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Abstract: This paper proposes a spatial function modeling approach using mobile sensor
networks, which potentially can be used for environmental surveillance applications. The mobile
sensor nodes are able to sample the point observations of an 2D spatial function. On the one
hand, they will use the observations to generate a predictive model of the spatial function. On
the other hand, they will make collective motion decisions to move into the regions where high
uncertainties of the predictive model exist. In the end, an accurate predictive model is obtained
in the sensor network and all the mobile sensor nodes are distributed in the environment with
an optimized pattern. Gaussian process regression is selected as the modeling technique in
the proposed approach. The hyperparameters of Gaussian process model are learned online to
improve the accuracy of the predictive model. The collective motion control of mobile sensor
nodes is based on a locational optimization algorithm, which utilizes an information entropy
of the predicted Gaussian process to explore the environment and reduce the uncertainty of
predictive model. Simulation results are provided to show the performance of the proposed
approach.
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1. INTRODUCTION

The environmental surveillance in meteorology and clima-
tology, ecology, demography, epidemiology, forestry, fisher,
oceanography, and others requires the capability of mod-
eling spatial functions, or even spatial-temporal functions.
The distributed nature in spatial space and the mobile ca-
pability in temporal space of mobile sensor networks offer
an capability for environmental surveillance applications.
Several research projects have targeted to this research
area, such as monitoring forest fires using UAVs in Merino
et al. (2006), monitoring air quality using UAVs in Cor-
rigan et al. (2007), monitoring ocean ecology conditions
using UWVs in Leonard et al. (2007).

Mobile sensor networks are able to make sensing observa-
tions of environmental spatial function with their on-board
sensors, exchange information with on-board wireless com-
munication, and explore the environment with their mo-
bility. Consequently they are able to produce a predictive
model based on sensing observations and allocate them-
selves in a pattern which can generate a more accurate
predictive model. Gaussian process (GP), also known as
Kriging filter, is a well-known regression technique for
data assimilation. GPs are specified by a mean function,
a covariance function, and a set of hyperparameters which
can be determined from a training set. The learning al-
gorithm of hyperparameters is based on maximizing the
marginal likelihood. The main advantage of GP regression
over other regression techniques is the ability of predicting
not only the mean function, but also the covariance func-

tion, see Williams and Rasmussen (1996), MacKay (1998),
Rasmussen and Williams (2006).

The predictive uncertainty is valued information for fur-
ther decision making in environmental surveillance appli-
cations. Recent publications using GPs to model a spatial
function include Krause et al. (2008), Stranders et al.
(2008), Stachniss et al. (2009), Ny and Pappas (2009),
Cortes (2009), Singh et al. (2010). In Krause et al. (2008),
GP regression was applied for monitoring the ecological
condition of a river. The sensor placement was deter-
mined by maximizing a mutual information gain, which
selects locations which most effectively reduce the uncer-
tainty at the unobserved locations. GP regression is a
non-parameter regression technique and its computation
complexity will grow with the size of sampled data. In
Stranders et al. (2008), the computation complexity of
GP regression was reduced by a Bayesian Monte Carlo
approach, and an information entropy was used to allocate
mobile sensor nodes. In Stachniss et al. (2009), a mixture
of GPs was applied for building a gas distribution with
the aim to reduce the computation complexity. In Ny and
Pappas (2009), a Kalman filter was built on the top of
a GP model to characterize spatial-temporal functions. A
path planning problem was solved by optimizing a mutual
information gain via an effective computation algorithm.
In Cortes (2009), a Kriged Kalman filter was developed
to build spatial-temporal functions. A centroidal Voronoi
tessellation (CVT) algorithm was employed to allocate
mobile sensor nodes according to the predictive spatial
function. The Kriged Kalman filter and swarm control
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were developed in Choi et al. (2008) to build spatial-
temporal functions. In Singh et al. (2010), several non-
separable spatial-temporal covariance functions were pro-
posed for modeling spatial-temporal functions. The same
mutual information gain as in Krause et al. (2008) was
utilized to plan the path for mobile sensor nodes.

Environmental spatial functions have been modeled in mo-
bile sensor networks by using RBF networks in Schwager
et al. (2009) where a CVT coverage control was used to
allocate mobile sensor nodes, and in Lynch et al. (2008)
where a flocking control was used to move sensor nodes.
RBF is a truncated GP regression where limited number
of base functions is used. Environmental spatial function
was approximated by using an inverse distance weighting
interpolation method and updated by using a Kalman
filter in Martinez (2010). A Kalman filter approach for
dynamic coverage control was also proposed in Hussein
(2007).

In this paper, we propose to use GP regression to build
a spatial function with a mobile sensor network. Our
contribution is to make the hyperparameters of GP model
adaptive online so that a more accurate time varying
predictive model can be obtained. An information entropy
of the predictive Gaussian process is optimized to allocate
mobile sensor nodes so that the environment can be
explored and the model uncertainty can be reduced. A
CVT algorithm that uses the information entropy as a
utility function is proposed in this paper. This algorithm
is able to allow mobile sensor nodes to make collective
motion decisions and allocate themselves in a pattern
which can reduce the uncertainty of the predictive GP
model.

In the following, Section 2 presents the basics of Gaus-
sian process regression and the hyperparameter learning
algorithm. The information entropy based coverage control
and its integration with the CVT algorithm are introduced
in Section 3. Section 4 provides simulation results. Our
conclusion and future work are given in Section 5.

2. GAUSSIAN PROCESS REGRESSION

A mobile wireless sensor network with N sensors is to be
deployed in an 2D area Q to model a scalar environmental
spatial function in that area. Sensor node i is located at a
2D position xi,t and it is assumed that the position xi,t can
be found by itself with self-localization techniques at time
step t. Each sensor node i can make a point observation
yi,t of an environmental spatial function f(xi,t) at time
step t. The sensory observation distribution is assumed to
be Gaussian:

yi,t = f(xi,t) + εi,t

where εi,t is a Gaussian noise with mean zero and covari-
ance σ2

t noted as εi,t ∼ N (0, σ2
t ).

It is assumed that each sensor node can collect all the
location information xj,t and its corresponding observation
yj,t from all the other sensor nodes via wireless communi-
cation.

2.1 Gaussian Process

In a sensor node, Gaussian inference is conducted at each
time step based on the given information available at that
moment. The given information includes a data set Dt of
input vectors Xt = [x1,t, . . . xN,t]

T and the corresponding
observations yt = [y1,t, . . . , yN,t]

T .

In a GP model, the prior distribution of latent variable
fi,t = f(xi,t) is modeled as Gaussian. Its mean value is
assumed to be zero because offsets and simple trends can
be subtracted out first. The prior knowledge about mul-
tiple latent variables is modeled by a covariance function
KNN,t = [k(xi,t, xj,t)]. With a positive definite covariance
function KNN,t, the GP prior distribution of latent vector
ft = [f1,t, . . . , fN,t]

T is represented as:

p(ft) = N (0,KNN,t)

The likelihood distribution of observation vector yt is
represented as:

p(yt|ft) = N (ft, σ
2
t I)

GP regression can infer f∗,t = f(x∗,t) for a test point x∗,t ∈
Q using p(f∗,t|yt) given a training data set (Xt, yt) and a
single test point x∗,t. The latent predictive distribution
of the given test point is obtained by solving the MAP
problem and is given below:

p(f∗,t|yt) =N (µ∗,t,Σ∗,t)

in which the predictive mean function and the predictive
covariance function are:

µ∗,t = K∗N,t(KNN,t + σ2
t I)

−1yt

Σ∗,t = K∗∗,t −K∗N,t(KNN,t + σ2
t I)

−1KN∗,t

(1)

where KN∗,t = KT
∗N,t for symmetrical covariance func-

tions, and

K∗∗,t = k(x∗,t, x∗,t)

K∗N,t = [k(x∗,t, x1,t), . . . , k(x∗,t, xN,t)]

2.2 Hyperparameter Learning

The prior knowledge about KNN,t is very important for
GP regression. It determines the properties of sample
functions drawn from the GP prior and represents the prior
knowledge about environmental spatial functions. For the
mobile sensor network discussed in this research, the prior
knowledge we have is that f(xi,t) is closely related to
f(xj,t), i.e. k(xi,t, xj,t) approximates its maximum value
if the distance between two nodes xi,t and xj,t is short. In
contrast, f(xi,t) is not related to f(xj,t), i.e. k(xi,t, xj,t)
approximates to zero if the distance between them is
too far away. A valid covariance function guarantees that
covariance matrix KNN,t is symmetrical positive definite.
The commonly used covariance function is the ‘squared
exponential’:

k(rt) = a2t exp

(

−
r2t
l2t

)

(2)

where rt is the Euclidean distance ||xi,t−xj,t|| between two
nodes. at is the amplitude and lt is the lengthscale, both
of which represent the characteristics of covariance func-
tion and are the hyperparameters of squared exponential
covariance function. Notice that a smaller lengthscale im-
plies the sample function varies more rapidly and a larger
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lengthscale implies the sample function varies more slowly.
The hyperparameter set is denoted as θt = [at, lt, σt]

T .
The time varying property of the hyperparameters is main-
tained via the maximum likelihood learning algorithm dis-
cussed below. Although temporal dynamics is not modeled
in the GP regression discussed above, the time varying
hyperparameters can potentially compensate for temporal
dynamics.

Given a hyperparameter set, the log marginal likelihood
is:

L = − log p(yt|θt)

=
1

2
yTt C

−1
t yt +

1

2
log |Ct|+

N

2
log(2π)

where Ct = KNN,t + σ2
t I. The partial derivative is:

∂L

∂θt
= −

1

2
yTt C

−1
t

∂Ct

∂θt
C−1

t yt +
1

2
tr

(

C−1
t

∂Ct

∂θt

)

= −
1

2
tr

(

(

αtα
T
t − C−1

t

) ∂Ct

∂θt

)

(3)

where αt = C−1
t yt. From (2), it can find that

∂Ct

∂at
=

[

∂k(rt)

∂at

]

=

[

2at exp

(

−
r2t
l2t

)]

∂Ct

∂lt
=

[

∂k(rt)

∂lt

]

=

[

2
a2t r

2
t

l3t
exp

(

−
r2t
l2t

)]

∂Ct

∂σt

= 2σtI

3. INFORMATION ENTROPY BASED COVERAGE
CONTROL

When the sensor network is deployed in the environment
to be explored, they have no knowledge about the spatial
function except the prior knowledge of GP regression.
Mobile sensor node i makes observations yi,t at its location
xi,t, and obtains observation yj,t and location xj,t from
all the other nodes j ∈ N via wireless communication.
It then learns the hyperparameters θt and constructs the
covariance function KNN,t. With the GP regression, a
predictive mean function µ∗,t and a predictive covariance
function Σ∗,t are deduced. This is the first step of our
proposed approach.

In the second step of our proposed approach, the sensor
nodes need a strategy to explore the environment so that
they will be able to model the spatial function more
accurately. The predictive mean function µ∗,t could be
used for generating a control signal ui,t for sensor node
i. This strategy would lead to an allocation concentration
of sensor nodes on the region where high mean values
are available. However, this behavior can not reduce the
uncertainty of GP regression. In this work, the information
entropy is utilized for mobile sensor nodes to explore the
environment in order to reduce the uncertainty of the
predictive function. By optimizing the information entropy
with respect to sensor node location xi,t, it is able to find
a control input signal ui,t for mobile sensor node i. Then
sensor node i is able to move to the next position according
to its kinematics xi,t+1 = xi,t + ui,t.

3.1 Information Entropy

To reduce the uncertainty of GP regression, the predictive
covariance function Σ∗,t is a valued resource to be uti-
lized. This evokes the use of posterior information entropy
H(f∗,t|yt), which measures the information potentially
gained by making an observation.

The information entropy of Gaussian random variable f∗,t
conditioned on observation yt is a monotonic function of
its variance:

H(f∗,t|yt) =
1

2
log (2πe|Σ∗,t|)

=
1

2
log

(

2πe|K∗∗,t −K∗N,tC
−1
t KN∗,t|

)

As can be seen from the above equation, although it looks
like that an observation will not be related to the informa-
tion entropy, the observation affects the hyperparameters
and therefore it does affect the covariance function. Thus
this information entropy is dependent on actual observa-
tion. We can represent this dependence as follows:

H(x∗,t) = H(f∗,t|yt)

3.2 Centroidal Voronoi Tessellation

According to the above discussion, optimizing the infor-
mation entropy would be able to allow the mobile sensor
nodes to explore the environment in order to reduce the
uncertainty of GP regression. However, for multiple sensor
nodes, when all of them optimize a single object function,
it would be possible for them to move together rather than
spreading over a large area to explore more high uncertain
regions.

It is necessary for multiple mobile sensor nodes to coop-
erate when they explore the environment . The centroidal
Voronoi tessellation (CVT) approach proposed in Cortes
et al. (2004) is an effective way for motion cooperation.
The CVT algorithm is a locational optimization approach
based on a utility function. Here we propose to use the
information entropy H(x∗,t) as the utility function in CVT
algorithm. The idea is to allow each node to move to
the center of its Voronoi cell, which is weighted by the
information entropy.

A Voronoi tessellation consists of multiple Voronoi cells
Vi,t, each of which is occupied by a sensor nodes at time
step t. A Voronoi cell Vi,t is defined as follows:

Vi,t = {x∗,t ∈ Q | ‖x∗,t − xi,t‖ ≤ ‖x∗,t − xj,t‖ , ∀i 6= j}

CV T is a special Voronoi tessellation, which requires each
sensor node move forward to the mass center of its Voronoi
cell. The utility function of locational optimization prob-
lem is defined as:

U(x1,t, . . . , xN,t) =
N
∑

i=1

∫

Vi,t

1

2
‖x∗,t − xi,t‖

2
H(x∗,t)dx∗,t

For computing the mass center of each Vi,t, we use the
following definitions:
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MVi,t
=

∫

Vi,t

H(x∗,t)dx∗,t

LVi,t
=

∫

Vi,t

x∗,tH(x∗,t)dx∗,t

CVi,t
=

LVi,t

MVi,t

The gradient of the utility function with respect to sensor
node position xi,t is:

∂U

∂xi,t
= −

∫

Vi,t

(x∗,t − xi,t)H(x∗,t)dx∗,t

= −MVi,t
(CVi,t

− xi,t)

The control input signal of sensor node i is:

ui,t = k
∂U

∂xi,t

where k is the control gain.

4. SIMULATIONS

An 1× 1 area was used in simulations. The mobile sensor
network consisted of N = 30 sensor nodes and they
were randomly distributed in a small area with a size of
0.2×0.2. The hyperparameters learned are the lengthscale
lt and the amplitude at. The hyperparameter σt was
given constant in simulations. A Gaussian like spatial
function was simulated first. The sensor observation noise
followed a Gaussian distribution with a standard deviation
of σt = 0.05. The noised function is shown in Fig. 1(a).
The predictive mean function is shown in Fig. 1(b). These
two figures show that the proposed algorithm was able to
model a simple spatial function.

The mobile sensor trajectories are shown in Fig. 2(a). 30
sensor nodes were initially placed at the left bottom corner
of the environment. They were able to move to cover as
large as possible the area according to the uncertainty
of the predictive model. The root mean squared error
(RMSE) between the predictive function and the ground
truth function with noise is shown in Fig. 2(b). At the
beginning of the process (from loop 1 to loop 25), the
RMSE was kept nearly unchanged. Then the RMSE expe-
rienced a sharp rise at around the 40th loop. It indicated
an exploring behavior of the proposed algorithms given the
noised observations. After the sharp rise, the RMSE de-
clined rapidly and converged to zero. The behavior demon-
strated in the changes of RMSE can also be observed from
the results of hyperparameter learning. The lengthscale
and the amplitude of squared exponential function were
learned online using the maximum likelihood algorithm.
The learned results are shown in Fig. 3(a) for lengthscale
and in Fig. 3(b) for amplitude. Both parameters were
kept very low due to the lack of enough coverage of the
environment by all the sensor nodes at the beginning. Then
a sharp rise was observed in both parameters. After the
40th loop, the hyperparameters declined to stable values.
The stable value of lengthscale was about 0.25 and the
stable value of amplitude was about 0.28.

A more complex 2D spatial function was simulated to show
the proposed algorithm can also handle non-Gaussian
spatial functions. The ground truth function is shown
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Fig. 1. Ground truth function with noise and predictive
mean function

Fig. 4(a). The sensor noise was sampled with a standard
deviation of σ = 0.005. The predictive mean function
is shown in Fig. 4(b). By comparing the ground truth
function with the predictive mean function, it is found
that they were very similar. The large error was found
at the boundary of the squared area. This is because the
CVT algorithm kept the mobile sensor nodes inside of
the Voronoi cell and the boundary information was less
sampled.

The trajectories of mobile sensor nodes demonstrated the
behavior of the proposed algorithm. They started from the
corner of 0.2 × 0.2 and moved to the uncertainty region
according to the information entropy. In the end, they
covered the area in an optimized pattern shown in Fig.
5(a). The RMSE curve in Fig. 5(b) shows the convergent
property of the whole process. All the sensor nodes did
explore the environment at the beginning of the learning.
Then the RMSE started to decline until a value very close
to zero was reached.
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Fig. 2. Trajectories and RMSE changes
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Fig. 3. Learning results of hyperparameters

5. CONCLUSIONS

GP regression is an effective tool for spatial function model
problems due to its ability of generating predictive mean
function and predictive covariance function for the func-
tion to be estimated. With the predictive covariance func-
tion, an information entropy based approach to motion
decision making is proposed in this paper. Combining the
information entropy with the CVT algorithm, it is able
to explore the uncertainty of the environment and exploit
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Fig. 4. Ground truth non-Gaussian function and predictive
mean function

the predictive model for multiple mobile sensor nodes. The
proposed strategy is an active spatial function modeling
approach.

Since the information entropy is only related to the co-
variance function, not related to the sensor observation,
it is possible to control mobile sensor nodes to move even
without practical sensor observations. However, when the
hyperparameters are learned, practical sensor observation
is necessary for motion decision making. Although the pro-
posed algorithm targets to spatial functions, not spatial-
temporal functions, it is possible for the proposed ap-
proach to be applied to spatial-temporal functions where
temporal dynamics can be handled implicitly by the adap-
tive covariance function learned from the online hyperpa-
rameter learning algorithm.

In the next step, we would like to test our proposed
algorithm to spatial-temporal functions to check its per-
formance. Alternatively, it is feasible to use a hierarchical
Bayesian structure to explicitly handle temporal dynam-
ics. In a hierarchical Bayesian structure, a low layer han-
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Fig. 5. Trajectories and RMSE changes

dles the spatial dynamics using the proposed GP regression
while a high layer handles the temporal dynamics using
Kalman filter.
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