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SUMMARY

In this paper, we develop a model predictive control (MPC)
scheme for robots to follow a virtual leader. The stability of
this control scheme is guaranteed by adding a terminal state
penalty to the cost function and a terminal state region to the
optimization constraints. The terminal state region is found
by analyzing the stability. Also a terminal state controller is
defined for this control scheme. The terminal state controller
is a virtual controller and is never used in the control process.
Two virtual leader-following formation models are studied.
Simulations on different formation patterns are provided to
verify the proposed control strategy.

KEYWORDS: Control of robotic systems; Mobile robots;
Multi-robot systems; Robot dynamics; Navigation.

1. Introduction

Formation control has been one of the important research
topics in multiple robot systems as it is applicable to many
areas such as geographical exploration, rescue operations,
surveillance, mine sweeping, and transportation.1−5

Different approaches have been developed recently, for
example, behavior-based control,6,7 LQ control,8 visual
servoing control,9 Lyapunov-based control,10 input and
output feedback linearization control,11,12 graph theory,13,14

and nonlinear control.15

A model predictive control (MPC) is one of the frequently
applied advanced control techniques in the industry. It was
shown that using an infinite receding horizon can guarantee
MPC control stability for even nonlinear systems,16 but it is
computationally intractable in practice. For a finite receding
horizon, it was proved that the stability can be guaranteed
by forcing the terminal state to equal to zero.17 Further
work shows that the terminal state equality constraint can
be relaxed as a terminal state inequality, i.e., a terminal
state region, by adding a terminal state penalty to the cost
function.18,19 Recently, the researches in refs. [20–24] show
that nonlinear controllers can be used to find the terminal
state region as long as a stability condition is met. The works
in refs. [21, 23] show that the terminal state penalty can be
a control Lyapunov function that will guarantee the stability
once the terminal state is within the terminal state region.

The advantages of using an MPC compared to using other
control approaches are that it can solve constrained control
problems and optimize control performance. Applying an
MPC to formation control has been reported in refs. [25, 26].
In ref. [26], a dual mode MPC was used for robot formation.
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To secure the stability, the dual mode controller has to
switch from an MPC control to a terminal state controller.
The switching would result in unsmoothed control signals.
The problem of applying an MPC to formation control lies
in the states coupling in the cost function because each robot
needs its neighbors’ state to predict its future states and
control signals. In ref. [25], a distributed MPC was applied
to the virtual leader formation control for linearized models,
in which the center point of a team formation was treated
as the virtual leader. By adding a so-called compatibility
constraint, the MPC can handle the coupled states in the cost
function. The compatibility constraint enforces a degree of
consistency between what a robot plans to do and what its
neighbors believe that it will plan to do. The MPC used in
ref. [25] was proposed in ref. [18].

The formation control where a robot or two robots follow
a virtual leader is a different formation control strategy
and was formulated as two models: l−φ control and l−l

control.11,12,27,28 Due to the use of local information in
these two models, the MPC control has a potential to be
implemented in a distributed mode. This is crucial for the
MPC which requires heavy computation ability.

In this paper, we investigate how to apply MPC to
the leader-following formation control with the nonlinear
kinematic model. Specifically, the l−φ and l−l control
models are adopted in this paper. Although the general MPC

with a terminal state controller has been used before, a
terminal state controller for the formation control problems
in this paper has not been developed so far. The formation
control of two-wheel robots has strong nonlinearity and it
is not trivial to apply the general theory. The paper mainly
focuses on finding a better terminal state controller and its
corresponding terminal region. To do so, a Lyapunov-like
function is developed as the terminal state penalty for the
MPC stability and a terminal state controller is designed. The
terminal state controller is never applied to control the robots.
Based on the Lyapunov-like function and the terminal state
controller, a new terminal state region is found. This terminal
state region is used to constrain the MPC optimization.

The paper is organized as follows. Section 2 introduces
the leader-following formation models. The MPC control
framework is described in Section 3. The terminal state
controller and terminal state region are discussed in Section 4.
Simulation results are provided in Section 5. Finally, our
conclusion and future works are discussed in Section 6.

2. Leader-following Formation Models

A differential driving mobile robot has two rear driving
wheels and a front castor for body support. The speed control
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Fig. 1. Leader-following models.

of the two rear wheels leads to the control of linear speed and
angular speed. The kinematics equation is

⎡
⎢⎣

ẋi

ẏi

θ̇i

⎤
⎥⎦ =

⎡
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cos θi 0

sin θi 0

0 1

⎤
⎥⎦ [

vi

wi

]
, (1)

where xi = [xi, yi, θi]T is the position and orientation of
a mobile robot Ri and ui = [vi, wi]T is its speed control
signals.

The leader-following control can be formulated in two
models as shown in Fig. 1.27 Figure 1(a) is an l−φ control
model where the formation pattern is specified by the separate
distance lij and the relative bearing ψij for two robots Ri

and Rj . The desired formation pattern can be defined as the
desired separate distance ldij and the relative bearing ψd

ij . The
follower Rj regulates the formation state errors zj of the
separate distance and the relative bearing through its speed

control signals uj = [vj , wj ]T :

zj =
[

l̃ij

ψ̃ij

]
=

[
ldij

ψd
ij

]
−

[
lij

ψij

]
. (2)

The formation control can be investigated by modeling the
formation state error zj as follows:

żj = −Gj uj + Fj ui , (3)

φ̇ij = wi − wj, (4)

and

Gj =
⎡
⎣ cos(φij + ψij ) d sin(φij + ψij )

−sin(φij + ψij )

lij

d cos(φij + ψij )

lij

⎤
⎦ ,

Fj =
⎡
⎣ cos ψij 0

−sin ψij

lij
1

⎤
⎦ ,

where φij = θi − θj and d is the distance between the robot
position (xi, yi) and the robot hand position as shown in
Fig. 1.

Figure 1(b) is an l−l control model, in which Ri is the
leader and Rj and Rk are the followers. The formation pattern
is specified by the relative bearing ψij in the coordinate
form of the leader and the separate distances lij , lik , and
ljk .27 The followers can use their speed control signals
ujk = [vj , wj , vk, wk]T to regulate the formation state error
zjk:

zjk =

⎡
⎢⎢⎢⎣

l̃ij

ψ̃ij

l̃ik

ψ̃ik

⎤
⎥⎥⎥⎦ =
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ψd
ij

ldik

ψd
ik

⎤
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ψij
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ψik

⎤
⎥⎥⎥⎦ . (5)

The formation state error zjk can be formulated as follows:

żjk = −Gjkujk + Fjkui , (6)

θ̇j = wj, θ̇k = wk, (7)

and

Gjk =

⎡
⎢⎢⎢⎢⎣

cos γij d sin γij 0 0

−sin γij

lij
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0 0
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0 0
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where γij = θi − θj + ψij and γjk = θj − θk + ψjk . It
should be noted that the states and the inputs of the
leader are known to the followers. They are assumed to
be bounded and treated as time-varying disturbances to the
systems.

3. Stabilizing MPC Control

A nonlinear nominal control system without considering any
uncertainties, like Eqs. (3) and (6), can be generally expressed
as follows:

ż(t) = f(t, z(t), u(t)), (8)

where z(t) ∈ Rn and u(t) ∈ Rm are the n-dimensional error
state and m-dimensional control vector, respectively. For the
two formation models mentioned above, z(t) represents zj (t)
or zjk(t) and u(t) represents uj (t) or ujk(t).

The MPC control is to find a suitable u(t) to drive the
system (8) to move toward the equilibrium (z(t) = 0 and
u(t) = 0). The constraints normally used are the control
signal saturation constraints that can be expressed as

u(t) ∈ U ,

where U is a compact and convex set.
The cost function for the leader-following formation

control can be defined as follows:

J (t, z(t), u(t)) = g(z(t + T )) +
∫ t+T

t

L(τ, z(τ ), u(τ ))dτ,

(9)

where L(t, z(t), u(t)) = z(t)T P z(t). Here P is a positive
definite symmetric weight matrix, T is the predictive control
horizon, g(z(t)) is assumed to be a continuous, differentiable
function, g(0) = 0, and g(z(t)) > 0 for all z(t) �= 0.

The MPC stability can be guaranteed by using a terminal
state penalty term g(z(t)) in the cost function and adding a
terminal state constraint � to the optimization problem (OP).
We assume the time interval of the MPC control to be δ. At
time t , the open loop OP in the MPC control framework to
be solved online can be formulated as

min
u

J (t, z(t), u(t)), (10)

subject to

ż(τ ) = f(τ, z(τ ), u(τ )),

u(τ ) ∈ U, τ ∈ [t, t + T ], (11)

z(t + T ) ∈ �,

where � is the terminal state region.
A terminal state controller ũ(τ, z(t)) working in the

terminal state region � needs to be constructed for τ > t + T

to guarantee the feasibility of solving the OP problem at each
time step. The details of how to find the terminal state region
and terminal state controller for the formation control will be

given in the next section. The MPC control algorithm can be
described as follows:

Initialization Given initial state z(0) and t = 0. A
constructed control function is initialized û(τ, z(0)) =
0, τ ∈ [0, T ].

Open Loop Optimization The open loop optimal control
function ū(τ, z(t)) can be found by solving the OPs
(10) and (11) for the period 0 ≤ τ ≤ T using û(τ, z(t))
as the initial solution.

Feedback Control The MPC uses only ū(τ, z(t)) to control
the system (8) over a period τ ∈ [t, t + δ). The
open loop control function ū(τ, z(t)) defines a state
trajectory z̄(τ, z(t)). Both of them depends on the
current state z(t). Therefore, the MPC control function
u(τ, z(t)) and the corresponding state trajectory
z(τ, z(t)) are

u(τ, z(t)) = ū(τ, z(t)),

z(τ, z(t)) = z̄(τ, z(t)), τ ∈ [t, t + δ). (12)

Feasible Control Construction A terminal state controller
ũ(τ, z(t + δ)) for the terminal state region � is found
first. Then, a feasible control function û(τ, z(t + δ))
is constructed based on the open loop optimal control
function ū(τ, z(t + δ)) and the terminal state controller
ũ(τ, z(t + δ)):

û(τ, z(t + δ))

=
{

ū(τ, z(t + δ)), t + δ ≤ τ < t + T ,

ũ(τ, z(t + δ)), t + T ≤ τ < t + T + δ.
(13)

Continue t ← t + δ and go to the Open Loop Optimization
step.

In the whole control process, the control signal u(τ, z(t))
depends on the current state z(t) at each step. Therefore, it is
a state feedback controller.

Suppose the leader speed signals are lower bounded and
the OP is feasible at time t = 0. The MPC control algorithm
described above for the system (8) is asymptotically stable if
there exists a terminal state controller ũ(τ, z(t)) such that the
following condition is satisfied:

ġ(z(t)) + L(t, z(t), u(t)) ≤ 0, ũ(τ, z(t)) ∈ U (14)

for any state z(t) belonging to the terminal region �. This
result has been used for a robot regulation problem in ref.
[29]. Its proof can be found there.

4. Terminal State Regions and Controllers

A Lyapunov-like function is defined as the terminal state
penalty term for the formation control purpose:

g(z(t + T )) = 1

2
z(t + T )T Sz(t + T ), (15)

where S is a positive definite symmetric weight matrix.
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As the stability theorem stated, the terminal state regions
and controllers should be designed to meet the inequality
(14). The terminal state controllers are virtual controllers
because they are used to find the terminal state region for
the OP and never used for practical control. The analysis
is discussed for l−φ control and l−l control separately
below.

4.1. The l−φ control
We define a terminal state controller for l−φ control as
follows:

ũj = G−1
j Kj zj , (16)

where Kj = diag[ki], ki > 0 (i = 1, 2). As it is a virtual
controller, we can select ki small enough to satisfy the speed
saturation constraints. For example, we can use k1 = k2 and
let uj max denote the limit of uj . Due to Gj ũj = k1zj , we
know ki ≤ uj max‖Gj‖/‖zj‖.

Combining Eqs. (3), (14), (15), and (16), we have,

ġ(zj (t + T )) +L(t + T , zj (t + T ), uj (t + T ))

= zj (t + T )T SFj ui(t + T ) + zj (t + T )T

× (P − SKj )zj (t + T ). (17)

By selecting

P − 1

2
SKj − 1

2
KjS ≤ 0, (18)

the stability condition (14) becomes

zj (t + T )T SFj ui(t + T ) ≤ 0, (19)

where S = diag[si], si ≥ 0 (i = 1, 2). Equation (19)
becomes

s1 l̃ij cos ψijvi − s2
sin ψij

lij
viψ̃ij + s2ψ̃ijwi ≤ 0. (20)

In the formation control, we know lij ≥ 0 and assume vi ≥ 0,
so the terminal state region � can be designed as follows to
meet the conditions in Eq. (20):

l̃ij cos ψij ≤ 0,

ψ̃ij sin ψij ≥ 0, (21)

ψ̃ijwi ≤ 0.

4.2. The l−l control
We define a terminal state controller for l−l control as
follows:

ũjk = G−1
jk Kjkzjk, (22)

where Kjk = diag[ki], ki > 0 (i = 1, 2, 3, 4). As it is a
virtual controller, we can select ki small enough to satisfy
the speed saturation constraints. For example, we can use
k1 = k2 = k3 = k4 and let ujk max denote the limit of ujk .
Due to Gjkũjk = k1zjk , we know ki ≤ ujk max‖Gjk‖/‖zjk‖.

Combining Eqs. (6), (14), (15), and (22), we have

ġ(zjk(t + T )) +L(t + T , zjk(t + T ), ujk(t + T ))

= zjk(t + T )T SFjkui(t + T ) + zjk(t + T )T

× (P − SKjk)zjk(t + T ). (23)

By selecting

P − 1

2
SKjk − 1

2
KjkS ≤ 0, (24)

the stability condition (19) becomes

zjk(t + T )T SFjkui(t + T ) ≤ 0, (25)

or

s1 l̃ij cos ψijvi − s2
sin ψij

lij
viψ̃ij + s2ψ̃ijwi

+ s3 l̃ikvi cos ψik ≤ 0. (26)

In the formation control, we know lij ≥ 0, lik ≥ 0 and
assume vi ≥ 0. By selecting s1 = s3, the terminal state region
� can be designed as follows to meet the conditions in
Eq. (26):

l̃ij cos ψij + l̃ik cos ψik ≤ 0,

ψ̃ij sin ψij ≥ 0, (27)

ψ̃ijwi ≤ 0.

The internal states φij in l−φ control with the controller
(16) or θj and θk in l−l control with the controller (22) are
asymptotically stable (see ref. [27] for details).

5. Simulation Results

The simulation is carried out in MATLAB. The predictive
control horizon T and the control time interval δ are selected
as T = 2 s and δ = 0.2 s. The maximum number of the OPs
(10) and (11) is selected as 5 for the period 0 ≤ τ ≤ T . The
leader trajectory is a circle,

xi = 0.8 cos(0.5t),

yi = 0.8 sin(0.5t),

or a sinusoid curve,

xi = t/5 + π/5,

yi = sin(t/5 + π/5).

The weight parameters of the cost function are selected as

pi = 0.5, si = 1, ki = 0.8 (i = 1, 2, 3, 4).
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Fig. 2. The l − φ control in a circle test with initial position
(1,−0.8, π/2).

The control signal constraints are the saturated constraints

0 ≤ v ≤ vmax,

−wmax ≤ w ≤ wmax.

They are selected as

vmax = 0.8 (m/s)

wmax = π/2 (rad/s)

5.1. The l−φ control
At first, the follower was initially positioned at (1, −0.8, π/2)
and its speeds began with (0, 0) in a circle test. The desired
formation pattern was [ldij , ψ

d
ij ] = [0.5, π]. The control results

are shown in Fig. 2(a) for the trajectories, in Fig. 2(b) for
the speed control signals, and in Fig. 2(c) for the formation
states. From the trajectories, it can be seen that the follower

Fig. 3. The l − φ control in a circle test with initial position
(0.4,−0.4, π/2).

Fig. 4. The l − φ control in a circle test with initial position
(1.5,−0.8, π).
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Fig. 5. The l − φ control in a sinusoid test with initial position
(1, 2, 0).

can adjust itself to form the desired formation pattern. The
stable formation pattern can be checked in Fig. 2(c) where
the formation states l and φ gradually achieved their desired
values. The speed control signals are shown in Fig. 2(b). After
a period of transient time, the speed control signals finally
converged to their stable values and they did not exceed their
saturation constraints.

Fig. 6. The l − φ control in a sinusoid test with short control
horizon.

For the same leader’s circle trajectory, the follower started
from different initial positions to further verify the MPC
controller. The initial positions were (0.4, −0.4, π/2) and
(1.5, −0.8, π). The same control parameters and formation
pattern were used. The results are shown in Figs. 3 and 4.
The followers in both tests caught up with the leader and
gradually formed the desired formation pattern.

Next, the leader moved along a sinusoid curve and the
desired formation pattern was [ldij , ψ

d
ij ] = [0.5, 3π/4]. The

initial position of the follower was selected as (1, 2, 0) and
its speed began with (0, 0). The control results are shown
in Fig. 5(a) for the trajectories, in Fig. 5(b) for the speed
control signals, and in Fig. 5(c) for the formation states. The
trajectories and the formation states show that the desired
formation pattern was finally formed. And the speed control
signals did not exceed their limitations.

Using the MPC controller can adjust the formation
performance by changing the controller’s parameters. In
Fig. 6, the predictive control horizon T and the control time
interval δ were selected as T = 1 s and δ = 0.1 s. All other
parameters were the same as in Fig. 5. It means the follower
in Fig. 6 has a shorter view (shorter prediction time) than in
Fig. 5. Therefore, the follower moved quickly to the leader.
This can be observed at the beginning of the trajectory in
Fig. 6. It should be noted that the small horizon does not
always lead to the quick move to the leader. The main reasons
for this application are that in the receding horizon cost, no
control weighting is employed and the terminal penalty is
quite large.

5.2. The l−l control
A circular leader was tested first. The desired formation
pattern was [ldij , ψ

d
ij , l

d
ik, ψ

d
ik] = [0.5, 3π/4, 0.5, 0.5

√
2].

Two followers Rj and Rk were initially positioned at
(0.8, −0.4, π/2) and (0.8, −0.8, π/2). The control results
are shown in Fig. 7(a) for the trajectories, in Fig. 7(b)
for the control signals, and in Fig. 7(c) for the formation
states. The trajectories and formation states show that the
desired formation pattern was finally formed. The speed
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Fig. 7. The l − l control in a circle test.

Fig. 8. The l − l control in a circle test with different initial
positions.

control signals fell within their limitations. Another test in
Fig. 8 confirmed the formation results where the followers
Rj and Rk were initially positioned at (1, −0.4, π) and
(0.9, −0.8, 3π/4).

In the sinusoid tests, the followers were initially positioned
at (0.5, 1, 0) and (1, 0, π/2). The control results are shown
in Fig. 9(a) for the trajectories, in Fig. 9(b) for the speed
control signals, and in Fig. 9(c) for the formation states. The
followers gradually moved to form the desired formation
pattern. The stable formation states can be seen in Fig. 9(c).
The speed control signals were displayed in Fig. 9(b) and
they did not exceed their limitations.

6. Conclusions

This paper proposes an MPC control scheme for robots to
follow a virtual leader. Two models are used: l−φ control
and l−l control. The terminal state controllers are developed
and new terminal state regions are found. By using the
terminal state regions as the constraints in the OP of the
MPC controller, the control stability is guaranteed.

The use of an MPC can solve constrained control problems
and optimize the control performance. In this paper, the input
saturation constraint is treated. The state constraint could
also be included to handle the collision avoiding problems in
our next step work. The performance optimization should be
balanced with the computation time reducing. It has been
shown that the suboptimal solution (obtained by several
optimization iterations from a feasible solution) can also
guarantee the MPC stability.24,29 The longer the optimization
time, the better the control performance. However, a long
computation time is not achievable for a real-time control.
For practical use, hardware implementation of an MPC is a
possible option.30
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Fig. 9. The l − l control in a sinusoid test.
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