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Abstract— Brain computer interfaces (BCI) create a new
approach to human computer communication, allowing the user
to control a system simply by performing mental tasks such
as motor imagery. This paper proposes and analyses different
strategies for time segmentation in extracting common spatial
patterns of the brain signals associated to these tasks leading
to an improvement of BCI performance.

I. INTRODUCTION

Brain Computer Interfaces (BCI) are communication sys-

tems that use human thoughts as a control signal [1]. These

systems are particularly valuable for paralysed users who

may not be able to interact with computers in any other

manner. From a non-disabled user’s point of view, BCIs can

enrich the human computer interaction where aspects from

their mental state, such as emotions and error related activity,

can be taken into account. Regular users suffering from an

induced disability (situations where the user concentration

or attention may be compromised, such as surgeons or

pilots) may also benefit from this kind of human-computer

interaction [2].

BCIs are classified into several paradigms depending on

which mental state or signal type is utilised [3]. In this

study, we focused on motor imagery (MI) using electroen-

cephalography (EEG) as a method of recording the signals.

When a subject performs a limb movement, several areas

on the brain cortex are activated due to different neuron

populations’ firing signals. Some of these populations show

activity even if the subject does not perform movement at all,

just imagining the limb movement is sufficient to produce

changes of state in the motor cortex [4].

Limb movement imagery is characterised by short lasting

amplitude attenuations/amplifications in the EEG signals

known as even related desynchronisation (ERD) and event

related synchronisation (ERS) [5][6]. Many BCI designs rely

on ERD/ERS to discriminate MI movements (such as hands,

feet, fingers, tongue, etc) [7],[8]. ERD/ERS components

can be found in temporal, spatial and spectral domains.

Different researches use different techniques to find the most

discriminant features in each domain. For example, many

studies focus on spatial components such as common spatial

patterns (CSP) [9]. Some researches try to extract relevant

information from the ERD/ERS time course using techniques

like local discriminant bases (LDB) [10]. Many studies com-

bine elements from two or three different domains, such as

Javier Asensio-Cubero University of Essex; email:
jasens@essex.ac.uk

John Q. Gan University of Essex; email jqgan@essex.ac.uk
Ramaswamy Palaniappan University of Essex; email:

rpalan@essex.ac.uk

PARAFAC based methods [11][12], common sparse spectral

spatial pattern (CSSSP) [13], filter bank common spatial

pattern (FBCSP) [14] and wavelet common spacial pattern

(WCSP) [15].

The time duration given to the subject for imagining

the limb moment is called a trial, and it is where the

ERD/ERS occurs. Depending on the experiment protocol,

the trial duration may vary from four to eight seconds. The

classification of the data obtained from the feature extraction

can be performed sample by sample, giving a classification

result for every sample in the input data, or trial by trial,

where only a single prediction is given for the trial sample

set.

CSP has been popularly used in the literature for feature

extraction for BCI due to its ability of locating the active

sources while maximising the variance among two or more

classes. Usually CSP is applied for trial by trial classification.

This paper applies CSP using various segments of the trial

aiming to capture both spatial and temporal features from

EEG signals for BCI applications.

This paper is organised as follows: Section II explains

the methodology: data acquisition (Section II-A), feature

extraction methods (Section II-B), classification techniques

(Section II-C) and time segmentation strategies (Section II-

D). Section III describes the obtained results and conclusions

are drawn in Section IV.

II. METHODS

A. Data Acquisition

The data used for this study is obtained from the BCI

competition IV (data set 2a [16]) which is publicly available,

allowing us to place our outcomes with the best ranked

methods. The data contains four different classes: imaginary

movement of right hand, left hand, feet and tongue, from nine

different subjects. The subjects sat in an arm-chair facing

a computer screen with 22 electrodes placed on the scalp

following the international 10-20 location system (as shown

in Figure 1). Initially, at t = 0, a fixation cross was printed on

the screen, after two seconds t = 2 an arrow was displayed

indicating which imaginary class to perform and this cue

was shown until t = 3.25. The fixation cross disappeared at

t = 6 and denoted the end of the trial. The EEG data was

recorded at 250Hz and band pass filtered between 0.5 and

100 Hz. During preprocessing, an elliptic band pass filter

was applied to filter the data in pass band range of 8 to 30

Hz.

Two sessions of EEG data were recorded from each

subject, 288 trials (72 for each class) were acquired per
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Fig. 1. Using 22 electrodes placed according to the 10-20 international
standard [16]

session. The first session dataset is used as training data while

the second session is used for evaluation in our experiments.

B. Common Spatial Patterns

Methods like Principal Component Analysis (PCA) [17]

and Independent Component Analysis (ICA) [18] rely on

statistical relationships to extract the most relevant features

from a data set and have been extensively applied in domains

such as video compression or image processing. CSP is based

on PCA decomposition and can be regarded as a supervised

blind source separation technique [19] which maximises the

variance between two different classes. As this is the method

that we are using for feature extraction stage, an introduction

to its basics is given next.

Let us consider a matrix Xi of EEG data captured during

an interval of length T , namely a trial. The dimension

of Xi will be N × T as the signal is captured from N

different electrodes. Consider Xi centred and scaled Xi =
1√
T
X

orig
i (It − 1t1

T
t ) where It is the T × T identity matrix

and 1t is a T dimensional vector with ones in it [9]. Now

we estimate the covariance matrix for all the Xi samples as:

Σ = X̄X̄T

where X̄ is the mean of the Xi samples.

As Σ is symmetric, the eigenvalue decomposition results

in:

Σ = WΛWT

with W being a matrix containing the eigenvectors of Σ
and Λ a diagonal matrix with its eigenvalues. Now we choose

the eigenvectors associated with the highest eigenvalues to

build W̃ , which contains the set of principal components.

From an intuitive point of view, this process is simply

the projection of a sample against a subspace built upon

the covariance of the whole sample set of X . The new

orthogonal base built on the eigenvectors assures that only

those components with more variance will survive allowing

us to discard redundant components which contain less

information.

CSP is an extension to PCA where two different classes of

data are taken into account (e.g. left hand motor imagery vs

right hand motor imagery). Therefore, the set of samples X

is divided into X(+) and X(−), their simultaneous estimated

covariance matrix decomposition is given by [9][20]:

Σ(+) = WΛ(+)WT

Σ(−) = WΛ(−)WT

where W is determined in such a way that Λ(+)+Λ(−) =

I . Large values of λ
(+)
j mean that the corresponding wj

obtains high variance in the positive class and low variance in

the negative one (and vice-versa). Now it remains to choose

those eigenvectors wj that maximises the variance for both

classes. This discrimination can be performed based on the

discriminative activity Sd and the common activity Sc:

Sd = Σ(+) +Σ(−)

Sc = Σ(+) − Σ(−)

The eigenvectors are selected by solving the following

maximisation problem:

max
w∈R

=
wTSdw

wTScw

From the previous steps, we obtain a set of spatial patterns

W that can be used to extract the most important features

from EEG signals for BCI applications.

C. Classification

In this study, Linear Discriminant Analysis (LDA) is used

as the classifier. In spite of its simplicity, this model has

proved to achieve comparable results to other approaches

such as support vector machines and artificial neural net-

works [21]. The main benefit comes from its low compu-

tational resource consumption, being much faster than the

other mentioned methods. The linear discrimination is based

on the discrimination function:

g(X) = WTX + w0

where X is the sample to discriminate, W is the weight

matrix and w0 is the bias or threshold whose values are de-

termined by the training data using the Fisher’s criterion [22]

. The classification is performed simply by deciding that

X ∈ C1 if g(X) > 0 or X ∈ C2 otherwise [23].

LDA only allows to discriminate between two different

classes, this problem can be solved using different discrim-

inant functions, one per class. The discriminant function

gi(X) will classify the unseen input X as Ci if gi(X) < 0 or

as the meta-class MCi if gi(X) > 0, MCi = {Cj}
N
j=0,j 6=i

having N different classes in the training set. Therefore, the

final label for X is given by :

LDA label = argmin
i∈N

gi(X)

In oder to measure the classifier performance the

kappa [24] value is used along with the classification ac-

curacy. The kappa value is defined as κ = po−pc

1−pc

, where

po is the proportion of units on which the judgement agrees

(output from the classifier and the actual label), and pc is the

proportion of units for which the agreement is expected by

chance ( 0.25 for four classes).

Proceedings of UKCI 2011

99



D. Time Segmentation and Classification Strategies

As already mentioned, we are going to discuss different

strategies of time segmentation within the trial from the

instant t = 2 to the instant t = 7 while extracting

common spatial patterns. Three different strategies of time

segmentation are applied as depicted in Figure 2. The aim is

to investigate the performances of the common approach of

applying one single CSP transformation to the whole trial as

compared to applying CSP to each segmented trial:

(a) No segmentation is performed by applying CSP directly

to the whole trial;

(b) Uniform segmentation (all segments with the same size)

without overlapping;

(c) Segmentation with overlapping or sliding window; this

approach requires two parameters, the segment length

and the overlapping size. In this case the segmentation

is performed sliding the first segment a given number of

samples as shown in Figure 2;

In every case we will obtain a set of independent features

using CSP for each segment.

We will explore two different variants in terms of how the

patterns are built for the LDA classification:

(a) One pattern per segment using the features extracted with

CSP;

(b) Feature fusion (FF) by joining the different features after

applying CSP to every segment. In order to avoid over-

fitting the classifier, this strategy is only tested with a

small number of segments and features;

When it comes to classification, we are going to test two

different approaches:

(a) One LDA is applied for all the segments;

(b) One LDA is applied for each segment in the trial;

From these experiments, we will be able to understand

whether it is better to have one model for specific parts of

the trial or one model that classifies all the segments in the

trial.

The last strategy is to apply a voting window to every

segment, such that the classification of a segment will

depend on the K − 1 previous outputs from the classi-

fier. Thus, the label for the instant ti will be labelti =
mode({LDA labelti−k

}K−1
k=0 ) .We expect to assess whether

the output for given point can be improved using previous

neighbouring data.

For all the experiments, the training set is divided for a

ten-fold cross-validation classification, from which the best

number of features to select from CSP is obtained. Based on

this, a classifier is trained using the whole training set and

tested on the evaluation set.

III. RESULTS

In this section, we present the results obtained from

applying the strategies proposed in Section II-D. Obviously

we cannot explore all the possible combinations as some of

them are incompatible or may not make much sense, e.g.

applying majority voting on a segment of length three. In

Fig. 2. Different time segmentation strategies a) No segmentation b)
Segmentation without overlapping and c) Segmentation with overlapping

TABLE I

MEAN KAPPA AND ACCURACY FROM CSP OVER THE WHOLE TRIAL

Mean 1 2 3 4 5 6 7 8 9

CV

Kappa 0.52 0.62 0.50 0.83 0.34 0.21 0.32 0.55 0.77 0.52

Acc 0.64 0.72 0.62 0.87 0.50 0.41 0.50 0.67 0.83 0.64

Eval.

Kappa 0.42 0.54 0.38 0.67 0.32 0.13 0.22 0.65 0.55 0.38

Acc 0.57 0.65 0.54 0.75 0.49 0.35 0.41 0.73 0.66 0.53

Table I, the result of applying CSP over the whole trial is

shown and will be used as benchmark where CV stands for

cross-validation and Acc for accuracy. Regarding the kappa

values and accuracy measurements, we have followed the

competition procedure where only the segment with the best

kappa is taken as the trial output.

Once we have the whole trial data, we can compare it

against simple segmentation approaches without overlapping.

The numbers of segments in which the trial has been divided

are three, five, seven and nine. In this case we have tried

also the approach of having one pattern per segment and

applying feature fusion. The results shows that segmenting

the trial leads to a better performance than using the whole

trial (Table II).

Table III shows the performance of an analogous exper-

iment using simple overlapping. The number of segments

is again three, five, seven and nine, but the overlapping

was calculated in such a way that it maintains the even

distributions along the trial.

Our last experiment is configured to assess a more thor-

ough assessment of overlapping effects. For this purpose,

we set the segment length to be one second, the sliding

window overlap to be 0.8 seconds and a voting window of 3

seconds to update the output for each segment. The results
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TABLE II

MEAN KAPPA AND ACCURACY FROM CSP USING DIFFERENT

NON-OVERLAPPED SEGMENTATIONS

N. Segments Kappa CV Acc CV Kappa eval. Acc eval.

No FF

3 0.54±0.19 0.65±0.14 0.46±0.19 0.59±0.14

5 0.52±0.19 0.64±0.14 0.45±0.18 0.59±0.13

7 0.50±0.21 0.63±0.16 0.44±0.20 0.44±0.15

9 0.48±0.21 0.61±0.16 0.42±0.19 0.56±0.14

FF

3 0.57±0.19 0.68±0.15 0.50±0.17 0.62±0.13

5 0.57±0.19 0.68±0.15 0.50±0.17 0.62±0.13

7 0.56±0.21 0.67±0.16 0.48±0.19 0.61±0.15

9 0.55±0.20 0.66±0.15 0.47±0.21 0.60±0.16

TABLE III

MEAN KAPPA AND ACCURACY FROM CSP USING DIFFERENT

OVERLAPPED SEGMENTATIONS

N. Segments Kappa CV Acc CV Kappa eval. Acc eval.

No FF

3 0.57±0.21 0.68±0.16 0.50±0.19 0.62±0.14

5 0.57±0.22 0.68±0.16 0.50±0.20 0.62±0.15

7 0.56±0.21 0.67±0.16 0.48±0.20 0.61±0.15

9 0.55±0.21 0.66±0.16 0.47±0.19 0.60±0.14

FF

3 0.57±0.21 0.68±0.15 0.48±0.23 0.61±0.17

5 0.58±0.20 0.68±0.14 0.51±0.21 0.64±0.15

7 0.57±0.21 0.68±0.16 0.50±0.21 0.59±0.16

9 0.59±0.19 0.70±0.14 0.47±0.20 0.60±0.15

from this experiment are compared with the winner’s of the

competition (Table IV). This experiment also includes using

a LDA for each segment and one LDA for all the segments

within the trial respectively.

IV. CONCLUSIONS

After the evaluation of different time segmentation ap-

proaches we can conclude that segmenting the trial leads to a

better performance compared with the whole trial approach.

Although as we can see in Figure 3 when the segment

becomes too small the kappa value and accuracy decrease.

This is due to the fact that when we reduce too much the

segment size we are losing important temporal information

used by CSP to compute the correlation among the different

channels. Using feature fusion, which takes into account

different segments within the trial, this effect gets attenuated,

TABLE IV

MEAN KAPPA AND ACCURACY FROM CSP USING OVERLAPPING SLIDING

WINDOW AND COMPETITION WINNER’S RESULT

Kappa CV Acc CV Kappa eval. Acc eval

Winner N/A N/A 0.57±0.19 N/A

Multiple LDA 0.66±0.21 0.74±0.16 0.59±0.22 0.69±0.16

Single LDA 0.65±0.20 0.74±0.15 0.58±0.22 0.69±0.16

Fig. 3. Kappa and accuracy vs number of segments on the evaluation data

Fig. 4. Best subject’s time course with voting window

apart from an increase in the performance probably due to

the increase of temporal information within the patterns.

With the use of the overlapping and voting window, we

have obtained better results than the winner of the BCI

competition as shown in Table IV, even though the winner

used FBCSP which is technically much more complex than

our approach. In Figure 4 and Figure 5 we can observe

the evolution of the kappa value and classification accuracy

during the trial for the best subject, Figure 4 shows how the

voting window helps to increase the accuracy. Notice from

Table IV that the best result is obtained using one LDA per

segment, although in practice this approach may be difficult

to implement in on-line BCI and needs much more resources

than using just a single LDA.

The effect of using the voting window is noteworthy as it

boosts the classification accuracy; its effect may be similar

to the feature fusion as it adds more temporal information

to classifier and thereby makes it more accurate. This ap-

proach will be further investigated in the future in order to

fully assess its usefulness, including the optimisation of the

parameter settings.
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Fig. 5. Best subject’s time course without voting window
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