorphism there are five groups: F (2, 9),

S(2, 9), H(9, 3), H(9, 4), H(9, 7). By Theorem 2.3 the group S(2, 9) contains a free subgroup of rank 2.

The group F (2, 9) is infinite (see Theorem 2.1). In [9, Lemma 15] Newman’s method of proof ([33]) of

that result was successfully applied to (the index 448 second derived subgroup of) the group H(9, 3),

proving it infinite. This also establishes the previously unknown fact that the group G(−, 9) of [17,

page 228] is infinite. It is currently unknown if the (non-isomorphic) groups H(9, 4) and H(9, 7) are

infinite.

O’Brien [34] reports that G = H(9, 4) has derived quotient Z19, has the following 2-generator

2-relator presentation

〈x, y | y−2x−2y−1x2yxy−1x, y−1x−1y−2x−1y−1xy−2x−1yx−1〉,

and observes that adding the relator x2y−2x2yxy3x−2y−1x−1y−1x−2 to this gives L = PSL(2, 8)×Z19.

He observes that the kernel K of the epimorphism G → L is perfect and is the normal closure of a

single element (many of the individual Schreier generators of K are suitable elements). It is not known

if K is infinite, finite, or trivial (that is, whether G ∼= L). Little seems to be known about the group

H(9, 7), other than that its abelianization is Z37. I thank Eamonn O’Brien for allowing me to include

this information here.

We summarize the results for n = 9 in the following theorem. (As there are 27 triples (n,m, k)

that satisfy the hypotheses, we no longer list the isomorphism classes.)

Theorem 4.4 Let n = 9, 1 ≤ m 6= k ≤ n − 1, (n,m, k) = 1. Then Gn(m,k) is isomorphic to exactly

one of F (2, 9), S(2, 9), H(9, 3), H(9, 4), H(9, 7). The groups F (2, 9), S(2, 9), H(9, 3) are infinite; it

is unknown whether H(9, 4) and H(9, 7) are finite or infinite.
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5 The finite groups

Question 1 of [1] asks for a classification of the finite groups Gn(m,k). For n ≤ 9 the groups are

described in Section 4. For n ≥ 10 the classification of the finite groups Gn(m,k) is given by the

following theorem. Note that for n ≥ 10 the only finite groups are cyclic.

Theorem 5.1 ([21],[47]) Let n ≥ 10, 1 ≤ m 6= k ≤ n − 1, and (n,m, k) = 1. Then Gn(m,k) is

finite if and only if 2k ≡ 0 mod n or 2(k − m) ≡ 0 mod n, in which case Gn(m,k) ∼= Zs where

s = 2n/2 − (−1)m+n/2.

We record

Lemma 5.2 ([47, Lemma 3]) Suppose that (m,k) = 1, k 6≡ 0 mod n, k 6≡ m mod n and either

2k ≡ 0 mod n or 2(k − m) ≡ 0 mod n. Then Gn(m,k) ∼= Zs where s = 2n/2 − (−1)m+n/2.

(The case k = 1 was previously obtained in [21, Proposition 2.2].)

The proof of Theorem 5.1 that is currently in the literature combines the asphericity results of [21]

and [47] (see Section 7) with the classification of the perfect groups Gn(m,k) of [35],[48] (see Section 6)

and therefore relies on some involved algebraic number theory. We will present that proof after we

have given Theorems 7.4 and 7.5. For the case n ≥ 11 we now present a new, purely group theoretic,

proof that avoids the algebraic number theory of [35],[48]. The automorphism θ of the introduction

induces an action of the cyclic group T = 〈t | tn〉 of order n on the presentation Gn(m,k). Specifically,

t−1xit = xi+1 (0 ≤ i ≤ n−1) and therefore t−ix0t
i = xi. Writing x = x0 we see that the split extension

of Gn(m,k) by T has a presentation

En(m,k) = 〈x, t | tn, xt−mxtm−kx−1tk〉. (1)

Setting y = tmx−1, eliminating x, then inverting t gives the alternative presentation

En(m,k) = 〈y, t | tn, y2tky−1tm−k〉

which is a one-relator product G = (H∗K)/〈〈R〉〉 where H = 〈y | 〉, K = 〈t | tn〉, and R = y2tky−1tm−k.

For a one-relator product G = (H ∗ K)/〈〈R〉〉 the Freiheitssatz is said to hold if the natural

homomorphisms H → G, K → G are embeddings. The Freiheitssatz for one-relator products has

been considered in many papers, for example in [25]. Since H ∼= Z, if the Freiheitssatz holds in this

setting we have that En(m,k) (and hence Gn(m,k)) is infinite. Now R is of the form R = abcd

(a, c ∈ H, b, d ∈ K), and the Freiheitssatz for one-relator products where the relator takes this form

was studied in [17],[18],[39],[40] and other papers by the same authors. In our proof we will require

results from those papers including the following, which we reproduce here as the preprint [39] remains

unpublished.

Theorem 5.3 ([39],[40]) Let G = (H ∗ K)/ << R >> be a one-relator product where R = a2ba−1d

with a ∈ H, b, d ∈ K, a2 6= 1, b2 6= 1, d2 6= 1, b 6= d±2, d 6= b±2. If |H| ≥ 7, |H| 6= 8, |K| ≥ 11,

K 6∈ {Z12, A4, S4, A5} then the Freiheitssatz holds.

We now give the new proof of Theorem 5.1 for n ≥ 11.

Proof of Theorem 5.1 for n ≥ 11 using Freiheitssatz methods

Let a = y, b = tk, d = tm−k. Then En(m,k) = (H ∗ K)/〈〈R〉〉 where H = 〈y | 〉, K = 〈t | tn〉, and

R = a2ba−1d. If 2k ≡ 0 mod n or 2(k − m) ≡ 0 mod n then the condition (n,m, k) = 1 implies
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(m,k) = 1 and so the result follows from Lemma 5.2. If m ≡ 2k mod n or (m + k) ≡ 0 mod n

then Gn(m,k) ∼= F (2, n) by Lemma 3.3 so the result follows from Theorem 2.1. If k ≡ 2m mod n

then Gn(m,k) ∼= S(2, n) so the result follows from Theorem 2.3. Thus we may assume 2k 6≡ 0,

2(k − m) 6≡ 0, m 6≡ 2k, (m + k) 6≡ 0, k 6≡ 2m, and by hypothesis we have k 6≡ 0, k 6≡ m, m 6≡ 0 (all

mod n). Equivalently, in K we have b2 6= 1, d2 6= 1, b 6= d, d 6= b−2, b 6= d−2, b 6= 1, d 6= 1, b 6= d−1.

If additionally (m − k) 6≡ 2k mod n and k 6≡ 2(m − k) mod n, or equivalently that (in K) d 6= b2,

b 6= d2 then Theorem 5.3 implies that the Freiheitssatz holds. In particular we have that H ∼= Z

embeds in En(m,k) so it, and hence Gn(m,k), is infinite.

Suppose then that d = b2 or b = d2 in K (equivalently that (m − k) ≡ 2k mod n or k ≡

2(m − k) mod n, respectively). The condition (n,m, k) = 1 implies that (n, k) = 1 when d = b2 and

(n,m − k) = 1 when b = d2. Thus by applying an automorphism of Zn we may assume k = 1 or

(m− k) = 1, respectively. By replacing y and t by their inverses, if necessary, we see that in each case

En(m,k) ∼= 〈y, t | tn, y2t2y−1t〉.

For each q ≥ 1 this maps onto

Lq = 〈y, t | yq, tn, y2t2y−1t〉.

Since n ≥ 11, Theorem 3 of [18] implies that for any q ≥ 72, the group Zq = 〈y | yq〉 embeds into Lq.

Therefore |En(m,k)| ≥ q for all q ≥ 72, and hence is infinite. 2

Observe that the first half of the proof is also valid for n = 10, but that the application of [18,

Theorem 3] requires n ≥ 11. Thus if the proof is continued to the case n = 10 we may assume

either (m − k) ≡ 2k mod n or k ≡ 2(m − k) mod n. The condition (n,m, k) = 1 means we may

assume k = 1 or (m − k) = 1 in these cases, respectively, so we are reduced to considering the groups

G10(3, 1) = H(10, 3) and G10(3, 2). By Theorem 3.5 these are isomorphic, so there is only one group

Gn(m,k) with n ≥ 10 that cannot be proved infinite by this method, namely H(10, 3).

6 Abelianizations

The abelianization of a finitely presented group is determined by the Smith form of its relation matrix

(see for example [28, pages 57–58]). As is described in [28, pages 76–77], in the case of a cyclically

presented group Gn(w) the relation matrix is a circulant matrix

Mn(w) = circn(a0, . . . , an−1) =





a0 a1 . . . an−2 an−1

an−1 a0 . . . an−3 an−2

...
...

a1 a2 . . . an−1 a0





where (for 0 ≤ i ≤ n − 1) ai is the exponent sum of xi in w = w(x0, . . . , xn−1).

The order |Gn(w)ab| is given by |det(Mn(w))|, where 0 is interpreted as ∞; in particular Gn(w)ab is

infinite if and only Mn(w) is singular, and Gn(w) is perfect if and only Mn(w) is unimodular. Letting

f(t) =

n−1∑

i=0

ait
i

be the representer polynomial for Mn(w) we have the following expression for det(Mn(w)) as a resul-
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tant:

det(Mn(w)) = Res(f(t), tn − 1) (2)

=
∏

θn=1

f(θ). (3)

For groups Gn(m,k) we have a0 = 1, am = 1, ak = −1 and ai = 0 (i 6= 0,m, k) so f(t) is the trinomial

f(t) = tm − tk + 1.

In this case we will write Mn(m,k) = circn(a0, . . . , an−1).

For the Fibonacci groups F (2, n) the order of F (2, n)ab is given by the following theorem, where

Ln denotes the nth Lucas number.

Theorem 6.1 (Lyndon, [13]) |F (2, n)ab| = Ln − 1 − (−1)n.

In particular, F (2, n)ab is finite for all n. Using the theory of elementary divisors, the structure of

F (2, n)ab was determined by Bumby.

Theorem 6.2 (Bumby, [13])

F (2, n)ab =






Zs if (n, 6) = 1,

Z2 ⊕ Z2s if (n, 6) = 3,

Zs ⊕ Zs if (n, 4) = 2,

Zs ⊕ Z5s if (n, 4) = 4,

(where s can be found from Theorem 6.1).

For the Sieradski groups, the structure of S(2, n)ab is given by the following theorem, which has

been proved using number theory in [30, page 236] and by geometric methods (involving Brieskorn

manifolds) in [9, Lemma 9]; additionally the first line was asserted in [41, page 138] and the necessary

and sufficient conditions for S(2, n)ab to be infinite were proved in [44, Theorem A]. Here we give a

purely group theoretic proof.

Theorem 6.3 ([30],[9])

S(2, n)ab =






1 if (n, 6) = 1,

Z3 if (n, 6) = 2,

Z2 ⊕ Z2 if (n, 6) = 3,

Z ⊕ Z if (n, 6) = 6.

Proof

In S(2, n)ab multiplying the relations xixi+2 = xi+1 and xi+2xi+4 = xi+3 gives

xix
2
i+2xi+4 = xi+1xi+3 = xi+2

so xixi+2xi+4 = 1 and so also xi+2xi+4xi+6 = 1. Together these imply xi = xi+6.

Now there exist α, β ∈ Z such that 6α + nβ = (n, 6) so 6α ≡ (n, 6) mod n, and hence

xi = xi+6 = xi+12 = . . . = xi+6α = xi+(n,6).
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Adding the relation xi = xi+(n,6) to the presentation of S(2, n)ab gives

S(2, n)ab = 〈x0, . . . , xn−1 | xixi+2 = xi+1, xi = xi+(n,6) (0 ≤ i ≤ n − 1)〉ab

= 〈x0, . . . , x(n,6)−1 | xixi+2 = xi+1 (0 ≤ i ≤ (n, 6) − 1)〉ab

= S(2, (n, 6))ab

from which the result follows easily. 2

Question 6 of [1] asks for a formula for |Gn(m,k)ab|. This is a special case of a problem considered by

Ore in [36, Section 5], namely to find det(circn(a0, . . . , an−1)) when exactly 3 of the ai are non-zero (ie

when f(t) is a trinomial). Ore asserts that Theorem 1 of [36] may be used to give an explicit statement

for the determinant, although the resulting formula (which is not given) is “somewhat complicated”.

Abelianizations of particular families of groups Gn(m,k) have been of interest elsewhere, for example

[28, Exercise 11, page 196] concerns the groups G2s+3(s + 2, 2s + 2)ab.

Question 6 of [1] further asks if a formula for |Gn(m,k)ab| could be expressed in terms of numbers

generalizing the Fibonacci numbers (as in Theorem 6.1). It is likely that a formula based on numbers

defined by recurrence relations exists, but such a formula would be extremely complicated so could

not really constitute a positive answer to the last part of this question.

Using the formula (3) necessary and sufficient conditions for Gn(m,k)ab to be infinite can be given.

(This generalizes the result for the case k = 1, which was dealt with in [35, Theorem 2(a)].)

Theorem 6.4 ([35],[47, Theorem 4]) Suppose (n,m, k) = 1. Then Gn(m,k)ab is infinite if and

only if n ≡ 0 mod 6 and ((m mod 6, k mod 6) = (2, 1) or (4, 5)).

Based on experiments using GAP the necessary and sufficient conditions for Gn(m,k) to be perfect

were conjectured in [47] and proved in [48].

Theorem 6.5 ([48]) Suppose (n,m, k) = 1. Then Gn(m,k) is perfect if and only if ((n, 6) = 1 and

m ≡ 2k mod n) or k ≡ 0 mod n or k ≡ m mod n.

Since Gn(k, k) = 1 and Gn(m, 0) = 1 it is clear that m ≡ k mod n and k ≡ 0 mod n are sufficient

conditions. Since the conditions (n,m, k) = 1, (n, 6) = 1 and m ≡ 2k imply that Gn(m,k) ∼= S(2, n),

the fact that these are also sufficient conditions follows from Theorem 6.3. (This was also proved

in [47, Lemma 5].) That these conditions are necessary is more difficult, and this was the main result

of [48]. In number theoretic terms, letting f(t) = tm − tk + 1, where m,k ∈ Z, k 6= 0,m mod n, and

(n,m, k) = 1, we can state this as:

(i) Suppose (n, 6) = 1. If Res(f(t), tn − 1) = ±1 then m ≡ 2k mod n.

(ii) Suppose (n, 6) > 1. Then Res(f(t), tn − 1) 6= ±1.

The proof of (i) is essentially a re-run of the proof for the case k = 1 ([35, Lemma 3.1]), and was

given in [48, Lemma 4.8]. The proof of (ii) for the case k = 1 from [35] does not directly generalize,

but a proof (inspired by the methods of [35]) was provided in [48]. We shall not present that proof

here; rather we prove a weaker form, namely that (ii) can be false for at most finitely many n. (We

include this proof as it is rather different to the proof for all n, and it may be of use for future research

in this area.)

Theorem 6.6 Let f(t) = tm − tk + 1, where m,k ∈ Z, k 6= 0,m mod n. Then there are at most

finitely many n with (n,m, k) = 1 and (n, 6) > 1 such that Res(f(t), tn − 1) = ±1.
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Proof

If f is reducible then the main result of [45] implies that f has a root of modulus 1. A technical

proposition then shows that f must have a factor g(t) = t2(m,k) − t(m,k) + 1 so f(t) = f1(t)g(t) for

some f1(t). Since (n, 6) > 1 Theorem 6.3 implies Rn(g) 6= ±1 and because Rn(f1) ∈ Z we have that

Res(f(t), tn − 1) = Rn(f1)Rn(g) 6= ±1.

Thus we may assume that f is irreducible.

Suppose further that f is cyclotomic, ΦL, say. If L = 2s (for some s) ΦL(t) = t2
s−1

+ 1 6= f(t), so

we may assume L is not a power of 2. Therefore, by [15, Theorem 1] the middle coefficient of ΦL(t),

and hence of f(t), is odd. Now (for k 6= m) f(t) only has an odd middle coefficient if k = 2m or

m = 2k in which case Res(f(t), tn − 1) 6= ±1 by Theorems 6.1 and 6.3, respectively.

Thus we may assume that f is irreducible and not cyclotomic. Since k 6= m we have (by replacing

f(t) by f(t−1), if necessary) that f is of positive degree and is not equal to ±t. Then Theorem 1 of [35]

(or Proposition 1 of [14]) implies that there are at most finitely many n for which Res(f(t), tn−1) = ±1.

2

7 Asphericity

Associated to a group presentation is the standard 2-complex which has a single 0-cell, 1-cells in one-

to-one correspondence with the generators, and 2-cells in one-to-one correspondence with the relators.

We will not distinguish between the presentations and the 2-complexes, and we will talk of homotopy

equivalences (denoted by the symbol ≃) and homotopy groups of presentations. Further, we will say

that a presentation P is (topologically) aspherical if the second homotopy group π2(P) = 0. Here we

describe results which give an almost complete classification of the aspherical presentations Gn(m,k).

The proof of Lemma 3.1 partitions the generators and relations and relabels them and in fact

proves

Lemma 7.1 The the presentation Gn(m,k) is the disjoint union of (n,m, k) presentations, each of

which is homotopy equivalent to the presentation GN (M,K) where N = n/(n,m, k), M = m/(n,m, k),

K = k/(n,m, k).

Clearly the presentations Gn(m, 0) and Gn(m,m) are aspherical. A group defined by an aspherical

presentation with no proper powered relators is torsion-free, so presentations defining non-trivial groups

are not aspherical. In particular, Lemma 3.2 implies

Corollary 7.2 Gn(0, k) is not aspherical.

The upshot of this is that we may again assume that (n,m, k) = 1 and 1 ≤ m 6= k ≤ n − 1.

The proof of Lemma 3.4 works by relabelling generators, so it is really a result about homotopy

equivalence of presentations rather than isomorphisms. We record this as

Lemma 7.3 (a) If (n, k) = 1 then Gn(m,k) ≃ H(n, t) where tk ≡ m mod n;

(b) if (n, k − m) = 1 then Gn(m,k) ≃ H(n, t) where t(k − m) ≡ n − m mod n.

Therefore, if (n, k) = 1 or (n, k − m) = 1 then Gn(m,k) ≃ H(n,m′) for some m′. For this reason we

can divide results into a statement of the classification of the aspherical Gilbert-Howie presentations

H(n,m) with m 6= 0, 1 and a statement of the aspherical presentations Gn(m,k) with (n,m, k) = 1,

1 ≤ m 6= k ≤ n − 1, (n, k) > 1, (n, k − m) > 1. For the first category we have

9



Theorem 7.4 ([21, Theorem 3.2]) Suppose n ≥ 3, 2 ≤ m ≤ n−1 and assume (n,m) 6= (9, 4), (9, 7).

Then H(n,m) is aspherical unless (n,m) is one of the following, in which case it is not aspherical:

(n, 2) (n ≥ 3), (n, n−1) (n ≥ 3), (2t−1, t) (t ≥ 3), (2t−2, t) (t ≥ 3), (6, 3), (7, 3), (7, 5), (8, 3), (9, 3), (9, 6).

In the same way as it remains unknown whether the (non-isomorphic) groups H(9, 4),H(9, 7) are finite

or infinite, it is likewise unknown whether or not the presentations H(9, 4),H(9, 7) are aspherical.

When the paper [21] was written, the status of H(8, 3) was unknown; since we now know that H(8, 3)

is finite and non-trivial we can conclude that H(8, 3) is not aspherical. Similarly, the fact that H(6, 3)

and H(2t−2, t) (t ≥ 3) are not aspherical follows from the fact that the groups they define are finite and

non-trivial. It is possible to explicitly draw homotopy spheres for the presentations H(n, 2) = S(2, n)

and H(n, n− 1) ≃ F(2, n) and H(2t− 1, t) ≃ F(2, 2t− 1) (see for example [31]), so these presentations

are not aspherical. In the remaining two cases H(7, 3) ≃ H(7, 5) and H(9, 3) ≃ H(9, 6) it is again

possible to draw spheres explicitly to show that they are not aspherical. As these are not provided

in [21] we give them in Figures 1 and 2.
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Figure 1: Homotopy sphere over H(7, 3).

For the remaining presentations Gn(m,k) we have the following result [47, Theorem 2], which builds

on [1, Theorem 2.1].

Theorem 7.5 ([47, Theorem 2]) Suppose n ≥ 2, 1 ≤ m 6= k ≤ n − 1, (n,m, k) = 1, (n, k) > 1,

(n, k−m) > 1. Then Gn(m,k) is aspherical unless (m,k) = 1 and either 2k ≡ 0 mod n or 2(k−m) ≡

0 mod n, in which case Gn(m,k) is not aspherical.

The fact that Gn(m,k) is not aspherical in the indicated cases of Theorem 7.5 is due to the fact that the

corresponding groups are finite and non-trivial (by Lemma 5.2). The proofs of Theorems 7.4 and 7.5

use the same underlying technique, which we now outline. The Zn-extension En(m,k) of Gn(m,k)

given in (1) has a relative presentation

Rn(m,k) = 〈x, T | xt−mxtm−kx−1tk〉
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Figure 2: Homotopy sphere over H(9, 3).

where T = 〈t | tn〉. (For background on relative presentations see [3].) The following crucial lemma

was proved by Gilbert and Howie in the case k = 1; Bardakov and Vesnin performed the routine

generalization to the general case.

Lemma 7.6 ([21, Lemma 3.1],[1, Lemma 2.2]) If Rn(m,k) is relatively aspherical then the ab-

solute presentation Gn(m,k) is topologically aspherical.

Relative presentations of the form 〈x, T | xaxbx−1c〉 (where b, c are non-trivial elements of T of finite

order) had been considered by Edjvet in [16] where, subject to a few exceptions, the classification

of the relatively aspherical presentations was given. Applying this to Rn(m,k) gives conditions for

Gn(m,k) to be aspherical. (For the cases with (n,m, k) = 1, (n, k) > 1 and (n, k − m) > 1 this was

done in [1, Theorem 2.1]). The arguments presented above show that Gn(m,k) is not aspherical in all

remaining cases.

We can now give the proof of Theorem 5.1 that was mentioned in Section 5.

Proof of Theorem 5.1 using asphericity and classification of the perfect groups

If 2k ≡ 0 mod n or 2(k − m) ≡ 0 mod n then the condition (n,m, k) = 1 implies (m,k) = 1 and

so the result follows from Lemma 5.2. If m ≡ 2k mod n then (n,m, k) = 1 implies (n, k) = 1 so

Gn(m,k) ∼= S(2, n) by Lemma 3.4, which is infinite by Theorem 2.3. Thus we may assume m 6≡ 2k,

2k 6≡ 0, 2(k − m) 6≡ 0 (all mod n).
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By Theorem 6.5 the group Gn(m,k) is not perfect, so it is non-trivial. If (n, k) > 1 and (n, k−m) >

1 then Theorem 7.5 implies that Gn(m,k) is aspherical, so Gn(m,k) is infinite. Thus we may assume

that (n, k) = 1 or (n, k −m) = 1, so Gn(m,k) is isomorphic to H(n,m′) for some m′ (by Lemma 3.4).

Under our derived conditions Theorem 7.4 implies that H(n,m′) is aspherical, and therefore infinite,

unless (n,m′) = (n, n − 1) or (2t − 1, t), in which case H(n,m′) ∼= F (2, n) (by Lemma 3.3 and Theo-

rem 3.5), which is infinite by Theorem 2.1. 2

8 Small cancellation groups

In this section we consider small cancellation conditions for the presentations Gn(m,k). We refer

the reader to [32, Chapter V] for basic definitions regarding small cancellation theory. Using the

characterization (from [23]) of the C(3)-T(q) conditions in terms of the star graph, the C(3)-T(6) and

C(3)-T(7) presentations Gn(m,k) were classified in [27]. (The term special means that all relators have

length 3 – as is the case for Gn(m,k) – and that the star graph is isomorphic to the incidence graph

of a finite projective plane.)

Theorem 8.1 ([27]) Let A = k, B = m − k.

(a) The presentation Gn(m,k) is a C(3)-T(6) presentation if and only if tA 6≡ 0, tB 6≡ 0 (1 ≤ t ≤ 5)

and A 6≡ ±B, A 6≡ ±2B, B 6≡ ±2A (all mod n), in which case it is a non-special C(3)-T(6)

presentation.

(b) The presentation Gn(m,k) is a C(3)-T(7) presentation if and only if tA 6≡ 0, tB 6≡ 0 (1 ≤ t ≤ 6)

and A 6≡ ±2B, A 6≡ ±3B, B 6≡ ±2A, B 6≡ ±3A, 2A 6≡ ±2B (all mod n).

The C(3)-T(6) presentations Gn(x0xmxk) were classified in [19, Lemma 5.1]. Extending that proof

to classify the special C(3)-T(6) presentations it turns out that (up to homotopy equivalence) there

is precisely one, namely G7(x0x1x3), which was identified as being a special C(3)-T(6) presentation

in [26, Example 6.3]. Combining these observations with Theorem 8.1 we can now conclude that (up

to homotopy equivalence) it is the only special C(3)-T(6) cyclic presentation.

In Corollary 8.2 we observe some consequences, most of which are well known properties of C(3)-

T(6) and C(3)-T(7) groups (for details see the references in [27]). A countable group G is said to

be SQ-universal if every countable group can be embedded in a quotient group of G; in particular,

SQ-universal groups contain a free subgroup of rank 2. The dependence problems [37] DP(n), n ≥ 1,

generalize the word problem (DP(1)) and the conjugacy problem (DP(2)). A group is Hopfian if it is

not isomorphic to any of its proper quotients.

Corollary 8.2 ([27]) (a) Suppose the conditions of Theorem 8.1(a) hold. Then Gn(m,k) has solv-

able word and conjugacy problems and is automatic, SQ-universal, torsion-free, and acts properly

and cocompactly on a CAT(0) space.

(b) Suppose the conditions of Theorem 8.1(b) hold. Then Gn(m,k) has solvable dependence problems

DP(n) for all n ≥ 1 and is hyperbolic, Hopfian, and acts properly and cocompactly on a CAT(−1)

space, and the class of groups Gn(m,k) has solvable isomorphism problem.

Using Corollary 8.2 and [9, Proposition 7] it can be shown (see [27]) that for odd primes p, Gp(m,k)

is either the trivial group, the Fibonacci group F (2, p), or the Sieradski group S(2, p) or is isomorphic

to Gp(1, (p + 1)/3) (when p ≡ 2 mod 3) or to Gp(1, (p + 2)/3) (when p ≡ 1 mod 3), or Gp(m,k) is

12



C(3)-T(7). A group Gn(m,k) may be hyperbolic and contain a free subgroup of rank 2 without its

presentation Gn(m,k) satisfying the C(3)-T(6) or C(3)-T(7) conditions; for example H(n, 3) is such a

group for all n ≥ 11, n 6= 12, 14 ([27]).

9 LOG groups

A Labelled Oriented Graph (LOG) consists of a finite connected graph (possibly with loops and multiple

edges) with vertex set V and edge set E together with three maps ι, τ, λ : E → V called the initial

vertex map, terminal vertex map, and labelling map, respectively. The LOG determines a corresponding

LOG presentation

〈V | τ(e)−1λ(e)−1ι(e)λ(e) (e ∈ E)〉;

a group with a LOG presentation is a LOG group.

Following [42] we call the semidirect product

Ĝn(w) = Gn(w) ⋊φ Z = Gn(w)∗φ = {Gn(w), t | t−1gt = φ(g), g ∈ Gn(w)}

the natural HNN extension of Gn(w). The connection between the HNN extension of a cyclically

presented group and LOG groups was investigated in [21],[42]. For the groups Gn(m,k) we have

Theorem 9.1 ([27]) The natural HNN extension Ĝn(m,k) of Gn(m,k) is the LOG group correspond-

ing to the LOG in Figure 3.
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Figure 3: LOG corresponding to Ĝn(m,k).

Restricting to k = 1 gives the LOG in [21] for the natural HNN extension Ĥ(n,m) of H(n,m);

restricting to k = 1 and n = 2 gives the LOG in [2, Section 4] which, as a LOG group with torsion,

was the initial motivation for the investigations in [21].

10 Semigroups

Each presentation Gn(m,k) is a positive presentation, so may be regarded as a semigroup presenta-

tion; we let Sn(m,k) denote the semigroup it defines. As Ruškuc points out in his thesis, Wicks’

solution ([13]) to Conway’s question [12] makes no use of inverses and hence proves that the semigroup

given by the generators and relations of F (2, 5) is cyclic of index 1 and period 5, and so the study of

Fibonacci semigroups is as old as the study of Fibonacci groups. The following theorem is a special

case of [46, Theorem B] (a generalization of [4, Theorem 1.2] combined with [5, Theorem 3.5]), which
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deals with the semigroups and groups defined by the 4-parameter cyclic presentations R(r, n, k, h)

of [7].

Theorem 10.1 ([46]) The semigroup Sn(m,k) is finite if and only if ((n, k) = 1 or (n,m − k) = 1)

and Gn(m,k) is finite, in which case Sn(m,k) is respectively the union of (n,m−k) disjoint left ideals

or (n, k) disjoint right ideals, each isomorphic to Gn(m,k).

Since, with the exception of the groups H(9, 4) = G9(4, 1) and H(9, 7) = G9(7, 1) the finite groups

Gn(m,k) have been classified, Theorem 10.1 classifies (up to isomorphism and anti-isomorphism) the

finite semigroups Sn(m,k). The semigroups S9(4, 1) and S9(7, 1) are the disjoint unions of 3 copies of

G9(4, 1) and G9(7, 1), respectively, so completing the classification of the finite semigroups Sn(m,k)

is equivalent to completing the classification of the finite groups Gn(m,k).
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