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Abstract: Using transcranial near-infrared spectroscopy (NIRS) to measure 
changes in the redox state of cerebral cytochrome c oxidase (Δ[oxCCO]) 
during functional activation in healthy adults is hampered by 
instrumentation and algorithm issues. This study reports the Δ[oxCCO] 
response measured in such a setting and investigates possible confounders 
of this measurement. Continuous frontal lobe NIRS measurements were 
collected from 11 healthy volunteers during a 6-minute anagram-solving 
task, using a hybrid optical spectrometer (pHOS) that combines multi-
distance frequency and broadband components. Only data sets showing a 
hemodynamic response consistent with functional activation were 
interrogated for a Δ[oxCCO] response. Simultaneous systemic monitoring 
data were also available. Possible influences on the Δ[oxCCO] response 
were systematically investigated and there was no effect of: 1) wavelength 
range chosen for fitting the measured attenuation spectra; 2) constant or 
measured, with the pHOS in real-time, differential pathlength factor; 3) 
systemic hemodynamic changes during functional activation; 4) changes in 
optical scattering during functional activation. The Δ[oxCCO] response 
measured in the presence of functional activation was heterogeneous, with 
the majority of subjects showing significant increase in oxidation, but others 
having a decrease. We conclude that the heterogeneity in the Δ[oxCCO] 
response is physiological and not induced by confounding factors in the 
measurements. 
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1. Introduction 

Near-infrared spectroscopy (NIRS) is a widely used optical method of monitoring, non-
invasively and with good time resolution, regional changes in chromophore concentration in 
various types of biological tissue, including the adult brain [1–4]. NIRS can provide 
information not only about cerebral oxygen delivery, via measured concentration changes of 
oxygenated (Δ[HbO2]) and deoxygenated haemoglobin (Δ[HHb]), but, with suitable 
instrumentation and algorithms [5,6], also about local cellular oxygen metabolism, via 
measuring concentration changes of oxidised cytochrome c oxidase (Δ[oxCCO]). 
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Cytochrome c oxidase (CCO) is the terminal enzyme of the mitochondrial respiratory 
chain and catalyses over 95% of oxygen metabolism. It contains four redox-active metal 
centres, of which the copper A (CuA) centre has a distinct redox-sensitive absorbance band in 
the near infrared [7]. In the short term the total concentration of CCO does not change, 
consequently changes in the NIRS-obtained Δ[oxCCO] signal track changes in the CCO redox 
state. The CCO redox state is a complex function of the delivery of redox substrates (oxygen, 
NADH) into mitochondria and the magnitude of the mitochondrial proton electrochemical 
potential that drives ATP synthesis [8]. The Δ[oxCCO] signal - appropriately interpreted with 
the aid of mathematical modelling (BRAINSIGNALS model [9]) - can therefore be used as a 
non-invasive marker of changes in mitochondrial oxygen consumption and utilisation. 
Because of this capacity, it provides an appealing target for clinical monitoring, with the 
potential to aid the early detection of regional ischemia and guide subsequent therapeutic 
interventions. 

The transcranial NIRS measurement of Δ[oxCCO] in the adult brain, in the presence of 
significantly higher concentrations of haemoglobin, poses certain technical challenges. 
Possible interference of changes in optical scattering with the NIRS measurements [5,6] and 
insufficient separation of the chromophores by the algorithm used to convert optical density 
into changes in chromophore concentration [5,6,10–13] are the most frequently mentioned 
confounding effects. Despite these issues, several studies have reported Δ[oxCCO] 
measurements in the adult brain in a variety of settings, including visual stimulation [12,14], 
traumatic brain injury [15], manipulation of cerebral oxygen delivery [16,17], orthostatic 
hypotension [18], cardiopulmonary bypass during cardiac surgery [19] and obstructive sleep 
apnoea [20]. 

A hybrid optical spectrometer (pHOS) and associated algorithm designed to address the 
aforementioned technical issues have been recently developed by our group [21]. The pHOS 
combines multi-distance frequency and broadband spectrometers, and allows for 
measurements of light absorption and scattering at discrete wavelengths, together with multi-
distance broadband near-infrared light attenuation measurements. 

Neurovascular coupling refers to the mechanism describing the tight coupling between 
local cerebral neuronal activity and subsequent changes in cerebral blood flow to meet local 
oxygen demand [1]. It is these local changes in cerebral hemodynamics and oxygenation that 
can be measured by NIRS. Functional activation through anagram solving induces bilateral 
frontal hemodynamic response detected by NIRS as an increase in HbO2 concentration and a 
decrease in HHb concentration [1]. This scenario provides an excellent paradigm for an NIRS 
study and the activated part of the brain can be monitored with optodes placed over a hairless 
and easily-accessible part of the scalp. Therefore, for the purpose of monitoring Δ[oxCCO] in 
the healthy adult brain with NIRS in the presence of increased brain activity, anagram solving 
provides a convenient setting [22]. Confounding task-induced systemic changes need to be 
measured simultaneously since they could affect the NIRS signals [23–26]. 

The aim of this study was to use the pHOS to investigate the response of Δ[oxCCO] to 
frontal lobe functional activation in healthy adult volunteers. In order to explore this aim the 
objectives of this study were 1) to measure the Δ[oxCCO] response in different layers of the 
head using multi-distance broadband spectroscopy in the presence of a hemodynamic response 
consistent with frontal lobe activation and 2) to investigate systematically multiple possible 
confounds of these measurements. 

2. Methods 

2.1. Study population and protocol 

Eleven healthy volunteers participated in the study (7 male; age range 21-34 years). Ten 
subjects were right-handed. The study was approved by the UCL Ethics Committee and 
written informed consent was obtained from all subjects. 
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All volunteers were seated in a comfortable position. An anagram exercise protocol 
previously described by our group was followed [27,28]. Briefly, data were continuously 
collected during a 2-minute baseline, followed by a sequence of 1 minute of 4-letter anagrams 
and 1 minute of 7-letter anagrams, each repeated three times, and concluded by another 2-
minute baseline. The total duration of the recordings was therefore 10 minutes. The subjects 
were encouraged to solve as many anagrams as possible, without verbalising the solutions. 

2.2. Instrumentation 

The pHOS has been described elsewhere [21,29,30]. Briefly, it consists of a dual-channel 
frequency domain (FD) spectrometer and two single-channel broadband spectrometers. The 
FD component of the pHOS is a modified commercially available system (ISS Oximeter, 
model 96208, ISS Inc, Champaign, IL, USA) operating at a modulation frequency of 110 
MHz. Light is emitted at wavelengths 690, 750, 790 and 850 nm and two source-detector 
separations (3.0 and 3.5 cm) are available. The instrument measures the mean value, 
amplitude and phase shift of the modulated light intensity for the two different source-detector 
separations at each wavelength. These measurements are subsequently used for quantifying 
the absorption (μa) and reduced scattering (μs′) coefficients of the measured tissue [31]. 

Each broadband spectrometer of the pHOS utilises a 50W halogen bulb as a white light 
source and a filter is implemented to reduce the effect of high temperature. After passing 
through a configuration of lenses, the light is detected by a CCD camera (Pixis 512, Princeton 
Instruments, Trenton, NJ, USA) with chip dimensions 12.3x12.3 mm (512x512 pixels). 
Through four detector fibres with different diameters and oval cross-section, the light is 
directed to four detectors situated at distances 2.0, 2.5, 3.0 and 3.5 cm away from the light 
source. The optical bandwidth of the broadband spectrometers is 504-1068 nm with 
wavelength resolution of 4 nm. 

Each of the two optodes of the pHOS incorporates one channel of the FD system with a 
broadband channel. This configuration leads to the two long source-detector separations (3.0 
and 3.5 cm) being the same for each broadband and FD channel, with each broadband channel 
having available two additional shorter source-detector separations (2.0 and 2.5 cm). 
Recordings in the two pHOS channels occur in parallel, but within each channel the FD and 
broadband measurements are taken sequentially, with the FD system providing the trigger. 
Each measurement cycle consists of one broadband measurement followed by four FD 
measurements, resulting in a cycle length of 3.2 s. 

With the ability to interrogate the same tissue segment simultaneously for μa and μs′ and 
for broadband light attenuation data, combined with the ability to perform these measurements 
at multiple source-detector separations, the pHOS may provide optical data that can help 
resolve most of the technical issues commonly hampering Δ[oxCCO] measurements. 

2.3. Measurements 

All pHOS measurements were obtained unilaterally on the right side of the forehead 
throughout the protocol, with optodes placed over the Fp2, according to the 10-20 system of 
electrode placement [32]. Simultaneously, arterial blood pressure (BP) and heart rate (HR) 
were measured with a Portapres® system (Finapres Medical Systems, The Netherlands). Scalp 
blood flow (LD Flux) was also monitored with a laser Doppler probe placed on the forehead 
(Moor Instruments, UK). 

2.4. Data analysis 

All data analysis was performed in Matlab (version R2010b, Mathworks, Natick, MA, USA). 
The modified Beer-Lambert law was used to determine changes in Δ[HbO2], Δ[HHb] and 

Δ[oxCCO], based on measured changes in broadband near-infrared light attenuation. The 
concentration calculations were undertaken for each of the four single source-detector 
combinations throughout rest, anagram exercise and recovery continuously. A least-squares 
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fitting procedure (UCLn algorithm [33]) was implemented for these calculations over two 
different wavelength ranges, 740-900 nm and 780-900 nm. The UCLn algorithm is based on 
multiple linear regression analysis, utilising the Beer-Lambert law to determine the best fit of 
the chromophore specific extinction coefficients, ε, to the measured attenuation changes, ΔA, 
over n number of wavelengths, λ: 

 

2

2

2

-1
HbO 1 HHb 1 oxCCO 1 1

2
HbO 2 HHb 2 oxCCO 2 2

HHb n oxCCO n nHbO n

ε (λ ) ε (λ ) ε (λ ) ΔA(λ )
Δ[HbO ]

ε (λ ) ε (λ ) ε (λ ) ΔA(λ )1Δ[HHb] =
... ... ...pathlengh ...Δ[oxCCO]

ε (λ ) ε (λ ) ΔA(λ )ε (λ )

   
    
    
    
          

  (1) 

The specific extinction coefficient spectra used to resolve Δ[HbO2], Δ[HHb] and Δ[oxCCO] 
are provided as online supplementary material (see Media 1). 

Differential pathlength factor (DPF) falls with increasing wavelength and this wavelength 
dependence was taken into account in all four broadband detectors [34]. DPF was assumed to 
be constant and equal to 6.26 for the two broadband detectors proximal to the light source 
[35]. At the location of the two distal detectors, time-varying DPF was derived from the FD 
measurements using the μa and μs′ measured at 690, 750, 790 and 850 nm [31]. From these 
DPF calculations, the time-varying DPF measured at 790 nm was used for the concentration 
calculations of the two distal broadband detectors. For these detectors the concentration 
calculations were repeated assuming DPF constant and equal to the first baseline value of the 
aforementioned time-varying DPF series. 

The calculated chromophore concentration changes, together with the μa, μs′, DPF and the 
systemic data were resampled every 3s and the derived concentration data were linearly 
detrended to remove possible baseline drifts. Subsequently all data were processed with a low-
pass 5th order Butterworth filter with a cut-off frequency of 0.08Hz. 

There was a total of 4 data sets for analysis from each subject, corresponding to four 
source-detector separations. To select representative data during baseline and activation, 
suitable baseline and activation periods had to be determined for data averaging. The 
activation period for Δ[HbO2] was defined as the 60-second window of max Δ[HbO2] increase 
with respect to baseline. The Δ[HHb] and Δ[oxCCO] traces were subsequently scanned 
separately for the 60-second window of maximum change with respect to baseline. The search 
areas for these windows were tied to the Δ[HbO2] activation window, with the windows 
allowed to start as early as 57 s prior the start of the Δ[HbO2] window and end as late as 57 s 
after the end of the Δ[HbO2] window (Fig. 1). All activation windows were set to remain 
entirely inside the anagram exercise period, by not allowing the windows to start prior to the 
onset of the exercise and end after the finish of the exercise (Fig. 1). Averages for the systemic 
and scattering data during activation were also calculated inside the CCO activation window. 
The baseline period was defined for all parameters as the 60-second window immediately 
prior to the onset of the anagram exercise. For all parameters “response” is defined as the 
difference between activation and baseline. 

In order to ensure that only Δ[oxCCO] traces concomitant with increased brain activity 
were interrogated, only subjects showing hemodynamic response consistent with functional 
activation (a statistically significant increase in Δ[HbO2] and a simultaneous, statistically 
significant decrease or no response of Δ[HHb] [1]) were entered into the analysis described in 
this study. 

The UCLn algorithm was also used to derive changes in chromophore concentrations 
when resolving for 2 chromophores only (HbO2 and HHb) [33]. Attenuation-change spectra 
(change in attenuation over the wavelength range resolved) for both 2- and 3-chromophore fits 
were back-calculated from the concentration changes derived from the UCLn algorithm (prior  
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Fig. 1. Selection of baseline and activation time windows for the three chromophores. For all 
chromophores the baseline window was the 60-second window just before the subject started 
solving anagrams. The activation window for HbO2 was the 60-second window of maximum 
Δ[HbO2] increase with respect to baseline. The search area for the middle of this window was 
any time during the anagram exercise, except for the first and last 30 seconds. The activation 
windows for CCO and HHb were the 60-second windows of maximum Δ[HHb] and Δ[oxCCO] 
response with respect to baseline. The search areas for the centres of both windows were tied to 
the HbO2 activation window and were set to start as early as 27 seconds before the beginning of 
the HbO2 window and end as late as 27 seconds after its end. 

to detrending or filtering), at all sampling points falling within the activation window of 
Δ[oxCCO]. 

2.5. Statistical analysis 

All statistical analysis was carried out in SPSS (v 18.0, IBM, NY, USA). Student’s unpaired t-
tests were used to compare, for all parameters, the means of the selected baseline and 
activation points. Responses between the four detectors were compared using analysis of 
variance with repeated measures followed by contrast analysis. Linear regression analysis was 
performed separately for each detector to investigate, over all subjects, possible relations 
between various parameters. Average data are expressed as mean ± SD and statistical 
significance was set to p<0.05. 

3. Results 

3.1. Hemodynamic response and choice of channels 

Out of 11 subjects, 8 showed hemodynamic response consistent with functional activation (as 
defined in the Methods section) and within each subject there was excellent agreement  
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Fig. 2. Grand averages of the time course of Δ[HbO2] and Δ[HHb] over the 8 subjects that 
showed hemodynamic response consistent with functional activation. The vertical lines at 120 s 
and 480 s denote the onset and end of anagram exercise. (a): detector 1 (furthest detector); (b): 
detector 2; (c): detector 3; (d): detector 4. 

between the 4 detectors. Only 1 of the 8 subjects showed a discrepancy between detectors, in 
the directional changes in HbO2 and HHb. Figure 2 shows the grand average of the Δ[HbO2] 
and Δ[HHb] time courses over these 8 subjects for all detectors. 

Systemic data were not available for 1 out of 8 subjects. 

3.2. Multi-distance response of Δ[HbO2] 

Figure 3 shows separately for each detector the Δ[HbO2] response to functional activation 
from each subject. On average, the Δ[HbO2] response over all 8 subjects that showed 
hemodynamic response was 1.2 ± 1.0 μmolar (detector 1), 1.8 ± 1.2 μmolar (detector 2), 2.3 ± 
1.4 μmolar (detector 3) and 2.8 ± 2.1 μmolar (detector 4), from the detector furthest to the 
detector nearest to the source. Within each subject the response tended to be smaller for larger  

 

Fig. 3. Response of Δ[HbO2] between baseline and activation for each of the four detectors. 
Each symbol corresponds to a different subject, in agreement with Fig. 4, 5 and 6. det1-4 
denotes detector number, as indicated in the legend. No hemodynamic response consistent with 
functional activation was recorded in detectors 3 and 4 for subject “X”. 
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source-detector separations and on average it was statistically significantly different between 
detectors 1-2 and 2-3, but not between 3 and 4. The average time to-peak-response from the 
onset of anagram exercise was 153.3 ± 35.2 s, 138.7 ± 26.2 s, 138.8 ± 24.9 s and 144.8 ± 34.1 
s, from the distal to the proximal detector with no statistically significant difference between 
detectors. 

3.3. Possible influencing factors on the Δ[oxCCO] measurements 

Potential influencing factors on the Δ[oxCCO] measurements were explored on the data from 
the furthest detector, unless explicitly stated otherwise. This choice was driven by the fact that 
measurements from the furthest detector are more likely to reflect cerebral changes. 

3.3.1. Wavelength range 

For the furthest detector, the overall averages of the time courses of Δ[HbO2], Δ[HHb] and 
Δ[oxCCO] in all 8 subjects were calculated twice, once for wavelength range 740-900 nm and 
once for 780-900 nm. Comparison for each chromophore of the average time course for the 
two wavelength ranges, suggested no effect of the selected wavelength range on the 
calculation of the concentration changes . Based on these results and in accordance with 
previously published data from our group, only results from the 780-900 nm wavelength range 
are discussed throughout this study, unless explicitly stated otherwise [10,15,16]. 

3.3.2. Analysis of the 2- and 3-chromophore fit spectra 

The back-calculated attenuation-change spectra from the furthest detector are shown in Fig. 4 
as the difference between the 3 and the 2-chromophore fit for the 8 subjects showing the 
required hemodynamic response. It is noted that the spectrum presented for each subject is an 
average spectrum, derived from all individual spectra corresponding to the 60-second 
Δ[oxCCO] peak activation window. The spectra do not have an arbitrary distribution around y 
= 0, but appear to show a shape approximating the oxidised minus reduced CCO spectrum, 
featuring a broad peak at approximately 820 nm. This suggests that fitting the measured 
changes in near-infrared attenuation only for HHb and HbO2 would leave a chromophore with 
the spectral features of CCO unaccounted for. 

Based on these findings only results from the 3-chromophre fit are discussed throughout 
this study, unless explicitly stated otherwise. 

3.3.3. Pathlength 

For the two furthest detectors, using a time-variant DPF or a constant DPF made no 
statistically significant difference in the individual time traces of Δ[HbO2], Δ[HHb] and 
Δ[oxCCO] in any subject, neither in terms of amplitude of response nor in terms of time to-
peak-response (data not shown). Based on these findings all results discussed throughout this 
study for the two furthest detectors are for time-varying DPF, unless explicitly stated 
otherwise. 

The pathlengths used for the concentration calculations in each detector are given in Table 
1. For the two furthest detectors where time-varying DPF was used, on average over the 8 
subjects there was no statistically significant difference between the baseline and activation 
DPF value used for the concentration calculations. 

Time-variant DPF derived from the FD measurements was used for the two detectors 
furthest away from the source (1 and 2). Mean pathlength values corresponding to the baseline 
and CCO activation windows are presented in the table. For detectors 3 and 4 constant DPF 
was used. 
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Fig. 4. Attenuation-change spectra back-calculated from the calculated concentration changes 
at peak Δ[oxCCO] response for different subjects. The presented spectra are the average of all 
spectra falling within the window of peak Δ[oxCCO] activation. The difference between the 3 
and the 2-chromophore fit is plotted. All data are from the furthest detector. The symbols at the 
top left-hand-side corner of each plot indicate the correspondence with Fig. 3, 5 and 6. 

Table 1. Pathlength, presented as DPF x distance (group data, n = 8) 

Detector 1   Detector 2     
Baseline In CCO  

activation window 
  Baseline In CCO  

activation window 
  Detector 3 Detector 4 

(8.0 ± 0.5) 
x3.5 cm 

(8.1 ± 0.5) 
x3.5 cm 

  (8.0 ± 0.5) 
x3.0 cm 

(8.1 ± 0.5) 
x3.0 cm 

  6.26 
x2.5 cm 

6.26 
x2.0 cm 
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3.3.4. Concomitant systemic hemodynamic changes 

A potential confounding effect of task-induced systemic changes on the Δ[oxCCO] response 
was explored by investigating possible associations between the amplitude of Δ[oxCCO] 
response with the corresponding changes in BP, HR and LD Flux calculated within the same 
baseline and activation windows as Δ[oxCCO]. No significant correlation was found with any 
systemic parameters in any detector, with a mean correlation coefficient of R = 0.5 for BP, R 
= 0.30 for LD Flux and R = 0.20 for HR. 

3.3.5. Concomitant changes in optical scattering 

The response of Δ[oxCCO] to functional activation was not statistically significantly related 
to the corresponding response of μs′ in any detector, neither at 790 nm nor at 850 nm (data not 
shown). Linear regression analysis revealed no statistically significant correlations, with an 
average R-value over all detectors of R = 0.28 for 790 nm and R = 0.16 for 850 nm. 

3.4. Multi-distance response of Δ[oxCCO] to functional activation 

The response of Δ[oxCCO] to functional activation is shown in Fig. 5 for each detector and 
separately for each subject. All Δ[oxCCO] responses were statistically significant. A 
heterogeneous response was found between subjects, with the majority exhibiting an increase 
in Δ[oxCCO] during functional activation but with some clearly showing a significant 
decrease. Within the same subject there was good agreement in the directional change of 
Δ[oxCCO] between detectors. 

 

Fig. 5. Response of Δ[oxCCO] between baseline and activation for each of the four detectors. 
Each symbol corresponds to a different subject, consistent with Fig. 3, 4 and 6. det1-4 denotes 
detector number, as indicated in the legend. All responses were statistically significant. 

Figure 6 shows examples of the individual time-courses of Δ[HbO2] and Δ[oxCCO] from 
two subjects, one case where Δ[oxCCO] increased during functional activation (p<0.0001) 
and another case where Δ[oxCCO] decreased (p<0.0001). The individual time-courses of 
Δ[HbO2], Δ[HHb] and Δ[oxCCO] from all subjects are provided in the online supplement, as 
supplementary Fig. 1. 
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Fig. 6. Examples of the individual time-courses of Δ[HbO2] and Δ[oxCCO] for two subjects. 
(a): Δ[oxCCO] increased during functional activation (detector 1) and (b): Δ[oxCCO] 
decreased (detector 2). The signals are presented after being filtered with a Butterworth filter 
and smoothed with a 60-second sliding average window, as described in the Methods. The 
vertical lines at 120 s and 480 s denote the onset and end of anagram exercise. The symbols at 
the top left-hand-side corner of each plot indicate the correspondence with Fig. 3, 4 and 5. See 
Media 2. 

4. Discussion 

A heterogeneous response of Δ[oxCCO] to functional activation was measured, with the 
majority of the participants demonstrating a statistically significant increase in Δ[oxCCO] 
during anagram solving and others a statistically significant decrease. 

The paradigm of brain functional activation through anagram solving was selected because 
of its ease of application in an NIRS study and its reliability in inducing functional activation-
related changes in the healthy adult brain. Using instrumentation appropriate for CCO redox 
state measurements, we were able to detect significant changes in Δ[oxCCO] in all channels 
that showed a hemodynamic response. The directional change in Δ[oxCCO] was 
heterogeneous with some subjects showing an increase and others a decrease (Fig. 5). 
Thorough analysis was undertaken to ensure that only data sets exhibiting hemodynamic 
response consistent with functional activation were interrogated for a Δ[oxCCO] response and 
to further ensure the step-by-step exclusion of all factors that could have a confounding effect 
on the CCO redox state measurements. The heterogeneity in the directionality of the 
Δ[oxCCO] response therefore appears to be physiological. 

Such heterogeneous response of Δ[oxCCO] (Fig. 5) is not reported in the few existing 
NIRS functional activation studies investigating CCO [12,14]. Through NIRS measurements 
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over the occipital lobe, Heekeren et al. showed an increase in the concentration of oxidised 
CCO during passive visual stimulation (10 s of stimulation followed by 30 s of rest), in the 
presence of qualitatively similar but quantitatively considerably smaller changes in Δ[HbO2] 
and Δ[HHb] compared to the present study [14]. Some degree of heterogeneity in the response 
of Δ[oxCCO] to functional activation, entirely masked in the group results, was found in the 
study of Uludağ et al. [12]. The authors implemented an elaborate protocol of passive blob 
(high CCO content) and interblob (low CCO content) stimulation for the purpose of 
investigating the influence of haemoglobin cross-talk on the detected Δ[oxCCO] responses. 
While not the primary purpose of the study and not commented on by the authors, a 
significant decrease in the concentration of oxidised CCO was detected in a few individuals, 
even though on average the concentration of oxidised CCO increased. Since our study and 
others target different cortical areas and use dissimilar stimulation protocols, a direct 
comparison is not prudent. Although the Δ[oxCCO] response in our study is suggestive of a 
group overall increase in the concentration of oxidised CCO during frontal functional 
activation (P = NS in all detectors), there is no good reason to believe that the decrease 
observed in some subjects is not a real physiological response. 

Such heterogeneity in the Δ[oxCCO] response was somewhat surprising, since other 
studies conducted by our group using broadband spectroscopy in healthy volunteers, and with 
a similar measuring site and the same algorithms to the present study, detected group 
significant changes in Δ[oxCCO] during a variety of protocols inducing global changes in 
cerebral hemodynamics via manipulation of cerebral oxygen delivery. Tisdall et al. [16] found 
a significant decrease of 0.24 μmolar (median, P<0.01) in Δ[oxCCO] during hypoxia 
(decrease of SaO2 to 80%). Tachtsidis et al. [17] found a significant increase of 0.09 ± 0.12 
μmolar (P<0.05) in Δ[oxCCO] with hyperoxia (increased inspired oxygen concentration to 
100%). During hypercapnia, the same authors found an increase in Δ[oxCCO] of 0.25 ± 0.17 
μmolar (P<0.005). It therefore seems unlikely that the heterogeneous response of Δ[oxCCO] 
to functional activation observed in the present study could be induced by factors other than 
the protocol of functional activation per se. 

The major contribution to the Δ[oxCCO] signal is changes in the redox state of the CuA 
centre. The expected response of the redox state of CuA to functional activation is not 
theoretically predictable [8]. An increase in ATP turnover will increase mitochondrial ADP 
and decrease the magnitude of the mitochondrial membrane potential. When CCO is studied 
in isolation, given the position of the CuA centre in the membrane, dropping the membrane 
potential causes increase in oxidation as the rate of electron exit from CuA is enhanced [36]. 
However, in the whole mitochondrion or cell, the membrane potential acts on multiple sites of 
the electron transfer chain simultaneously. It is entirely possible that effects elsewhere could 
result in an increased reduction rate for CuA and therefore cancel out this effect. Indeed, in 
isolated mitochondria the cytochrome c redox state (which is in close redox equilibrium to and 
hence tracks the CuA redox state) can be oxidised or reduced depending on the fine details of 
the mitochondrial system being studied [37]. 

The situation is even more complicated in our experimental paradigm as two other factors 
are affected by functional activation. Oxygen levels can increase due to the increase in blood 
flow, and NADH levels can increase due to activation of citric acid cycle dehydrogenases. 
These factors act in opposite ways; increases in NADH can cause an increase in CuA 
reduction, whereas oxygen increases can cause an oxidation [8]. Slight physiological or 
biochemical differences of an individual may therefore change the direction of the CuA 
response. 

Furthermore, mitochondrial redox systems can have significant spatial and temporal 
variations in their response to stimulation. This is best illustrated with fluorescence 
measurements of NADH [38]. It has been shown in brain slices that stimulation causes an 
initial oxidation of NADH followed by a reduction. The strength of the two responses differs 
depending on the time and region being measured. This has implications for our study. It is 
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possible that near-infrared light interrogates somewhat different regions of the cortex in 
different subjects; in this case the difference in spatial sensitivity could explain whether we 
see an oxidation or a reduction in CuA, rather than a fundamental difference in the underlying 
biochemistry or physiology. 

Use of a mathematical model of cerebral circulation and metabolism developed in our 
group could aid the interpretation of the measured heterogeneous Δ[oxCCO] changes in each 
individual [9]. The model has been designed for the interpretation of experimental data and 
can reproduce basic mechanisms of cerebral physiology. Receiving a number of measured 
variables as input, it is able to generate as output a close likeness of other variables that were 
not used as input but were measured nonetheless. Most importantly, it is also able to predict 
variables that cannot be measured, providing an immensely helpful tool in the interpretation of 
physiological data. 

In the light of the heterogeneous response of CCO measured in our study, we used this 
model to explore the predicted response of CCO to functional activation (modelled as a 30% 
increase in demand, causing a ~5% increase in CMRO2). 

The model allows for the possibility of changing the NAD/NADH ratio via varying the 
model parameter D_NADH (see supplementary Fig. 2 for details). This represents a change in 
glycolytic TCA cycle flux during functional activation [39]. Such a change can affect both the 
magnitude and direction of the Δ[oxCCO] response [9]. Figure 7(a) shows that a relatively 
small change in the NAD/NADH ratio from 9.0 to 8.1 can change the Δ[oxCCO] response 
from an oxidation to a reduction; the direction of the Δ[HbO2] and Δ[HHb] responses remains 
unaffected. 

Internal properties of the mitochondrial electron transfer chain, in particular its response to 
changes in the proton motive force, can also alter the direction of a redox state change 
following functional activation [8]. To illustrate this we varied the parameter in the model that 
controls how sensitive the rate of NADH oxidation is to the proton motive force (parameter 
ck1-see supplementary Fig. 2 for details). Figure 7(b) illustrates how varying this internal 
parameter can cause a switch in the Δ[oxCCO] response to functional activation, despite only 
a very modest increase in CMRO2. Again, the direction of the Δ[HbO2] and Δ[HHb] 
responses remains unaffected. 

These examples illustrate that the direction of the Δ[oxCCO] response to functional 
activation can vary between individuals even if other measured signals appear identical. This 
confirms that it is not implausible that genuine physiological variations account for the 
heterogeneous response of Δ[oxCCO] observed in our population. Interestingly, a 
heterogeneous response of CCO to reperfusion after cerebral ischemia has been used as a 
discriminator of pathophysiology [40]. 

Without being the primary finding of the present study, the Δ[HbO2] time to-peak-response 
that we measured is worthy of comment as it might appear at first glance to be rather long 
compared to that seen in other functional activation studies. The hemodynamic response to 
cerebral functional activation is highly variable in terms of time, amplitude and predictability, 
depending among other factors on the activated area and the task used to activate it [41]. 
Therefore, in the first instance only comparisons of our study with those involving frontal 
anagram-evoked stimulation and activation in healthy adults would seem judicious 
[24,27,28,42–44]. Furthermore, because participants in the present study were subjected to an 
unusually prolonged task, only studies with similar task duration are considered in the 
comparison [24,27,28]. In this context, the time to-peak-response found in the present study is 
of the same order of magnitude as reported in other studies (~1 min), albeit longer. 

A tendency for the detectors further away from the source to identify a larger Δ[oxCCO] 
response, compared to the detectors closer to the source, was present in our data. The furthest 
detectors have higher depth sensitivity than the closer detectors and therefore interrogate more 
brain tissue. Because CCO is present in higher concentrations in the brain compared to skin  
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Fig. 7. Modelling of NIRS changes following functional activation. The BRAINSIGNALS 
model was used [9]. Functional activation was modelled as a 30% increase in demand 
(parameter change from 1 to 1.3). (a): Model parameter D_NADH was varied with respect to 
its normal value in the model and the accompanying optical changes and NAD/NADH ratios 
plotted. (b): Model parameter ck1 was varied with respect to its normal value in the model and 
the accompanying optical changes plotted. See Media 3. 

[45], such incremental Δ[oxCCO] response with increasing source-detector separation is to be 
expected. 

In cerebral functional activation studies, concerns about simultaneous task-evoked changes 
in scalp hemodynamics interfering with and obscuring the NIRS signals from the deeper 
layers are common [23–25,27,28]. Although hemodynamic fluctuations in the scalp due to 
task-induced changes in heart rate and blood pressure introduce physiological noise in the 
NIRS signals, changes in scalp perfusion are difficult to unravel from the actual changes in 
cerebral perfusion. It can be anticipated that the degree of scalp contamination introduced in 
the NIRS signals would strongly depend on whether or not the optodes were placed directly 
over large scalp vessels, but this information cannot be retrieved retrospectively in the present 
study. However, with respect to Δ[oxCCO] (the primary target of this study), the absence of 
significant correlations with the measured systemic variables in terms of amplitude of 
response indicates that the observed changes in oxidised CCO concentration are not the effect 
of interference from the superficial layers. In any case, the Δ[oxCCO] signal is expected to be 
less prone to extracerebral contamination, since CCO is present only in small concentrations 
in the scalp [46]. 
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An experimental study by Schytz et al. [47] suggested that NIRS data obtained with a 
multi-distance source-detector configuration can be decontaminated from the effect of skin 
blood flow by using the short source-detector separation measurements (1 cm) to correct the 
long source-detector separation measurements (3 cm). The shortest source-detector separation 
in the pHOS is however 2 cm, a distance long enough for the detector to pick up some brain 
signal [48,49], and therefore using these measurements to decontaminate the 3.0 and 3.5 cm 
measurements would produce erroneous results. It is also acknowledged that Monte Carlo 
simulations in the adult head suggest an error of over 20% in the measurement of optical 
absorption using an FD spectrometer with source-detector spacing between 3.0 and 4.5 cm, 
induced by the extra-cerebral tissue [50]. From the practical point of view, we attempted to 
reduce the interference from the superficial layers by firm application of the optodes on the 
forehead and using mostly the recordings from the distal detector to draw conclusions about 
the behaviour of CCO during functional activation. The lack of correlations between 
Δ[oxCCO] and systemic variables indicates that this approach was sufficient. 

Experimental considerations: We are aware of concerns regarding the depth sensitivity of 
NIRS, however we believe that in our study the tissue volume interrogated by the FD and 
broadband components could not have been substantially different. Firstly, because in terms 
of detector positioning within each pHOS optode, the two long source-detector separations 
(3.0 and 3.5 cm) of the FD and broadband components were equivalent. Secondly, because for 
the adult human head the difference in the interrogated tissue volume due to different 
wavelengths of near-infrared light is very small [51]. Regardless, even if there was some 
difference in the interrogated tissue volume between the two modalities, it could not have 
selectively distorted our findings. Both Δ[oxCCO] and Δ[HbO2] concentrations were 
calculated using exactly the same method; the haemoglobin measurements showed a response 
consistent with functional activation and in the presence of this response, we investigated the 
corresponding Δ[oxCCO] response. 

It is obvious from Fig. 5 that two subjects showed a heterogeneous response of Δ[oxCCO] 
to functional activation between different detectors. We cannot exclude the possibility that, in 
the same subject, due to the different depth sensitivity of the detectors, the different 
interrogated regions exhibited different Δ[oxCCO] response to functional activation. We 
consider this finding to be an advocate against averaging data from different detectors. 

DPF was calculated from μa and μs′ based on a relationship derived from the diffusion 
theory assuming a semi-infinite turbid medium [31]. It is possible that differences between the 
geometry of this model and the adult head will induce further errors in the calculation of DPF. 

An effect of haemoglobin cross-talk was not evident in our data. Spectroscopic cross-talk 
can arise from the wavelength dependency of the partial photon pathlength of the activated 
cortical volume and is demonstrated as a change in one chromophore mimicking the change in 
another [11,12]. Although we investigated the effect of functional activation on Δ[oxCCO] 
only in the presence of a concomitant increase in Δ[HbO2], the directionality of the Δ[oxCCO] 
response was not homogenous, as would be expected if it was solely the result of cross-talk 
from the (homogenous) Δ[HbO2] response. Furthermore, linear regression analysis revealed 
no statistically significant correlations between the response of Δ[oxCCO] and Δ[HbO2] or 
between the response of Δ[oxCCO] and Δ[HbT] = Δ[HbO2] + Δ[HHb], with an average R-
value over all detectors of R = 0.21 for Δ[HbO2] and R = 0.16 for Δ[HbT]. 

In future studies, the option to induce frontal lobe functional activation with a less 
prolonged task, which could be repeated several times for each subject, should be considered 
for the purpose of investigating the homogeneity of the directional changes in Δ[oxCCO] 
within subjects. Finally, the possibility that the prolonged stimulation protocol led to 
habituation effects in the present study cannot be excluded. 
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5. Conclusion 

A heterogeneous response of Δ[oxCCO] to functional activation was found, with most 
subjects exhibiting an increase in Δ[oxCCO] during anagram solving, but with some showing 
a decrease. We suggest that this heterogeneity has a physiological interpretation and is not 
induced by confounding factors in the measurements. 
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