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Abstract: This paper proposes an entropy based target tracking approach for mobile sensor
networks. The proposed tracking algorithm runs a target state estimation stage and a motion
control stage alternatively. A distributed particle filter is developed to estimate the target
position in the first stage. This distributed particle filter does not require to transmit the
weighted particles from one sensor node to another. Instead, a Gaussian mixture model is
formulated to approximate the posterior distribution represented by the weighted particles
via an EM algorithm. The EM algorithm is developed in a distributed form to compute the
parameters of Gaussian mixture model via local communication, which leads to the distributed
implementation of the particle filter. A flocking controller is developed to control the mobile
sensor nodes to track the target in the second stage. The flocking control algorithm includes three
components. Collision avoidance component is based on the design of a separation potential
function. Alignment component is based on a consensus algorithm. Navigation component is
based on the minimization of an quadratic Renyi entropy. The quadratic Renyi entropy of
Gaussian mixture model has an analytical expression so that its optimization is feasible in
mobile sensor networks. The proposed active tracking algorithm is tested in simulation.

Keywords: Target tracking, Particle filter, EM algorithm, Mobile sensor networks, Active
control.

1. INTRODUCTION

Sensor networks provide a capability of detecting and
estimating moving targets in the monitored environment-
Martinerie (1997)Zhao et al. (2002). Particle filter is one
of the widely used target estimation algorithms due to
its applicability to non-linear and non-Gaussian dynamic
systems Arulampalam et al. (2002)Doucet et al. (2001).

Currently there are several distributed particle filters
(DPF s) that have been developed, see Coates (2004),
Sheng et al. (2005), Zuo et al. (2006), Bashi et al. (2003).
In these algorithms, the distributed nature is achieved
by either transmitting local statistics of the particles to
a centralized unit or using a message passing method.
Transmitting local statistics of the particles to a central-
ized unit is not an efficient approach. It is also not robust.
Failure of the centralized unit is vital to the entire network.
In message passing method, the algorithms construct a
path through the networks, which passes through all the
nodes. Global statistics of the particles are accumulated
by adding local statistics in each node through a forward
pass. Then there needs a backward pass, which runs the
important sampling and selection steps in each sensor
node by using the accumulated global statistics. In Coates
(2004), the factorized likelihood function was used and
each partial likelihood function was updated at individ-
ual sensors using the local observations and the partial
likelihood function estimated in the preceding sensors.
The partial likelihood function was represented by a pa-
rameterized model and the parameters were transmitted
through the path. The same strategy to communicate the

highly compact distribution was also used in robotics for
map building in Rosencrantz et al. (2003). In Sheng et al.
(2005), a set of uncorrelated sensor cliques was identi-
fied and they were automatically constructed according
to moving target trajectories. The algorithm used a low
dimensional Gaussian mixture model (GMM ) to describe
the posterior pdf. Model parameters rather than weighted
particles were transmitted over the network. Using a GMM
to approximate the posterior distribution was also adopted
in Zuo et al. (2006) where the estimated parameters of
GMM were transmitted to a fusion center. In Bashi et al.
(2003), the particles were distributed in a sensor network,
i.e. each sensor node held part of the particles. Local
statistics of the particles were calculated and transmitted
to a centralized unit. In our previous work Gu (2007), a
DPF was developed by first using a GMM to approximate
the posterior distribution and then using an averaging
consensus filter to estimate the parameters of GMM via
an EM algorithm.

Given the result from target estimation, the mobile sensor
networks make collective motion decisions to track the
target. Based on our developed DPF, this paper proposes
a tracking control algorithm for mobile sensor networks.
The tracking control signal is obtained by optimizing an
information measure to reduce the uncertainty of posterior
probability. Using information measure to guide multiple
mobile agents for active sensing have been researched in
Grocholsky et al. (2003), Chung et al. (2004) where the
Shannon entropy was directly obtained from the deter-
minant of posterior Gaussian covariance of Kalman filter.
However, the Shannon entropy can not be computed di-
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rectly in particle filter. Recently the Shannon entropy was
derived in Ryan and Hedrick (2010) for a single mobile
agent by using a piecewise linear approximation to the
posteriori pdf in particle filter. In Hoffmann and Tomlin
(2010), a mutual information gain was used as the informa-
tion measure for multiple mobile agents. The computation
of mutual information was implemented by integrating the
likelihood function weighted by particle weights over entire
measurement range.

The information entropy can capture the higher order
moments of a probability density function, rather than
operating on the second order statistics. On this aspect,
the Renyi entropy plays the same role as the Shannon
entropy does. When a GMM distribution is concerned,
applying the Shannon entropy as a criterion will result in a
difficult computational problem, while the Renyi entropy
has an analytical expression. In this paper, we propose
to use a quadratic Renyi entropy as the information
measure to guide the motion of mobile sensor networks.
As the posterior GMM in our PDF is already computed
in distributed way, the optimization of the Renyi entropy
is feasible. Building on the result of optimizing the Renyi
entropy, a flocking algorithm is developed, which include
two additional control components: collision avoidance and
motion alignment.

In the rest of this paper, the particle filter and EM
algorithm in a sensor network setting are described in
Section 2. The distributed particle filter is given in Section
3. The Renyi entropy based tracking control is presented
in Section 4. Section 5 provides simulation results. Finally,
conclusions are summarized in Section 6.

2. PARTICLE FILTER AND EM ALGORITHM

2.1 Particle Filter in Sensor Networks

We consider a network of M sensors, which is used to
track a moving target. The moving target is modeled by a
discrete state equation:

xk = f(xk−1) + vk−1 (1)

where xk is the nx dimensional state vector and vk is
the Gaussian noise with mean zero and covariance Qk.
The state can also be modeled as a Markov process with
an initial distribution p(x0) = N (x0, Q0) and a state
transition probability p(xk|xk−1).

Each sensor i can make nz dimensional measurement
yi,k(i = 1, . . . ,M) at time k. The measurement state
equation is assumed as follows:

yi,k = hi(xk) +wk (2)

where wk is the Gaussian noise with mean zero and co-
variance Rk. The measurement equation (2) can also be
modeled as a likelihood function p(yi,k|xk). It is assumed
that the state noise and measurement noise are indepen-
dent, E[vkw

T
k ] = 0.

Let x0:k denote {xt, t = 0, . . . , k} and yi,1:k denote
{yi,t, t = 0, . . . , k}. The particle filter is to estimate the
posterior pdf p(xk|yi,1:k). Now we assume that a central-
ized unit exists and it receives one measurement from each
sensor node at each k. The centralized unit maintains a set
of weighted particles {x

(n)
k , ω

(n)
k }. When the centralized

unit receives the measurements yi,k from i = 1, . . . ,M at

k, it predicts the particles x
(n)
k and update the weights

ω
(n)
k , (n = 1, . . . , N), where N is the number of particles.

Let {x
(n)
k , ω

(n)
k }Nn=1 denote the posterior pdf p(xk|yi,1:k),

where the weights are normalized,
∑N

n=1 ω
(n)
k = 1. The

posterior pdf can be approximated expressed as:

p(xk|yi,1:k) ≈ ω
(n)
k δ(xk − x

(n)
k ) (3)

where δ denotes the Dirac delta function. There are two
steps in a particle filter. The first is the prediction step
where all the particles move to their next step positions
via the state transition probability:

x
(n)
k ∼ p(xk|x

(n)
k−1) (4)

The second is the updating step where the measurements
are made and the weights are updated according to the
likelihood function:

ω
(n)
k ∝ ω

(n)
k−1p(yi,k|x

(n)
k ) (5)

2.2 EM algorithm for Gaussian mixtures

From now on, the centralized unit discussed above is
removed. It is assumed that each sensor maintains N
weighted particles {x

(n)
i,k , ω

(n)
i,k }. In total, there are NM

particles in the network. The posterior pdf of the particle
filter is represented with NM weighted particles. When
more sensor nodes are available in the network, there
will be more weighted particles to represent the posterior
pdf and therefore resulting in a more accurate estimate.
However, it is not feasible to transmit all the weighted
particles over the entire network due to the limitation of
wireless communication. In this paper, a GMM is to be
learned from all the weighted particles via a distributed
EM algorithm. In the distributed EM algorithm, only
some local statistics of the weighted particles are required
to exchange between neighbor nodes. We present an EM
algorithm to formulate the GMM from all the weighted
particles in this subsection. The distributed EM will be
detailed in next section.

A GMM with C mixture probabilities αk,c, (c = 1, . . . , C)
can be found from the weighted particles via EM al-
gorithm at step k. It will be shown later that αk,c =
∑M

i=1 Nαi,k,c. The GMM for particle xi,k is

p(xi,k|θk) =
C
∑

c=1

αi,k,cp(xi,k|µk,c,Σk,c) (6)

where θk is a parameter set of GMM to be estimated,
θk = {αk,c, µk,c,Σk,c; c = 1, . . . , C}, and

p(xi,k|µk,c,Σk,c)

=
1

(2π)
nx
2 |Σk,c|

1

2

e−
1

2
(xi,k−µk,c)

TΣ−1

k,c
(xi,k−µk,c)

The EM algorithm updates θk between two consecutive
sensor observations at k and k + 1 of the particle filter.
Subscript t is used inside the loop of the EM algorithm
to indicate the time step starting from k and ending with
k + 1.

In the E step, the mixture probabilities are updated:
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α
(n)
i,t+1,c =

α
(n)
i,t,cp(x

(n)
i,k |µt,c,Σt,c)

∑C

c=1α
(n)
i,t,cp(x

(n)
i,k |µt,c,Σt,c)

(7)

In the M step, the parameter set is updated:

αi,t+1,c =
1

N

N
∑

n=1

α
(n)
i,t+1,c

µt+1,c =

M
∑

i=1

N
∑

n=1

α
(n)
i,t+1,cx

(n)
i,k

M
∑

i=1

N
∑

n=1

α
(n)
i,t+1,c

(8)

Σt+1,c =

M
∑

i=1

N
∑

n=1

α
(n)
i,t+1,c(x

(n)
i,k − µt+1,c)(x

(n)
i,k − µt+1,c)

T

M
∑

i=1

N
∑

n=1

α
(n)
i,t+1,c

The above iteration equations can be further written as a
compact form:

µt+1,c =

∑M

i=1 ai,t+1,c
∑M

i=1 Nαi,t+1,c

Σt+1,c =

∑M

i=1 bi,t+1,c
∑M

i=1 Nαi,t+1,c

(9)

where the local statistics is defined as:

αi,t,c =
1

N

N
∑

n=1

α
(n)
i,t,c

ai,t,c =

N
∑

n=1

α
(n)
i,t,cx

(n)
i,k (10)

bi,t,c =

N
∑

n=1

α
(n)
i,t,c(x

(n)
i,k − µt,c)(x

(n)
i,k − µt,c)

T

Accordingly, the global statistics is defined as:

αt,c =

M
∑

i=1

Nαi,t,c

at,c =
M
∑

i=1

ai,t,c

bt,c =
M
∑

i=1

bi,t,c

(11)

Using the global quantities defined above, the estimated
parameters are:

µt+1,c =
at+1,c

αt+1,c
Σt+1,c =

bt+1,c

αt+1,c
(12)

3. DISTRIBUTED PARTICLE FILTER

A mobile sensor network can be modeled by using alge-
braic graph theory. A graph can be used to represent the
interconnections between sensor nodes. A vertex of the
graph corresponds to a node and edges of the graph cap-
ture the dependence of interconnections. Formally, a graph
G = (V, E) consists of a set of vertices V = {1, . . . ,M} and
a set of edges E = {e(i, j) ∈ V ×V}, containing unordered
pairs of distinct vertices. Assuming the graph has no loops,
i.e. e(i, j) ∈ E implies i 6= j.

Let D denote the distance that a node can communicate
via wireless radio links. Edge e(i, j) is connected if the
Euclidean distance rk,ij between nodes i and j is less than
or equal to D.

A graph is connected if for any vertices e(i, j) ∈ V, there
exists a path of edges in E from i to j. The set of neighbors
of vertex i is defined as Ni = {j ∈ V : e(i, j) ∈ E}.
The degree of vertex i is defined as |Ni| and maximum
degree is dmax = maxi(|Ni|). Let ∆ be the degree matrix,
∆ = diag(|Ni|). The adjacency matrix A is the integer
matrix with rows and columns indexed by the vertices,
such as the ij-entry of A is equal to the number of edges
from i to j. Following Godsil and Royle (2001), Laplacian
matrix of a graph G is defined as L:

L = ∆−A

It should be noted that L varies with time step k, i.e. it
varies with the motion of sensor nodes. But for the EM
algorithm, it is kept constant as the EM run between
k and k + 1. For a connected graph, Laplacian matrix
L is symmetric and positive semi-definite. Its minimum
eigenvalue is 0 and the corresponding eigenvector is 1 =
[1, . . . , 1]T or L1 = 0, see Godsil and Royle (2001).

In the EM algorithm mentioned above, it can be found
that the local statistics can be calculated locally, while the
global statistics can not be calculated locally. However, the
global statistics can be viewed as the averages of the local
statistics from all the nodes in equation (10). This view
can be made more clear by redefining the global statistics
in (11) as the average as follows:

αt,c =
1

M

M
∑

i=1

Nαi,t,c

at,c =
1

M

M
∑

i=1

ai,t,c (13)

bt,c =
1

M

M
∑

i=1

bi,t,c

This redefinition does not affect the parameter estimation
in equation (12).

Due to the average expressions in (13), the idea of the
average consensus filter proposed in Lynch (1996), Olfati-
Saber and Murray (2004) can be used to estimate the
global statistics through information diffusion over the
network. Each node exchanges the local statistics with
its neighbors and estimates the global statistics based on
neighbor’s local statistics through the consensus filter.

Let {ᾱi,t,c, āi,t,c, b̄i,t,c} denote the estimates of the global
statistics {αt,c, at,c, bt,c} in node i. Let vector ζi,t,c denote
one of the estimates of the global statistics, ᾱi,t,c, āi,t,c,
or b̄i,t,c. Let vector gi,t,c denote one of the local statistics
Nαi,t,c, am,t,c, or bi,t,c. The consensus filter in node i takes
as inputs the local statistics gi,t,c. It outputs the estimated
global statistics ζi,t,c.

An average consensus filter in a sensor node i is designed
as follows in the discrete form:
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ζi,t+1,c = ζi,t,c + ǫ





∑

j∈Ni

(ζj,t,c − ζi,t,c) + (gi,t,c − ζi,t,c)





(14)

where ǫ is the updating rate and should be

ǫ ≤
1

dmax

This requirement guarantees the stability of the discrete
consensus filter according to the Gersgorin theorem. ζi,t,c
can asymptotically converge to the average of the local
inputs gi,t,c:

ζi,t,c →
1

M

M
∑

i=1

gi,t,c (15)

Since ζi,t,c represents the estimates of the global statistics
and gi,t,c represents the local statistics , we have:

ᾱi,t,c → αi,t,c =

M
∑

i=1

Nαi,t,c

āi,t,c → at,c =

M
∑

i=1

ai,t,c (16)

b̄i,t,c → bt,c =

M
∑

i=1

bi,t,c

The estimated parameters are:

µ̄t+1,c =
āi,t,c
ᾱi,t,c

Σ̄t+1,c =
b̄i,t,c
ᾱi,t,c

(17)

Once the estimated global statistics are obtained, the
particles can be drawn from the GMM. Then they should
be propagated through the state transition probability
to generate the predicted particles. With the predicted
particles, the weight updating step and re-sampling step
are the same as the steps presented in Section 2.

4. ACTIVE TRACKING CONTROL

4.1 Flocking Controller

The mobility of sensor nodes is described by double
integrator dynamics. For node i with 2D dimensional
coordinates qi,k and speed vector pi,k, the state and
control vectors are zi,k = [qi,k, pi,k]

T and ui,k. The double
integrator dynamics is:

zi,k+1 = Azi,k +Bui,k (18)

where

A =







1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1






, B =







0 0
0 0
T 0
0 T







and T is the sample interval.

As a group of mobile nodes, it is necessary to have a
flocking behavior, which can avoid the potential collisions
between group members, align their headings with the
group motion direction, and navigate towards the best
positions to observe the target.

The collision avoidance control is designed by using a
separation potential function. The requirement of this
control is to keep adjacent mobile nodes with a specific
distance d0. If the distance rk,ij between adjacent nodes is
smaller than d0, they attempt to separate. Let Hs denote
the separation potential function between nodes i and j:

Hs =

M
∑

i=1

∑

j 6=i

1

2

(

log(κ+ rk,ij) +
κ+ d2

κ+ rk,ij

)

(19)

where κ > 0. This potential function has a minimum point
where rk,ij = d. d is the desired separation distance and
smaller than, but close to d0. When rk,ij is larger than d0,
no contribution from this potential function to the control
signal. The gradient of the separation potential function
with respect to qi,k is:

∂Hs

∂qi,k
=











1

2

∑

j∈Ni

(rk,ij − d2)(qi − qj)

κ+ r2k,ij
if rk,ij < d0

0 otherwise

(20)

The alignment control is designed by controlling the in-
dividual heading to align with neighbor’s headings. This
is implemented by minimizing a speed disagreement func-
tion:

Hc =
1

2

∑

i,j∈E

||pi,k − pj,k||
2 (21)

The gradient of the disagreement function with respect to
qi,k is:

∂Hc

∂pi,k
=

1

2

∑

j∈Ni

(pi,k − pj,k) (22)

More details on these two control components can be
found from Olfati-Saber and Murray (2004), Tanner et al.
(2007). The navigation control is designed according to the
optimization of an information measure discussed below.

4.2 Renyi Entropy

The Renyi entropy is a generalization of the Shannon
entropy.

Hr =
1

1− r
log

∫

p(x)rdx

When r approaches to 1, H1 converges to the Shannon
entropy. When r = 2, the quadratic Renyi entropy H2 is
defined as:

H2 = − log

∫

p(x)2dx (23)

Given the GMM of posterior pdf p(xk|µk,c,Σk,c) gener-
ated inDPF, the quadratic Renyi entropy has the following
analytical expression:

H2 = − log

∫

[

C
∑

c=1

αk,cp(xk|µk,c,Σk,c)

]2

dxk

= − log





C
∑

i=1

C
∑

j=1

αT
k,iKk,ijαk,j





= − log[αT
kKkαk] (24)

where Kk is a symmetric matrix of elements Kk,ij =
N (µi − µj , Pi + Pj).
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Actually, the measurement equation (2) depends on both
the target position xk and the mobile node’s position qi,k:

yi,k = hi(xk, qi,k) + wk

That is the likelihood probability p(yi,k|xk, qi,k) depends
on the mobile node’s position qi,k as well. Accordingly, the
GMM parameter θk depends on qi,k as it is obtained from
the EM algorithm, which updates the particle weights by
using the likelihood probability p(yi,k|xk, qi,k). So αk and
Kk in H2 depend on the mobile node’s position qi,k. Thus
a navigation control can be designed by optimizing the
following problem:

qi,k = argminH2

The gradient of H2 with respect to qi,k can be computed
both analytically and numerically. In our simulation, it is
computed numerically. The maximum distance traversable
by the mobile node in a single time step is used to find a
desired position where H2 reaches its minimum value. The
mobile node is controlled to move in the direction towards
the desired position.

In summary, the control input signal to the mobile sensor
node i is:

ui,k = −k1
∂Hs

∂qi,k
− k2

∂Hc

∂pi,k
− k3

∂H2

∂qi,k

where k1, k2, k3 are positive gains.

5. SIMULATIONS

A mobile sensor network with 10 nodes (M = 10) was used
for simulation. They were randomly placed in a square
area [0, 1m] × [0, 1m]. The communication distance was
set as D = 0.8m. N = 50 weighted particles were used in
each node. The posterior distribution GMM is assumed
to have C = 3 mixture probabilities. The parameter
estimation of the distributed EM algorithm was executed
10 loops between two consecutive observations. T was
selected as 0.05s. The parameters of separation potential
function were set as d0 = 0.3, d = 0.25, κ = 0.05. A linear
measurement equation is used:

yi,k = hxk +wk

where h =

[

1 0
0 1

]

. The measurement covariance Rk is

modeled as a non-linear function of distance ρi,k:

Rk(ρi,k) = 0.015

(

11 + 9
(ρi,k − γ)

√

1 + (ρi,k − γ)2

)

where ρi,k = ‖xk−qi,k‖ is the Euclidean distance between
the target and node i. This function is to make the
measurement noise increase with the increase of distance.

A moving target with the following state equation was used
in simulation:

xk = Axk−1 +Bvk−1

where A is the same as in (18) and B =







T 2/2 0
0 T 2/2
T 0
0 T






.

and the covariances of Gaussian noises vk was selected as:

Qk =

[

0.25 0
0 0.25

]

.

The simulation was run for 500 loops. The target started
from (5, 0) and the true and estimated target trajectories
in one of node are shown Fig. 1. It can be seen that
the estimated trajectory (blue line) was very close to
the true trajectory (black line) although the estimated
trajectory was not very smooth. The estimated particles
at the beginning and the end of tracking are also shown in
Fig. 1 (see the black dot clusters). They represented the
estimated covariance changes from a large cluster at the
beginning to a small cluster at the end.

The true target trajectory and 10 mobile node trajectories
are shown in Fig. 2. As the mobile nodes were initially
placed far away from the target, they were controlled to
move close to the target very quickly at the beginning.
Then they were able to follow the target without lost.
Also there were no collision between neighbors during the
entire tracking process. The distance between the target
and the center of flocking nodes is shown Fig. 3, which
clearly demonstrated the tracking behavior observed in
Fig. 2. The quadratic Renyi entropy was also calculated
in each loop from one of the nodes and is shown in Fig.
4. The decrease before around 100 loops shows the mobile
nodes had less information and they increased their speeds
to gain more information. After around 100 loops, the
quadratic Renyi entropy varied around a certain value,
demonstrating a behavior of tracking the target. The
variations show the stochastic nature of the entropy.
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Fig. 1. True and Estimated Trajectories
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Fig. 2. True target trajectory and 10 mobile node trajec-
tories
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Fig. 4. Quadratic Renyi entropy

6. CONCLUSION

This paper investigates a particle filter approach to esti-
mating a target and an entropy based active control ap-
proach to tracking the estimated target. Several techniques
are employed in order to implement them in a mobile
sensor network. Firstly the GMM of the particle filter
is computed via an distributed EM algorithm so that a
PDF is obtained. Secondly a quadratic Renyi entropy is
used as a information measure to guide the navigation of
mobile sensor nodes. This is possible because the analyt-
ical expression of the quadratic Renyi entropy for GMM
exists. Also the entropy based active navigation control is
combined with collision avoidance behavior and motion
alignment alignment behavior to implement a flocking
control for the mobile sensor nodes.

Currently one step horizon is used in optimizing the
quadratic Renyi entropy. In our next work, we would like
to explore the possibility of using multiple step horizon
for optimizing the quadratic Renyi entropy so that a long
term prediction is obtained to improve the performance.
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