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Abstract The Paley graph Pq, where q ≡ 1 (mod 4) is a prime power, is
the graph with vertices the elements of the finite field Fq and an edge be-
tween x and y if and only if x − y is a non-zero square in Fq. This paper
gives new results on some colouring problems for Paley graphs and related
discussion.
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1 Introduction

For a prime power q ≡ 1 (mod 4), a Paley graph Pq is the graph with
vertex set Fq and an edge between x and y (we write x ∼ y) if and only if
x− y = a2 for some non-zero a ∈ Fq. Paley graphs are self-complementary,
vertex and edge transitive, and (q, (q − 1)/2, (q − 5)/4, (q − 1)/4)-strongly
regular (see [8] for these and other basic properties of Paley graphs).

A key feature of Paley graphs is that they mimic the typical behaviour of
a random graph G(n, 1/2), that is the graph on n labelled vertices where each
of the n(n− 1)/2 possible edges are present with probability 1/2 and absent
with probability 1/2 independently of all other edges. Note that ‘typical be-
haviour’ here concerns graph properties P such that limn→∞ Prob(G(n, 1/2)
has P) = 1, in which case we write G(n, 1/2) has P whp.

This paper aims to prove some new results about colouring problems for
Paley graphs. The main new results are a very slight improvement in the
long-standing upper bound on the clique number (Theorem 2.3), determina-
tion of the total chromatic number for q square (Theorem 4.7), a determi-
nation of the achromatic number (Theorem 5.1), an improved upper bound
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on the list edge colouring number (Theorem 4.6) and a proof that P9 is the
only perfect Paley graph (Proposition 5.2).

We are grateful to the referees for their comments on the paper.

2 The chromatic number

For a graph G on n vertices with chromatic number χ(G) and indepen-
dence number α(G), χ(G) ≥ dn/α(G)e. We also know that if G is a vertex-
transitive graph on n vertices, then χ(G) ≤ dlnn(n/α(G))e (this follows from
the Symmetric Hypergraph Theorem of [15]). This suggests that χ(Pq) may
be close to dq/α(Pq)e. For G(n, 1/2), a result of Bollobás ([8]) says that
χ(G(n, 1/2)) = (1 + o(1))n/α(G(n, 1/2)) whp. The following fact from [9]
which also supports this idea will be used often in the sequel: ω(G) as usual
denotes the clique number.

Lemma 2.1 For q square, α(Pq) = ω(Pq) = χ(Pq) =
√
q.

The difficulty of determining the chromatic number of some graphs arises
from the fact that it is closely related to their independence number which
is known to be a very hard problem. For Pq, we know that α(Pq) ≤

√
q (see

Chapter XIII, Theorem 14 in [8], Proposition 4.7 in [11], Proposition 4.5 in
[21] (which is very similar to Theorem 31.3 in [22]), Problem 13.13 (solution
on page 446) in [18], Theorem 3.9 in [12] for various independent proofs of
this fact). We present now a very small improvement in this bound.

A graph G on n = α(G)ω(G)+1 vertices with the property that for every
vertex v, there is a partition of V (G\v) into cliques of size ω(G) and a parti-
tion of V (G\v) into independent sets of size α(G), is called an (α(G), ω(G))
-graph (some authors use this term for a slightly different notion). A fact
about our (α(G), ω(G))-graphs ([6]) is that the number of complete sub-
graphs of size ω(G) equals the number of independent subgraphs of size
α(G) and are both equal to the number of vertices α(G)ω(G) + 1.

Lemma 2.2 There is no Pq with |V (Pq)| = α(Pq)
2 + 1 apart from P5.

Proof. Suppose there is such a Pq. Then this Pq is an (α(Pq), ω(Pq))-
graph (with α(Pq) = ω(Pq)). This is because |V (Pq)| = α(Pq)

2 +1 and for all
vertices x of Pq, the subgraph Pq\x has an ω(Pq)-colouring with ω(Pq) colour
classes of size α(Pq) and a covering with α(Pq) vertex-disjoint ω(Pq)-cliques.

2



To see the last part of the previous claim, let A be an independent set
of order α(Pq) and C a clique of order ω(Pq) = α(Pq) and note that the
sets c − A are independent sets as c varies over C. Also note that they are
disjoint so there is only one element not in

⋃
c∈C(c − A). (For, if c1 − a1 =

c2 − a2 ⇒ c1 − c2 = a1 − a2 and we would have that a square or 0 equals a
non-square or 0 and so c1 = c2 and a1 = a2). Similarly the sets C − a are
disjoint cliques as a varies over A, with the same element not in

⋃
a∈A(C−a).

By vertex-transitivity the vertex x can be any vertex of Pq.
Since Pq (q = α(Pq)

2 + 1) is an (α(Pq), ω(Pq))-graph, it has the property
that the total number of maximum cliques is q, so that if r denotes the
number of maximum cliques that each edge is in, we will have (by double
counting (C, e) where C is a maximum clique and e ∈ E(C))

q
ω(Pq)(ω(Pq)− 1)

2
=
q(q − 1)

4
r ⇒ r =

2(α(Pq)− 1)

α(Pq)
⇒ r < 2.

But r ≥ 1 (every edge of Pq is in a ω(Pq)-clique by edge-transitivity). Thus
r = 1, so that the ω(Pq)-cliques are edge-disjoint and we have that

r =
2(α(Pq)− 1)

α(Pq)
⇒ 2(α(Pq)− 1) = α(Pq)⇒ α(Pq) = 2

so that q = 5 (as q = α(Pq)
2 + 1), completing the proof. •

Proposition 2.3 If q is a non-square and q 6= 5, then α(Pq) ≤
√
q − 4.

Proof. We already know that q ≥ α(Pq)
2. Now q 6= α(Pq)

2 by hypothesis,
q 6= α(Pq)

2 + 1 by Lemma 2.2 as q 6= 5, and q 6= α(Pq)
2 + 2, α(Pq)

2 + 3 as
q ≡ 1 (mod 4) and x2 ≡ 0 or 1 (mod 4). •

We know χ(Pq) = dq/α(Pq)e not only for q square as mentioned above,
but also in the following cases:
(i) q ≤ 109. See [23] for the detailed calculations for q ≤ 89 and [10] for a
statement for all q ≤ 109.
(ii) p ≡ 1 (mod 4) a prime and ω(Pp) = n(p), where n(p) ∈ N is the least
quadratic non-residue modulo p. Since {0, 1, 2, . . . , n(p) − 1} is a clique of
order ω(Pp), we can express V (Pp) as the union of dp/α(Pp)e complete sub-
graphs (just by translating this clique along) and so, by self-complementarity,
we can express V (Pp) as the union of dp/α(Pp)e independent sets. However
note that the equality ω(Pp) = n(p) seems unlikely to happen very often.
Indeed, for p ≤ 7000, it happens only 6 times (see [26]), and it may well
happen for only finitely many p.

3



3 The choice number

A k-list-assignment L to the vertices of a graph G is the assignment of a
list, L(v), of at least k colours to every vertex v of G. The graph G is
k-choosable if for every k-list-assignment, we can choose a colour for each
vertex from its list such that no two adjacent vertices have the same colour.
Then the choice number ch(G) of G is the smallest number k such that G is
k-choosable. Since ch(G) ≥ χ(G), for any graph G we have the inequalities
dn/α(G)e ≤ χ(G) ≤ ch(G). J. Kahn (see [2]) showed that ch(G(n, 1/2)) =
(1 + o(1))χ(G(n, 1/2)) whp. This suggests that ch(Pq) may well be close to
χ(Pq). For Pq we have the following observations.

Proposition 3.1 For q = 5, 9, 13, χ(Pq) = ch(Pq).

Proof. (i) Using the choosability form of Brooks’ theorem ([2]), we have

3 = χ(P5) ≤ ch(P5) ≤ ∆(P5) + 1 = 3

so χ(G) = ch(G) = 3.
(ii) It is easy to check that P9 is the line graph of K3,3. By Galvin’s

theorem ([14]) for any bipartite graph G, ch(L(G)) = ∆(G), where ∆(G)
denotes the maximum degree of G. Thus ch(P9) = 3 = χ(P9).

(iii) We know χ(P13) ≥ d13/3e = 5. By the choosability form of Brooks’
theorem ch(P13) ≤ 6 so is either 5 or 6. For the rest of the proof we will
assume (using the main theorem in [25]) that the total number of colours is
less than or equal to 12.

Suppose that for any v ∈ P13, we write V (P13) as v∪N1(v)∪N2(v) where
N1(v) = {x ∈ V (P13) : x ∼ v} and N2(v) = {x ∈ V (P13) : x 6∼ v, x 6= v}.
For any v ∈ P13, P13[N1(v)] is a hexagon and P13[N2(v)] is a 3-regular graph
on 6 vertices. Also every vertex in N1(v) is adjacent to exactly three vertices
in N2(v) and every vertex in N2(v) is adjacent to exactly three vertices in
N1(v).

Consider the two independent sets {1, 3, 9} and {4, 10, 12} in N1(0). The
lists of the vertices 1, 3, 9 have 15 colour places to fill but there are at most
12 different colours. So there is some colour, c1 say, in two lists. Similarly,
the lists of the vertices 4, 10, 12 have 15 colour places to fill and if c1 was
the only colour common to at least two lists then there would be at least 12
other colours in the other colour places. But we can only have at most 11
colours besides c1. Thus there exists another colour c2 6= c1 in two of these
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lists. Now we can assume without loss of generality that c1 ∈ L(1) ∩ L(3)
and so we can have three possible cases for c2, namely c2 ∈ L(4) ∩ L(12)
or c2 ∈ L(4) ∩ L(10) or c2 ∈ L(10) ∩ L(12). Note that the first two of
these are symmetric. The only problem when we are in the first case (i.e.
c2 ∈ L(4) ∩ L(12)) is when L(9) = {c2, a} and L(10) = {c1, a}. But then we
can change the c1-set {1, 3} to {3, 10} and we are in a situation isomorphic to
the third case (where c2 ∈ L(10)∩L(12)). Since the first case can be reduced
to the third one, so can the second. Therefore we only have to consider the
third case, where c1 ∈ L(1) ∩ L(3) and c2 ∈ L(10) ∩ L(12). But then we can
always choose a colour c 6= c1 for vertex 4 and similarly a colour c′ 6= c2 for
vertex 9.

Since we can colour N2(0) using 3-colour lists (by the choosability form
of Brooks’ theorem) omitting c1 and c2 from these lists, and N1(0) using the
reduced lists of at least two colours, we can always have a spare colour for
vertex 0 (since at most 4 colours are used for N1(0)). •

The following theorem polishes the constant from the result in [3], where
no particular effort was made to achieve best possible constants (see [23] for
the proof).

Theorem 3.2 Given δ > 0, there exists a q0(δ) such that for every q ≥ q0(δ)
we have

χ(Pq) ≤ ch(Pq) ≤
(2 + δ)q

log2 q
.

This can sometimes be improved, e.g. for q a square, ch(Pq) ≤
√
q ln q

(treat Pq as a subgraph of the complete
√
q-partite graph with

√
q vertices

in each class, and use the result from [2]). In fact we know of no reason to
prevent ch(Pq), for q square, from being as small as

√
q. Proving this would

improve the example in [2] of an n-vertex graph G with ch(G) + ch(Ḡ) ≤
c
√
n log n. However we see no way to resolve the question at present.

4 Edge and total colourings of Pq

An edge colouring of a graph G is an assignment of colours to its edges so
that no two incident edges have the same colour. The edge-chromatic number
χ′(G) of a graph G is the least number k of colours for which G has an edge
colouring with exactly k colours. It is well known that a regular graph of
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common degree ∆ with an odd number of vertices has χ′(G) = ∆ + 1, see
e.g. [28]. so χ′(Pq) = (q + 1)/2.

The edge choice number ch′(G) of a graph G is the smallest integer k such
that whenever every edge of G is given a list of at least k colours, there exists
an edge colouring of G in which every edge receives a colour from its own list
and no two incident edges have the same colour. The List Edge Colouring
Conjecture (LECC) states that for every graph G, ch′(G) = χ′(G). Kahn
([20]) showed that, for any graph G, ch′(G) = ∆(G)(1+o(1)) as ∆(G)→∞,
so the conjecture is asymptotically almost true. More precisely Häggkvist
and Janssen ([16], Theorem 1.2) have shown that if ∆(G)2/3 > 60 log(3∆(G))

then ch′(G) ≤ ∆(G) + 23∆(G)2/3
√

log(3∆(G)).

For Paley graphs we know that ch′(P5) = χ′(P5) (easy) and that ch′(P9) =
χ′(P9) (by [19], every graph of maximum degree 4 is 5-choosable, also ch′(P9) ≥
χ′(P9) = 5 by Lemma 4.1). For the special case when q is a square we can
sharpen the error term using a result from [16]: this is Theorem 4.6 below.
We first assemble some standard facts about Paley graphs of square order.

Lemma 4.1 Suppose q is a square. Then
(i) ω(Pq) = α(Pq) =

√
q

(ii) F√q is a
√
q-clique in Pq, and the

√
q distinct cosets of F√q cover

V (Pq). We say any
√
q vertex-disjoint

√
q-cliques form a parallel class

(iii) The
√
q-cliques in Pq are edge-disjoint. Two such cliques are vertex-

disjoint if they are in the same parallel class and have exactly one vertex in
common otherwise

(iv) The
√
q-cliques in Pq form (

√
q + 1)/2 parallel classes

(v) Any
√
q-clique and

√
q-independent set have exactly one vertex in

common.

Proof. For (i) and (ii) see [9]. (iii) follows from the result of Blokhuis
([7]). By (iii) and edge-transitivity of Paley graphs, Pq acts transitively on√
q-cliques: that there are

√
q(
√
q + 1)/2

√
q-cliques follows from double-

counting pairs (C, e) as in the proof of Lemma 2.1. For (v) see Proposition
4.7 in [11]. •

Similar results apply to independent sets as Pq is self-complementary.

Lemma 4.2 In a bipartite graph G, χ′(G) = ∆(G).

Proof. See [28], Theorem 20.4 on page 94. •
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Lemma 4.3 If, for q square, V (Pq) = I1∪̇I2∪̇ . . . I√q where I1, I2, . . . , I√q is
a parallel class of independent

√
q-sets, then the set of edges E(Ii, Ij) running

between Ii and Ij decomposes into (
√
q + 1)/2 edge-disjoint

√
q-matchings.

Proof. By Lemma 1 in [5] and the fact that Aut(Pq) (q square) acts tran-
sitively on the

√
q-cliques Ci, the ‘bipartite’ graph (Ci, Cj) is (

√
q − 1)/2-

regular. So, taking complements, the bipartite graph (Ii, Ij) is
√
q − (

√
q −

1)/2 = (
√
q + 1)/2-regular. Thus, using Lemma 4.2, (Ii, Ij) has edge-

chromatic number (
√
q + 1)/2. As each matching in this colouring has less

than or equal to
√
q edges and since there are

√
q(
√
q + 1)/2 edges Ii − Ij

(|Ii| =
√
q), we conclude that each of the (

√
q + 1)/2 colour classes contains

exactly
√
q edges and so the matching is perfect, completing the proof. •

The total-chromatic number χ′′(G) of a graph G is the least number of
colours needed for a colouring of both the vertices and the edges of G so
that adjacent vertices, incident edges and edges and their incident vertices
all have different colours. We will need the following lemma both in our
current argument improving the upper bound on ch′(Pq) and later to deal
with χ′′(Pq) for q square.

Lemma 4.4 χ′′(Kn) = n, if n is odd.

Proof. See [29], Theorem 3.1. The classes are Ci = {vi} ∪ {vi+jvi−j : j =
1, 2, . . . , (n− 1)/2}, where, for i = 1, 2, . . . , n, vi ∈ V (Kn) and i+ j and i− j
are calculated modulo n. •

Definition 4.1 An edge composition graph G < H > is constructed from a
graph G = (V,E) and a family of graphs H = {He : e ∈ E}, where each He

is a bipartite graph (W 1
e ,W

2
e ) with |W 1

e | = |W 2
e | = m and W 1

e ,W
2
e labelled,

by replacing each edge of G by the corresponding bipartite graph of H.

Lemma 4.5 Suppose G is a d-regular graph which is the edge-disjoint union
of k graphs, each of which is an edge composition graph Kn < H >, where
H is a family of 1-regular graphs on 2m vertices. Then ch′(G) ≤ d+ 2k− 1.

Proof. See [16], Theorem 4.2. •

Theorem 4.6 Let q be square. Then ch′(Pq) ≤ (q + 2
√
q − 1)/2.
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Proof. Pq (q square) is (q − 1)/2-regular and is the edge-disjoint union
of (
√
q + 1)/2 graphs, K√q < (Ii, Ij) >, described as follows. If we write

V (Pq) = I1∪̇I2∪̇ . . . I√q, where the Iis form a parallel class of independent√
q-sets, we can easily see that every edge of Pq is an edge from Ii to Ij

for some 1 ≤ i < j ≤ √q and that the edges from Ii to Ij decompose into
(
√
q + 1)/2 matchings of order

√
q (Lemma 4.4).

Consider K√q and think of its
√
q vertices as being the independent sets

(of size
√
q) I1, I2, . . . , I√q. If we replace each edge of K√q by the bipartite

graph (on 2
√
q vertices) of the edges between the two corresponding indepen-

dent sets we will obtain Pq. Now each bipartite graph (Ii, Ij) is (
√
q + 1)/2-

regular and so Pq is the edge-disjoint union of (
√
q + 1)/2 graphs, each of

which consists of a perfect matching between independent
√
q-sets Ii (using

Lemma 4.3). Thus (Theorem 4.5) ch′(Pq) ≤ (q− 1)/2 + 2((
√
q+ 1)/2)− 1 =

(q + 2
√
q − 1)/2. •

We now return to the total chromatic number. For any graph G, clearly
χ′′(G) ≥ ∆(G) + 1. We suspect that χ′′(Pq) = ∆(Pq) + 1 for all Pq except
P5: it is easy to show χ′′(P5) = 4 = ∆(Pq) + 2. We have checked this
(see [23] for details) for q ≤ 37. H. Hind’s upper bound ([17]) shows that
χ′′(Pq) ≤ ∆(Pq) + 7. The proof technique used by McDiarmid and Reed
([24]) to show that χ′′(G(n, 1/2)) = ∆(G(n, 1/2)) + 1 whp breaks down here
because Pq is regular. However, for q square, we can find χ′′(Pq) exactly.

Notation An r-matching in a graph G is a matching with r edges in it.

Theorem 4.7 Let q be square. Then χ′′(Pq) = ∆(Pq) + 1 = (q + 1)/2.

Proof. We aim to construct (
√
q+ 1)/2-total colour classes, each containing√

q vertices and (q −√q)/2 edges, and (q −√q)/2-total colour classes, each
containing 1 vertex and (q − 1)/2 edges. Let I = {I1, I2, . . . , I√q} be a fixed
parallel class of independent sets of order

√
q and C = {C1, C2, . . . , C√q} be

a fixed parallel class of cliques of order
√
q in Pq.

Firstly, we obtain (
√
q + 1)/2-total colour classes with

√
q vertices and

(q −√q)/2 edges;

m1 = {I1, a
√
q − matching I2 − I√q, a

√
q − matching I3 − I√q−1, . . . ,

a
√
q − matching Ii − I√q−i+2, . . . , a

√
q − matching I(√q+1)/2 − I(√q+3)/2}

m3 = {I3, a
√
q − matching I2 − I4, a

√
q − matching I1 − I5,

a
√
q − matching I6 − I√q, . . . , a

√
q − matching Ii − I√q−i+6, . . . ,

8



a
√
q − matching I(√q−5)/2 − I(√q−3)/2}

. . .

m√q = {I√q, a
√
q − matching I1 − I√q−1,

a
√
q − matching I2 − I√q−2, . . . , a

√
q − matching Ii − I√q−i, . . . ,

a
√
q − matching I(√q−1)/2 − I(√q+1)/2}.

(Note that this is essentially part of the standard total colouring of K√q (
√
q

odd) with
√
q colours where I1, I2, . . . , I√q are the

√
q vertices (Lemma 4.3)).

Suppose we delete the set {m1,m3, . . . ,m√q} of edges from Pq and so, for
a given independent set I2k, this removes (

√
q+1)/2 of the (

√
q−1)(

√
q+1)/2

(this is the number of Ii’s except I2k times the number of vertices in each
other Ii a vertex in I2k is adjacent to)

√
q-matchings which had a vertex of

I2k as an end-vertex. Thus there are left (
√
q − 2)(

√
q + 1)/2

√
q-matchings

out of I2k. Similarly, (
√
q+1)/2−1 (as I2k−1 is present in all (

√
q+1)/2 total

colour classes apart from m2k−1) of the (
√
q − 1)(

√
q + 1)/2

√
q-matchings

which had a vertex of I2k−1 as an end-vertex have been removed, and so there
are (
√
q−1)(

√
q+1)/2−(

√
q−1)/2 = (q−√q)/2 √q-matchings out of I2k−1.

Now consider the new graph P ′q = Pq \ {m1,m3, . . . ,m√q}. Its total

number of edges is q(q−1)
4
−
√

q+1

2

√
q−1

2

√
q =

(q−1)(q−√q)

4
(as each colour class

contains (
√
q − 1)/2

√
q-matchings). As vertices in

⋃
k I2k have degree (q −

1)/2− (
√
q + 1)/2 = (q −√q − 2)/2 (recall that we removed the (

√
q + 1)/2

matchings, one from each colour class, that had a vertex of I2k as an end-
vertex) and those in

⋃
k I2k−1 have degree (q−1)/2−(

√
q−1)/2 = (q−√q)/2

(as we removed the (
√
q + 1)/2− 1 matchings that had a vertex of I2k−1 as

an end-vertex), it suffices to prove that the edge-chromatic number of P ′q is
(q − √q)/2. For then, each colour class must have (q − 1)/2 edges and for
each v ∈ ⋃k I2k (|⋃k I2k| = (q − √q)/2) one of these (q − √q)/2 matchings
is not present at v, making it possible to use the colour of that matching for
v itself. Also note that every matching is present at every vertex in

⋃
k I2k−1

(as all degrees are (q−√q)/2), so v is the only uncovered vertex (which will
be added to the matchings to form the total colour classes).

Note that when we were taking edges out of Pq to form P ′q, we could have
removed them all from cliques in C. (For if Ii, Ij are independent sets, then for
any clique C, Ii∩C = {vi}, Ij ∩C = {vj} so the edge vivj can be used in the

matching Ii−Ij). Then each clique Ci ∈ C is left with
√

q(
√

q−1)

2
−
√

q+1

2

√
q−1

2
=(√

q−1

2

)2
edges which partition into (

√
q−1)/2 (

√
q−1)/2-matchings (because

if Ci = {v1, v2, . . . , v√q}, where vj = Ci ∩ Ij, the matchings are the edges of
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the remaining total colour classes of Theorem 4.4). Now take any parallel
class K 6= C of cliques of order

√
q. Since E(K√q) partitions into

√
q (
√
q −

1)/2-matchings, a parallel class of cliques decomposes into
√
q edge-disjoint

matchings of size
√
q(
√
q − 1)/2 = (q − √q)/2. For each K ∈ K take the

(
√
q − 1)/2-matching in it which avoids (i.e. covers no vertex of) Ci (note

that |K ∩ Ci| = 1 by Lemma 4.1(iii)). Add to these
√
q(
√
q − 1)/2 edges

a (
√
q − 1)/2-matching left in Ci. Then the total number of edges in this

matching is
√
q(
√
q−1)/2+(

√
q−1)/2 = (q−1)/2. By varying the choice of i

and the choice of K (there are (
√
q−1)/2 parallel classes of cliques other than

C) we obtain
√
q(
√
q−1)/2 = (q−√q)/2 edge-disjoint matchings, completing

the proof. •

5 Other colourings

A harmonious colouring of a graph G is a vertex colouring of G such that
no two adjacent vertices have the same colour and for any pair of colours,
there is at most one edge of G whose endpoints are coloured with this pair
of colours. The harmonious chromatic number hc(G) of a graph G is the
least number of colours in a harmonious colouring of G. Note that in any
harmonious colouring of a graph G, any two vertices which are adjacent or
have a common neighbour must have distinct colours ([13]): thus, as Pq has
diameter 2, we see hc(Pq) = 2.

The achromatic number ψ(G) of a graph G is the greatest number of
colours in a vertex colouring of G such that no two adjacent vertices have
the same colour and for any pair of colours, there is at least one edge of G
whose endpoints are coloured with this pair of colours.

Theorem 5.1 ψ(Pq) = q+1
2
.

Proof. Since the generator g of F×q is not a square, it follows that (gi, gj) is
an edge of Pq if and only if (gi+1, gj+1) is not an edge. Thus either 1− g or
g(1− g) is a square.

If 1− g is a square, partition V (Pq) into the (q + 1)/2 classes
{0}, {g, g2}, {g3, g4}, . . . , {gq−2, gq−1}.
Note that g2i 6∼ g2i−1 since 1− g is a square and g2i−1 isn’t, so the classes are
independent sets. There is an edge between each pair of classes as 0 ∼ g2i

for all i, and if g2j−1 is not adjacent to g2i−1 then g2j certainly is adjacent to
g2i.
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If g(1− g) is a square, we instead take the classes to be
{0}, {g2, g3}, {g4, g5}, . . . , {gq−1, g}.
Again the classes are independent sets, and (exactly) one of g2i ∼ g2j and
g2i+1 ∼ g2j+1 is true, so there is an edge between any two classes.

Thus ψ(Pq) ≥ (q + 1)/2. But in any partition of V (Pq) into more than
q/2 classes at least one class is a single vertex v. But then there are at most
(q − 1)/2 other images, as v has degree (q − 1)/2. So ψ(Pq) ≤ (q + 1)/2. •

The proof of Theorem 5.1 is inspired by A. Thomason’s proof that the
Hadwiger number of Pq is (q+ 1)/2 ([27]). Note that ψ(Pq) exceeds substan-
tially the typical value of ψ(G(n, 1/2)): a similar observation about Had-
wiger number is made in [27]. In [23] it is shown that some of the ‘geometric
graphs’ shown by Thomason to have large Hadwiger number also have large
achromatic number.

A graph G is perfect if and only if for every induced subgraph H of G,
χ(H) = ω(H) (for example, an odd cycle of length at least 5 is not perfect).

Proposition 5.2 Pq is not perfect except for P9.

Proof. If q is not a square then ω(Pq) <
√
q ⇒ α(Pq) <

√
q and so χ(Pq) ≥

q/α(Pq) >
√
q. This shows that χ(Pq) 6= ω(Pq), so Pq is not perfect in this

case.
In [4] it is shown that given any two disjoint sets S1 and S2 in Pq, where

q > 61, such that |S1| = |S2| = 2 there is a vertex which is adjacent to the
two vertices in S1 but is not adjacent to the ones in S2. So if we can find an
induced path of four vertices in Pq, the proof is complete (provided q > 61)
as we can then make an induced 5-cycle in Pq. To obtain such an induced
path, let x 6∼ y be two non-adjacent vertices in Pq. Then there exists a vertex
z adjacent to both x and y (there are (q − 1)/4 such z’s). Now consider the
set A of (q − 1)/4 vertices adjacent to x but not to y. Note that z 6∈ A. So
if w ∈ A (i.e. w ∼ x and w 6∼ y) and w ∼ z for all choices of z, then the
edge (w, x) would be in (q−1)/4 triangles, but, in fact, it is only in (q−5)/4
triangles. Thus for a suitable choice of z and w, we have that w − x− z − y
is an induced path of four vertices as required. This shows that Pq is not
perfect for q > 61.

P9 is perfect because P9 = L(K3,3) and line graphs of bipartite graphs
are perfect. P25 is not perfect because writing F25 = F5

(x2+2)
, the squares are

1, 2, 3, 4, x+ 2, x+ 3, 2x+ 1, 2x+ 4, 3x+ 1, 3x+ 4, 4x+ 2, 4x+ 3 and it is then
easy to check that 0−2−(x+4)−(2x+2)−(2x+4)−0 is an induced 5-cycle
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in P25. P49 is not perfect because, since F49 = F7[x]
(x2−3)

, the non-zero squares
are 1, 2, 3, 4, 5, 6, x, x+ 2, x+ 5, 2x, 2x+ 3, 2x+ 4, 3x, 3x+ 1, 3x+ 6, 4x, 4x+
1, 4x+ 6, 5x, 5x+ 3, 5x+ 4, 6x, 6x+ 2, 6x+ 5 and so P49 contains the induced
5-cycle 0− 3− (x+ 3)− (2x+ 5)− (2x+ 4)− 0. •

We close by mentioning a final colouring result from [1]. For a graph
G, let I(G) = {(v, e) ∈ V (G) × E(G) : v is incident with e} be the set of
incidences of G, where two incidences (v, e) and (u, f) are adjacent if v = u
or e = f or the edge vu is the same as either e or f . In an incidence colouring
of G, we colour all the incidences of G so that adjacent incidences receive
different colours. The incidence chromatic number χi(G) of G is the smallest
number of colours we need in order to have an incidence colouring of G. For
q ≡ 1 (mod 4) a prime, χi(Pq) ≥ ∆(Pq) + (1/4− o(1)) log ∆(Pq) ([1]).
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