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Abstract—We present an application of Monte-Carlo Tree
Search (MCTS) for the game of Ms Pac-Man. Contrary to
most applications of MCTS to date, Ms Pac-Man requires
almost real-time decision making and does not have a natural
end state. We approached the problem by performing Monte-
Carlo tree searches on a 5 player maxn tree representation
of the game with limited tree search depth. We performed a
number of experiments using both the MCTS game agents (for
pacman and ghosts) and agents used in previous work (for
ghosts). Performance-wise, our approach gets excellent scores,
outperforming previous non-MCTS opponent approaches to the
game by up to two orders of magnitude.

Index Terms—pac-man, MCTS, max-n, Monte-Carlo

I. INTRODUCTION

With the recent success of Monte-Carlo Tree Search
(MCTS) in Computer Go [1], [2] and General Game Playing
(GGP) [3], there has been a growing interest in applying
these techniques to other board-like strategy games such as
Hex [4]. However, there has been very limited research in
the application of MCTS in real time video games. In this
paper we investigate the use of Monte-Carlo Tree Search in
the game Ms Pac-Man, a predator/prey-like game popularised
in the 80s. From an AI research perspective, there are many
aspects of the game worthy of study, but in this particular
paper we are mostly focused on the performance of MCTS in
a real time game setting. The rest of the paper is organised
as follows: in the next section (section II), we discuss the
game of Ms Pac-Man and the previous research on this game;
in Section III, we describe our Ms Pac-Man simulator and
the experimental setup done in order to perform simulations
on the game; in section IV we discuss MCTS in more depth
together with some of its previous applications; in section V
we present the methodology and rationale used in order to
create the current set of agents. In section VI we perform four
sets of experiments and present the results. Finally, section
VII summarises the contributions of this research, and gives
directions for future developments. Throughout the text as a
convention, we use the word “pac-man” to refer to the pac-
man agent, while “Ms Pac-Man” and “Pac-Man” (capitalised
first letter) refer to the actual game.

II. MS PAC-MAN

Pac-Man is a classic arcade game originally developed by
Toru Iwatani for the Namco Company in 1980. Since its
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release in Japan, the game became immensely popular, rapidly
achieving cult status, and various other versions followed.
The best known of these is Ms Pac-Man, released in 1981,
which many see as being a significant improvement over the
original. Ms Pac-Man introduced a female character, new maze
designs and several gameplay changes over the original game.
Probably the most important change was the introduction of
an element of randomness to the ghosts’ behaviour which
eliminates the effectiveness of exploiting set patterns or routes,
making Ms Pac-Man much more of a game of short-term
planning and reactive skill than memorisation. While it is
no longer the newest or most advanced example of game
development, Pac-Man style games still provide a platform that
is both simple enough for AI research and complex enough
to require intelligent strategies for successful gameplay. The
current Ms Pac-Man’s world record is held by Abdner Ashman
with 921, 360 points. To put this score in perspective, more
than 130 stages were completed in an almost perfect fashion1.
On the other hand, the AI agent who holds the world record
is ICE Pambush [5], who won the competition held in the
Ms Pac-Man Competition 2009 IEEE Symposium on Com-
putational Intelligence and Games with a maximum score of
30, 010. There is an enormous difference between the human
world record and the agent world record, which indicates that
computers are significantly behind the human players and there
is much room for improvement with AI techniques. Note that
this score of 30, 010 was achieved in the original Ms Pac-
Man, using a screen-capture software agent; this will be further
discussed in the next section.

Since the source code of the original Ms Pac-Man game is
in Z80 assembly language, most of the research done in Pac-
Man style games is done with simulators. These vary in how
closely they resemble the original game, both functionally and
cosmetically, but all the ones that do not use the original as-
sembly code have some significant differences when compared
to the original. For this reason, it is hard to make comparisons
between agents created by other researchers, who use their
own simulators.

A. Ms Pac-Man Gameplay

The player starts in maze A with three lives, and a single
extra life is awarded at 10, 000 points. There are four mazes in
the game (A, B, C and D), and each one contains a different
layout with pills and power pills placed on specific nodes. The
goal of the player is to obtain the highest possible score by
eating all the pills and power pills in the maze and continue

1http://uk.gamespot.com/arcade/action/mspac-man/news.html?sid=6130815
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to the next stage. The difficulty of clearing the maze comes
from the ghosts. There are four different ghosts in Ms Pac-
Man: Blinky (red), Pinky (pink), Inky (cyan) and Sue (yellow).
At the start of each level the ghosts start in their lair in the
middle and spend some idle time before exiting the lair to
chase the pac-man. The time spent in the lair before joining
the chase varies with the level, with the ghosts leaving the
lair sooner on the harder levels of the game. Each time the
pac-man is eaten by a ghost, a life is taken away and pac-man
and the ghosts return to their original positions on that maze.

There are four power pills in each of the four mazes, which
when eaten, reverse the direction of the ghosts and turn them
blue, which mean they can be eaten for extra points. The score
for eating each ghost in succession immediately after a power
pill (which is worth 50 points) starts at 200 and doubles each
time. So, an optimally consumed power pill is worth 3050 (=
50 + 200 + 400 + 800 + 1600). Note that if a second power pill
is consumed while some ghosts remain edible from the first
power pill consumption, then the ghost score is reset to 200.
The more difficult the level, the shorter that time becomes,
until the ghosts do not turn blue at all (but they do still change
direction). When the ghosts are flashing, they are about to
change from blue state back to their normal state, so the player
(or agent) should be careful in these situations to avoid losing
lives. Another source of points are the extra fruits and prizes
that appear and bounce around the maze. These bonus items
include cherries, strawberries, peaches, pretzels, apples, pears
and bananas, and their values increase with increasing levels
of the game.

As previously mentioned, when all the pills and power pills
are cleared in a maze, the next maze appears, though with
increased speed and difficulty. Also, ghosts travel at half speed
through the side escape tunnels which allows pac-man to gain
some breathing space, at the risk of being trapped in the tunnel.
Another detail of the first stages is that pac-man moves faster
when not eating pills than when she is. She is also capable of
turning around corners faster than the ghosts, so should make
as many turns as possible when the ghosts are on her tail.

B. Previous Research

In recent years, Pac-Man style games have received some
attention in Computational Intelligence research. Previous
work in Pac-Man has been carried out in different versions of
the game (i.e. Pac-Man and Ms Pac-Man simulators), hence
an exact comparison is not possible, but we can have a
general idea of the performances. Most of these works can be
divided in two areas: agents that use CI techniques partially or
completely, and controllers with hand-coded approaches. We
will briefly discuss the most relevant works in both areas.

One of the earliest studies with Pac-Man was conducted
by Koza [6] to investigate the effectiveness of genetic pro-
gramming for task prioritisation. This work utilised a modified
version of the game, using different score values for the items
and also a different maze. According to Szita and Lorincz [7],
the only score reported on Koza’s implementation would have
been around 5,000 points in their Pac-Man version. Bonet and
Stauffer [8] proposed a reinforcement learning technique for

the player, using a very simple Pac-Man implementation. They
used a neural network and temporal difference learning (TDL)
in a 10 x 10 centred window, but using simple mazes with only
one ghost and no power pills. Using complex learning tasks,
they showed basic ghost avoidance.

Gallagher and Ryan [9] used a Pac-Man agent based on
a simple finite-state machine model with a set of rules
to control the movement of Pac-Man. The rules contained
weight parameters which were evolved using the Population-
Based Incremental Learning (PBIL) algorithm. They ran a
simplified version of Pac-Man with only one ghost and no
power pills, which reduces the scoring opportunities in the
game and removes most of the complexity. However this
implementation was able to achieve machine learning at a
minimum level. Gallagher and Ledwich [10] described an
approach to developing Pac-Man playing agents that learn
game play based on minimal screen information. The agents
were based on evolving neural network controllers using
a simple evolutionary algorithm. Their results showed that
neuro-evolution is able to produce agents that display novice
playing ability with no knowledge of the rules of the game
and a minimally informative fitness function.

Szita and Lorincz [7] proposed a different approach to
playing Ms Pac-Man. The aim was to develop a simple rule-
based policy, where rules are organised into action modules
and a decision about which direction to move in is made based
on priorities assigned to the modules in the agent. Policies
are built using the cross-entropy optimisation algorithm. The
best-performing agent obtained a score average of 8,186,
comparable to the performance of a set of five human subjects
played on the same version of the game, who averaged 8,064
points. More recently, Wirth and Gallagher [11] used an agent
based on an influence map model to play Ms Pac-Man. The
model captures the essentials of the game and showed that the
parameters of the model interact in a fairly simple way and that
it is reasonably straight-forward to optimise the parameters to
maximise game playing performance. The performance of the
optimised agents averaged a score of just under 7,000.

The work reported in the papers listed above used nearly
as many different simulators as there are papers listed. Unfor-
tunately this makes a meaningful comparison of the abilities
of the agents extremely difficult — it is just possible to get a
vague idea of the relative playing strengths of these approaches
but no more than that.

For this reason one of the authors (Lucas) has developed a
screen-capture based competition that uses the original rom-
code of the Ms Pac-Man game running on an emulator. The
competition has been run at several conferences over the
last few years since 2008. Entrants submit a software agent
that plays the game by capturing the screen many times per
second, processing the captured pixel map to identify the main
game objects (pac-man, ghosts, pills etc.) and then generating
keyboard-events which are sent to the game window. This
allows a standard way to measure the performance of the
software agents, and has the benefit of testing performance on
the original game rather than some modified (and usually sig-
nificantly simplified) clone. However, there are a few caveats
to this. The performance of the agent can be significantly
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impaired by a poor screen-capture and processing kit, and
while a specific kit could be specified, none of the existing
ones seem to be good enough yet to standardise on. Therefore,
this is currently left open as a choice to the entrants in order
to promote the development of better kits. For this reason we
have not yet tested our agent in screen-capture mode, but
this is a priority for future work; to be done properly we
are developing a better screen-capture kit that will enable our
MCTS agent to show its true ability. Hence, for the moment
we base our result on a simulator developed by the authors and
freely available for download for the Agent versus Ghost Team
Ms Pac-Man competition2 (originally developed by Lucas [12]
and then significantly enhanced).

The papers described next all use some version of this
simulator, using the same ghost algorithms (known collectively
as LegacyTeam) unless otherwise stated. The earlier papers
used a single maze (the first maze) version of the game, with
the same edible time for each level (hence the game consists
of endless repetitions of the first level until all the lives are
lost). The later papers (as explained) have also used the full
four original mazes, and in some cases reducing the edible
time, or (as in the current paper) using no edible time at all.
The simulator is described in some detail in the next section.

Lucas [12] proposed evolving neural networks to evaluate
the moves. He used Ms Pac-Man because the ghosts behave
with pseudo-random movement, and that eliminates the possi-
bility of playing the game using path-following patterns. This
work utilised a handcrafted input feature vector consisting of
the distances from pac-man to each non-edible ghost, to each
edible ghost, to the nearest pill, to the nearest power pill and
to the nearest junction. His implementation was able to score
an average of 4, 780 points over 100 games.

Robles and Lucas [13] proposed perhaps the first attempt
to apply tree search to Ms Pac-Man. The approach taken was
to expand a route-tree based on possible moves that the pac-
man agent can take to depth 40, and evaluated which path
was best using hand-coded heuristics. On their simulator of
the game the agent achieved a high score of 40, 000, but only
around 15, 000 on the original game using a screen-capture
interface. However, it should be emphasised that many of the
above quoted scores have been obtained on the different Pac-
Man simulators, and therefore only provide the very roughest
idea of relative performance.

Burrow and Lucas [14] used a previous version of the
simulator to analyse the learning behaviours of TDL and
Evolutionary Algorithms, with a simple TD(0) and a standard
ES(15 + 15) respectively. Two features were used as input
to the function approximators (interpolated table and MLP) to
give an estimate of the value of moving to the candidate node:
1) the distance from a candidate node to the nearest escape
node, and 2) the distance from a candidate node to the nearest
pill along the shortest maze path. Their experiments showed
that under that experimental configuration evolution performed
significantly better than TDL, although other reward structures
or features were not tested.

Also using a previous version of the simulator, Alhejali and

2http://csee.essex.ac.uk/staff/sml/pacman/kit/AgentVersusGhosts.html

Lucas [15] used genetic programming (GP) to evolve a wide
variety of pacman agents. A diverse set of behaviours were
evolved using the same GP setup in three different versions of
the game: 1) single level, 2) four mazes, and 3) unlimited
levels. All of them using only one life and the same GP
parameters. The function set was created based on Koza [6],
including operations such as IsEdible, IsInDanger, IsEner-
gizersCleared, etc. On the other hand, the terminal set was
divided in two groups: data-terminals and action terminals.
Most of the data terminals returned the current distance of
a component from the agent, such as DISPill, DISEnergizer,
DISGhost, etc. As for the action-terminals, each one moved
Pac-Man one step toward the target, e.g., ToEnergizer, ToPill,
and ToEdibleGhost. The results showed that GP was able to
evolve controllers that are well-matched to the game used
for evolution and, in some cases, also generalise well to
previously unseen mazes. The average score in the experiments
was approximately 10, 000 points, with a maximum score of
approximately 20,000.

III. MS PAC-MAN SIMULATOR

The Ms Pac-Man simulator used for this research is a
re-factored and extended version of the one used in Lucas
[12], which is written in object-oriented style in Java with a
reasonably clean and simple implementation. Compared to the
original several changes and improvements have been made
in order to perform Monte-Carlo Tree Search and also to
enable much faster path evaluation. This current version of
the simulator is a more accurate approximation of the original
game, not only at the functional but also at the cosmetic
level, and includes the four original mazes. Figure 1 shows
a screen shot of each level in action. Nevertheless, there are
still important differences with respect to the original game:

• The speed of our pac-man and the ghosts are identical,
and pac-man does not slow down to eat pills.

• Our pac-man cannot cut corners, and so has no speed
advantage over the ghosts when turning a corner.

• Our ghosts do not slow down in the tunnels.
• Bonus fruits are not present, as their inclusion plays a

relatively minor contribution to the score of the game (at
least at lower levels).

• No additional life at 10,000 points. This would have been
easy to implement, but has little bearing on MCTS-based
strategies.

• Perhaps the most significant of all: the ghost behaviours
are not the same as in the original game. We developed
various ghosts agent controllers with different strategies
to use in the simulations, however, they are only an
approximation to the original behaviours.

The mazes of the game are modelled as graphs of connected
nodes. Each node has two, three or four neighbouring nodes
depending on whether it is in a corridor, L-turn, T-junction
or a crossroads. After the mazes have been created, a simple
efficient algorithm is run to compute the shortest-path distance
between every node and every other node in the mazes.
These distances are stored in a look-up-table, and allow fast
computation of the various controller-algorithm input features.
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Fig. 1. Snapshots of the four mazes in the Ms Pac-Man Simulator.

Each maze is played twice consecutively, starting in Maze A
up to Maze D. When Maze D is cleared, the game goes back
to Maze A and continues the same sequence, i.e., (A, A, B,
B, C, C, D, D, A, A,...) until game over.

The new design of the simulator allows us to implement AI
controllers for the pac-man and the team of ghosts as well,
by implementing their controller interfaces: AgentInterface
(Listing 1) and GhostTeamController (Listing 2) respectively.
Each interface has a single method which takes the game state
as input and returns the desired movement directions.

Listing 1. Agent Interface
p u b l i c i n t e r f a c e A g e n t I n t e r f a c e {

i n t a c t i o n ( G a m e S t a t e I n t e r f a c e gs ) ;
}

Listing 2. Ghosts Controller
p u b l i c i n t e r f a c e G h o s t T e a m C o n t r o l l e r {

p u b l i c i n t [ ] g e t A c t i o n s ( G a m e S t a t e I n t e r f a c e gs ) ;
}

During the game, the model of the game will send the
GameState to both controllers, and they must return the
appropriate actions to take. In the case of the AgentInterface
(pac-man) it will return the next direction to take, whereas
the Ghosts Controller must return an array with the desired
directions to move each ghost, and they will be executed as
long as they are legal moves for the ghosts. The pac-man

is allowed to move in any direction along a corridor at any
given time, while the ghosts cannot reverse unless the model
of the game determines a ghosts reversal. For example, in
Figure 3 the state of the game is on time step 25, s25, in
which the action set for pac-man and Blinky (Blinky is the
ghost in the bottom left of the maze in Figure 3) are:

AP (s25) = {north, south}
AB(s25) = {north}

If one of the agents chooses an action that is not part of the
respective set of actions, Ap(s25), the simulator will take the
default behaviour of the agent.

The GameStateInterface (Listing 3) provides an approxi-
mation to a Markov state signal that summarises everything
important about the preceding moves that contributed to the
current state. Some of the information about the previous
moves is lost, but most that really matters for decision-making
is retained. Apart from the information of the current state of
the game, the GameStateInterface also provide methods that
ease the use of Monte-Carlo simulations: copy() and next().
The method copy() returns a copy of the current state of the
game. This is helpful while doing game-tree search, since it
is necessary to keep copies of the game state in every node.
The next() method takes the current game state, st ∈ S, where
S is the set of possible states, and receives a set of actions
to take for each of the five agents (pac-man and the ghosts),
ap,t ∈ Ap(st) where Ap(st) is the set of actions available in
state st for agent p. One time step later, as a consequence of
their actions, the agents find themselves in a new state, st+1.

Listing 3. Game State Interface that enables MCTS
p u b l i c i n t e r f a c e G a m e S t a t e I n t e r f a c e {

G a m e S t a t e I n t e r f a c e copy ( ) ;
void n e x t ( i n t pacDir , i n t [ ] g h o s t D i r s ) ;
Agent ge tpac−man ( ) ;
M a z e I n t e r f a c e getMaze ( ) ;
i n t g e t L e v e l ( ) ;
B i t S e t g e t P i l l s ( ) ;
B i t S e t ge tPower s ( ) ;
G h o s t S t a t e [ ] g e t G h o s t s ( ) ;
i n t g e t S c o r e ( ) ;
i n t getGameTick ( ) ;
i n t g e t E d i b l e G h o s t S c o r e ( ) ;
i n t g e t L i v e s R e m a i n i n g ( ) ;
boolean a g e n t D e a t h ( ) ;
boolean t e r m i n a l ( ) ;
void r e s e t ( ) ;

}

The simulator represents the game state in a compact way
in order to allow efficient copying of the state, and efficient
transmission to remote clients (enabling remote evaluation
of ghost teams and agents). The game state contains only
references to other immutable objects where possible. For
example, the maze object never changes, but the positions and
states of the agents change, and the state of the pills change.
Bit-sets are used to store whether each pill is present or has
already been eaten, enabling the entire state of the game to be
represented in a few tens of bytes.
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IV. MONTE CARLO TREE SEARCH

A. MCTS and Monte-Carlo Tree Search

The idea behind Monte-Carlo algorithms in AI is that the
approximation of future rewards (as they are understood in the
Markov Decision Process (MDP) sense [16]) can be achieved
through random sampling. What this effectively means is that
the agent extrapolates to future states in a random fashion and
moves to the state with the highest predicted reward. MCTS
tries to rectify some of the issues that come with such an
approach by combining it with a tree and effectively creating
a stochastic form of best-first search. From a game theoretic
perspective, the tree is a subtree of the game tree in extensive
form [17].

Upper Confidence Bounds in Trees (UCT) (presented in
Algorithm 1) can be seen as simply an implementation of
MCTS where the “selection” part of the algorithm is provided
by ideas borrowed from the study of multi-armed bandit [18]
problems. In UCT, each node in the tree is seen as multi-armed
bandit. The goal of the search is to “push” more towards areas
of the search space that seem more promising. Although there
are many different versions of the algorithm, the one presented
in [19] is quite commonly used3. The algorithm (see Figure 2)
can be summarised as follows; starting from the root node,
expand the tree by a single node. If the node is a leaf node,
estimate its value by performing a roll-out and back-propagate
the value to the node’s ancestors in the tree. If the node is not
a leaf node, keep exploring the tree until one is reached. The
most commonly used back-propagation strategy is one that
makes direct use of the underlying tree, e.g., for a minmax
(negamax) tree, that would include subtracting or adding the
result depending on who is the owner of each node in the
ancestor list (for an example see Algorithms 1, 2, 3, taken
from [19]).

In case all possible nodes have been visited, a common
way to distinguish which node to explore further is to assign
a value to each node based on the Chernoff-Hoeffding bound.
This leads to what is known as the UCB1 policy[18]. Play
arm j that maximises

x̄j + C

√
ln(n)

nj
(1)

The symbols x̄j in Equation 1 denote the average reward
from the underlying bandit, and it is the exploitation part of
the algorithm. The second part of the above equation is the
exploration part. C is a constant (often set to

√
2) [18], n is

the sum of all trials and nj is the number of trials for the j

bandit. Finally,
∑j=jmax

j=0 nj = n.
The equation to choose which arm to play (in the case of

a tree search which child to follow) can be heavily tuned de-
pending on the underlying distribution. UCB1 (see Algorithm
2 for the pseudocode) should be seen as the “lowest common
denominator” policy. If no information about the bandits is
available to us, this is probably the correct policy to use. On

3Although many leading MCTS Go programs now use very different node-
selection formulas based on various heuristics.

Fig. 2. A sample MCTS search.

the other hand, once we have collected enough information,
more informed policies should be able to perform better.

Algorithm 1 playOneSequence(rootNode)
{The entry point of MCTS. It traverses through a tree in
an asymmetric fashion. End state rewards are provided as
an array (rewardsArray), as we can have more than two
players.}
node[0] ← rootNode
i ← 0
repeat

nodeArray[i+1] ← descendByUCB1(nodeArray[i])
i← i + 1

until nodeArray [i] is a terminal Node
updateValue(nodeArray, nodeArray[i].rewardsArray)

Note that events in a tree are not independent, so algorithms
that would naturally work for bandit problems need some
adaptation when applied to tree search. Advantages of MCTS
include the fact that it explores the tree asymmetrically and
that it gives a natural way to handle uncertainty.

B. MCTS in Games

The popularity of MCTS stems primarily from the fact
that it revolutionised Computer Go [19], to the point where
computer players actually became competitive against hu-
man players (e.g. [20], [21], [22]). Its success lead to
widespread acclaim of Monte-Carlo methods, eventually
reaching popular media [23]. Example implementations in-
clude (CRAZY STONE [24], MANGO [25], MOGO [19]
and FUEGO [26]).
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Algorithm 2 descendByUCB1(node)
{We now descend through the tree according to UCB1
policy, making this a UCT algorithm. This part of the
algorithm can be modified to suit the particular problem
(e.g. use UCB-TUNED) }
nb ← 0
for i ← 0 to node.childNode.size() - 1 do

nb ← nb + node.childNode[i].nb
end for
for i ← 0 to node.childNode.size() - 1 do

if node.childNode[i].nb = 0 OR
MAX DEPTH REACHED then

v[i] ← ∞
else

v[i] ← 1.0 - node.childNode[i].value /
node.childNode[i].nb + sqrt(2 * log(nb) /
node.childNode[i].nb)

end if
end for
index ← argmax(v[j])
return node.childNode[index]

Algorithm 3 updateValue(nodeArray, rewardsArray)
{Finally, we can update the values of each node in the
path between the newly added node and the root, stored on
nodeArray (i.e. the ancestors of the newly added node). Note
that each node has a corresponding rewardId. The vector of
rewards should be provided by the game.}
nb ← 0
for i ← nodeArray.size() - 2 to 0 do

value ← rewards[nodeArray[i].rewardId]
nodeArray[i].value ← nodeArray[i].value + value
nodeArray[i].nb ← nodeArray[i].nb + 1

end for

As a result, MCTS has been applied already to a large
number of games [27], [28], [29]. For the most part, the non-
Go papers failed to replicate the burgeoning success of MCTS
in Go. The area that was identified for improvement [27]
was mostly around the concept of doing good Monte-Carlo
simulations. Being a best-first search, MCTS relies heavily on
the quality of Monte-Carlo simulations, and its performance
is greatly affected by them. For example, Gelly et al. [19]
report a big boost compared to purely random simulations
(from 1647 to 2200 ELO), which can be increased even further
with further heuristics of a more general nature like RAVE[30].
Another big issue with the non-Go implementations of MCTS
is the lack of comparison with the state of the art. As a
consequence there is no way of understanding how well MCTS
did compared to other methods.

MCTS is currently very successful in General Game Playing
(GGP) [3], a domain that practically prohibits the use of strong
heuristics. While General Game Playing in this sense is not
fully general since it refers to a subset of perfect and complete
games, it nevertheless shows that MCTS has the potential of
achieving good results in diverse domains.

Finally, there have been some developments for MCTS in
some real time video games, mainly from the the perspective
of real time strategy games (e.g. [31], [32], [33]). Most real
time strategy games harbour an element of imperfection, which
is however discarded in these studies, with the results however
being exceptionally strong.

V. METHODOLOGY

A. Applying MCTS

There has been no “standard” process for applying MCTS,
so we are proposing an empirical four step process. The first
step is to understand the number of agents and the information
content of each game and choose the right tree. For games of
complete and perfect information (e.g. chess, Go), a min-max
tree is commonly used. For games of incomplete but perfect
information (e.g. backgammon), expectimax trees should be
used. Finally for games of imperfect and incomplete informa-
tion (e.g. poker), miximax trees were recently introduced [34].

All the above cases apply naturally to 2 or 2.5 player games.
In the case of N-Player games, one can easily extend the
algorithm to either maxn [35] or one of its possible variations.
The basic principle behind these algorithms is that each player
tries to maximise its payoffs independently from the rest.

The second step is understanding the underlying distribution
of each arm and tuning the policy equation. This can be done
in a number of ways, which can range from tuning Equation
1, to completely replacing it with something that captures
the underlying probabilities better. In our case we use the
algorithm UCB-TUNED [18] (see Equation 2), which seems
to be fairly common in the literature, and initial short runs
showed that it works better in our case than UCB1 (although
we did perform some experiments with UCB1 (see Equation
1) for comparison purposes, see the experiments section).

x̄j +

√√√√ ln(n)

nj
min

{
1/4, x̄2

j − x̄j
2 +

√
2ln(n)

nj

}
(2)

The third step is to come up with a back-propagation policy.
Our strategy is the one used by default in the original Go
MCTS implementation and presented in the previous section,
with a maxn adaptation [35]. In this case, the end node
provides the algorithm with n rewards. Each node in the tree
has an associated rewardId and one of the rewards is added
accordingly. To put it in another way, each end node has an
associated vector of reward r with as many elements as agents
in the game (in our case 5). Each node however has just one
reward, based on which agent it belongs to.

The final step is to augment the algorithm with knowledge
and/or “guide” the Monte-Carlo simulations. In Go this is
achieved by using local patterns [19], which significantly
improves the quality of the simulations. In our case a set of
heuristics is created, and presented in the next subsection.

B. MCTS on Pac-Man: Problems

The first thing one should notice in Pac-Man is that the game
(like most video games, and arguably life) does not easily
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converge into winning final state for the pac-man player, which
creates a problem for all kinds of tree search algorithms. This
problem stems from two facts. On one hand pac-man has an
almost infinite number of back-and-forth moves it can do, with
no ending apart from it dying. On the other hand, the game
can keep going on forever, with pac-man progressing from
maze to maze, with no final winning position.

The second issue with the game is that it has a strong
timing element; whatever moves one has to perform at each
state, it should be calculated in less than 50−60ms. Although
we do not adhere strictly to real-time solutions in this paper,
as it is understood that further improvements in code quality
and CPU speed can easily bring performance within bounds,
nevertheless we tried to avoid timing settings that can never
lead to real time game play.

C. Maxn approach to Ms Pac-Man

Ms Pac-Man is a real-time computer game where events
in the game occur at the same rate as the events which are
being depicted. For instance, one minute of play of the game
depicts one minute of character movement. Despite its real-
time simultaneous-move nature, the game has simple rules
and can be transformed to a turn-based game to apply MCTS
directly. There are many ways one can model Pac-Man for
MCTS. In our approach, we chose to model Pac-Man as a
5-player game, and base the tree on maxn. Pac-Man is a
simultaneous move game, at least theoretically speaking, none
of the min-max like trees is really applicable, and one should
be searching for mixed strategies (at least for the endgames).
As seen recently by [36] however, in practice the strategic
advantage of taking this into account is trivial and can be
safely ignored.

In order to solve the problem of not having a natural end
state, we artificially limit the search tree to a fixed depth. We
also restrict pac-man’s ability to move back and forth as it
pleases within a single tree, making its behaviour similar to a
ghost. This (implicitly) creates a number of paths that a search
can easily evaluate. Just to clarify this last point, our MCTS
pac-man agent is able to move back and forth at each time
step (for example, while waiting to see which path a ghost
will take), but when expanding each MCTS tree these step-
by-step direction reversals are not allowed in order to restrict
the growth of the tree.

In that respect, an end node can be either the natural end
of the game (a ghost eats pac-man) or the end of a tree, with
TREE DEPTH = c. However, intuitively this would result
in pac-man running around the maze, trying to avoid ghosts,
since finding a natural end state (e.g. eating all the pills in the
maze) is beyond the tree depth, at least at the beginning of
the game. In order to avoid this scenario, we have created a
function called gpn(m, p) (which stands for “game preferred
node”). This function assigns the binary value of one to a
certain node in the tree path, and leaves the rest of the tree
to zero. That way we can set a target for the search (and we
will see how we use this target in the next section).

Fig. 3. Example of path creation

gpn(m, p) =


node1, if c(m, p) = 1

node2, if c(m, p) = 2

node3, if c(m, p) = 3

(3)

c(m, p) =


1, if ∃gi : Ed(gi) ∧ dpg(m, p) < G

2, if ∃!gi : Ed(gi) ∧ dpn(m, p) < P

3, otherwise
(4)

node1 = arg minn d2(p, gi)
node2 = arg minn d2(p, nxy)
node3 = arg minn d2(np

xy, node2)
(5)

dpg(m, p) = d2(arg min
n

d2(p, gi), p) (6)

dpn(m, p) = d2(arg min
n

d2(p, nxy), p) (7)

In Equation 4 m, is the current maze, p is the pac-man
location, gi is one ith ghost, n is a node, d2 is the pre-
calculated shortest path distance, np is one of the nodes
that surround pac-man and P is the furthest away distance
MCTS can see given its maximum depth size (usually set to
(MCTS.TREE DEPTH/5 − 1). Function Ed(gi) returns
if a ghost is edible. Equations 6 and 7 specify the distance
from the closest ghost and the distance from closest node
respectively. The function c(m, p) returns a different value
depending on which of three specific cases apply. Case 1 is
when there is an edible ghost in the map and the distance to
the ghost is smaller than G = 20. Case 2 is when there are
no edible ghosts and the distance of the closest pill/power is
smaller than P . Case 3 is the catch-all for when there are no
edible ghosts and the nearest pill is outside the search depth
of the tree. In each case, a corresponding node is marked as a
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“target” node using Equation 3 (and consequently equation 5).
In the first case the nearest ghost is the target, in the second
case the nearest pill, while in the third case a node en route to
the nearest pill. Note that case three exists purely because it is
frequently the case that pac-man will find itself in a position
where all the natural target nodes are beyond the search depth.
This solves the problem by effectively making a node within
the search tree a target node.

In the natural endgame scenarios where the end of the maze
is reached or pac-man gets eaten, rewards are set up in an
obvious fashion. In the case where the maze is cleared pac-
man gets a reward of 1, while all ghosts get a reward of 0. In
case pac-man dies, the ghosts get a reward of 1, while pac-
man gets a reward of 0. In all other cases, the rewards for the
ghosts are set proportionally to the inverse distance between
the ghost and pacman. Thus:

r(gi) =

{
0.5/((d2(gi, p) + 1)), if pac-man not eaten
1, if pac-man eaten

(8)

In Equation 8, first part, the rewards are set so that the closer
a ghost is to pac-man the higher the reward is. This makes
minimal impact when the ghosts are close, where rewards are
primarily acquired through pac-man’s death, but it makes a
difference when the ghosts are too far away and cannot reach
pac-man’s node within their tree search.

Now, for pac-man the reward function is:

r(p) =


1.0, if last pill in map is eaten
0.8, if preferred node gpn(m, p) is hit
0.0, if pac-man dies
0.6, otherwise

(9)

Hitting the preferred node (Equation 9) means that in the
current path evaluated by MCTS, the preferred node was
accessed and it is part of the search.

The above reward equations are used both by the MCTS
pac-man agent and the MCTS ghost team. Thus, in all cases
the reward vector is:

r = [r(p), r(g1), r(g2), r(g3), r(g4)] (10)

In the ghost team however, the first ghost does NOT follow
the action proposed by MCTS, but rather follows the route
that minimises distance between itself and the pac-man agent
(d2(gi, p))).

In almost every equation presented above there is some ad
hoc variable. For example pac-man receives a reward of 0.8
when a preferred node is hit. The values for these variables are
a result of short trial and error experimentation and are part of
the heuristics. There are some obvious criteria involved (e.g. a
reward for a preferred node should be higher than the reward
for a non-prefered node - 0.8 Vs 0.6 in our case), however
there is no “hard” scientific justification for these values, as
there is not for the equations themselves; they are part of the
chosen set of heuristics.

VI. EXPERIMENTS

We performed four sets of experiments. The first three
experiments are meant to portray the idiosyncrasies of the
specific MCTS implementations and how heuristics, tree
search depth and the number of simulations affect our agents.
The fourth and final experiment is meant to demonstrate
the strength of the MCTS approach compared to previous
approaches in this area using a version of the simulator used
in previous published research [12], [14].

In each set of experiments a number of different individual
experiments are performed. At first we progressively increase
the number of simulations from the set {100, 200, 300, 400}
and vary the depth of the search tree from 100 to 450 in incre-
ments of 50. We perform two experiments like this, each one
with a different UCB function (UCB1 and UCB−TUNED).
We also perform a run where we vary the tree depth from
100 to 950, but this time we fix the time in milliseconds the
agent has before he has to perform a move. We test for the
set of {20, 30, 40, 50, 60}ms. Here it is important to note that
it takes almost half a second4 to have an agent performing
400 iterations in a tree of 400, making these kinds of setups
prohibitive for real time simulations. However, the results are
still of interest, as CPU speed is increasing by the day and
a multi-threaded setup can easily bring the results within the
bounds of real time game play.

In the first three experiments the edible time of the ghosts
is set to 3 (almost non-existent). There are no random ghost
reversals and the each agent has one life. This way we hope
to make it as hard as possible for the pac-man agent, thus
minimising the time for each experiment. In each test run, we
only run one game, while keeping fixed all the initial random
seeds. This way we hope to make scores between different
runs comparable, as the agents effectively play the same game.
An alternate (and better) approach would be to perform a
number of runs for each depth-time/simulations combination.
However, due to the high scores achieved by some of the
agents, acquiring descriptive statistics from multiple test runs
is prohibitive, as some agents run for days even with a single
life.

A. MCTS pac-man Vs LegacyTeam

For this experiment The Ghost team is set to the Lega-
cyTeam. MCTS is fully aware of this, thus not wasting rollouts
in ghost moves that are not possible for this team. In practical
terms, this means that for the first three ghosts whose be-
haviour is deterministic there is only one possible future move
(whatever their model dictates) while for the probabilistic
ghost we assume its behaviour is unknown, letting maxn

search for plausible scenarios.
In the first experiment with this setup, we play a set of

games using UCB1. The best performance achieved by this
time is 70K at a tree depth of 450 (see Figure 4(a)). It can
be observed from the experiments that there is no clear, clean
relationship between tree depth, number of simulations and
performance. An increased number of simulations with the

4All experiments were run on a Intel(R) Core(TM)2 Duo CPU E8600 @
3.33GHz machine with java having 512MB of RAM.
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(a) UCB1, number of simulations Vs tree search depth (b) UCB − TUNED, number of simulations Vs tree search
depth

(c) UCB−TUNED, time spend per move in ms Vs tree search
depth

Fig. 4. Scores of pac-man Vs known LegacyTeam (i.e. future states in the tree search take into account the fact that we know where the ghosts are going
to move next

same tree will not necessarily lead to better performance,
contrary to what one would assume. There is however a clear
and strong trend towards this direction, as is evident from the
experiments. Our second run is the same as with UCB1, but
this time we switched to UCB−TUNED (Figure 4(b)). This
effectively doubles the scores acquired by pac-man by almost
two, to 160K. Again one can notice here that although tree
depth does play a role in the quality of the results, this role
is not clear cut, as there are “bumps” in the graph above.
In the final setup for this experiment, we play a number
of games using a fixed amount of time, while we let the
number of evaluations vary (Figure 4(c)). The varying amount
of simulations per move allows even better results, with our
best score being almost 700K.

B. MCTS pac-man Vs Unknown Team (LegacyTeam)

In this set of experiments, although we play against the
same team as in the previous experiment, the agent treats the
team as an unknown team. This means that the full maxn tree
is searched, which should make it much harder for our agent
to search for a good strategy.

In the first setup of this experiment, we see a noticeable
drop in scores, almost an order of magnitude (see Figure 5(a)),
with a high score of 10K. The same trend continues with
the UCB − TUNED setup as well (Figure 5(b)). There is
a massive drop in score compared with the previous experi-
mental setup ( Vs. Known team), but UCB − TUNED still
outperforms UCB1 with a score of 12K. Finally, in the case
where we fix time (Figure 5(c)), we achieve even better results
(18K). Note that this is a much tougher version of the game
than previous approaches using the same simulator due to the
extremely low ghost edible time.

C. Experiment 3: MCTS pac-man Vs MCTS Ghosts

In this experiment we performed a test of MCTS ghosts Vs
MCTS pac-man. Please note here, as explained earlier, that
both pac-man and the ghost play using the same tree. The
MCTS score is evaluated once and followed for all agents,
with the exception of the first ghost, which blindly follows
pac-man.

The results in all three setups (see Figures 6(a), 6(b), 6(c))))
show pac-man being clearly overpowered by the ghost team,
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(a) UCB1, number of simulations Vs tree search depth (b) UCB − TUNED, number of simulations Vs tree search
depth

(c) UCB−TUNED, time spend per move in ms Vs tree search
depth

Fig. 5. Scores of pac-man Vs unknown LegacyTeam (i.e. when MCTS is not explicitly aware of which team it is performing against)

with very low high scores in all cases (a max of 6K). The
reason for the not-so-clear curve in pacman’s performance is
that the number of iterations changes both for pacman and
the ghosts. Thus, a stronger pacman would play with stronger
ghosts, which would result in similar results no matter the
number of iterations (taking into account some variance as
well). If one is to draw a conclusion here, one can say that
the MCTS ghosts can easily overpower pac-man, at least in
the case of minimum edible time. Admittedly, one can vary
asymmetrically the number of iterations of the ghosts in order
to balance power. This could be used in order to create weaker
“default” MCTS ghost teams for the game, which would
provide an interesting direction if one is interested in creating
progressively harder ghost teams to play against, adding to the
fun element of the game.

D. Experiment 4: MCTS pac-man Vs Typical LegacyTeam
Setup / High Score

In this experiment we aim purely to show the strength of
our agent against previous published work using the same
simulator[12], [14]. Thus, in this experiment we only use
the first stage and we set the ghost edible time to 100.

We performed three tests; one with a known model, one
an unknown ghost-team model, and non-real time one with
an unknown ghost model. Since this experiment is the only
one comparable to previously reported experiments with the
simulator, which makes result robustness important, for each
agent we performed 100 runs. Results are presented in tables
I and II.

TABLE I
DESCRIPTIVE STATISTICS FOR THE TWO PLAYERS. KM IS THE KNOWN
MODEL PLAYER AND UM IS THE UNKNOWN MODEL PLAYER. UM-NR

AND UM-R SHOW RESULTS FOR THE UNKNOWN MODEL PLAYER FOR THE
REAL-TIME AND THE NON-REAL TIME CASE RESPECTIVELY. S STATISTICS
ARE FOR THE NUMBER OF ROLLOUTS WHILE T STATISTICS ARE FOR TIME

PER MOVE. TD STANDS FOR TREE DEPTH.

MeanS MinS MaxS MeanT MaxT TD
KM 300 300 300 45 222 300

UM-NR 300 300 300 74 398 300
UM-R 150 150 300 35 182 300

The first thing worth noting here is the very high score,
slightly above 2.8M for the known model agent. The best
human player has achieved a score of 933,580 [37], however
this is not directly comparable to our version, as the ghost
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(a) UCB1, number of simulations Vs tree search depth (b) UCB − TUNED, number of simulations Vs tree search
depth

(c) UCB−TUNED, time spend per move in ms Vs tree search
depth

Fig. 6. Scores of pac-man Vs MCTS team

TABLE II
SCORES FOR EACH PLAYER, SEE FIGURE I FOR THE THREE

ABBREVIATIONS (KM, UM-NR, UM). THE STATISTICS ARE BASED ON
100 GAMES PLAYED FOR EACH ROW OF THE TABLE.

Mean Standard Error SD Min Max
KM 546,260 55,980 559,802 4,500 2,807,700

UM-NR 81,979 8,909 89,090 1,080 409,730
UM-R 45,389 4,041 40,407 1,400 207,800

behaviours are somewhat different. On the other hand, this
shows that one can aim for such high scores in the real
game as well, using similar approaches to ours, but this is
out of the scope of this paper. For the record, the highest
scoring Pac-man player for the real game (using a screen-
capture kit for interfacing the agent to the game) we are aware
of achieved a maximum score of 44, 910 [38], and is also
based on Monte-Carlo Tree Search5. In the “unknown model”
player tests, we can see that high scores are also achieved (at
least 5 times previously reported results in the non-real time
case). This can easily be explained by understanding that while
in the known model case, only one ghost has unpredictable

5The paper [38] is currently only available in Japanese.

behaviour, in the unknown model case, all ghost actions have
to be guessed. This creates trees which have a higher branching
factor, which in turn requires more search time. Finally, the
huge variability observed is explained by the fact that the agent
performs simulations not in the real version of the game, but
an abstract one. At some point, inconsistencies in the abstract
model can easily lead to a premature death. In the real version
of the game, one has at least three lives, so one has greater
opportunity to amass a high score, and also be less affected by
fatal errors (which cause the loss of a single life rather than
the end of the entire game).

VII. DISCUSSION & CONCLUSION

We have shown that MCTS can successfully be used in a
real time game, getting results that are almost two orders of
magnitude better than previous results in the same simulator
acquired by evolutionary, reinforcement learning and genetic
programming methods. In order to make a critical appraisal,
we first need to concentrate on one simple fact: MCTS
exploits the model of the game and (in the non-planning tree
scenario) models our opponents as being perfect players. This
ruthless exploitation of the forward model gives the agent a
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characteristic strength that static/reactive evaluation heuristics
cannot possibly match. What is important to note here is that it
is not the senses that guide our agents behaviour, but rather an
internalised model. Senses are practically only used in order
to infer the current state, but do not influence behaviour in
any other form. On top of all that, the plan the agent is to
follow is re-formed at every timestep, making the need for
feedback corrections redundant. The only thing that needs to
be accurately measured is the current state and that state needs
to be mapped to the internal model.

Another reason why the on-line exploitation of the model
is so successful (compared to creating off-line controllers
using evolution or reinforcement learning) is that even in the
case where a reactive behaviour would perform successfully,
the necessary function approximation would diminish the
performance of the agent. The constant re-planning at every
time step we do here alleviates the need for any form of
approximator (such as a neural network).

An interesting phenomenon which is evident from the
experiments is that in our case more computational time, which
invariably results in more simulations, does not necessarily
result in better performance. We think that the primary reason
behind this is may be as follows: unless some critical threshold
is crossed, where the agent clearly plays better, an avalanche of
slightly different decisions leads to totally different games. So
a slightly better agent might find himself in a difficult situation
and fail, whereas an inferior agent will never come to see that
state at all! This kind of behaviour has not been observed in
any MCTS implementations until now as far as we are aware.
However, in most previous efforts to create MCTS agents, the
simulations involved playing a real, albeit guided, game until
the end. In our case the simulations run an idealised game,
with a heuristic end function.

We believe that the approach presented in this paper has
great potential for creating generic AI agents. One can easily
envisage a procedure where the most important abstract fea-
tures of a world are modelled (such as the game rules and
“equation” of motion) and given to an agent to reason with.
The agent can then use MCTS to produce general intelligent
(or at least sensible) behaviour with a minimum of domain-
specific programming.
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