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ABSTRACT

Probes with runs of four or more guanines
(G-stacks) in their sequences can exhibit a level of
hybridization that is unrelated to the expression
levels of the mRNA that they are intended to
measure. This is most likely caused by the formation
of G-quadruplexes, where inter-probe guanines
form Hoogsteen hydrogen bonds, which probes
with G-stacks are capable of forming. We demon-
strate that for a specific microarray data set using
the Human HG_U133A Affymetrix GeneChip and
RMA normalization there is significant bias in the
expression levels, the fold change and the correl-
ations between expression levels. These effects
grow more pronounced as the number of G-stack
probes in a probe set increases. Approximately
14% of the probe sets are directly affected. The
analysis was repeated for a number of other normal-
ization pipelines and two, FARMS and PLIER,
minimized the bias to some extent. We estimate
that �15% of the data sets deposited in the GEO
database are susceptible to the effect. The inclusion
of G-stack probes in the affected data sets can bias
key parameters used in the selection and clustering
of genes. The elimination of these probes from any
analysis in such affected data sets outweighs the
increase of noise in the signal.

INTRODUCTION

The use of microarray technologies, such as the
Affymetrix GeneChip, has revolutionized gene expression
profiling over the past 10 years. It provides a quick and
relatively cheap method for the high-throughput quantifi-
cation of expression for a range of species. How this

quantification is carried out has been discussed at length
elsewhere (1,2). In summary, the amounts of hybridization
with short fragments (25 bases long for GeneChips) of
11–20 regions of a gene are measured from strands of
complementary ssDNA (called probes) lithographically
printed onto a chip using fluorescent labelling. The
sequence fragments are picked so that they are intended
to be unique for the gene of interest. A group of probes
that are complementary for a specific gene are referred to
as a probe set.
The analysis of this type of data has presented a number

of challenges and a considerable amount of effort has
focussed on issues such as the summarization of the data
from different probes (3,4), background correction and
normalization (5,6). Apart from the implications of GC
content on normalization, comparatively little work has
been done on the effect of the underlying biophysics of
these devices, though it has been found that probes con-
taining runs of four or more contiguous guanines show
abnormally high levels of hybridization (7). It has further-
more been shown that such probes are not reliable for
measuring gene expression in the various Affymetrix
GeneChips of mammalia, as these probes exhibit an un-
usually high correlation with each other (8,9).
The likely cause for these anomalies is that the runs of

guanines in the probes are forming G-quadruplexes
(8,10,11). Such quadruplexes form through a series of
Hoogsteen hydrogen bonds between the guanines with a
centrally placed metal ion. Examples of non-Watson–
Crick bonding in nucleic acid structures have been noted
for nearly 50 years (12). More recently, G-quadruplex for-
mation has been shown to play a role in, for example,
telomere structure (13). In previous examples, the
G-quadruplexes form from a single nucleic acid strand
with a specific pattern of repeats of guanines in its
sequence. In the case of the microarray, however, the
closely packed strands of ssDNA in an individual probe
spot of a microarray imply that four individual strands

*To whom correspondence should be addressed. Tel: +44 1784 443433; Fax: +44 1784 439786; Email: Hugh.Shanahan@rhul.ac.uk

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

Published online 22 December 2011 Nucleic Acids Research, 2012, Vol. 40, No. 8 3307–3315
doi:10.1093/nar/gkr1230

� The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 at A
lbert Slom

an L
ibrary, U

niversity of E
ssex on January 30, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


can bind together in this fashion. With such a structure
formed, the effective binding length of the probes is now
much shorter, and hence hybridzation with a much larger
number of mRNA sequences is now possible (14).
While this effect has been demonstrated at the probe

level, its impact on the expression levels derived from
probe sets has not been investigated; that is the purpose
of this article. The effects are measured by examining the
changes in expression levels that result when the G-stack
probes are masked.
Throughout this article we define a G-stack probe as a

probe having a single subsequence (run) of exactly four
guanines and correspondingly a normal probe as a probe
that does not contain any runs of four guanines. We note
that probe sets without G-stack probes can potentially
also be affected by G-stack probes because of the
complex nature of the background correction and normal-
ization procedures applied, though, as we shall see, the
effects in such cases are smaller.
Having identified probes that could bias the final

normalized expression levels, the simplest procedure is to
mask such probes in the normalization procedure. Upton
et al. (8) showed that the bias effect is variable across
experiments so that there will be an increase in the noise
in the final expression level. Li and Wong (15)
demonstrated that the variation over replicates at the in-
dividual probe level can be much smaller than the vari-
ation between probes in a probe set indicating that the
final summarized value can be highly susceptible to the
elimination of a single probe. It is therefore important
that, in addition to examining the effect of eliminating
G-stack probes we also examine the effect of eliminating
normal probes. This will enable us to compare the advan-
tages of reduced bias (due to the elimination of G-stack
probes) with the disadvantages of reduced precision
(because of the reduction in the number of potentially in-
formative probes) for the estimated gene expression levels.
In this article, the effect of G-stack probes on three

commonly measured parameters is investigated, namely:

. the overall normalized expression level of each probe
set;

. the fold change between different conditions; and

. the correlation between expression levels taken across
different conditions.

In the case of gene expression we examine the change in
the expression level that results when we eliminate either a
specific number of G-stack probes or the same number of
normal probes. For the other two parameters we also
analyse the effect of masking all G-stack probes from
the normalization procedure, showing how the effect
varies according to the number of G-stack probes in the
probe set.
We focus initially on the commonly employed normal-

ization pipeline RMA (3). It is one of the most commonly
employed normalization pipelines and is composed of
three steps:

. Background correction: the measured intensity for
each probe in a given array is corrected by modelling
all the data for an individual array as the product of

two distributions (Gaussian and Exponential) that rep-
resent the noise and signal, respectively. The modelled
noise component is then subtracted from the measured
intensity.

. Normalization: in order to ensure that the overall dis-
tribution of the corrected intensities is the same over
all the arrays in the experiment, a quantile normaliza-
tion algorithm is applied (16). This algorithm is
applied simultaneously over all the data on each array.

. Summarization: a final estimate of the summarized value
from all of the probes in each probe set is computed by
modelling the corrected and normalized intensities with
a linear model including a noise component and a probe
effect component as well as the summarized value for
each probe set in a particular array. These parameters
are estimated using median polish.

The analysis can be easily repeated for any number of
different normalization pipelines and we have provided
the biases for other commonly used pipelines — gcRMA
(17), tRMA (18), MAS5 (19), FARMS (20) and PLIER
(Guide to Probe Logarithmic Intensity Error (PLIER)
Estimation, Affymetrix Technical report, Santa Clara
2005). gcRMA and tRMA are extensions of RMA, with
the former attempting to correct for sequence-specific hy-
bridization effects and the latter being a small modifica-
tion of RMA to reduce biases in correlations due to the
normalization procedure. MAS5 is of one the early nor-
malization pipelines provided by Affymetrix and is still
widely employed. FARMS employs a factor-analysis
model that gives an improved agreement with artificial
spike-in data from Affymetrix. Finally, PLIER attempts
to provide an improved estimate of low intensities.

The article is organized as follows. In the ‘Materials and
Methods’ section, the criteria used in selecting the micro-
array data set are discussed and details are given of the
abundance of G-stack probes in the probe sets of the
HG_U133A GeneChip. Following this, a detailed explan-
ation on the choice of a control set of probes to determine
the significance of the removing the G-stacks is given. The
parameters measured are explained in more detail and a
description of how they were computed is provided. The
results of these analyses are presented. An estimate of the
prevalence of this effect over other HG_U133A data sets
and different normalizations is given. In the conclusions,
there is a discussion of the impact this effect will have on
the analysis of such data sets in the future.

MATERIALS AND METHODS

In this article, we focus on the HG_U133A Affymetrix
GeneChip that contains a total of 22 283 annotated
probe sets. Table 1 gives the frequencies of G-stack
probes and affected probe sets in the HG_U133A chip
design. We note that slightly over one-third of the probe
sets contain at least one G-stack probe.

Microarray data for the HG_U133A GeneChip are
publicly available at the NCBI Gene Expression
Omnibus (GEO) repository (21). Each experiment (data
set) consists of a set of measurements that are stored in
CEL files. Each of the more than 800 experiments
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available on GEO has its own GSE index number. We
have examined the data from a sample of these experi-
ments that represented the full complement of data de-
posited until 2007 and which has been used for earlier
papers examining these effects at a probe level (8,9). We
have used the data from experiment GSE1869 to illustrate
our findings, since the effects of the G-stack probes are
particularly clear for that experiment. The experiment
GSE1869 contains the data reported in a study of ischae-
mic and non-ischaemic cardiomyopathy (22), which
consists of 25 CEL files. We discuss later the magnitude
of the effects in other experiments.

In order to mask particular probes it is necessary to
create a new Chip Definition File (CDF). This can be
done using the probe sequence file provided by
Affymetrix, a short script to identify the specific sequences
to be masked, the original CDF and the Xspecies software
(23) to generate the new CDF. More detailed instructions
can be found in the Supplementary Data (also available
at: http://gene.cs.rhul.ac.uk/Gstack).

Construction of a control: equal sized probe sets

As discussed previously, the elimination of a probe from a
probe set will increase (sometimes substantially) the noise
of the resulting signal (15,24). Furthermore, because of the
complicated procedure for obtaining a final normalized
value for each gene it is not clear if the random elimin-
ation of a probe will cause a bias in the results. The first
step is therefore to disentangle the significance of
removing G-stack probes from a probe set with the
effect of reducing the size of a probe set. To that end we
select two groups of probe sets

(1) Group A2: Probe sets that contain exactly two
G-stack probes,

(2) Group B2: Probe sets containing no G-stack probes.

Group B2 is chosen randomly, but contains exactly the
same number of probe sets as in Group A2 (numbers of
probe sets are listed in Table 1). We remove the two
G-stack probes from Group A2 and two randomly
selected probes from each probe set in B2. Hence there
are two new normalizations, one where the G-stack probes
in A2 have been masked and one where the random
probes in B2 have been masked. We then examine how
removing these probes affects the parameters discussed
below. Since exactly the same number of probes has
been removed in each case, any overall differences in the
magnitudes of the changes will show the effect of the
G-stacks. We have chosen to eliminate two probes as a
similar analysis eliminating one probe did not produce a
clear difference between the groups. We have also applied
different schemes for selecting probes on the basis of their
intensity within a set of CEL files (described in

Supplementary Methods and Supplementary Figures
S1–S3) and found similar effects to those described below.

Parameters measured

We have investigated the effects of G-stack probes using
three different parameters; the normalized expression
levels, the fold change and the correlation among the
affected probe sets. In the first case we only examine the
effect of using the A2 and B2 groups. In the latter two cases,
which are of more biological significance, we also examine
how they change between probe sets with different numbers
of G-stack probes in them. In the case of comparing the
varying number of G-stack probes we use one normaliza-
tion where all the G-stack probes have been masked.

Expression levels

Normalized expression levels on their own are typically
used for quality control purposes [for example MA plots
initially introduced for cDNAmicroarrays by Dudoit et al.
(25)]. In a similar vein, we compare the difference between
the corrected normalized expression levels for groups
A2 and B2 and their original normalized expression levels
as a function of the original normalized expression level.

Fold change

A commonly measured parameter is the fold change,
which we define here as FC(i)= y1(i)� y2(i), where i is
the i-th gene and y1(i), y2(i) are the means of the logarithm
of expression levels for two different conditions.
Rigorous tests of statistical significance may be used

to determine differential expression, but an absolute
minimum fold change is still often used as a cut off
when selecting differentially expressed genes (26). In the
case of the data set being examined here the fold change is
taken between those samples from patients with ischaemic
or non-ischaemic cardiomyopathy.
The fold change is computed for the A2 and B2 groups

described above and scatter plots drawn of the difference
between the fold change using the new and the original
normalizations as a function of the fold change computed
using the original normalization. Similar plots were drawn
using probe sets with the same number of G-stack probes
to determine the effect of varying the number of G-stack
probes.

Correlations between expression levels

Co-expression of genes across conditions has been used as
a fundamental principle in functional annotation and
determining genes involved in common processes (27)
and has been a key assumption in inferring interactions
between gene products in Systems Biology (28). Upward
biases in correlations due to G-stack probes being present
in two probe sets could imply functional associations that
are not present and could make it more difficult to identify
actual functionally relevant clusters of genes or introduce
extra false positives in the inference of gene product
interactions.
Pearson correlations are computed for every pair of

probe sets in the A2 and B2 groups described above and
plots drawn of the difference between the correlations

Table 1. The numbers of probe sets that have specified numbers of

G-stack probes

No. of G-stack probes in a probe set 0 1 2 �3
No. of affected probe sets 13 985 5188 2124 986

Nucleic Acids Research, 2012, Vol. 40, No. 8 3309
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using the new and the original normalizations as a
function of the correlation computed using the original
normalization. Similar plots were drawn using pairs of
probe sets with the same number of G-stack probes to
determine the effect of varying the number of G-stack
probes.

RESULTS

Expression levels

Figure 1 illustrates the changes in expression levels over all
the CEL files in GSE1869 for the groups A2 and B2,

where A2 are the probe sets with two G-stack probes in
them, B2 is a randomly selected list of probe sets without
any G-stack probe and where B2 is the same size as A2.
We see a non-linear pattern of variation for group A2 that
is consistent with the interpretation that the G-stack
probes that have been eliminated in A2 have a fixed and
moderately high intensity. Probe sets in A2 where the
non-G-stack probes have intensities that are less than
this will be biased upwards and those above will be
biased downwards. On the other hand group B2, while
having a large variance, shows no evidence for any
overall bias.

Fold change

In Figure 2, we plot the difference between the fold change
with and without the masked probes against the fold
change with the masked probes included for groups A2
and B2. While there is a substantial variation in B2 there is
no evidence of a bias. On the other hand, there is clear
evidence for bias in A2. In Figure 3 we plot how the fold
change behaves for probe sets with different number of
G-stack probes in them, so for example the sub-plot
labelled G=1 represents the change in the fold change
for probe sets that have precisely one G-stack probe.
Equivalently the sub-plot labelled G� 3 represent those
probe sets that have three or more G-stack probes in
them. The biased impact of the changes, increasing with
the removal of increasing numbers of G-stack probes, is
evident. We also note that the G=0 data exhibits a small
amount of bias in the opposite direction to the others,
while G=1 exhibits no obvious bias.

Analysis of correlation between expression levels

In Figure 4, we plot the difference between the correl-
ations with and without the masked probes against the
correlations with the masked probes included for all
pairs of probe sets in groups A2 and B2. The removal of

Figure 2. Scatter plots comparing the change in fold change, before and after removal of two probes, of the probe sets in (i) group A2 (ii) group B2.

Figure 1. Plot comparing change in expression values in the data set
GSE1869, before and after removal of two probes, of the probe sets in
groups A2 and B2. The central values represent the median while the
bars indicate the upper and lower quartiles. The width of the end bars
reflect the number of data points (widest for the most numerous,
shortest for the least).
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random probes in a probe set will increase the noise and
hence in group B2 we see evidence of the magnitude of
correlation decreasing when we remove the probes. In A2
we see a significantly larger and asymmetric effect. We
note that this effect is most noticeable for original correl-
ations in the range 0.4–0.7. In Figure 5 we plot how the
correlation behaves for probe sets with different number
of G-stack probes in them. The biased impact of the
changes, increasing with the removal of 2 or more
G-stack probes, is evident. A possible source of bias in
A2 may be that the affected probe sets are more function-
ally related to each other than a random collection of
probe sets. To this end, we computed the probability of
over-representation for all relevant Gene Ontology (GO)
terms (31) for the Biological Process (BP) and Molecular
Function (MF) ontologies for A2 and B2. Using the
Kolmogorov–Smirnov test, we found significantly
over-represented GO terms in BP and MF had similar
distributions in A2 and B2.

Estimating the extent of bias among other HG_U133A
data

As determined previously, the G-stack bias is variable
across individual experiments (8) and hence we employ a
proxy to estimate the size of the bias for other experi-
ments. The proxy is computed as follows: 1000 G-stack
probes are randomly selected from probe sets with only
one G-stack in them. We call this set of probes Gr. For
each of 176 HG_U133A data sets (experiments) deposited
at GEO [the same selection that has been used in previous
analyses (8),(9)], we compute the following

n½��i ¼ logðe½��i Þ � R½��; i 2 Gr;

where [a] represents an individual CEL file, e½��i is the ex-
pression level for the i-th probe from CEL file [a] and R[a]

is the average of the log of the expression levels over all
non-control probes (i.e. biologically relevant probes) for
that CEL file. The correlation rij over all CEL files

Figure 3. Scatter plots of the difference in fold change values of probe sets before and after removal of G-stack probes. The individual figures
represent the change in fold change values for those probe sets that have 0, 1, 2 and 3 or greater G-stack probes in them.
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between probes of Gr in a data set is computed and the
average of rij for all i 6¼ j is calculated. In order to provide
a control, we computed similarly defined average correl-
ations for each of the above experiments using 1000
randomly selected probes with runs of four cytosines. In
Figure 6 we plot a histogram of the resulting 176 averages.
It is notable that the average correlation for the C-stacks is
much closer to zero, though it is noticeable that the
average correlation in both cases is almost always positive.
In addition to GSE1869, another six data sets were

selected with a range of average correlations and CEL
file numbers. Their average G-stack correlations are
shown in Table 2. The above analyses were repeated for
each data set. The final plots are shown in the
Supplementary Data (http://gene.cs.rhul.ac.uk/Gstack).
GSE1869 represents an extremum with a very high
average G-stack correlation, however we see evidence
for G-stack bias for smaller average G-stack correlations.
We note that GSE2395 has an average G-stack correlation
of 0.41 and still exhibits a noticeable bias (GSE2018, with
an average G-stack correlation of 0.30 exhibits no notice-
able bias). Assuming the proxy used here is indicative of
the bias for each data set from Figure 6 this indicates that
�15% of HG_U133A data sets in GEO are susceptible to
G-stack bias.

Different normalizations

In order to determine if the observed impact of G-stacks is
an artefact of the RMA algorithm, the above procedures
were repeated using the normalization pipelines gcRMA,
tRMA, MAS5, FARMS and PLIER, in particular
focussing on the bias in the fold change and correlation
in group A2. In both cases, the differences were binned
and medians computed (ignoring bins where there are less

than 20 entries). In Figure 7 we plot the binned medians of
the difference in the fold changes for the different normal-
izations. We note that the biases for gcRMA, tRMA and
MAS5 are similar to RMA while the bias is smaller for
FARMS and PLIER, although there is a sharp increase
for original fold changes that are greater than 1.4 (we note
also the significant change in the range of original fold
changes). In Figure 8 we plot the binned medians for the
difference in correlations and we find that RMA, gcRMA,
tRMA, MAS5 and FARMS exhibit a similar bias for
larger positive correlations. Again PLIER exhibits a
much smaller bias, though we note that there is a notice-
able large bias for large negative correlations.

DISCUSSION

In this article, we have demonstrated that probes contain-
ing G-stacks can bias the normalized expression levels in
the HG_U133A Affymetrix GeneChip.

We see a complex pattern of bias for normalized expres-
sion levels and evidence of significant effects in fold
change estimates, for probe sets with two or more
probes, which indicates that the reported fold change
will be biased for the probe sets with G-stacks in them.
We found no evidence of a systematic shift when we per-
formed a differential expression analysis with ANOVA
(data not shown). However, fold changes are still typically
used as a filter in determining differentially expressed
genes from microarrays. In studies of psychiatric disorders
in post-mortem brain tissues, fold changes have a signifi-
cantly reduced range (less than two) so biases such as this
are significant (29,30). As 14% of the probe sets in the
HG_U1333A GeneChip have two or more G-stack
probes the cumulative effect could well be significant for
other experiments.

Changes in the correlation become very noticeable for
probe sets with two or more G-stack probes among them.
The tendency is for correlations between probe sets with
G-stacks in them to be over-estimated and the effect is at a
maximum for correlations in the range of 0.4–0.7.
Although the average correlation in the A2 group is
strongly positive, �1% of correlations are less than
�0.75 (this compares with �8% having correlations
greater than 0.75). Extreme correlations are likely to
reflect chance variations in probe values and removal of
probes leads, in both cases, to a reduction in correlation
magnitude (an effect akin to regression towards the
mean). A possible source of bias in A2 may be that the
affected probe sets are more functionally related to each
other than a random collection of probe sets. To this end,
we computed the probability of over-representation for all
relevant GO terms (31) for the BP and MF ontologies for
A2 and B2. Using the Kolmogorov–Smirnov test, we
found significantly over-represented GO terms in BP and
MF had similar distributions in A2 and B2, indicating that
this possible bias is not significant.

The cumulative bias in other data sets for clustering in
particular could again be significant, not only for individ-
ual experiments but for analyses based on multiple

Figure 4. Plot comparing the change in correlation, before and after
removal of two probes, of the probe sets in groups A2 and group B2.
The central points indicate the median. The bars indicate the upper and
lower quartiles. The width of the end bars reflect the number of data
points (widest for the most numerous, shortest for the least).
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experiments such as the web service GOBO, which use
a subset of HG_U1333A data sets relevant to breast
cancer (32).

The RMA normalization procedure can have unexpect-
ed effects as it explicitly uses information about levels
from probes that do not belong to the same probe set to
generate the final summarized expression level for a given
probe set. We have already noted that while the G=1 fold
change in Figure 3 exhibits little bias, the G=0 fold
change exhibits a small bias in the opposite direction to
the fold change for G=2 and G� 3. Naively, one would
expect no bias (or variation) occuring for the G=0 data.
This is consistent with an interpretation that the RMA

normalization (probably at the background correction
step as it attempts to model all of the probe data for
each individual CEL file as the sum of a noise-based dis-
tribution and a signal-based distribution and hence
subtract the estimated noise) effectively removes the bias
for the G=1 probe sets but cannot compensate for the
bias for probe sets where G> 1. This has the side effect
that a small bias in the opposite direction is introduced for
the much larger group of G=0 probe sets. Likewise, one
would expect the group A2 plots in Figures 2 and 4 to be
the same as the G=2 subplots in Figures 3 and 5, respect-
ively. However, in the two cases the normalization is dif-
ferent (i.e. either removing a subset of G-stack probes or

Figure 5. The change in correlations among the expression values of probe sets before and after removal of G-stack probes. Each figure plots the
change in correlations for those probe sets that have exactly 0, 1, 2 and 3 or more G-stack probes in them. The central points indicate the median.
The bars indicate the upper and lower quartiles. The width of the end bars reflect the number of data points (widest for the most numerous, shortest
for the least).
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all of them) which is sufficient to introduce small differ-
ences between them.
By repeating the analysis on a small subset of experi-

ments we have estimated that �15% of the HG_U133A
data sets submitted to GEO are susceptible to significant
G-stack bias. This is predicated on the mild assumption
that the average G-stack probe correlation is a reasonable
proxy.
From comparisons with other normalizations it is

apparent that the commonly employed normalizations
(MAS5, RMA and gcRMA) are all susceptible to bias
from G-stacks. On the other hand, less well-known nor-
malizations such as FARMS and PLIER, which are not
necessarily tuned to eliminate G-stacks, can ameliorate the
bias due to G-stacks. This suggests that an appropriately
modified normalization could minimize the G-stack bias
without having to necessarily mask the G-stacks probes.
Nonetheless, for those data sets where the G-stack probes
are introducing a substantial bias, simply eliminating these
probes from the normalization procedure can circumvent
such biases, with the quid pro quo being an increase in the
overall noise.

While we have focussed on one type of GeneChip, from
other studies G-stack probes on other types of GeneChip
for a range of mammals also exhibit anomalously high
correlations (9) and hence it is likely that they will
exhibit a bias in the normalized data as well. We have
concentrated on probes with runs of exactly four
guanines but it is clear that the effect will also occur for
probes with runs of five or more guanines as well. Finally,
other effects such as blurring (33) or hybridization of very
homologous transcripts will also affect the normalized
data.

Given the range of this type of data now publicly avail-
able it seems clear that a substantial re-analysis of these
data sets should be carried out to determine the effect of
G-stacks and outliers in general.

Figure 6. A histogram of the average correlation between G-stack and
C-stack probes for 176 HG_U1333A GeneChip data sets deposited at
GEO. For clarity the G-stack probes are displaced slightly to the left.

Figure 8. A comparison of the medians of change in correlations
between different normalizations in group A2. The areas of the
points are proportional to the number of observations in each bin.

Figure 7. A comparison of the medians of change in fold change
between different normalizations in group A2. The areas of the
points are proportional to the number of observations in each bin.

Table 2. The data sets examined and their average G-stack probe

correlation

GEO ID Numer of CEL files Average G-stack
probe correlation

GSE1869 25 0.74
GSE6596 26 0.67
GSE5389 21 0.54
GSE1295 24 0.44
GSE2395 20 0.41
GSE2018 34 0.30
GSE2443 20 0.07

3314 Nucleic Acids Research, 2012, Vol. 40, No. 8

 at A
lbert Slom

an L
ibrary, U

niversity of E
ssex on January 30, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Methods, Supplementary Figures S1–S3.
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