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Abstract—Games provide an ideal test bed for computational
intelligence and significant progress has been made in recent
years, most notably in games such as GO, where the level of
play is now competitive with expert human play on smaller
boards. Recently, a significantly more complex class of games has
received increasing attention: real-time video games. These games
pose many new challenges, including strict time constraints,
simultaneous moves and open-endedness. Unlike in traditional
board games, computational play is generally unable to compete
with human players.

One driving force in improving the overall performance of arti-
ficial intelligence players are game competitions where practition-
ers may evaluate and compare their methods against those sub-
mitted by others and possibly human players as well. In this pa-
per we introduce a new competition based on the popular arcade
video game MS PAC-MAN: MS PAC-MAN VERSUS GHOST TEAM.

The competition, to be held at the Congress on Evolutionary
Computation 2011 for the first time, allows participants to
develop controllers for either the Ms Pac-Man agent or for the
Ghost Team and unlike previous MS PAC-MAN competitions that
relied on screen capture, the players now interface directly with
the game engine. In this paper we introduce the competition,
including a review of previous work as well as a discussion of
several aspects regarding the setting up of the game competition
itself.

Index Terms—Computational Intelligence, Games, Game Com-
petition, Ms Pac-Man, Predator-Prey

I. INTRODUCTION

The field of computational intelligence (CI) has had no-
ticeable success in recent years in developing computational
tools that may compete with human expertise in a variety
of domains. One such domain is games, including traditional
boardgames such as CHESS or GO and real-time video games
such as UNREAL TOURNAMENT. Games pose an interesting
challenge, both academically and commercially and have been
subject to a long-established research effort.

Academically, games provide an ideal test bed for the
development and testing of new techniques and technologies:
games are defined by an explicit set of rules and the goal
of playing a game is usually defined unambiguously by the
game’s score or outcome. Games are also immensely flexible
and vary greatly in complexity from single player puzzles
to two-player boardgames to massively multi-player real-

time video games. Furthermore, it is important to note that
techniques developed specifically for game playing may often
be transferred easily to other domains, greatly enhancing the
scope with which such techniques may be used. Monte Carlo
Tree Search [9], for example, allowed for a breakthrough
in human-competitive play in the classic board game GO;
recently, the same technique has been applied successfully to
other domains such as scheduling [13].

Undoubtedly, there is significant commercial interest in
developing strong game AI as well. The video game software
industry in the USA alone is worth an annual turnover of US$
4.9 billion (2009) with a growth rate of 10.6% for the period
2005-2009 (the growth rate for the US economy as a whole
was 1.4% for the same period) [20]. Here, the goal of AI
agents is usually not to achieve the strongest possible play
but to optimise the overall playability of the game: human
players need to be engaged at the right level of difficulty to
make the game appealing, a task that has proven difficult as
Yannakakis and Hallam [26, p 119] point out: “the increasing
number of multi-player online games (among others) is an
indication that humans seek more intelligent opponents and
richer inter-activity.”

A solution to this dilemma is the development of stronger
non-player characters (NPCs) that do not rely primar-
ily on classical game artificial intelligence (AI) methods
such as scripting, triggers and animations.1 Game com-
petitions provide an ideal testbed for practitioners to fur-
ther the development of NPCs that play a game intelli-
gently and in this paper we introduce a new game com-
petition based on the popular arcade game MS PAC-MAN:
previous MS PAC-MAN-competitions required participants
to develop AI controllers for the Ms Pac-Man charac-
ter. The MS PAC-MAN VERSUS GHOST TEAM-competition
allows participants for the first time to also develop multi-
agent controllers for the ghost team. This paper outlines the
scope, rules and technical specifications of this competition.

First we introduce the game MS PAC-MAN in section II

1As Ahlquist and Novak [1, p 4] point out, computer science AI and game
AI are only distantly related: the former is about substance, whereas the latter
is about appearances. The limitations of game AI have are discussed, for
instance, in [23].



TABLE I
SUMMARY OF PREVIOUS MS PAC-MAN-SCREEN-CAPTURE

COMPETITIONS.

Venue Winners Agent Name Score
CEC’07 N/A Default Agent 2,269
WCCI’08 A. Fitzgerald et al. N/A 15,970
CEC’09 H. Matsumoto et al. ICE Pambush 2 24,640
CIG’09 H. Matsumoto et al. ICE Pambush 3 30,010
CIG’10 E. Martin et al. Pac-mAnt 21,250

and review previous research related to developing Ms Pac-
Man controllers and predator-prey models in section III. We
present the rules of the game in section IV, including possible
restrictions imposed upon the controllers. In section V we
discuss the actual implementation of the game and then present
several example controllers in section VI. Finally, section VII
discusses some of the technical details regarding the setup of
the competition before the paper is concluded in section VIII.

II. MS PAC-MAN VERSUS GHOST TEAM

One of the earliest commercially successful games, now
a classic and still played all over the world, is PAC-MAN,
an arcade game developed in 1980 by Toru Iwatani. The best
known variant of the game is MS PAC-MAN, released in 1981,
which introduced a female character, new maze designs and
several gameplay changes. Screenshots of the game are shown
in Figure 1: Ms Pac-Man needs to navigate around the maze,
eating pills (sometimes called pellets) for points while trying
to avoid the four ghosts who strive to eat Ms Pac-Man. The
four power-pills in the corners of the maze allow Ms Pac-
Man to eat the ghosts for a limited time (the ghosts turn blue)
to gain additional points. In the arcade version of the game,
the Ms Pac-Man character is controlled by the player using a
4-way joystick, allowing Ms Pac-Man to move north, south,
east and west. If the joystick is kept in neutral or whenever
an illegal move is chosen, the previous action is repeated. If
Ms Pac-Man encounters a wall, she remains stationary until
the next legal joystick event occurs.

The probably most significant change of MS PAC-MAN
over the original is the design of the ghost team which
now has elements of randomness that make the game more
engaging: while the maximum possible score for PAC-MAN
was achieved in 1999, new high-scores for MS PAC-MAN are
still being set: a new record of 921,360 points was set by
Abdner Ashman in 2006 according to www.twingalaxies.com.
Scores obtained by AI controllers, on the other hand, are
significantly inferior: MS PAC-MAN has featured in several
previous competitions, most notably the MS PAC-MAN-Screen
Capture competition, held annually since 2007 at various CI
conferences. The scores obtained at these competitions are
shown in Table I. There are at least two reasons for this
significant discrepancy.

First, the state of the game in previous competitions
is obtained by a screen reader that parses the game into
a secondary representation. Controllers thus need to deal
not only with the dynamics of the game but must also
account for possible delays and missing information. Al-

Fig. 1. Screen captures of the different levels (left-to-right, top-to-bottom,
levels 1-4) of MS PAC-MAN: Ms Pac-Man (yellow) consumes pills for points
(small white dots) while the ghosts (red: Blinky, pink: Pinky, green: Inky and
brown: Sue) attempt to eat her; the large white dots in the corners are the
power pills.

though such requirements are commonplace in many do-
mains, especially those for which CI methods are frequently
required in the first place, eliminating these uncertainties
by interfacing directly with the game engine allows practi-
tioners to fully concentrate on the game itself. An efficient
simulator of the game has thus been developed for the
MS PAC-MAN VERSUS GHOST TEAM-competition that may
be accessed efficiently using simple software interfaces (see
sections IV and V).

Second, the real-time element of the game poses a par-
ticular challenge and makes a crucial difference to the type
of technologies that may be employed. Although time also
plays an important role in turn-taking board games such as
CHESS, the duration granted to determine a move in real-
time video games are usually orders of magnitude smaller.
This makes MS PAC-MAN a particularly challenging test bed
for developing novel AI techniques which need to be both
theoretically and practically sound.

The MS PAC-MAN VERSUS GHOST TEAM competition in-
troduces an additional aspect: while MS PAC-MAN is tradi-
tionally viewed from the perspective of Ms Pac-Man (i.e.,
the ghosts are assumed to be NPCs), participants are now
allowed to develop controllers for the ghost team as well.
This provides an excellent environment for testing multi-agent
strategies. Here the aim could be two-fold: practitioners may
aim to optimise the playability of the game, or to minimise
the score obtained by Ms Pac-Man. It is this latter objective



that provides the focus of this competition, simply because it is
unambiguously defined. In the near future, however, especially
with the participation of human players, the former objective
may play an important role as well; measurements for the
entertainment value of games already exist and may be utilised
towards this goal (see, e.g., [26], [27]).

III. RECENT RESEARCH

The popularity of PAC-MAN and MS PAC-MAN sparked
noticeable academic interest and this section reviews some of
these research efforts. It is important to note that researchers
have considered a variety of different variants of the original
games (usually custom implementations or variants of existing
implementations), making it difficult to compare the scores
obtained by the AI controllers. We thus do not report such
scores.

A. PAC-MAN and MS PAC-MAN Controllers

One of the earliest studies related to Pac-Man is by Koza
[10] who investigated the effectiveness of genetic program-
ming (GP) for task prioritisation where the controller would
choose amongst a set of predefined rules (also see [18], cited
in [22]). Alhejali and Lucas [2] also employed GP to evolve a
wide variety of Ms Pac-Man agents. In particular, the authors
evolved a diverse set of behaviours for different version of the
game, demonstrating that GP was able to evolve behaviours
well suited for each variation.

Burrow and Lucas [4] analysed the learning behaviours
of temporal difference learning (TDL) and evolutionary al-
gorithms (EAs) in conjunction with function approximators:
two features served as input to the function approximators
(interpolated table and multi-layer perceptron) to produce
an estimate of the value of moving to the candidate node.
The experiments showed that is this particular case, the EA
outperformed TDL.

Gallagher and Ryan [6] used a Pac-Man agent based on
a simple finite-state machine with a set of rules to control
the agent’s movement depending on its current position. The
rules consisted of weighted parameters that were evolved using
the population-based incremental learning algorithm. Szita and
Lorincz [21] also developed a simple rule-based policy, where
rules are organised into action modules and a decision about
the agent’s next direction is made based on priorities assigned
to the modules in the agent; policies were built using the cross-
entropy optimisation algorithm.

Robles and Lucas [17] applied a tree search algorithm to
the game: the approach taken was to expand a route-tree based
on possible moves that Ms Pac-Man can take, up to a tree
depth of 40. The best path was subsequently evaluated using
hand-coded heuristics. Bell et al. [3] combined tree searches
with rule-based systems, making use of Dijkstra’s algorithm,
to determine the next direction of Ms Pac-Man’s. The authors
also accounted for the movement of the ghosts to determine
safe paths for Ms Pac-Man. Similarly, Oh and Cho [14] use a
rule-based approached, also based on Dijkstra’s algorithm. An

evolved neural network was subsequently used to select rules
for different situations in the game.

Evolved neural networks were also used in prior work by
Lucas [11] to evaluate Ms Pac-Man’s possible moves; simple
path-following patterns are inappropriate in MS PAC-MAN
due to the stochastic behaviour of the ghosts. The controller
utilised a handcrafted input feature vector consisting of the
distances of Ms Pac-Man to each non-edible ghost, to each
edible ghost, to the nearest pill, to the nearest power pill
and to the nearest junction. Likewise, Gallagher and Ledwich
[5] employed minimal screen-capture information to develop
Pac-Man agents capable of learning how to play the game:
the agents are governed by neural network controllers evolved
using a simple evolutionary algorithm. The results showed that
neuro-evolution is able to produce agents that display novice
playing ability without prior knowledge of the rules of the
game as well as a minimally informative fitness function.

Samothrakis et al. [19] used Monte Carlo Tree Search
(MCTS), using a 5-player maxn game tree (i.e., each ghost
is treated as an individual player). Unlike traditional tree
searches, MCTS is an anytime algorithm with an asymmetric
tree structure, lending itself nicely to the real-time constraints
of the game.

Finally, Wirth and Gallagher [22] designed agents based on
influence maps: the model used captured the essentials of the
game (e.g., desirable regions in the maze) and subsequently
demonstrated that the model’s parameters interact in a fairly
simple way, making it possible to optimise the parameter
values that maximise the agent’s game playing performance.

B. Ghost Team Controllers and Predator-Prey Models

The number of ghost team controllers developed for
PAC-MAN or MS PAC-MAN is rather small compared to the
number of Ms Pac-Man controllers. Nevertheless, many result
have been obtained for the more general scenario of predator-
prey, often by co-evolutionary means, that may be helpful to
the participants of the competition.

In [23], Wittkamp et al. explore, as a proof of concept, the
use of CI techniques for real time learning to evolve strategies
for the ghost team. Using a neural network to control the
ghosts, focus is on team-work development that makes use of
continuous short-term learning to regularly update the strategy
of the ghosts. Ultimately, this strategy attempts to exploit the
weaknesses of Ms Pac-Man. Yannakakis and Hallam [24], [25]
propose a generic approach to generate interesting interactive
Pac-Man opponents. Here the focus is on the entertainment
value of the game and not the raw performance of the
ghost team: the authors demonstrate that their neuro-evolution
learning mechanism (the actions of the ghosts are determined
by a fully connected feedforward neural controller) is able to
increase the MS PAC-MAN game’s interest and to sustain it at
high levels.

In a more general setting, Haynes et al. [8], [7] strive to gen-
erate programs for the coordination of cooperative autonomous
agents in pursuit of a common goal. The authors consider a
simple predator-prey pursuit game, noting that the problem is



easy to describe yet extremely difficult to solve. An extension
of GP was used to evolve teams of agents with different
strategies for their movements. Similarly, Luke and Spector
[12] consider different breeding strategies and coordination
mechanisms for multi-agent systems evolved using GP. In
particular, the authors are interested in the performance of
homogenous and heterogenous teams: in a heterogeneous team
of agents, each agent is controlled by a different algorithm
whereas homogenous agents are all controlled by the same
mechanism. The problem considered is called the Serengeti
world, a toroidal, continuous 2-dimensional landscape, inhab-
ited by gazelles and lions.

Finally, examples of recent work regarding predator-prey
scenarios include Rawal et al. [16] and Rajagopalan et al.
[15]. In both cases, the authors consider the co-evolution
of simultaneous cooperative and competitive behaviours in
a complex predator-prey domain. The authors propose an
extended neural-network architecture to allow for incremental
co-evolutionary improvements in the agents’ performance.
This mechanism demonstrated hierarchical cooperation and
competition in teams of prey and predators. The authors further
note that in sustained co-evolution in this complex domain,
high-level pursuit-evasion behaviours emerge.

This review highlights the promise of neural-network
controllers (possibly evolved or co-evolved) with a mix-
ture of offline and online learning and the addition of
predetermined rules. Important aspects to consider include
the internal team dynamics (coordination, cooperation) as
well as the behaviours towards group outsiders. In terms
of the MS PAC-MAN VERSUS GHOST TEAM-competition, ro-
bust behaviour towards a wide range of different opponents
may prove valuable during the round-robin stages. However,
it should be noted that most studies reviewed above did
not consider real-time constraints and it remains to be seen
how the complexity of an approach fares given the limited
computation time available between moves.

IV. MS PAC-MAN VERSUS GHOST TEAM: RULES

The previous section highlighted the variety of techniques
used to design novel controllers for MS PAC-MAN. However,
it remains difficult to compare the performances of the indi-
vidual efforts as testing is mostly carried out on different vari-
ants of the game. The MS PAC-MAN VERSUS GHOST TEAM-
competition attempts to address this issue, allowing all partic-
ipants to work on the same game engine. The software used
does not rely on screen-capture but instead is a reasonably
accurate implementation of the original game that allows
participants to interface directly with the game engine. This
also allows the integration of arbitrary ghost behaviours, which
is of course a necessary condition for the competition. The
following outlines the rules of the game as used in the
competition.

A. Rules of MS PAC-MAN

The game consists of four mazes in total (A, B, C and
D), which are worked through in that order. When maze D

is cleared, the game goes back to maze A and continues the
same sequence until the game is over. Each maze contains a
different layout with pills and power pills placed at specific
locations. The player starts in maze A with three lives, and a
single extra life is awarded when reaching 10,000 points. The
goal of the Ms Pac-Man is to obtain the highest possible score
by eating all the pills and power pills in the maze (and thus
advancing to the next stage). Each pill eaten scores 10 points,
each power pill is worth 50 points. The difficulty of clearing
each maze is due to the four ghosts: Blinky (red), Pinky (pink),
Inky (green) and Sue (brown). At the start of each level, the
ghosts start in their lair in the middle of the maze and spend
some idle time before entering the maze, starting their pursue
of Ms Pac-Man. The time spent in the lair before joining the
chase decreases as the player progresses to higher levels. Each
time Ms Pac-Man is eaten by a ghost, a life is lost and Ms
Pac-Man and the ghosts return to their initial positions.

There are four power pills in each of the four mazes, which,
when eaten, reverse the direction of the ghosts and turn them
blue; they may now be eaten for extra points. The score for
eating each ghost in succession immediately after a power
pill has been consumed starts at 200 points and doubles each
time, for a total of 200+400+800+1600 = 3000 additional
points. Any ghost that has been eaten re-appears in the lair
and emerges soon after, once again chasing Ms Pac-Man. If
a second power pill is consumed while some ghosts remain
edible, the ghost score is reset to 200; if the level is cleared
while the ghosts remain edible, play continuous immediately
to the next level. The more advanced the level, the shorter the
edible time becomes, making the levels progressively more
difficult and at an advanced stage, the ghosts do not turn blue
at all (however, they still change direction). When the edible
period runs out, the ghosts start flashing blue and white. The
player (or controller) needs to be careful at this stage to avoid
losing lives. When all the pills and power pills have been
cleared, the game moves on to the next maze.

The goal for Ms Pac-Man is to maximise her score while
the ghost team should strive to minimise that score. It should
be noted that contestants may provide both a Ms Pac-Man
controller and a ghost team controller, but these should not col-
lude to provide an advantage to an opponent via self-sacrifice;
this will be checked for either by examining the source code
submitted or by preventing such entries to compete directly
with one another.

B. Deviations from the Original

An attempt was made to preserve the details of the original
game as much as possible. However, a few changes were made
to simplify the game. At design time these were intended to
have minimal impact on the game play:

• The speed of Ms Pac-Man and the ghosts are identical.
• Bonus fruits are omitted.

However, on observing a large number of games, the point re-
lating to the speed differences does actually have a significant
impact on the gameplay, and a more faithful implementation
of these aspects is planned for a future competition: although



one of the goals of this competition is to establish a consistent
platform for the development of new AI controllers, some
future deviations are to be expected once a sufficient number
of entries have been compared. Finally, since the competition
allows for controllers for both Ms Pac-Man as well as the
ghost team, the original ghost team controller is absent from
the game.

C. Ghost-Team-Specific Rules

There are no restrictions regarding the actions of Ms Pac-
Man and movement in any direction not blocked by a wall is
allowed at all times. For the ghost team, on the other hand,
three restrictions apply: the first follows from the original
game specifications and prevents a ghost from turning back on
itself. In other words, a ghost may only choose its direction at a
junction. The second restriction also follows from the original
game: occasionally there is a global reversal event when all
the ghosts suddenly change direction. In the original game this
happens when particular conditions are met (such as a specific
number of pills having been consumed). In our implementation
a global reversal event can happen on any game tick with
probability of 0.005. This adds an element of randomness
to each game. Finally, the third restriction is a competition-
specific one to allow for competitive game play: each level is
limited to 2000 game ticks, after which the game moves on
to the next level; Ms Pac-Man is rewarded the points of all
remaining pills. This modification is to prevent game spoiling
tactics where the ghosts continuously circle the last available
few pills, thus preventing the level from being cleared. With
the time-limit in place, the ghost team is forced to take a more
proactive approach.

V. IMPLEMENTATION

The game is written entirely in Java and no additional soft-
ware is required by the participants; the source code provided
contains all classes required to get started in writing some
hand-coded controllers, but does not include any software
for neural networks or evolutionary algorithms. The software
may be downloaded at www.pacman-vs-ghosts.net. Java was
chosen for its popularity, extensive documentation and ease of
implementation, allowing for a wider range of participants.
Nevertheless, we hope to extend this competition to other
programming languages in the near future.

The game may be executed in visual and non-visual mode,
synchronously or asynchronously. The non-visual synchronous
(non-threaded) mode is particularly useful for testing and may
exceed 100 games per second (depending on the controller’s
complexity and ability; more able controllers lead to longer-
lasting games). The competition will run the game in asyn-
chronous (threaded) mode with each controller running in a
separate thread: at each game tick the controllers (for Ms Pac-
Man and the ghost team) are provided with the current state
of the game. The game runs in real time with 25 game ticks
per second and each controller may take as long as it wants
to respond. This allows the controller to strike an appropriate
balance between the quality of the decision (move) and the

time taken to make that decision. Of course, the downside of
taking too long is that the game state may be out of date by
the time a decision is made. Each cycle, the game engine waits
for 40ms and then updates its state based on the most recent
outputs (i.e., directions) from each controller.

At each time step, the controller needs to return a direc-
tion for each of the agents controlled (i.e., a single action
for Ms Pac-Man controllers and four actions of ghost team
controllers). These actions are simply integers in the range 0-
4 to indicate up, right, down, left and neutral respectively. The
move chosen clearly depends on the state of the game which is
supplied to each controller at every time step. The game state
may be queried to obtain all relevant information, including
the positions of the agents, the availability of pills and power
pills and so on. It should be noted that the code is and will
remain under active development and although we encourage
participants to examine or even contribute towards the code,
they should rely solely on the Java interfaces provided, which
will not change. In the following we outline those interfaces
and explain further details regarding the game’s implementa-
tion. For the sake of simplicity and clarity, we have simplified
some of the code, most notably removing brackets as well as
some Java keywords and punctuation characters; furthermore,
only the most relevant methods are included.

A. GameState and Maze

The state of the game is represented by GameState.java and
is determined by the current maze, which has a specific layout
(immutable part of the game state) and the variable factors
such as the positions of all agents, information regarding the
pills and power pills, whether the ghosts are currently edible,
etc. The game state thus provides all the information required
by the controllers to make an informed decision. The state of
the pills and power-pills are stored in BitSets, allowing a very
compact representation of this aspect of the game. However,
this requires a bit more work to get meaningful information
such as finding the nearest pill and hence utility methods are
provided to allow agents to obtain such information without
having to implement additional methods. The game state
contains the following important methods:
G a m e S t a t e I n t e r f a c e copy ( )
void n e x t ( i n t pacDir , i n t [ ] g h o s t D i r s )
M a z e I n t e r f a c e getMaze ( )
B i t S e t g e t P i l l s ( )
B i t S e t ge tPower s ( )
MsPacMan getMsPacman ( )
Ghos t s [ ] g e t G h o s t s ( )
i n t g e t L e v e l ( )
i n t g e t S c o r e ( )

The use of bit-sets enables the entire state of the game to
be represented in a few tens of byte, making this an excellent
platform for tree-search based controllers where it may be
necessary to efficiently copy the game state. This efficient
encoding also enables very low communication overheads for
network-based play. The mazes of the game are modelled
as graphs of connected nodes and contains the following
important methods:



i n t d i s t ( Node a , Node b )
A r r a y L i s t<Node> ge tPower s ( )
A r r a y L i s t<Node> g e t P i l l s ( )
A r r a y L i s t<Node> getMap ( )
Node [ ] [ ] getNode2DArray ( )
Node getNode ( i n t x , i n t y )
Node getNode ( i n t i n d e x )

Each node has two, three or four neighbouring nodes
depending on whether it is in a corridor, L-turn, T-junction or
a crossroads. After the mazes have been created, a simple effi-
cient algorithm is used to compute the shortest-path distances
between all nodes for each of the mazes; to enable efficient
computation, each node has a unique node index going from
zero to (n − 1), where there are n nodes in the graph.
These distances are stored in a look-up-table, and allow fast
computation of the various controller-algorithm input features
(accessible via a set of utility functions). It also stores the
indexes into the pill and power pill bit vectors, in the case
that the node has an associated pill or power-pill.

B. Controller Interfaces

The interfaces that need to be implemented to make custom
controllers work with the game engine have been kept as
simple as possible to eliminate any overhead associated with
coding controllers for the competition. Controllers are supplied
with a copy of the latest game state at every time step of the
game and need to respond with either a single action (Ms
Pac-Man controller) or a set of actions (Ghost controllers).
The interface for the Ms Pac-Man agent has a single method
which takes the game state as input and returns the desired
movement direction:

i n t e r f a c e MsPacManCont ro l le r
i n t g e t A c t i o n ( G a m e S t a t e I n t e r f a c e g )

The controller for the ghost team is almost identical to the
controller above, except that it returns an array of integers,
one for each ghost:

i n t e r f a c e G h o s t s C o n t r o l l e r
i n t [ ] g e t A c t i o n s ( G a m e S t a t e I n t e r f a c e g )

Finally, the game-specific information regarding each agent
is encapsulated in MsPacManState and GhostState respec-
tively. These data structure contain information regarding the
position of the agent(s), their current direction(s), and, for
instance, points scored (Ms Pac-Man) or whether they are
edible (ghosts). These data structures are accessible via the
game state such that any controller has thus full access to the
information regarding all agents at any moment in time.

VI. SAMPLE CONTROLLERS

In this section we introduce some very simple sample
controllers that are included with the source code to illustrate
how the code is to be used. All controllers presented below
are reactive and hence are able to respond very quickly to
a new game state. As mentioned previously, more advanced
controllers are able to determine higher quality moves, yet
need to do so in a timely fashion also, as otherwise the game

TABLE II
SCORES OBTAINED BY THE SAMPLE CONTROLLERS PLAYING EACH

OTHER, WITH A TIME-LIMIT OF 2000 GAME TICKS.

Ghost teams
Ms Pac-Man Random Legacy

Random 1194 194
RandomNonReverse 2623 1853

NearestPill 4557 3703

state will have changed too much by the time the move is
implemented. We expect participants to strike a reasonable
balance between these two requirements. It should be remem-
bered that ghosts are not allowed to reverse direction, so the
only choice of direction is to be made at junctions. Despite
this, the ghost team controller is polled every game tick and
hence can update its planning ready to respond immediately
when a decision is actually required.

We tested all controllers against one another to illustrate
the quantitative differences between them. The scores (each
averaged over 1000 games) are shown in Table II. It is evident
that purely random decision-making may be improved upon
very quickly, both in the case of Ms Pac-Man controllers as
well as ghost team controllers.

A. Ms Pac-Man

The Random controller makes a uniformly random choice
of direction at every time step. In case a chosen direction is
illegal, the game will repeat the previous move:

i n t g e t A c t i o n ( G a m e S t a t e I n t e r f a c e g )
re turn rnd . n e x t I n t (NUM MOVES)

Clearly, a completely random behaviour ignores both the lo-
cation of the agent, the remaining pills as well as the ghosts. A
very simple modification to improve on the above controller is
to prevent Ms Pac-Man from reversing (RandomNonReverse).
This performs slightly better as Ms Pac-Man spends less time
going pointlessly back and forth: the controller creates an
array list of possible next nodes, which are all the adjacent
nodes not including the previous node the agent was at, then
selects one of these at random. Finally, the third controller
(NearestPill) takes the pills into account and heads for the
nearest pill (ignoring power pills). However, it should be noted
that Ms Pac-Man does so regardless of whether there are any
ghosts in the way!

B. Ghost Team

The Random ghost team chooses a random direction for
each ghost every time the action method is called. The game
engine enforces the no-reverse rule, so these random choices
are only effective at junctions. The corresponding controller
is specified as follows:

p u b l i c i n t [ ] g e t A c t i o n s ( G a m e S t a t e I n t e r f a c e g )
f o r ( i n t i =0 ; i<d i r s . l e n g t h ; i ++)

d i r s [ i ]= rnd . n e x t I n t (NUM MOVES)
re turn d i r s



The second ghost team controller included with the code
is the Legacy Team [11]: each ghost in this team is based
on a node value controller, selecting the adjacent node which
minimises the distance to Ms Pac-Man according to some
distance measure (except for Sue who chooses randomly).
These distance measures are:

• Blinky: Shortest path distance
• Inky: Euclidean distance
• Pinky: Manhattan distance

VII. GAME PROTOCOLS

This section describes the protocols involved in running
games between Ms Pac-Man and a ghost team, covering the
fundamental requirements, the notion of player and game-
engine identities, and the scoring mechanism.

A. Fundamental Requirements

The central requirement of the evaluation system for this
competition is that we can conduct a fair evaluation of a set
of agents versus a set of ghost teams, and produce a ranked list
of the performance of each one. This can be decomposed into
evaluating a single Ms Pac-Man controller against a single
ghost team, and involves the integration of three entities:
the game engine, the ghost team, and Ms Pac-Man. Since
our interpretation of the game involves a random element
(the ghost team direction reversals), even a game between
deterministic players will typically produce a different score
each time. Therefore, the evaluation should be based on a
number of games to reduce the effects of noise.

MS PAC-MAN is a simultaneous move game, and each
player has a short time to respond with a move for each game
tick. If a player fails to respond in a specified time (40ms for
our competition since the game runs at 25fps) then the game
proceeds to the next tick with some default action for that
player. Hence, the entities involved in the game must interact
asynchronously. This can be done by using multi-threading
within a single process, or by using multiple processes. To re-
duce the risk of interference, we prefer the multiple processes
model for competition purposes, though this imposes some
inter-process communication (IPC) overhead and is therefore
less efficient than the single process model. Whether this
matters in practice depends on the communication details, and
on the thinking time needed by each agent. Currently we use
UDP sockets for the IPC: these work well when run on the
same machine, or on a local area network. Whether they can
be used over Internet depends on the firewall policy of the
institutions involved: the technology itself works well, though
the delays may put remote agents at a disadvantage. Typical
Internet round-trip delay times (as measured in our lab using
the ping utility) between Europe and the USA for example
may be between 120ms and 180ms. Such delays may cause a
slight disadvantage, but are not insurmountable.

B. Player and Opponent Identities

Each player chooses a name, but ideally we need to match
the name to a specific instance of the player. Most players have

parameters that can be tuned to lead to different standards
of play, and may even be adapted to a particular player.
Therefore, in order to calculate the true identity of a player
we require that a JAR file be submitted with all the classes
necessary to run the player. A digital signature (MD5 or SHA
checksum) is calculated, and used as an identity key for this
player. Due the the ultra-simple Ms Pac-Man and Ghost Team
interface design, the players involved currently do not know
the identity of their opponent and do not know the previous
history of a particular game: the assumption is that they are
essentially Markov agents, and all that is needed to be known
is encapsulated in the current game state. These assumptions
could be easily relaxed by passing the name of the opponent
to each getAction request, and also by establishing a unique
identity for each game played.

C. Game Engine Identity

Over time the software may support different variations of
the game. These could include new mazes, changes to some
of the rules, or different parameter settings such as the ghost-
reversal probability or the edible time allowed for a particular
level. Therefore, when recording the outcome of a game, it
is important to note all the details of the game engine. The
way we propose to do this is to add a link to the JAR file that
incorporates the game. All details pertaining to each game
(i.e., the moves made by all players) will be recorded for
every game to allow games to be replayed at later stages.
While it would be possible to specify many settings in an
external parameter file (perhaps in XML format), the option
we prefer is to specify it directly in the code. We do this in a
special Constants class. This saves having to specify a working
directory from which to load the parameters (which could be
problematic when using a remote class loader, for example).

D. Scoring

Based on past experience of the typical number of entries for
CEC competitions, we plan to run a round-robin type league
adapted to the bipartite nature of the players involved (i.e.,
each player is either a Ms Pac-Man or a ghost team). Two
leagues will be produced: one for Ms Pac-Man controllers
and one for the ghost team controllers. Each Ms Pac-Man
controller will play each ghost team the same number of times,
and their total scores recorded over all league games played.
The Ms Pac-Man agent league is then sorted in order of highest
score first, while the Ghost Team league is sorted in order of
lowest score first (i.e., the strongest ghost teams are those that
keep the Ms Pac-Man agents scores down to a minimum). In
case one type of controller is over-represented, the example
controllers might be taken into consideration at this stage.

VIII. CONCLUSIONS

Games are an ideal test bed for developing novel tech-
niques in computational intelligence and game competitions
form an integral part in driving forward the quality of com-
puter controlled players. In this paper we have introduced
the MS PAC-MAN VERSUS GHOST TEAM-competition where



participants, for the first time, may contribute controllers for
either Ms Pac-Man or the ghost team. The Java implementa-
tion of the game, which allows controllers to interact directly
with the game engine, attempts to resemble the original game
as closely as possible, with only few alterations, chosen
to simplify the game. There are many factors that require
consideration when designing a competition and we have
discussed some of the problems we encountered, alongside
the solutions we chose to implement.

Game competitions provide an important service in bench-
marking the strength of various approaches to developing
intelligent systems and agents. In developing the infrastructure
for this competition we have also been mindful of providing
other services to researchers. For instance, the way that each
player should respond to any game state allows a micro-
analysis of player behaviours. For example, a particular game
state can be sent to many different players to see how each
responds. This can also be used to test players for their ability
to solve particular “Pac-Man puzzles”, i.e. tricky situations that
have interesting solutions, similar to chess puzzles. The core
game engine is efficient, and depending on the complexity of
the player algorithms may run up to several hundred games
per second. This enables rapid experimentation and makes the
engine a good platform for developing tree-search algorithms,
and we already have a strong Monte Carlo Tree Search player
that utilises this [19].

There is plenty of scope for future work. In particular, as
controllers improve in performance, it would be desirable to
evaluate the controllers against human players and to judge
their performance not only based on the game’s score, but also
based on the enjoyment experienced by the player. This latter
aspect, mentioned at the beginning of the paper, is something
of great value of the game’s industry and we hope to include
this aspect in future competitions. One interesting way to
incorporate this would be to publish a version of the game
on the Web as a Java Applet (since the code is already in
Java) and allow human players to choose the ghost team to
play against. Given a sufficient number of players playing a
sufficient number of games it should be possible to evolve
ghost teams that are particularly fun to play against.
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