Research Repository

A Novel Design of 4-Class BCI Using Two Binary Classifiers and Parallel Mental Tasks

Geng, Tao and Gan, John Q and Dyson, Matthew and Tsui, Chun SL and Sepulveda, Francisco (2008) 'A Novel Design of 4-Class BCI Using Two Binary Classifiers and Parallel Mental Tasks.' Computational Intelligence and Neuroscience, 2008. pp. 1-5. ISSN 1687-5265

Available under License Creative Commons Attribution.

Download (648kB) | Preview


<jats:p>A novel 4-class single-trial brain computer interface (BCI) based on two (rather than four or more) binary linear discriminant analysis (LDA) classifiers is proposed, which is called a “parallel BCI.” Unlike other BCIs where mental tasks are executed and classified in a serial way one after another, the parallel BCI uses properly designed parallel mental tasks that are executed on both sides of the subject body simultaneously, which is the main novelty of the BCI paradigm used in our experiments. Each of the two binary classifiers only classifies the mental tasks executed on one side of the subject body, and the results of the two binary classifiers are combined to give the result of the 4-class BCI. Data was recorded in experiments with both real movement and motor imagery in 3 able-bodied subjects. Artifacts were not detected or removed. Offline analysis has shown that, in some subjects, the parallel BCI can generate a higher accuracy than a conventional 4-class BCI, although both of them have used the same feature selection and classification algorithms.</jats:p>

Item Type: Article
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Science and Health
Faculty of Science and Health > Computer Science and Electronic Engineering, School of
SWORD Depositor: Elements
Depositing User: Elements
Date Deposited: 17 Oct 2012 14:27
Last Modified: 15 Jan 2022 00:23

Actions (login required)

View Item View Item