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abstract: Many animals, such as migrating shoals of fish, navigate
in groups. Knowing the mechanisms involved in animal navigation
is important when it comes to explaining navigation accuracy, dis-
persal patterns, population and evolutionary dynamics, and conse-
quently, the design of conservation strategies. When navigating to-
ward a common target, animals could interact socially by sharing
available information directly or indirectly, or each individual could
navigate by itself and aggregations may not disperse because all an-
imals are moving toward the same target. Here we present an analysis
technique that uses individual movement trajectories to determine
the extent to which individuals in navigating groups interact socially,
given knowledge of their target. The basic idea of our approach is
that the movement directions of individuals arise from a combination
of responses to the environment and to other individuals. We esti-
mate the relative importance of these responses, distinguishing be-
tween social and nonsocial interactions. We develop and test our
method, using simulated groups, and we demonstrate its applicability
to empirical data in a case study on groups of guppies moving toward
shelter in a tank. Our approach is generic and can be extended to
different scenarios of animal group movement.

Keywords: animal behavior, animal movement, sociality, animal mi-
gration, group navigation, collective behavior.

Introduction

Many animals, such as migrating flocks of birds, schools
of fish, or herds of ungulates, navigate in groups (Krause
and Ruxton 2002). However, moving in a group does not
necessarily imply that group members interact socially by
sharing available information, either directly or indirectly.
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If each individual in an initially aggregated collection of
animals was attracted to the same resource (e.g., food,
females, shelter), then the aggregation could remain stable
without social interactions, making it difficult to distin-
guish this scenario from a navigating social group (see fig.
1 for an illustration). For example, fish larvae settling on
a reef (Codling et al. 2004 and references therein), mi-
grating birds (Bajec and Heppner 2009), swarming locusts
(Buhl et al. 2006), and possibly even humans walking to-
ward similar targets (see Faria et al. 2009 for experiments)
may interact with different levels of sociality. It has also
been suggested that different levels of motivation (e.g.,
hunger) can significantly alter the outcome of group nav-
igation (Conradt et al. 2009). Such variations in behavioral
state could result in varying levels of sociality even between
groups from a single species. Throughout this research we
assumed that group formation has occurred and that we
were observing a moving aggregation of animals. How
often entirely nonsocial navigating groups exist is likely to
depend on how often nonsocial aggregation occurs in the
first place, but it is also possible that differences in the
level of sociality in groups could lead to social aggregation
followed by less social navigation.

For animals, the distinction between social and non-
social navigation is likely to be important. For example,
it has been suggested that social navigation could facilitate
finding and/or learning of the most beneficial or least dan-
gerous migratory route in juvenile birds (Mellone et al.
2011). Theoretical research has shown that in some cir-
cumstances asocial groups, in which individuals interact
only to avoid collisions, achieve less efficient navigation
than social groups, in which individuals actively maintain
group cohesion and alignment (Codling et al. 2007). Fur-
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Figure 1: Simulated trajectories for groups navigating toward a target (T). A, Social navigation; B, nonsocial navigation. We assume, as we
did throughout this research, that groups are aggregated initially. By eye, the difference between the two scenarios is difficult to determine,
as initial aggregation and a common target lead to a navigating aggregation in B. See “Methods” for details on the model. Parameter values
that are different from the typical values listed in table 1 are as follows: , , and the simulations are shown over 80 timeN p 10 r p 10I

steps; in A, , , and ; in B, , , and . For these simulated data, the x and y units have no2 2 2 2q p 0.5 j p 1 j p 0.5 q p 1 j p 0.7 j p 0.1s o s o

biological meaning.

thermore, socially navigating groups that actively maintain
cohesion are likely to be more resilient to perturbations,
such as predatory attacks, and therefore derive more ben-
efits of group membership (Krause and Ruxton 2002).

The individual navigation abilities of animals have been
subject to intensive research (e.g., Alerstam et al. 2001;
Gould 2004; Simons 2004 and references therein), and in-
fluential theoretical studies have suggested mechanisms for
the navigation of socially interacting groups (Couzin et al.
2005; Codling et al. 2007; Torney et al. 2010). However, we
are not yet able to establish how individuals interact in
navigating aggregations. Since many animals move in
groups, knowing the mechanisms of group navigation is key
when it comes to explaining navigational accuracy, dispersal
patterns, population and evolutionary dynamics, and con-
sequently, the design of conservation strategies (Simons
2004). Fundamentally, this is a classic inverse problem,
wherein very similar emergent patterns can arise because
of quite different processes underlying the behavior at the
individual level (see, e.g., Benhamou 2006).

What do we mean by “social interactions” in moving
animal groups? Our work builds on the assumption that
sociality is expressed by interactions between individual
animals that are reflected in the animals’ movements rel-
ative to one another. We assume that social interactions
are different from simple collision-avoidance behaviors.
Furthermore, we also consider interactions of individuals
with the environment, such as attention to landmarks, to

be nonsocial behaviors. Examples of social interactions are
the alignment of movement direction between individuals
and the tendency of individuals to move toward each other
to maintain group cohesion. This loose definition (which
we make explicit in our methods) implies that a balance
or weighting between the expressions of social and non-
social behaviors may exist in animals if they are capable
of both behaviors. Consequently, we may find not only
social or nonsocial groups but also groups of varying de-
gree or relative level of sociality.

Commonly used summary statistics for the group move-
ment of animals, such as the average alignment of indi-
viduals, the average distance to the nearest neighbor
(Couzin et al. 2002), or the shape of the group (Hemelrijk
and Hildenbrandt 2008), do not help to distinguish socially
navigating groups from nonsocial groups. For example,
efficient individual navigation may lead to accurate align-
ment of individuals in groups, while simultaneous navi-
gation toward a target and the underlying population den-
sity may affect the observed shape and density of the
group. Therefore, determining the level of sociality in nav-
igating animal aggregations is an unsolved problem.

Individual-based models have greatly improved our un-
derstanding of the movement of social animals (e.g., Reyn-
olds 1987; Couzin et al. 2002, 2005). State-of-the-art mod-
els for collectively moving groups of socially interacting
individuals are based on the finding that individual actions
are the combination of simple behavioral rules that can
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loosely be expressed as “avoid collisions,” “align with con-
specifics,” and “maintain group cohesion.” Interactions
based on these rules result in complex and realistic move-
ment dynamics (e.g., Couzin et al. 2002; Buhl et al. 2006;
Bode et al. 2010). Navigation toward a target or in a target
direction can be added to these individual behaviors
(Grünbaum 1998; Couzin et al. 2005; Codling et al. 2007).

Here we present a data analysis technique for individual
movement trajectories to answer the following question:
“given the trajectories of individuals in a group moving
toward a known target, to what extent do individuals in-
teract socially?” The basic idea of our approach is that the
movement direction of individuals arises from a combi-
nation of responses to the environment and to other in-
dividuals, and we estimate the relative importance of these
responses. We use an individual-based simulation model
in which we can adjust the behavioral responses of indi-
viduals in a controlled way to demonstrate the robustness
and potential of our technique. We then present a case
study in which we test our method on shoals of guppies
(Poecilia reticulata) moving toward shelter in a tank, and
we discuss potential problems and caveats in applications
of our technique to empirical data. Our method is generic
and can be applied to other scenarios of animal group
movement.

Methods

The “Factor of Sociality”

Our analysis builds on the work of Eriksson and coauthors,
who used a “force-matching” method to determine inter-
action rules in animal swarms (Eriksson et al. 2010). Un-
like in this previous work, for our study we are not in-
terested in the precise nature of the interactions but in the
degree to which interactions between individuals are social
or nonsocial. At the heart of our analysis lies the as-
sumption that the interactions of each individual, i, with
their conspecifics and the environment can be described
by four interaction types that are inspired by behaviors
that are commonly accepted to explain group movement
(e.g., Couzin et al. 2002; Krause and Ruxton 2002; Eriksson
et al. 2010). We assume that long-range interactions within
groups are indicative of social behaviors, whereas short-
range interactions and navigation are nonsocial behaviors.
The four interaction types are as follows:

repi: Short-range interactions that are inspired by col-
lision avoidance (repulsion) and are assumed to be
nonsocial.

orii: Long-range interactions (type 1) that are inspired
by alignment with conspecifics (orientation) and are as-
sumed to be social.

atti: Long-range interactions (type 2) that are inspired

by attraction to conspecifics to avoid group fragmentation
and are assumed to be social.

navi: Interaction with the target (navigation; we assume
that this is attraction to a fixed-point target) that is as-
sumed to be nonsocial.

Furthermore, we assume that the true direction of mo-
tion of each individual at time t, v(t) p [x (t � T) �i i

(the normalized vector betweenx (t)]/Fx (t � T) � x (t)Fi i i

two consecutive recorded positions xi, for i, T s apart),
arises from a linear combination of the above interaction
types:

v(t) p a rep (t) � a ori (t) � a att (t) � a nav(t). (1)i 1 i 2 i 3 i 4 i

The coefficients ak (where k p 1, ..., 4) can take positive
or negative values. We are estimating the direction of mo-
tion of each individual and not the force acting on indi-
viduals, as in the study by Eriksson et al. (2010). We do
not include an error term in equation (1) because we
assume that stochastic effects in the behavior of individuals
are not correlated in time and between individuals and
that they therefore affect only the variance of the weight-
ings, ak (k p 1, ..., 4), for the different behaviors. We
discuss this assumption in “Results.” Also note that in this
article we consider movement toward a fixed target point
rather than groups moving in a fixed target direction (e.g.,
Grünbaum 1998; Couzin et al. 2005). It is easy to see that
our approach could be extended to include the latter sce-
nario, which is a special case of a “point at infinity” of
the more general case we consider here. Recent work on
schooling fish suggests that there is no explicit alignment
force acting between individuals and that alignment is a
result of repulsive and attractive forces (Katz et al. 2011).
We do not consider forces between individuals explicitly.
As such, the interaction types we include in our analysis
could be the result of a combination of more fine-grained
interactions that we do not model in detail.

To estimate the contributions of the different types of
interactions to the movement of individuals, we estimate
the coefficients ak (k p 1, ..., 4) by minimizing the dif-
ference between the right- and left-hand sides of equation
(1) across all individuals and instances in time (if we are
interested in the group averages) or across all instances in
time for one individual (if we are interested in individuals).
In practice, we estimate vi(t) (as seen above) and the values
for repi, orii, atti, and navi from trajectories for each in-
dividual at each time step (or for one individual at each
time step). We obtain a vector y for values of vi(t) and a
matrix A for the contributions of the different behaviors.
Since equation (1) is linear, we have to solve the over-
determined linear system , wherey p Aw w p

, to determine the estimates for the coef-(a , a , a , a )1 2 3 4

ficients ak for the different behaviors. This is solved by
(Eriksson et al. 2010).T �1 Tw p (A A) A y
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Table 1: Summary of parameters used in the model for group navigation

Parameter Typical value Range of values Description

N 40 2–140 Group size
vO 1 Speed of movement (in units per time step)
t 1 Time step between movement updates
rI (10N)1/2 Radius of initial random distribution of individuals about start-

ing position (in units)
rR 1 Radius of collision avoidance (in units)
rO 20 2–25 Radius of alignment interaction (in units)
rA 30 Radius of group cohesion interaction (in units)

2js 2 0–3 Angular variance of random noise added to navigation compo-
nent of movement (in radians)

2jo .1 0–3 Angular variance of random noise added to final orientation (in
radians)

a 3p/2 Viewing angle in sensory zone of individuals (in radians)
q .5 0–1 Weighting for navigation behavior ( corresponds to noq p 0

navigation)

From the vector w we define the “factor of sociality,”
, as they p (Fa F � Fa F)/(Fa F � Fa F � Fa F � Fa F)2 3 1 2 3 4

weighting for the social part in the behavior of individuals
( ). High values of y indicate that social inter-0 ≤ y ≤ 1
actions dominate the group dynamics, and low values in-
dicate that nonsocial behaviors are predominant. When
we compute y for individuals rather than for the average
behavior across groups, we denote it as yindiv. We consider
only the absolute values of the coefficients ak in our com-
putation of y, despite the fact that they can (and do) take
negative values. One way to interpret this is that with the
long-range interaction types, we approximate the mag-
nitude of long-range interactions that we assume to be
indicative of socially interacting groups but not the precise
nature of these interactions. It is likely that the actual
interactions in animals are not as simple as suggested by
our analysis. However, we show that our approach works
in simulations and empirical data. Our long-range inter-
action types make sense only in groups in which individ-
uals can perceive others. Dispersed populations, in which
individuals cannot perceive each other, are not covered by
our framework.

To complete the analysis, we must determine how the
contributions of the different behaviors are estimated from
the data. An important part of our method is approxi-
mating from the data the interaction ranges of individuals.
This process and further details of the analysis are given
in the appendix, available online.

Simulation Framework

The simulation model presented here does not aim to
replicate animal collective motion in all detail. Rather, we
suggest a data analysis technique and use representative
simulations to demonstrate the robustness and potential

of our approach. We simulate groups of N individuals
navigating in discrete time and two dimensions toward a
fixed target point by extending previous work (Codling et
al. 2007). At every time step of length t, each individual
follows adjustable behavioral rules to choose a new direc-
tion of movement, and it moves in this direction at a
constant speed, vO. We choose (Codling et al.t p v p 1O

2007). We consider only groups moving within a homo-
geneous environment. Individuals start with random ini-
tial movement directions from random positions within
a circle of radius rI around the starting coordinate (0,
1,000) and then navigate toward the origin, (0, 0). We use
data from the last 100t of simulations over , which500t

is too short for individuals to reach the target but is long
enough to avoid recording the initial transitional behavior
of groups. To control the level of sociality in our simulated
groups, we introduce a weighting, q ( ), which0 ≤ q ≤ 1
controls the balance between social and nonsocial behav-
iors at the individual level (akin to Couzin et al. 2005).
Unless otherwise stated all individuals have the same q

value, but we do explore the case in which a few “in-
formed” individuals guide the rest of the group, which is
composed of naive individuals for whom (Couzinq p 0
et al. 2005). In the appendix we give the full details of
how we simulated the various behavioral rules and group
interactions. Table 1 provides a summary of the model
parameters and parameter values used in the simulations.

Results

Figure 1 illustrates the basic problem that we are consid-
ering: it is difficult to distinguish social from nonsocial
group navigation. Computing y for the two simulations
shown in figure 1 allows us to distinguish between the
different group behaviors (in fig. 1A, , social nav-y p 0.41
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Figure 2: Factor of sociality, y, and the contribution of different interaction types, ak, estimated from simulated trajectories for varying
navigation weighting, q. For comparison, we show the results of the analysis for the true model parameters (gray squares; ,r p rR, est R

, and ) and for estimated parameters (black circles; rR, est, rO, est, rA, est as described in the appendix, available online). Noter p r r p rO, est O A, est A

that in most cases there is little difference between the true and the estimated parameters, which demonstrates the robustness of the analysis.
A, As social behaviors are replaced by individual navigation (increasing q), y decreases. B–E, Estimated coefficients for the contribution of
short-range (a1), long-range type 1 (a2), long-range type 2 (a3), and navigation (a4) interactions. See table 1 for parameter values. The
average over 10 simulation runs is shown, �1 SD.

igation; in fig. 1B, , nonsocial navigation). Iny p 0.076
this section, we illustrate the robustness of the factor of
sociality for varying group sizes and different aspects of
individual behavior (e.g., size of individual navigation er-
ror) by analyzing our simulated model over a range of
parameter values.

Effect of Navigation Weighting, q

To illustrate the performance of our approach, we system-
atically alter the balance between social and individual
behaviors in simulations of our model by varying the nav-
igation weighting, q. In this way, we simulate groups that
do not navigate at all ( ), groups in which individualsq p 0
only navigate and avoid collisions ( ), and groupsq p 1
with intermediate behaviors ( ). Figure 2 shows0 ! q ! 1
that the factor of sociality, y, accurately captures these
imposed changes in behavior. In figure 2A y does not reach
its maximum value of , even if no individual nav-y p 1
igation is included ( ). This is explained by the factq p 0
that individuals still exhibit nonsocial short-range inter-
actions (e.g., repulsion) in the absence of individual nav-

igation. Figure 2B–2E shows the estimated contribution of
the different interaction types. The long-range interaction
type 1 (fig. 2C) and navigation (fig. 2E) behaviors are as
expected for varying values of q. As the navigation weight-
ing increases, the contribution of the long-range inter-
action type 1 decreases and the contribution of navigation
increases. The other interaction types are more difficult to
interpret (fig. 2B, 2D). Individuals in our model always
attempt to avoid collisions, irrespective of the value of q.
In sparser groups, however, the group cohesion behavior
may dominate over other behaviors. Therefore, both a1

and a3 are intricately linked to the density of groups, which
may explain figure 2B and 2D. In general, the results ob-
tained using estimated interaction ranges are very close to
those obtained using the real model parameters (see fig.
2, but see below), which illustrates the robustness of our
approach for coarse parameter estimates.

Effect of Group Size

We tested the effect of group size on the factor of sociality,
y, by keeping fixed all model parameters apart from group
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and the estimated parameters, which demonstrates the robustness of the analysis. See table 1 for parameter values. The average over 10
simulation runs is shown, �1 SD.

size (see fig. 3A). While for values of N greater than 30 y

appears to be approximately constant, for smaller values of
N it seems to fluctuate. There are a number of possible
reasons for this. It may be the result of reduced amounts
of data used in the computation of y. For example, if we
use the trajectories of groups of N and individualsN/2
recorded over the same period of time, then we have only
half of the data points for our computation for the smaller
group. However, figure A1 in the appendix, available online,
shows that for , increasing the length of the trajec-N p 10
tories used does not alter the discrepancy in y for true and
estimated parameters. This indicates that for theN p 10
length of trajectories used was sufficient, but this may not
be the case for smaller values of N. We find that the con-

tribution of short-range interactions, a1, is consistently
lower when estimated parameters are used in the analysis.
Furthermore, this effect increases with decreasing group size
and occurs for values of N of ∼20 or less (see fig. A2 in the
appendix). When true parameters are used in the analysis,
y remains approximately constant for decreasing values of
N. The reason for this effect can be found in the coarse
approximation of the individual interaction ranges in our
analysis. In particular, our estimation of the short-range
interaction zone of individuals relies on nearest-neighbor
distances. For small group sizes, boundary effects create a
strong bias, causing estimated nearest-neighbor distances to
increase (Cavagna et al. 2008). In our analysis, this results
in estimated interaction zones that are larger than the sim-
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ulated repulsion zones (see fig. A3 in the appendix). Larger
estimated interaction zones result in more individuals being
wrongly considered in short-range interactions in our anal-
ysis, which causes an underestimation of the contribution
of short-range interactions. For , all of our estimatedN p 2
interaction zones have the same extent, which makes it
impossible in our analysis to distinguish between short-
range interactions and type-2 long-range interactions in a
meaningful way. However, figure A4 in the appendix shows
that for , the qualitative trend in y for varying q isN p 10
preserved. Therefore, our coarse parameter estimates can
result in quantitative differences, but it is still possible to
capture relative differences in y between groups of the same
size. Furthermore, provided that sufficiently long trajecto-
ries are used, the results of our analysis are not affected for

if the true simulation parameters are used. For anN 1 5
analysis of the empirical data, on the basis of previous find-
ings or experiments with the study species, it may be useful
to consider informed parameter estimates.

Effect of Interaction Radius Size

In our model, alignment, attraction, and navigation be-
haviors are averaged in the movement decisions of indi-
viduals (see appendix, eqq. [A2] and [A3]). Therefore,
changing the size of the behavioral zones might have an
impact on the overall weighting of interactions in groups.
We tested for such effects by varying the size of the ori-
entation radius, rO, in our simulations (see fig. 3B). For
increasing values of rO, the factor of sociality initially in-
creases, only to decrease again for units. This effectr 1 15O

reveals aspects of the dynamics of our model. As for how
far this could be important for applications to empirical
data remains to be seen. Currently, empirical studies have
not reached a level of detail sufficient to establish relative
sizes of behavioral zones in animal groups. The range of
values for the interaction zones we tested include the es-
timates of Lukeman et al. (2010) that were obtained from
empirical data for surf scoters (Melanitta perspicillata). For
these results (fig. 3B) as well as the following (fig. 3C, 3D),
the analysis produces almost identical values of y for both
estimated and true parameters.

Effect of Navigation and Orientation Errors

Because we did not include noise terms explicitly in our
approach (see eq. [1]), it is important to ensure that added
noise does not significantly affect the outcome of our anal-
ysis. To do this, we varied the magnitude of the noise in
individual navigation and that of the overall orientation
noise separately (fig. 3C, 3D). Other than a slight increase
in y for increasing noise in both cases, neither of the two

types of noise in our model has a pronounced effect on
the outcome of our analysis.

Our model assumes noise that is not correlated in time.
We expect (but do not test this here) that correlation in
the magnitude of noise over time in individual noise terms
does not affect our analysis as long as there is no bias in
the global direction of the noise. If there was such a noise
bias, it would effectively alter the preferred navigation di-
rection of individuals and would be likely to have an im-
pact on our technique.

We disregard individual speeds in our analysis. To en-
sure that our approach does not work for only one speed,
we simulated groups moving at different speeds (see fig.
A2 in the appendix). As for the magnitude of the noise,
this resulted in only a slight increase in y for increasing
speeds. Furthermore, the application of our analysis to
experimental data in which individuals moved at non-
constant speeds demonstrates the robustness of our ap-
proach in this regard.

Varying q across Individuals

So far, we have considered only the case in which all in-
dividuals have the same navigation tendency (i.e., all in-
dividuals have the same q). That is to say, each individual
has the same information about the target (the “many
wrongs principle,” as described by Simons [2004]). A dif-
ferent and very intuitive alternative mechanism for group
navigation is that a small number of “informed” individ-
uals can guide or lead the remainder of the group (Couzin
et al. 2005). To explore this scenario, we varied q across
individuals. For simplicity of illustration, we set q p

for navigating individuals and for the remainder0.5 q p 0
of the group. As the fraction of navigating individuals in
groups increases, y decreases (see fig. A3 in the appendix).
This shows that our analysis works on this scenario and
that it can distinguish between different levels of sociality
in groups, even in the case where not all individuals behave
in the same way. Groups with few navigating individuals
are therefore navigating socially, according to our method.
Calculating yindiv, the individual-specific factor of sociality,
shows that our method can even distinguish navigating
individuals (“leaders”) from the rest of the group in sim-
ulations (fig. 4; see fig. A4 in the appendix for contribu-
tions of interaction types). Although this is an idealized
example, it suggests that our method could be used to
determine differences in individual behavior and may
therefore facilitate answering long-standing questions con-
sidering leadership in moving animal groups.
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Figure 4: Factor of sociality, yindiv, for individuals in simulated groups
( ). As in figures 2 and 3, the results for the true modelN p 40
parameters and for estimated parameters are shown. Individuals are
assigned unique identities (IDs); individuals 1–4 are navigating
( ), whereas the rest of the group is not ( ). The navi-q p 0.5 q p 0
gating behavior of individuals 1–4 is accurately captured in their
lower yindiv values. Differences in the results for true and estimated
parameters are quantitative but not qualitative. The contribution of
different interaction types, ak, can be found in the appendix, available
online (fig. A7). See table 1 for other parameter values. The average
over 20 simulation runs is shown, �1 SD.

Case Study

We used guppies (Poecilia reticulata) from a captive pop-
ulation to test our technique. Experiments were performed
in a white perspex, flat-bottomed square tank with a side
length of 60 cm and a water depth of 6.5 cm. One corner
of the tank, equivalent to ∼9% of the tank area, was cov-
ered with gravel and shaded by cardboard to provide a
shelter and a target for the guppies. The fish were released
from a holding cylinder (10 cm in diameter) in the corner
diagonally opposite from the shelter and filmed from
above, using a standard definition camera (Sony Handy-
cam DCR-SX33, 10 frames per second). After fish were
released, some groups took longer to start moving. To
avoid a possible effect on our analysis of different move-
ment start times, we defined the start of our trials to be
when all fish were moving after being released and the
end to be when the first fish reached the area covered by
gravel. The individual trajectories of the fish were obtained
using the open-source tracking software “SwisTrack” (Cor-
rell et al. 2006) and previously established methodology
(Bode et al. 2010). Because trials did not last for longer
than 2:30 min, we could obtain complete trajectories with-
out gaps. A diagram of the experimental setup and an

example of individual trajectories can be seen in figure
5A.

To establish that guppies showed a preference for the
sheltered region, we performed trials with 24 individual
male fish. In 21 out of the 24 trials, individuals moved
into the sheltered region within 1 min after being released.
However, we do not claim that movement toward the
shelter is necessarily representative of guppy behavior in
the wild.

For our analysis, we performed trials with single-sex
groups of 10 individuals (eight male and six female groups;
five trials for each group). The fish could perceive each
other across the experimental tank, and we can therefore
treat artificial shoals as aggregations and apply our analysis
technique to this data. Confinement to the experimental
tank restrained the movement of the guppies. Since the
experimental setup was identical for all trials and because
we did not observe direct interactions with the tank, such
as repeated probing of the tank walls, we did not explicitly
include interactions with the boundaries in our analysis
(but we comment on this possibility later). We assumed
the fixed target point to be in the center of the triangular
shelter covered with gravel (see fig. 5A).

Guppies are known to display group fission and fusion
dynamics, in which individual fish frequently change
group membership (e.g., Croft et al. 2005). This might
explain why at times individuals or pairs of fish moved
away from the group. To obtain data that were adequate
to test our technique, we selected a subset of guppy be-
havior by using only those trials in which the entire shoal
moved in a common direction (not always directly toward
the shelter) and eventually reached the shelter. In this way,
we selected 14 male and 12 female group trials for our
analysis. The mean length of time for which these groups
were tracked was s (mean � standard error).9.6 � 1.4

Because we selected trials, our analysis is not fully rep-
resentative of natural guppy behavior. Instead, it serves to
illustrate our analysis technique for animal trajectories. We
did not select shoals of guppies with high factors of so-
ciality, as will become clear in the results.

The fundamental problem of testing our technique em-
pirically is that of finding a suitable control: a priori, we
do not know the extent to which individuals interact so-
cially. Our approach is to compare “real groups” of ani-
mals, in which individuals can interact, with “artificial
groups,” in which some or all of the group members can-
not interact. If the animals interact, we should find lower
values of y for artificial groups.

We tested this by performing random permutations of
our data. Specifically, we tested the hypothesis that the
average factor of sociality across our 26 group trials is not
higher than expected if group membership is randomly
allocated. Allocating membership of all 260 individuals in
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Figure 5: Factor of sociality, y, and the contribution of different interaction types, ak, estimated from the trajectories of real and “artificial”
guppy shoals moving toward shelter in a tank. A, The experimental setup, with a release position marked by S and an assumed target
position marked by T. The triangular shelter region covered by gravel is also indicated. Lines show example trajectories for a shoal of 10
guppies over 1:25 min. Final individual positions are marked with plus signs. We used 26 guppy shoal trials and 10,000 permutations of
our data. B–F, The factor of sociality and the contributions of the different interaction types. Box plots show medians and twenty-fifth and
seventy-fifth percentiles; whiskers indicate 1.5 times the interquartile range, and circles indicate outliers. The distribution of values for the
26 group trials is labeled “trials,” and the distribution of the averages obtained for each of the 10,000 permutations of randomly allocated
group membership are labeled “random.”

our trials at random implies that in most of these per-
mutations of our data, not all individuals in newly created
groups come from the same group. Therefore, these in-
dividuals do not interact, and we would expect y to be
lower for these groups than for the group trials.

First, we computed the average factor of sociality across
the 26 group trials and found y p 0.32 � 0.023
(mean � standard error; see also fig. 5). The fact that the
minimum and maximum values of y for guppy shoals are
0.094 and 0.49, respectively, demonstrates that we did not
select shoals with high y values. In one permutation, we
randomly allocated the 260 individuals in our group trials
to 26 new “artificial groups” of 10 individuals each. Not
all group trials lasted for the same length of time. There-
fore, we had to combine individual trajectories of different
lengths of time in the artificial groups by using all data

from the start of each individual track up to the point
when the shortest (in time) of the 10 individual tracks in
the artificial group ended. We then computed the average
of y across the 26 artificial groups. We computed the factor
of sociality separately for each artificial and each real guppy
shoal, using new parameter estimates for each shoal
(rR, est, rO, est, rA, est; see appendix).

In total, we performed 10,000 permutations of our data.
Information on the distribution of the averages obtained
for the permutations can be found in figure 5. The fraction
of permutations for which the average of y across the
artificial groups was larger or equal than the average of y

across our group trials gives an estimate for the probability
that y is higher for randomly allocated group membership
and can be interpreted as a significance value for our hy-
pothesis. We found that only 75 out of 10,000 permuta-
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tions produced higher average values of y than the group
trials, which corresponds to a significance value of 0.0075.
We therefore reject the hypothesis stated earlier.

This result suggests that our analysis captures differences
between the artificial shoals and group trials in the way
in which we expect. The average value of y is larger for
group trials than for artificial groups, and this difference
is statistically significant. Because of lack of replication and
relatively short trajectories and because our aim was not
to specifically investigate guppy behavior, we have not in-
vestigated differences in sociality among individual fish.

Discussion

We have developed an analysis technique that can suc-
cessfully determine the extent to which navigating animal
groups and even individuals in such groups interact so-
cially, given the knowledge of individual trajectories and
a fixed target or target direction. Our technique can be
applied to movement trajectories of any animal. We pre-
sent our approach in two spatial dimensions, but it could
be extended for an analysis of three-dimensional data.
Missing data often result in gaps in animal motion track-
ing. Because only three consecutive recordings of individ-
ual positions are required for each data point, incomplete
trajectories could still be used for our analysis (as is also
suggested in Eriksson et al. 2010).

Because we intend to illustrate the value of our approach
to distinguish between social and nonsocial navigating
groups, we refrain from detailed explanations of the dy-
namics in our simulations. We did not interpret the in-
teraction types in our analysis explicitly as repulsion, align-
ment, and attraction. The fact that the estimated
contribution of the different interaction types can take
positive or negative values, even for the simulations (e.g.,
see fig. 2D), suggests that the interactions in simulations
and empirical data are more complicated than the com-
bination of the four behaviors that inspired our analysis.
The important point is that within the parameter range
we tested, our approach works qualitatively and gives a
relative measure of sociality between groups. Our case
study suggests that our assumptions are adequate, despite
the fact that they may not capture the actual mechanisms
of animal group movement as suggested by Ballerini et al.
(2008) or Katz et al. (2011), for example.

In our simulations, we do not consider the possible
impact of the environment on the movement dynamics
of navigating groups. We model an idealized scenario that
may nevertheless be adequate for groups moving in rel-
atively homogeneous environments, such as shoals of fish
in the oceans or flocks of birds in the sky. If restraining
environmental features or high population densities result
in the case where collisions become an important aspect

of the dynamics, our approach is unlikely to produce
meaningful results. Interactions with obstacles such as tank
walls could be included explicitly. Such extensions would
require further assumptions or experimentation on be-
havioral responses of animals and would present a step
toward fitting possible behavioral responses to animal
movement, as was originally suggested by Eriksson et al.
(2010). This provides interesting avenues for further re-
search but is beyond the scope of the work presented here.

For groups that are much larger than the ones we con-
sider ( ), different properties of moving groupsN 1 500
may help to answer our question. For example, recent
empirical work has shown that in starling flocks, the av-
erage correlation between the movement directions of in-
dividuals decreases as a function of the distance between
individuals (Cavagna et al. 2010). We suggest that in non-
social groups, this effect should not be observed.

Some gregarious animals form moving groups that re-
semble long, narrow streams. Locusts provide an example
of this behavior (Buhl et al. 2006), and it has been sug-
gested that it could be explained by pursuit and escape
forces in individuals that may be highly anisotropic by
focusing on individuals directly behind or in front of oth-
ers (Romanczuk et al. 2009). If our method is applied to
long and narrow marching bands, possibly stretching over
kilometers (Buhl et al. 2006), it would certainly fail as a
result of the coarse parameter estimates. However, it is
possible that our method could be adapted by including
blind angles and using informed estimates for the extent
of interaction zones. It would certainly be advisable to test
adaptations of our method for such scenarios in further
simulations.

Recent work has suggested evolutionary scenarios for
group navigation. Both Torney et al. (2010) and Guttal
and Couzin (2010) suggest that in navigating animal
groups, the presence of distinct subgroups of navigating
individuals and social followers could be an evolutionarily
stable state. This contrasts with mechanisms that assume
equal navigation abilities for all individuals in groups
(Codling et al. 2007; Faria et al. 2009). Our method can
determine the relative weighting given to navigation across
individuals in the group, and thereby it presents a unique
opportunity to determine which mechanism is occurring
across different social animal groups: leadership by a few
or an equal navigation investment of all individuals.

It has been suggested that animals alter the strength of
their social interactions on the basis of, for example, their
individual needs to maintain nutrient levels (Conradt et
al. 2009). Our method is ideally suited to assess the impacts
of factors such as food deprivation, predation, or social
composition of groups on the sociality of groups or of
individuals within groups. It may even be possible to quan-
tify the personality of individuals on the basis of sociality
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(Krause et al. 2010). In guppies, for example, individuals
have been found to display different and repeatable levels
of “boldness,” and this may correlate with their social
network position (Godin and Dugatkin 1996; Croft et al.
2009). Our method could provide an additional tool with
which to quantify these differences between individuals
within and across species.

We envisage that our approach could initially be useful
to distinguish the level of sociality between different an-
imal species by performing experiments under controlled
conditions. In addition, technological advances increas-
ingly make it possible to track animals in the wild (Ballerini
et al. 2008; Nagy et al. 2010). Our method requires knowl-
edge of either target coordinates or a target direction,
which may not always be available in studies of animals
in the wild. However, there are a number of ways to over-
come this problem. While it may not be possible to obtain
the trajectories of individuals for the entire duration of
their journey, it may nevertheless be possible to determine
the endpoint of their journey (e.g., a roost or feeding site),
which could be used for the target coordinates. Further-
more, it may be possible to estimate a rough preferred
movement direction from the data or other observations
given landmarks or reoccurring patterns. As a last resort,
the analysis could be repeated over a range of assumed
preferred target directions and, on the basis of the as-
sumption that the animals are navigating, the target di-
rection producing the highest contribution of navigation
could be used. We suggest that it should therefore be fea-
sible to apply our method to the movement of navigating
or even migrating animals in the wild, and this may help
to understand the mechanisms behind animal navigation
in general and ultimately inform conservation or man-
agement policies.
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Bittern. “He is a lovely bird in unprejudiced, discriminating eyes; he has no gaudy colors, but his blacks, his brown and yellows, of many
shades, all of them pleasing, are so blended as to produce a beautiful, harmonious effect. He loves waste places, for they furnish him safety
and food; safety because his enemy, man, is fond of a dry foot; and food, for frogs and snails and snakes and mice, all prime delicacies
with our hermit, abound there.” From “Bitterns” by William E. Endicott (American Naturalist, 1869, 3:169–179).


