Research Repository

Reduced-rank hazard regression for remodelling non-proportional hazards

Perperoglou, A and le Cessie, S and van Houwelingen, HC (2006) 'Reduced-rank hazard regression for remodelling non-proportional hazards.' Statistics in Medicine, 25 (16). 2831 - 2845. ISSN 0277-6715

Full text not available from this repository.


The Cox proportional hazards model is the most common method to analyse survival data. However, the proportional hazards assumption might not hold. The natural extension of the Cox model is to introduce time-varying effects of the covariates. For some covariates such as (surgical)treatment non-proportionality could be expected beforehand. For some other covariates the non-proportionality only becomes apparent if the follow-up is long enough. It is often observed that all covariates show similar decaying effects over time. Such behaviour could be explained by the popular (gamma-) frailty model. However, the (marginal) effects of covariates in frailty models are not easy to interpret. In this paper we propose the reduced-rank model for time-varying effects of covariates. Starting point is a Cox model with p covariates and time-varying effects modelled by q time functions (constant included), leading to a p × q structure matrix that contains the regression coefficients for all covariate by time function interactions. By reducing the rank of this structure matrix a whole range of models is introduced, from the very flexible full-rank model (identical to a Cox model with time-varying effects) to the very rigid rank one model that mimics the structure of a gamma-frailty model, but is easier to interpret. We illustrate these models with an application to ovarian cancer patients. Copyright © 2005 John Wiley & Sons, Ltd.

Item Type: Article
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Science and Health > Mathematical Sciences, Department of
Depositing User: Aris Perperoglou
Date Deposited: 05 Nov 2012 12:17
Last Modified: 23 Jan 2019 05:15

Actions (login required)

View Item View Item