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Summary

The estimation of progression to liver cirrhosis and identifying its risk factors are often of epi-

demiological interests in hepatitis C natural history study. In most hepatitis C cohort studies,

patients were usually recruited to the cohort with referral bias because clinically the patients

with more rapid disease progression were preferentially referred to liver clinics. A pair of corre-

lated event times may be observed for each patient, time to development of cirrhosis and time to

referral to a cohort. This paper considers accelerated failure time models to study the effects of

covariates on progression to cirrhosis. A new non-parametric estimator is proposed to handle a

flexible bivariate distribution of the cirrhosis and referral times and to take the referral bias into

account. The asymptotic normality of the proposed estimator is also provided. Numerical studies

show that the coefficient estimator and its covariance function estimator perform well.
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1. Introduction

The motivation for this paper arose from a hepatitis C cohort study in Fu et al. (2007), where

the epidemiological interest is to study progression to liver cirrhosis in hepatitis C virus (HCV)-

infected patients. Two event times of interest are time from HCV infection to the development of

cirrhosis, denoted by T , and time from HCV infection to referral to the clinic cohort, denoted by

R. Clinically the patients with more rapid disease progression are preferentially referred to liver

clinics or that referral is increasingly likely the closer a patient is to developing cirrhosis (Fu et

al., 2007). If so, the conventional analysis based on liver clinic cohorts will lead to biased estimate

of progression rate among the HCV patient community (Freeman et al., 2001; Fu et al., 2007).

This is usually called referral bias in epidemiology (Dore et al., 2002). Statistically, the bivariate

event times (R, T ) are obviously correlated, and the patients were included to the cohort with

referral bias because only patients who referred to the clinic before the end of study recruitment

at time L were included (R 6 L), i.e. R is right truncated by L. Under truncation a patient will

not be observed if the referral occurs after the end of recruitment (no information on this subject

is available if R > L). The cirrhosis time T is subject to censoring at time C, for example at the

last diagnosis follow-up. This is an example of bivariate survival data with both censoring and

truncation.

In this paper, we consider a regression model to study the effects of risk factors on the

disease progression to cirrhosis, such as age at infection, HIV-coinfection, and alcohol intake.

The challenge here is how to take the referral bias into account. Conventional univariate survival

analysis, which ignores the referral bias, has been seen to produce seriously biased results in

estimating the progression rate to cirrhosis within 20-30 years; see Fu et al. (2007). To obtain

unbiased estimate of the effects of covariates on incubation time from infection to cirrhosis, we
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start with a commonly used model, the accelerated failure time (AFT) model, which is given by

log Ti = Wiβ + εi, (1.1)

where Ti denotes the time from HCV infection to cirrhosis for patient i, W i = (Wi1, . . . , Wip) is

the covariate vector and β = (β1, . . . , βp)tr is the regression coefficient vector. Here we assume

that the error terms {εi, i = 1, · · · , n} are i.i.d. having mean 0 and an unknown distribution

Fε(·) and are independent of the covariates W . We also assume that (L, C) is independent of

the covariate W and is independent of the time pair (R, T ). When Ti is only subject to random

right censoring at Ci, i.e. we observe (Xi,W i, δi) where Xi = min(Ti, Ci), δi = I[Ti 6 Ci], model

(1.1) has been well studied (Miller, 1976; Miller and Halpern, 1982; Koul, Susarla and Van, 1981;

Buckley and James, 1979; Jin et al., 2006). A comparison study is given in Bao et al. (2007).

When the response Ti itself is also subject to truncation, model (1.1) can also be solved using

the methods in Gross and Huber-Carol (1992), Gross and Lai (1996) and He and Yang (2003).

For the hepatitis C clinic cohort study mentioned above, Ti is subject to censoring but Ti itself

is not subject to truncation. However, the observed sample of Ti is biased due to the truncation

on the referral time Ri. Existing methods in survival data analysis are not readily available for

model (1.1) if referral bias is taken into account. In this paper we are interested in obtaining an

unbiased estimate of β by taking account of the correlation between T and R. We will introduce

a nonparametric method for model (1) which does not assume a particular distribution of ε and

does not specify a joint distribution between T and R. The developed method is a new, flexible

and important candidate for handling the referral bias in HCV natural history study based on

clinic cohort data. Moreover, our method can be directly applied to regression analysis of bivariate

survival data with random censoring and random truncation and can be generally extended to a

general class of bivariate regression models with different types of truncation and censoring; see

discussion in Dai and Fu (2012).
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This paper is organized as follows. We begin in Section 2 with a description of the statistical

model and introduce an estimating procedure for regression coefficients β. The new procedure

takes referral bias into account using a bivariate survival function estimator based on a polar

coordinate transformation. The large sample properties of the estimator for β is given in Section

3. Section 4 gives simulation studies and data analysis which demonstrate that the proposed

estimator for β performs well. Section 5 gives a short discussion.

2. Notations and estimation procedure

2.1 Notations and estimating equations

For simplicity we use (Ri, Ti) to denote the pair of log-event times for the ith subject, where Ri

is the logarithm of time from hepatitis C virus infection to referral to the cohort, and Ti is the

logarithm of time from infection to the development of cirrhosis. The value Ri, is randomly right-

truncated at Li, which is the logarithm of recruitment time. The value Ti, is subject to random

right censoring at Ci, which is the logarithm of the censoring time. If Ri > Li then we cannot

get any information about this patient. If Ri 6 Li, then we can observe {Ri, Li, Xi, δi, W i, },

where δi = I[Ti 6 Ci], Xi = min{Ti, Ci} and W i is the covariate vector. We usually denote the

observed data as {R∗i , L∗i , X∗
i , δ∗i , W ∗

i }, i = 1, · · · , n. We assume that (R, T, W ) and (L,C) are

independent throughout this paper.

Let G(t1, t2) = P (Li > t1, Ci > t2) be the continuous bivariate survival function for (Li, Ci)

and F̄ (t1, t2) = P (Ri > t1, Ti > t2) be the continuous joint survival function for (Ri, Ti). Let

F (t1, t2,w) be the joint distribution function for Ri, Ti and W i. Let F ∗(x1, x2,w) = P (R∗i 6

x1, X
∗
i 6 x2, W

∗
i 6 w, δ∗i = 1) be the joint cumulative distribution function for the observed

vector (R∗i , X
∗
i ,W ∗

i , δ
∗
i = 1).
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Define the boundaries of support for the density of F̄ as

aF̄ = inf{(t1, t2) : F̄ (t1, t2) < 1}, bF̄ = sup{(t1, t2) : F̄ (t1, t2) > 0} (2.2)

and define aG, bG similarly. For simplicity we assume that the aF̄ are the two coordinated axis,

which means R > 0, T > 0. We assume that the following conditions hold.

Condition 2.1 (i) For s = (s1, s2) ∈ bF̄ and t = (t1, t2) ∈ bG, we have
√

s2
1 + s2

2 <
√

t21 + t22 given

s2/s1 = t2/t1. (ii) For s ∈ aF̄ and t ∈ aG, we have
√

s2
1 + s2

2 <
√

t21 + t22 given s2/s1 = t2/t1.

Here s ≺ t means that s1 < t1, s2 6 t2 or s1 6 t1, s2 < t2. These conditions are realistic in our

hepatitis C study, which is explained in appendix. Under (i) of Condition 2.1 for all t = (t1, t2),

0 6 t 6 bF̄ , we have G(t1, t2) > 0. Therefore we have the following relation,

F (t1, t2, w) = γ ·
∫

s16t1

∫

s26t2

∫

u6w

1
G(s1−, s2−)

F ∗(ds1, ds2, du) (2.3)

where γ = P (Ri 6 Li) is the truncation probability. Note that (i) of Condition 2.1 guarantees

that the function F̄ (t1, t2) is identifiable in the whole support region from 0 to bF̄ .

The following lemma gives an unbiased estimating equation for β, provided G(t1, t2) is known.

Lemma 2.1 Parameter β satisfies

q = Γβ (2.4)

where Γ = (ςjk)p
j,k=1, ςjk = E(WijWik) =

∫
wjwkF (dt1, dt2, dw) and q = (ς01, · · · , ς0p)tr, ς0k =

E(WikTi) =
∫

t2wkF (dt1, dt2, dw).
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If G is known, ς0k and ςjk, can be estimated respectively by the unbiased estimates

ς̂0k(G) =
γ̂

n

n∑

i=1

X∗
i W ∗

ikδ∗i
G(R∗i−, X∗

i −)
, ς̂jk(G) =

γ̂

n

n∑

i=1

W ∗
ijW

∗
ikδ∗i

G(R∗i−, X∗
i −)

, (2.5)

where γ̂ is the truncation probability estimate. Then we can obtain a consistent estimate

β̂ = Γ−1(Ĝ)q(Ĝ), (2.6)

if Ĝ(t1, t2) is a consistent estimate for the function G(t1, t2). ¤

Dai and Fu (2012) provide a method to estimate the truncation probability γ. We, however,

do not need the truncation probability γ̂ when estimating β, since γ̂ is cancelled out in (2.6). The

above method is actually the weighted least squares (WLS) method. See He and Wong (2003)

for more details and the idea of proving Lemma 2.1 can also be found therein.

2.2 Estimation of the bivariate survival function G

Part (ii) of Condition 2.1 guarantees that for any observed L there exists R such that R < L,

which means all values of L can be possibly observed. So under Condition 2.1 we know that

G is identifiable in the region from 0 to bF̄ . There is a vast literature about nonparametric

estimation of bivariate survival functions G(t1, t2) under right censoring (Campbell, 1981; Tsai

et al., 1986; Burke, 1988; Dabrowska, 1988; Lin and Ying, 1993; van der Laan, 1996a; Akritas

and Keilegom, 2003; Prentice et.al., 2004; Dai and Bao, 2009). Bivariate distribution estimation

under truncation was also well studied; see for example, Gurler (1996, 1997) for applications

when a single component of the bivariate data is subject to truncation; van der Laan (1996b)

and Huang et al. (2001) for data under bivariate truncation. Gijbels and Gurler (1998) proposed

an interesting nonparametric estimator for bivariate data where a single component is subject to

both censoring and truncation and the other component is fully observed.
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The above methods are not readily available here for estimating G(t1, t2) = P (L > t1, C > t2)

as L is subject to left-truncation by R, C is subject to right-censoring by T and (R, T ) are cor-

related. For bivariate survival data where both components are under censoring and truncation,

Shen (2006) proposed an inverse probability weighted (IPW) approach to estimate the joint sur-

vival function. His method requires an iterative algorithm to calculate the distribution estimate,

which is computationally heavy and might be impractical for data with a large sample size.

Recently Dai and Fu (2012) proposed an estimator for such paired survival times under both

truncation and censoring. Their method is based on a polar coordinate transformation,

G(t1, t2) = P (L > t1, C > t2) = P (Z(α) > z) := G(z; α),

where α = t2/t1, z =
√

t1
2 + t2

2 and Z(α) = min{L√1 + α2, C
√

1 + α−2}. Dai and Fu (2012)

proposed a consistent estimator for the transformed survival function G(z; α). This transforma-

tion method does not require a heavy load of computation. In this section, we will use their

method to estimate the bivariate survival function G.

In practice, due to censoring and truncation, the values of (L, C) may not be obtained. Thus

Z(α) may not be available. However, we have the observed transformed data:

Z̃∗(α) = min{L̃∗, X̃∗},∆∗(α) = I[L̃∗ 6 X̃∗] + (1− δ∗)I[L̃∗ > X̃∗], V ∗(α) = R∗
√

1 + α2,(2.7)

where L̃∗ = L∗
√

1 + α2, X̃∗ = X∗√1 + α−2 and L∗, R∗, X∗, δ∗ are the observed data. Note that

such a transformation introduces artificial censoring and truncation. For example ∆∗(α) = 1

implies that Z̃∗(α) is an observed value for Z(α) and ∆∗(α) = 0 implies censoring. Truncation

information is given by V ∗(α). However, the truncation condition is not equivalent to Z̃(α) >

V (α). More detailed discussion can be found in Dai and Fu (2012). Then based on the transformed

observations in (2.7) we can estimate G(z; α) using the following lemma, the proof of which can
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be found in Dai and Fu (2012).

Lemma 2.2 For fixed α, the hazard rate function of Z(α) is denoted by Λ(dz; α) = − G(dz;α)
G(z−;α) .

Then we have

Λ(dz; α) =
P (Z̃∗(α) ∈ dz, z > V ∗(α), ∆∗(α) = 1)

P (Z̃∗(α) > z > V ∗(α))
,

where Z̃∗(α) ∈ dz denotes z 6 Z̃∗(α) < z + dz.

We define N(ds;α) = n−1
∑n

i=1 Ni(ds; α) = n−1
∑n

i=1 I[Z̃∗i (α) ∈ ds, s > V ∗
i (α), ∆∗

i (α) = 1],

H(n)(s;α) = n−1
∑n

i=1 Hi(s;α) = n−1
∑n

i=1 I[Z̃∗i (α) > s > V ∗
i (α)]/n and H(n)(t1, t2) =

n−1
∑n

i=1 Hi(t1, t2) = n−1
n∑

i=1

I [L∗i > t1 > R∗i , X
∗
i > t2]. Note that H(n)(t1, t2) = H(n)(z; α) and

Hi(t1, t2) = Hi(z;α). Lemma 2.2 implies that an estimator for Λ(dz; α) is Λ̂(dz; α) = N(dz;α)/H(n)(z−; α).

Then the product-limit estimator for G(z;α) is

Ĝ(z;α) =
n∏

s6z

{
1− ∆N(s; α)

H(n)(s−; α)

}
, (2.8)

where ∆N(s; α) = N(s; α)−N(s−;α).

Define Mj(ds; α) = Nj(ds;α) −Hj(s−;α)Λ(ds;α), H(s; α) = E[Hi(s; α)] = G(s1, s2)P [s1 >

R, T > s2]/γ, and define τα as τα =
√

t21 + t22 with (t1, t2) ∈ bF̄ , t2/t1 = α. So [0, τα]× [0,∞] can

be viewed as the range for (Z̃∗i (α∗i ), α
∗
i ). Following the ideas in Dai and Fu (2012) we can show

the following asymptotic results for Ĝ,

√
n

[
Ĝ(z; α)−G(z; α)

]
= − 1√

n
G(z;α)

n∑

j=1

∫

s6z

1
H(s−;α)

Mj(ds;α) + rn(z;α), (2.9)

where rn(z; α) is a term such that supz∈[0,τα],α∈[0,∞] E[rn(z; α)]2 → 0.

Since G(z; α) = G(t1, t2), Ĝ(z;α) is also an estimator for the bivariate survival function

G(t1, t2). By substituting this Ĝ into (2.6), we can get the estimator β̂(Ĝ).
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3. Asymptotic normality for β̂

The estimate in (2.6) is equivalent to solving the estimating equation

Q
(
β; Ĝ

)
=

1
n

n∑

i=1

δ∗i
Ĝ(R∗i−, X∗

i −)
(X∗

i −W ∗
i β)W ∗tr

i = 0, (3.10)

since Q
(
β̂; Ĝ

)
= Γ(Ĝ)β̂ − q(Ĝ) = 0. The following theorem provides the results of asymptotic

normality.

Theorem 3.1 Let

ηi = δ∗i (X∗
i −W ∗

i β)W ∗tr
i , ξji =

∫

s6Z̃∗i (αi)

1
H(s−; αi)

Mj(ds; αi) (3.11)

where αi = X∗
i /R∗i . Let Q

′
(β; G) = ∂Q(β; G)/∂β and Dk = {R∗k, L∗k, X∗

k , δ∗k,W ∗
k} denote the

observed information of patient k. Then we have that
√

n
(
β̂ − β∗

)
∼ N(0,Σβ), where Σβ =

[
Q
′
(β;G)

]−1

ΣQ

{[
Q
′
(β; G)

]−1
}tr

. The matrix ΣQ is given by

ΣQ = Var
[

ηk

G(R∗k, X∗
k)

+ Φ(Dk)
]

, Φ(Dk) = E
{
G−1(R∗i , X

∗
i )ξkiηi |Dk

}
, i 6= k. (3.12)

The proof of the theorem can be found in appendix. Use η̂i, Φ̂(Di) to denote the estimates

for ηi,Φ(Di) (replacing G, β with Ĝ, β̂ respectively in ηi,Φ(Di)). Then an estimate of Σβ is

given by

Σ̂β =
[
Q
′
(β̂; Ĝ)

]−1

Σ̂Q

{[
Q
′
(β̂; Ĝ)

]−1
}tr

, (3.13)

where Σ̂Q = v̂ar
[

η̂i

Ĝ(R∗i ,X∗
i )

+ Φ̂(Di)
]

is the sample covariance matrix based on
η̂i

Ĝ(R∗i , X
∗
i )

+ Φ̂(Di),

i = 1, · · · , n.
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4. Simulation studies and data analysis

4.1 Simulation studies

In this section, we study the properties of our proposed estimator for β via a set of 500 simulations.

Truncation times L and censoring times C are generated respectively from C = aν1 + bν2, L =

cν1+dν2+U [0, 1] where ν1 and ν2 are exponentially distributed with unit mean. We can change the

values of (a, b, c, d) to adjust censoring/truncation probabilities and correlations of L and C. Pairs

of survival times are generated from the following model to mimic the data analysis. The logarithm

of survival time follows T = Wβ∗ + ε, where the true value β∗ = (3.7,−0.05,−0.3,−0.1)T

and the covariate W is defined as: the intercept W1 = 1 and the predictors W2 ∼ U [20, 30],

W3 ∼Bernoulli(0.5) and W4 ∼Bernoulli(0.5). The time R has mean ER = 1.35 and (R, T ) are

correlated through a joint distribution of (R−ER, ε). Once we simulate (R−ER, ε) we then have

the simulated values for R and T = Wβ∗ + ε. We here consider two types of joint distribution

functions of (R− ER, ε).

Scenario 1: The two error terms R−ER and ε are generated as follows, R−ER = 1.0υ1 +

0.5υ2, ε = 0.4υ1 + 0.35υ2, where υ1 and υ2 are two uniform random variables from U[−0.5, 0.5].

The linear combinations above can make R − ER and ε correlated. The simulation results are

presented in Table 1. We choose different values for a, b, c, d to achieve different censoring and

truncation percentages.

Table 1 is about here.

The simulation results indicate that the biases are 0.001 for all parameters, which is very small,

when sample size is large (n = 200), censoring percentage is low (about 20%) and truncation

probability is high (about 0.85). In this case, the mean standard deviation estimate and standard

deviation for Monte Carlo estimates are very close. Even when the data are severely biased (80%

censoring and 0.15 truncation probability), the biases for the predictor parameters (β2, β3, β4)

are still very small, (0.001, 0.010, 0.004) respectively, although the bias for intercept β1 is larger.
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Therefore we can conclude that the proposed estimators work well for large sample sizes.

Note that when sample size is n = 100, censoring probability is about 80% and truncation

probability is about 0.15, the estimate for the intercept has the largest biases 0.064 and the

estimates for other parameters are still good. In this case the standard error based on Monte

Carlo simulations ŝβ and the mean of estimated standard errors σ̂β are not close. This is not

surprising as the observed sample is severely biased (truncation probability is only about 0.15)

and among the observed samples 80% are censored, i.e. only about 20 observations are fully

observed.

Scenario 2: Instead of generating the error terms from linear combinations, we generate

R−ER and ε as follows. First generate (ω1, ω2) from the well-known bivariate parametric model

in Clayton (1978), which has joint survival function Sε(s1, s2) = (Sε1(s1)−φ +Sε2(s2)−φ−1)−1/φ.

We take φ = 4 (see for example Prentice et.al. (2004)). The marginal survival functions Si(si) are

from unit exponential distribution truncated at 1 and its mean is E = (1−2e−1)/(1−e−1). Then

we let R = ER+ω1−E and ε = ω2−E. We can also choose different values for a, b, c, d to achieve

different censoring and truncation percentages. The simulation results are also summarized in

Table 2. We have similar findings and conclusions as for Scenario 1.

Table 2 is about here.

The boundary conditions are satisfied in both scenarios in Section 4.1. Note that (R, T ) has

a finite upper boundary for their density support but (L,C) are from linear combinations of

exponential distributions and can take values up to ∞. This guarantees that there is always a

positive probability to observe all possible values for (R, T ), which makes the model identifiable.

On the contrary, if the boundary condition is not satisfied, the estimates could be biased. For

example, we consider Scenario 3 by drawing L and C from C = aν1 +bν2, L = cν1 +dν2, where

ν1 and ν2 are from unit exponential distribution truncated at 2. The two error terms R − ER

and ε are generated as R− ER = 0.5υ1 + 0.5υ2, ε = 0.4υ1 + 0.4υ2, where ER = 0.5, υ1 and υ2
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are from Normal(0, 1.0). In this scenario, the upper boundary for the support of the density of L

is 2(c + d) + 1. For all (R, T ) with R > 2(c + d) + 1 can never be observed. Also larger value of

T will always be censored. Therefore, if c + d is small the estimates will be severely biased. This

is also shown in Table 2.

From the results we can see that the intercept is estimated much smaller than the true value

and the predictor parameter estimates are much less significant than that in Scenarios 1 and

2. This is because large values of R can never be observed and large values of T will always

be censored. This will result in a much smaller intercept estimate and less significant predictor

parameter estimates.

4.2 Data analysis

We illustrate the proposed method with the Edinburgh hepatitis C data in Fu et al. (2007). The

data set consists of 387 HCV-infected individuals recruited from Edinburgh Royal Infirmary’s

liver clinic by the end of 1999, for whom mean age at HCV-infection is around 22 years. These

patients were studied retrospectively and followed prospectively for the development of HCV-

related cirrhosis. HCV patients usually experience no symptoms or mild symptoms in the early

stages and are often referred to hospital shortly before they develop cirrhosis or complications.

Among these individuals, there is no cirrhosis event occurred prior to their referral time and

63 (16%) developed cirrhosis during follow-up. The median during time from HCV infection to

referral is 17.1 years and the median follow-up time from referral to cirrhosis or censoring is 2.4

years. The demographic details are shown in Table 3. An individual’s information is only available

if he or she was referred to the clinic cohort before the end of study recruitment, that is, the

data of a patient is subject to a univariate truncation R 6 L, where R is the logarithm of period

from infection to referral to the liver clinic and L is the logarithm of time from infection to the
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end of 1999. Time T , the logarithm of incubation period from disease infection to development of

cirrhosis, is subject to right censoring at C, which is the logarithm of time from infection to last

diagnosis follow-up. The purpose of the study was to determine how the progression to cirrhosis

is affected by three covariates: age at infection, HIV-coinfection (yes:1 or no:0), and heavy alcohol

consumption (yes:1 or no:0). A heavy alcohol intaker was defined as one consuming more than

50 units alcohol per week for at least five years.

Table 3 summarizes the estimates of regression parameters obtained from our method. The

results from the truncated model, where the referral bias is considered, show that age at infection,

HIV-coinfection and heavy alcohol in-take are significantly identified as risk factors associated

with more rapid disease progression. If we compare the results with those from an untruncated

model, ignorance of the referral bias has failed to identify heavy alcohol in-take as a significant risk

factor. In medical literatures, older age at infection, HIV-coinfection and heavy alcohol intake have

all been identified as factors associated with more rapid hepatitis C disease progression (Sharma

and Sherker 2006). Based on our coefficient estimates shown in Table 3, we use T̂ = exp(Wβ)

to predict the time period from infection to cirrhosis for individuals with different values of

covariates. The prediction results and the corresponding values of covariates are shown in Figure

2. We can see that if we consider referral bias, the predicted values of X are larger than those

without considering referral bias. This is because that the patients with more rapid disease

progression are preferentially referred to the liver clinic cohort. Hence the incubation period

from infection to cirrhosis observed in the clinic cohort may be shorter than that for the whole

HCV patients community. If so, removing the referral bias, the predicted values should be larger

comparing with the case only censoring is involved, as revealed by Fu et al. (2007).

Table 3 and Figure 1 are about here.
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5. Discussion

In this paper, we considered the accelerated failure time model log T = Wβ + ε and a non-

parametric method was proposed to allow a flexible bivariate distribution structure between T

and another event time R. The dependency of the two event times and the referral bias in the

sampling, incorporated by a right truncation on R, are both taken into account. We applied our

proposed method to analyze the Edinburgh hepatitis C data in Fu et al. (2007). We concluded

that when referral bias is considered, older age at HCV infection, HIV infection and heavy

alcohol intake can all be identified as factors associated with more rapid HCV disease progression.

Furthermore, the prediction results indicated that considering the referral bias will lead to longer

estimate of time period from HCV infection to cirrhosis, which could reach an agreement with

Fu et al. (2007). Our method can remove this kind of referral bias to get more reliable estimates

for β̂. In this paper, our main interest is to study the effect of covariates on progression time

to cirrhosis. The methodology could be extended to model the covariates’ effect on referral time

as well. We did not do this since it is of less interest in our cirrhosis study. If patients joined

hospital after developing cirrhosis (this is unlikely and does not occur in our data set), diagnosis

of cirrhosis is likely to be delayed and we may not know the exact time of T . For such extreme

cases, T will hence be left censored by R and new models and estimating methods should be

developed since dependent censoring is involved. We leave this as future work.

To find the estimate for β in model (1.1), we may also extend the Koul-Susarla-Van (KSV)

methods by using the polar-coordinate transformation method. The KSV method is also based

on an inverse probability weighted approach, but it only re-weights the response variable. In

contrast, the weighted least squares re-weight both the response variable and the predictors. It is

worth making further comparisons for these two methods under both censoring and truncation.

The independent assumption between (C, L) and W , required by the KSV or IPW estimator,

may not be appropriate in other studies. It could be possible to adapt our method under a weaker
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assumption, conditional independence of (C, L) and (R, T ) given W . We leave this to a future

work.

An alternative to the AFT models is the proportional hazard model, which can be written

as a transformation model (Chen et al., 2002). The methods proposed here can be extended to

proportional hazards models with time-independent covariates since the parameter estimation

problem for the transformation model can also be solved using the inverse probability weighted

method. In this paper we did not consider the proportional hazard model since the Schoenfeld

residuals checking (Collett, 2003) implies that the proportional hazard assumption may be vio-

lated for the variable ‘Heavy alcohol’. See Figure 2. We are currently working on extending the

proposed method to proportional hazards models with time-varying coefficients.

Figure 2 is about here.

APPENDIX

A. Discussion on the boundary conditions

The condition (i) requires that the maximum values that R and T can take are smaller than

those for random variables L and C respectively. This is reasonable in practice, because for any

large values of R or T , it is always possible to collect data for an individual who was infected

long time ago with larger L or C. Our basic assumption is that the observed data are from

HCV-infected population who were or will be eventually referred to hospital. We can not use

clinic cohort data to make inference for those who are never referred to hospital. Similarly, the

condition (ii) guarantees that G(t1, t2) is identifiable. It is also reasonable in practice. Even for a

very small value of L, HCV-diagnosis and subsequent referral to liver clinics may happen shortly

after infection because of regular HCV screening (more available in recent years), will give a very

small value of R 6 L. For a very small value of C, it is possible to have a patient who developed

cirrhosis right after referral, which will give a small value of T 6 C.
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B. Proof of Theorem 3.1

The estimating equation (3.10) can be written as

√
n

[
Q

(
β; Ĝ

)]
=
√

n [Q (β; G)] +
√

n
[
Q

(
β; Ĝ

)
−Q (β; G)

]
. (B.1)

The first term of (B.1),
√

n [Q (β;G)] = n−1/2
n∑

i=1

δ∗i
G(R∗i , X

∗
i )

(X∗
i −W ∗

i β)W ∗tr
i is a sum of i.i.d.

variables. Now we focus on the second term of the right side of (B.1) which can be written as

√
n

[
Q

(
β; Ĝ

)
−Q (β; G)

]

= n−1/2
n∑

i=1

[
G(R∗i , X

∗
i )− Ĝ(R∗i , X

∗
i )

G2(R∗i , X
∗
i )

]
ηi

+n−1/2
n∑

i=1

G(R∗i , X
∗
i )− Ĝ(R∗i , X

∗
i )

G(R∗i , X
∗
i )

[
1

Ĝ(R∗i , X
∗
i )
− 1

G(R∗i , X
∗
i )

]
ηi

:= I + II. (B.2)

Using the result (2.9) we have that as n →∞, II in (B.2) converges to 0 in probability. Hence,

√
n

[
Q

(
β; Ĝ

)
−Q (β; G)

]
= n−1/2

n∑

i=1

[
G(R∗i , X

∗
i )− Ĝ(R∗i , X

∗
i )

G2(R∗i , X
∗
i )

]
ηi + op(1). (B.3)

Based on the observed transformed data defined in (2.7) and the results in (2.9), equation(B.3)

can be written as

√
n

[
Q

(
β; Ĝ

)
−Q (β; G)

]
=

n∑

i=1

n−3/2ηi

G
(
Z̃∗i (αi); αi

)



n∑

j=1

∫

s6Z̃∗i (αi)

1
H(s−;αi)

Mj(ds; αi)


 + op(1)

= n−3/2
n∑

i=1

n∑

j=1

ξjiηi

G
(
Z̃∗i (αi); αi

) + op(1) := Un + op(1). (B.4)

According to the properties of U-statistics (Serfling, 1980) we have Un = Ûn+o(n−1(log n)%)

for some % > 0, where Ûn =
n∑

k=1

E {Un |Dk } =
n∑

k=1

E

{
n−3/2

n∑
i,j=1

G−1(R∗i , X
∗
i )ξjiηi |Dk

}
. Since
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ξji, defined in (3.11), is a zero-mean martingale with Di given, we have E {ξji |Di } = 0 (Dai and

Fu, 2012). Thus if j 6= k, then E
{
G−1(R∗i , X

∗
i )ξjiηi |Dk

}
= E

{
G−1(R∗i , X

∗
i )ξjiηi

}
= 0. So we

have,

Ûn = n−1/2
n∑

k=1

E
{
G−1(R∗i , X

∗
i )ξkiηi |Dk

}
+ op(1)

:= n−1/2
n∑

k=1

Φ(Dk) + op(1). (B.5)

The above equation together with (B.4) imply that
√

n
[
Q

(
β; Ĝ

)
−Q (β; G)

]
= n−1/2

n∑
k=1

Φ(Dk)+

op(1) which is a sum of i.i.d. terms.

Then the variance-covariance matrix of
√

n
[
Q

(
β; Ĝ

)]
is given by

ΣQ = Var
{√

n [Q(β;G)] +
√

n
[
Q(β; Ĝ)−Q(β; G)

]}
= Var

[
ηi

G(R∗i , X
∗
i )

+ Φ(Di)
]

.

Then the theorem follows from the first-order Taylor extension

Q(β∗2; Ĝ) = Q(β̂2; Ĝ) + Q
′
(β̂2; Ĝ)

(
β∗2 − β̂2

)
= Q

′
(β̂2; Ĝ)

(
β∗2 − β̂2

)
.
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Table 1. Scenario 1. (i) true values; (e) estimate (bias in parenthesis). n: observed sample size; γ: trunca-
tion probability; %c: censoring percentage; ŝβ : means of standard deviation estimates obtained by (3.13);
σ̂β : the standard deviation for β̂ and β̂ based on the 500 simulations. (1) c = d = 1.1 corresponding
to truncation probability γ ≈ 0.85 and a = b = 1.8, a = b = 1.0 and a = b = 0.65 approximately
corresponding to 15% censoring, 50% censoring and 80% censoring, respectively; (2) c = d = 0.45 corre-
sponding to γ ≈ 0.5 and a = b = 1.3, a = b = 0.8 and a = b = 0.55 approximately corresponding to 15%
censoring, 50% censoring and 80% censoring, respectively; (2) c = d = 0.2 corresponding to γ ≈ 0.15 and
a = b = 1.1, a = b = 0.7 and a = b = 0.45 approximately corresponding to 15% censoring, 50% censoring
and 80% censoring, respectively.

n = 200 c% = 20% c% = 50% c% = 80%
γ = (e) ŝβ σ̂β (e) ŝβ σ̂β (e) ŝβ σ̂β

0.85 3.699(0.001) 0.115 0.112 3.717(0.017) 0.160 0.156 3.749(0.049) 0.269 0.246
0.85 -0.051(0.001) 0.004 0.004 -0.051(0.001) 0.006 0.006 -0.051(0.001) 0.010 0.009
0.85 -0.301(0.001) 0.024 0.025 -0.305(0.005) 0.035 0.035 -0.304(0.004) 0.068 0.059
0.85 -0.099(0.001) 0.025 0.025 -0.103(0.003) 0.035 0.034 -0.102(0.002) 0.058 0.055
0.5 3.708(0.008) 0.126 0.131 3.748(0.048) 0.176 0.171 3.741(0.041) 0.317 0.272
0.5 -0.050(0.000) 0.005 0.005 -0.051(0.001) 0.007 0.007 -0.051(0.001) 0.012 0.010
0.5 -0.305(0.005) 0.029 0.028 -0.304(0.004) 0.038 0.037 -0.308(0.008) 0.068 0.058
0.5 -0.100(0.000) 0.029 0.028 -0.101(0.001) 0.036 0.035 -0.103(0.003) 0.058 0.055
0.15 3.649(0.051) 0.217 0.183 3.755(0.055) 0.255 0.198 3.759(0.059) 0.363 0.278
0.15 -0.049(0.001) 0.008 0.007 -0.050(0.001) 0.010 0.008 -0.051(0.001) 0.014 0.010
0.15 -0.287(0.013) 0.054 0.043 -0.298(0.002) 0.056 0.044 -0.290(0.010) 0.080 0.058
0.15 -0.099(0.001) 0.058 0.043 -0.102(0.002) 0.056 0.043 -0.096(0.004) 0.076 0.055

n = 100 c% = 20% c% = 50% c% = 80%
γ = (e) ŝβ σ̂β (e) ŝβ σ̂β (e) ŝβ σ̂β

0.85 3.725(0.025) 0.162 0.161 3.726(0.026) 0.241 0.216 3.665(0.335) 0.446 0.325
0.85 -0.051(0.001) 0.006 0.006 -0.050(0.000) 0.009 0.008 -0.048(0.002) 0.017 0.012
0.85 -0.301(0.001) 0.039 0.037 -0.302(0.002) 0.055 0.051 -0.295(0.005) 0.102 0.073
0.85 -0.100(0.000) 0.037 0.035 -0.100(0.000) 0.049 0.048 -0.107(0.007) 0.094 0.071
0.5 3.710(0.010) 0.180 0.180 3.664(0.036) 0.250 0.229 3.726(0.026) 0.429 0.338
0.5 -0.051(0.001) 0.007 0.007 -0.052(0.002) 0.009 0.009 -0.051(0.001) 0.015 0.012
0.5 -0.304(0.004) 0.041 0.040 -0.308(0.008) 0.053 0.050 -0.292(0.008) 0.099 0.069
0.5 -0.098(0.002) 0.040 0.040 -0.102(0.002) 0.053 0.049 -0.101(0.001) 0.091 0.069
0.15 3.638(0.062) 0.266 0.202 3.655(0.045) 0.320 0.222 3.764(0.064) 0.528 0.343
0.15 -0.049(0.001) 0.010 0.008 -0.048(0.002) 0.012 0.009 -0.049(0.001) 0.020 0.013
0.15 -0.293(0.007) 0.063 0.048 -0.295(0.005) 0.067 0.050 -0.285(0.015) 0.109 0.067
0.15 -0.099(0.001) 0.067 0.047 -0.091(0.009) 0.069 0.051 -0.094(0.006) 0.097 0.062
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Table 2. (i) true values; (e) estimate (bias in parenthesis). n: observed sample size; γ: truncation proba-
bility; %c: censoring percentage; ŝβ : means of standard deviation estimates obtained by (3.13); σ̂β : the
standard deviation for β̂ and β̂ based on the 500 simulations. Scenario 2. (1) c = d = 0.9 correspond-
ing to truncation probability γ ≈ 0.8 and a = b = 1.5, a = b = 1.0 and a = b = 0.7 approximately
corresponding to 25% censoring, 50% censoring and 75% censoring, respectively; (2) c = d = 0.5 corre-
sponding to γ ≈ 0.5 and a = b = 1.2, a = b = 0.9 and a = b = 0.6 approximately corresponding to 25%
censoring, 50% censoring and 75% censoring, respectively; (3) c = d = 0.2 corresponding to γ ≈ 0.25
and a = b = 1.0, a = b = 0.7 and a = b = 0.5 approximately corresponding to 25% censoring, 50%
censoring and 75% censoring, respectively. Scenario 3. (1) c = d = 0.8 corresponding to γ ≈ 0.85 and
a = b = 1.9, a = b = 1.4 and a = b = 1.0 approximately corresponding to 25% censoring, 50% censoring
and 75% censoring, respectively; (2) c = d = 0.35 corresponding to γ ≈ 0.5 and a = b = 1.8, a = b = 1.2
and a = b = 0.85 approximately corresponding to 25% censoring, 50% censoring and 75% censoring,
respectively.

Scenario 2
n = 200 c% = 25% c% = 50% c% = 75%
γ = (e) ŝβ σ̂β (e) ŝβ σ̂β (e) ŝβ σ̂β

0.8 3.665(0.005) 0.220 0.208 3.621(0.079) 0.307 0.286 3.573(0.137) 0.427 0.377
0.8 -0.049(0.001) 0.008 0.008 -0.049(0.001) 0.012 0.011 -0.048(0.002) 0.016 0.015
0.8 -0.298(0.002) 0.048 0.047 -0.289(0.011) 0.062 0.061 -0.279(0.021) 0.096 0.087
0.8 -0.099(0.001) 0.047 0.046 -0.102(0.002) 0.063 0.061 -0.093(0.007) 0.095 0.086
0.5 3.646(0.054) 0.218 0.212 3.637(0.063) 0.262 0.248 3.561(0.139) 0.430 0.382
0.5 -0.050(0.000) 0.008 0.008 -0.049(0.001) 0.010 0.010 -0.048(0.002) 0.016 0.015
0.5 -0.290(0.010) 0.047 0.048 -0.296(0.004) 0.060 0.060 -0.274(0.026) 0.010 0.090
0.5 -0.096(0.004) 0.049 0.048 -0.105(0.005) 0.060 0.058 -0.095(0.005) 0.095 0.088
0.2 3.590(0.110) 0.319 0.296 3.547(0.153) 0.346 0.316 3.514(0.186) 0.441 0.391
0.2 -0.048(0.002) 0.013 0.012 -0.047(0.003) 0.014 0.013 -0.046(0.004) 0.017 0.015
0.2 -0.289(0.011) 0.070 0.068 -0.278(0.022) 0.080 0.076 -0.265(0.035) 0.111 0.089
0.2 -0.093(0.007) 0.073 0.068 -0.094(0.006) 0.082 0.074 -0.098(0.002) 0.105 0.089

Scenario 3
n = 200 c% = 25% c% = 50% c% = 75%
γ = (e) ŝβ σ̂β (e) ŝβ σ̂β (e) ŝβ σ̂β

0.85 3.409(0.291) 0.520 0.512 3.132(0.568) 0.723 0.642 2.521(1.179) 0.971 0.745
0.85 -0.042(0.008) 0.020 0.020 -0.033(0.017) 0.027 0.025 -0.019(0.031) 0.038 0.029
0.85 -0.253(0.047) 0.126 0.117 -0.202(0.098) 0.155 0.137 -0.071(0.229) 0.245 0.180
0.85 -0.082(0.018) 0.120 0.117 -0.076(0.024) 0.150 0.138 -0.064(0.036) 0.234 0.177
0.5 2.878(0.822) 1.270 0.845 2.833(0.867) 1.400 0.970 2.272(1.418) 1.683 1.140
0.5 -0.041(0.009) 0.049 0.033 -0.043(0.007) 0.058 0.037 -0.024(0.026) 0.065 0.044
0.5 -0.266(0.034) 0.295 0.203 -0.289(0.011) 0.348 0.214 -0.175(0.125) 0.373 0.239
0.5 -0.103(0.003) 0.281 0.204 -0.108(0.008) 0.325 0.213 -0.066(0.034) 0.368 0.246
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Table 3. Demographic details for the Edinburgh liver clinic series and model estimation results.

Patient characteristics
Mean age at HCV-infection (Age) 22.4

Number (%) of patients with known HIV status (HIV)
Positive - 1 41 (11%)
Negative - 0 346 (89%)

Number (%) with heavy alcohol consumption (Alcohol)
Yes - 1 116 (30%)
No - 0 271 (70%)

Estimation results (SE in parenthesis), * means the estimate is significant at 5% level.

With truncation – β̂ (SE) Without truncation – β̂ (SE)
Intercept 3.628∗ (0.068) 3.844∗ (0.133)
Age -0.011∗ (0.003) -0.031∗ (0.004)
HIV -0.313∗ (0.047) -0.380∗ (0.089)
Alcohol -0.098∗ (0.038) -0.077 (0.070)
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Fig. 1. Prediction for cirrhosis time.
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Fig. 2. Use of Schoenfeld residuals. It implies the parameter for Alcohol is not constant overtime.


