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Abstract

We prove that a universal preference type space exists under much more general

conditions than those postulated by Epstein and Wang (1996). To wit, it is enough that

preferences can be encoded by a countable collection of continuous functionals, while

the preferences themselves need not necessarily be continuous or regular, like, e.g., in

the case of lexicographic preferences. The proof relies on a far-reaching generalization

of a method developed by Heifetz and Samet (1998).

1 Introduction

Classical game theory has largely been developed under the assumption that players have

Savage (1954) preferences, and can hence be modeled as maximizing subjective expected

utilities. In single-person decision problems, in contrast, a voluminous literature axiomatizes

and analyzes many additional classes of preference relations, which are obviously relevant in

strategic interactions as well. How should games with incomplete information be modeled

and handled with such more general preferences?

With Savage (1954) preference relations, games with incomplete information are modeled

by probabilistic type spaces (Harsanyi, 1967-68). Each type of each player is associated with

a probabilistic belief over the space of states of �nature��the players�von Neumann and

�We thank Simone Cerria-Vioglio, Yi Chun-Chen, Sander Heinsalu, Fabio Maccheroni, Miklos Pinter, and

Amanda Friedenberg for helpful comments and discussions. The usual disclaimer applies. Ganguli: Dept of

Economics, University of Essex, <jayantvivek@gmail.com>. Heifetz: Dept of Economics and Management,

Open University of Israel, <aviadhe@openu.ac.il>.
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Morgenstern (1944) utility indices from their action pro�les, the external signals they get,

etc. �and the other players�types. A strategy of each player is a measurable mapping from

her types to her actions. Thus, from each player�s perspective, her own actions coupled with

the strategy pro�les of the other players constitute acts from their types and nature into the

space of everybody�s action pro�les; integration with respect to the probabilistic belief of

each of the player�s types of the payo¤s associated by nature to each action pro�le de�nes

a Savage (1954) preference relation over these acts. Moreover, by considering the type�s

marginal belief over nature, over nature and the other players�marginal beliefs on nature,

etc., we see how each type�s belief encapsulates an in�nite hierarchy of mutual beliefs of all

orders.

Type spaces can be readily extended to more general classes of preferences, by endowing

each type directly with a preference relation over acts which are measurable functions

from nature and the others� types into everybody�s action pro�les. The type�s marginal

preference over constant acts, over acts which are measurable with respect to the other

players�marginal preferences over constant acts, etc., form a hierarchy of mutual preferences.

In the particular case in which the preference relations satisfy Savage (1954) axioms and

for each player states of nature associate real-valued von Neumann and Morgenstern (1944)

payo¤s to the players�action pro�les, each of these preference relations can be represented by

a probability measure over nature and the other players�types, as in Harsanyi�s formulation.

Given a class of preference relations over acts, does the corresponding class of type spaces

contain a universal space, i.e. one which �embeds�all others in the sense of containing all

preference hierarchies which appear in some type space? This is a pertinent question since,

in applications, �small�type spaces are tailored to the problem at hand, and it is important

to know whether any generality is lost by this restriction or rather the same analysis could,

in principle, be carried out in a universal space and deliver the same result. Furthermore,

robustness results are most relevant if they obtain in a universal space, which allows for all

possible perturbations, rather than within any particular, restricted type space.

For the case of preferences based on probabilistic beliefs, Mertens and Zamir (1985),

followed by Brandenburger and Dekel (1993), Heifetz (1993), and Mertens, Sorin, and Zamir

(1994) showed that under suitable topological or regularity assumptions, the set of all
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hierarchies of probabilistic beliefs constitutes a type space, which is hence universal.1 In the

absence of regularity, however, Heifetz and Samet (1999) showed that there exist hierarchies

of beliefs which are not types in any type space. Nevertheless, Heifetz and Samet (1998)

showed that even in the absence of regularity, the set of all pro�les of belief hierarchies

appearing in type spaces is itself a type space, which is universal.2

What happens with more general classes of preferences? Epstein and Wang (1996)

showed that when preferences are regular in the appropriate sense, the set of all preference

hierarchies forms a type space and Chen (2010) proved that it is universal. Alternatively,

if one restricts attention to algebras of events then Di Tillio (2008) showed that a universal

space exists under very mild conditions. However, what happens in the absence of regularity

and when the pertinent class of events forms a �-algebra?

In this paper, we show that a universal space exists under milder and more general

conditions on preferences than those postulated by Epstein and Wang (1996). To wit,

it su¢ ces that preferences can be encoded monotonically by some countable collection of

continuous real-valued functionals over acts. As long as such a representation exists, it

is immaterial whether or not the preference relations themselves are continuous on acts.

For example, a lexicographic preference represented by a �nite sequence of ` continuous

functionals is not itself continuous, since an act may be superior to all acts in some increasing

sequence, but inferior to their limit. Nevertheless, there does exist a universal space in

the category of type spaces where each type is associated with a lexicographic preference

representable by a collection of ` continuous functionals over acts.

The method of proof is a far-reaching generalization of the one employed by Heifetz and

1Other developments under regularity assumptions include Battigalli and Siniscalchi (1999) for con-

ditional beliefs in dynamic games, Mariotti, Meier, and Piccione (2005) for compact possibility models,

Ahn (2007) for compact sets of probabilistic beliefs, Gul and Pesendorfer (2010) to study interdependent

preferences that accommodate reciprocity, Bergemann, Morris, and Takahashi (2011) to study strategic dis-

tinguishability of types, Heifetz, Meier, and Schipper (2012) to study unawareness, and Heifetz and Kets

(2012) to study bounded reasoning.
2Meier (2008), Pinter and Udvari (2011), Heinsalu (2012), Kets (2012), and Pinter (2012) provide recent

developments of more general type spaces using the Heifetz and Samet (1998) approach, while Moss and

Viglizzo (2004) formulate type spaces as coalgebras and show the existence of a �nal coalgebra which provides

the universal type space.
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Samet (1998).3 It proceeds by �collecting�all preference hierarchies that appear in types

spaces in the category, and showing that the resulting collection is a universal space within

that category. Each object in this collection is a hierarchy of preference relations extended

over ever-richer sets of acts. A crucial point of the argument made in proposition 4 is

that even if the ever-extended preference relation is not itself continuous, the fact that it is

encoded by continuous functionals is su¢ cient to imply that the limit preference is uniquely

de�ned. One must then furthermore show that this limit preference varies in a measurable

way with the hierarchy. This follows from a functional monotone class theorem employed

in lemma 1.

The paper is organized as follows. Sections 2 and 3 introduce the notation and de�nitions

for our study of type spaces as well as the main result. Section 4 contains the statements

of our results including the main measure-theoretic lemma and the main theorem while

section 5 provides examples of the kinds of preferences accommodated by our construction

and concludes. Proofs appear in the appendix.

2 Preliminaries

For any measurable space Y with an associated �-algebra �Y , let F(Y ) denote the set of all

real-valued bounded acts, i.e. bounded measurable functions from Y to the set of outcomes

R. The set R can be identi�ed with the subset of constant acts in F(Y ) with slight abuse of

notation, i.e. for any c 2 R, c 2 F(Y ) is the constant act such that c(y) = c for all y 2 Y .

Let L be a countable index set. We say that a binary relation % over F(Y ) admits a

monotone continuous L representation if there exists a function

U : F(Y )! RL

and a preorder �a transitive and re�exive binary relation �D on RL such that

g % f i¤ U (g) D U (f) ; (1)

if gn (y)! g (y) 8y 2 Y then U (gn)! U (g) , (2)

3 It is an interesting question for future research whether the results of Moss and Viglizzo (2006) could

be generalized in order to study the existence of the universal type space for a general class of preferences.
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where convergence is coordinate-wise, i.e. U` (gn) ! U` (g) with U` denoting the `-th

coordinate of U , ` 2 L, and

if f � g then U` (f) � U` (g) ; ` 2 L: (3)

For a given index set L and an order D on RL denote by P(Y ) the set of preference

relations on F(Y ) that admit a monotone continuous L representation. For each %2 P(Y ),

we �x a standard representation U and abusing notation, denote by P(Y ) the set of these

representations. We refer to the representation U as the L-utility.

Denote by �P(Y )the �-algebra on P(Y ) generated by the sets of the form

�r`` (f) = fU 2 P (Y ) jU` (f) � r`g and �
f
` (r`) = fU 2 P (Y ) jr` � U` (f)g

for r` 2 R; `2 L and acts f 2 F(Y ). Then for f 2 F(Y ) and r = (r`)`2L 2 RL

�r(f) = fU 2 P (Y ) jU (f) D rg = \`2L fU 2 P (Y ) jU` (f) � r`g = \`2L�r`` (f)

and

�f (r) = fU 2 P (Y ) jr D U (f)g = \`2L fU 2 P (Y ) jr` � U` (f)g = \`2L�f` (r`)

which are hence measurable events in �P(Y ) since L is countable.

Remark 1. This is the only place where we use the assumption that the index set L is

countable. We could more generally allow the index set L to be of arbitrary cardinality and

assume additionally that �r(f); �f (r) 2 �P(Y ) for every f 2 F(Y ) and r = (r`)`2L 2 RL:

For measurable spaces Y and Z and a measurable function � : Y ! Z, de�ne the

preference mapping �̂ : P(Y )! P(Z) where for any f 2 F(Z),

�̂(UY ) (f) = UY (f � �) : (4)

The set of players is I and I0 = I [ f0g denotes the set of players and �nature�(player

0). As usual, for any collection fYigi2I0 , Y�i = �i02I0nfigYi0 . We consider the product, �nite

or in�nite, of measurable spaces as a measurable space with the product �-algebra.
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3 Type spaces

Let S be a measurable space whose elements are the states of nature.

De�nition 1 (Type space). A type space on S is a tuple < (Ti)I2I0 ; (mi)i2I >=< T;m >,

where

1. T0 = S and Ti, for i 2 I is a measurable space and

2. for each i 2 I, mi : Ti ! P(T�i) is measurable.

The elements of T are called states of the world and an element of Ti is called an i-type.

For any f 2 F(T�i), r 2 RL, the belief operators Bri (f) and B
f
i (r) are de�ned by

Bri (f) = ft 2 T j mi(ti) (f) D rg and Bfi (r) = ft 2 T j r D mi(ti) (f)g (5)

Then, recalling that �ri (f) = fU 2 P(T�i) jU (f) D rg and �fi (r) = fU 2 P(T�i) jr D U (f)g

we have that Bri (f) = m
�1
i (�ri (f)) � T�i and B

f
i (r) = m

�1
i

�
�fi (r)

�
� T�i are measurable

events.

Let < T;m > and < T 0;m0 > be type spaces on S. Type morphisms de�ned below are

mappings that preserve the preference structures, as given by m and m0.

De�nition 2 (Type morphisms). Let �i : Ti ! T 0i , i 2 I0 be measurable functions. Then,

� = (�i)i2I0 : T ! T 0 is a type morphism if

1. �0 is the identity on S and

2. for each i 2 I and ti 2 Ti; m0
i(�i (ti)) = �̂i(mi (ti)), i.e. for every f 2 F(T 0�i)

m0
i(�i(ti)) ( f) = mi(ti) (f � �) : (6)

Then, it can be veri�ed that a type morphism � preserves belief operators, i.e. for each

i 2 I, f 2 F(T 0�i)

��1i (Bri (f � �i)) = Bri (f) and ��1i
�
B
f��i
i (r)

�
= Bfi (r). (7)
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4 The universal type space

De�nition 3 (Universal type space). A type space < T �;m� > on S is universal if for

every type space < T;m > on S, there exists a unique type morphism from < T;m > to

< T �;m� >.

Our main result is the following.

Main Theorem. For any measurable space S there exists a universal type space on S.

Before proceeding to the proof, we note the following result.

Proposition 1. There is at most one universal type space on S up to a type isomorphism.

4.1 Main measure-theoretic lemma

The main measure-theoretic lemma needed for the construction of the universal type space

is the following.

Lemma 1. Let (Y;�Y ) be a measurable space. Let G � F (Y ) be such that the �-algebra

�Y is generated by

AG =
�
f�1 (E) : f 2 G; E � R Borel measurable

	
and such that G satis�es the following properties.

(i) The constant function 1 2 G

(ii) For any f; f 0 2 G and �; �0 2 R, �f + �0f 0 2 G.

(iii) For any f; f 0 2 G; min ff; f 0g 2 G:

Let �G be the �-algebra on P (Y ) generated by sets of the form

�
�r`` (f) jf 2 G; r` 2 R; ` 2 L

	
and n

�f` (r`) jf 2 G; r` 2 R; ` 2 L
o
:

Then �P(Y ) = �G.
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4.2 Hierarchies of preferences

We now de�ne spaces of hierarchies of preferences Hk
i for each k � 0 and i 2 I0. For every

k � 0, Hk
0 = S and for every i 2 I, H0

i is a singleton. As usual H
k = �i2I0Hk

i . We de�ne

inductively

Hk+1
i = Hk

i � P(Hk
�i) = H

0
i �

�
�kk0=0P(Hk0

�i)
�
: (8)

The space of i-hierarchies for player i 2 I is

Hi = H
0
i �

�
�1k0=0P(Hk0

�i)
�

(9)

and the projection from Hi to Hk
i is denoted �

k
i .

Given a type space T , we can de�ne an i-description map hi : Ti ! Hi for each i 2 I0
as follows. For all k � 0, let hk0 be the identity on S. For i 2 I, h0i : Ti ! H0

i is uniquely

de�ned since H0
i is a singleton. Inductively, de�ne h

k+1
i : Ti ! Hk+1

i for k � 0 by

hk+1i (ti) =
�
hki (ti); ĥ

k
�i(mi(ti))

�
=
�
h0i (ti); ĥ

0
�i(mi(ti)); : : : ; ĥ

k
�i(mi(ti))

�
(10)

where ĥk�i : P(T�i)! P(Hk
�i) is the mapping between the sets of preferences as de�ned in

(4) in section 2. Now de�ne hi : Ti ! Hi, i 2 I as the unique function that satis�es for all

k � 0, hki = �ki (hi), i.e.

hi(ti) =
�
h0i (ti); ĥ

0
�i(mi(ti)); : : : ; ĥ

k
�i(mi(ti)); : : :

�
(11)

and de�ne h0 to be the identity on S. The �rst result is as follows.

Proposition 2. Type morphisms preserve i-descriptions.

We can now de�ne the universal type space by setting T �0 = S and T
�
i to be the set of

all i-descriptions in Hi, i.e., all hierarchies t�i 2 Hi for which t�i = hi(ti) for some ti 2 Ti in

some type space < T;m > over S. The �-algebra of T �i is the one inherited from Hi. We

de�ne m�
i : T

�
i ! P(T ��i) by

m�
i (ti) = ĥ�i(mi(ti)): (12)

The next result establishes that < T �;m� > thus de�ned is a type space.

Proposition 3. < (T �i )i2I0 ; (m
�
i )i2I > is a type space on S.
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Proposition 4. For every type space < T;m >, the description map h : T ! T � is a type

morphism.

Lemma 2. The hierarchy description maps hi : T �i ! T �i are the identity maps.

We now re-state and prove the main result.

Theorem 1. < (T �i )i2I0 ; (m
�
i )i2I > is the universal type space.

5 Examples

Some examples of preferences where % admits a continuous L-representation and are ac-

commodated in our construction of the universal type space are as follows.

1. If jLj = 1 and D is the usual order � on R, % admits a continuous representation such

as those for preferences under risk and ambiguity including Choquet expected utility,

multiple-prior maxmin expected utility, invariant biseparable preferences, �smooth�

ambiguity preferences, variational preferences, uncertainty-averse preferences, vector

expected utility preferences as discussed in Gilboa and Marinacci (2011) and rank-

dependent and prospect theory preferences as discussed in Wakker (2010) and for

social preferences as discussed in Marinacci, Maccheroni, and Rustichini (2011).

2. If 1 < jLj < 1, respectively L = N, and D is the lexicographic order on RjLj,

respectively RN, then % is lexicographic, i.e. g � f i¤ for some �̀ 2 L it is the case

U` (g) = U` (f) 8` < �̀and U�̀(g) > U�̀(f). In the �rst case % is of order (at most) jLj

while in the second case there is no a priori bound on �̀. Moreover, when U` is linear

for every ` 2 L, by the Riesz representation theorem % has a unique representation

by a Lexicographic Probability System (LPS) whose order may be �nite or in�nite

(Blume, Brandenburger, and Dekel, 1991).

3. If 1 < jLj and D is the partial order on RL de�ned by (r`)`2L D (r0`)`2L i¤ r` � r0`

8` 2 L, % may be incomplete and admit continuous versions of representations in

Galaabaatar and Karni (2012), Ok, Ortoleva, and Riella (2012), and Ok (2012) among

others.
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4. U can represent some instances of preferences over menus that feature behavior such as

self-control and temptation, or non-Bayesian updating, or self-deception as described

in Lipman and Pesendorfer (2011). For example, when jLj = 2, U = (U1; U2) repre-

sents self-control preferences over menus similarly to the representation axiomatized in

Gul and Pesendorfer (2001) (Theorem 3) with U1 representing the commitment utility

and U2 representing temptation utility. The utility V (�) of compact non-empty menu

F � F (Y ) is either

V (F ) = max
f2F

fU1 (f) + U2 (f)g �max
f2F

U2 (f) (self control)

or

V (F ) = max
f2F

U1 (f) subject to U2 (f) � U2
�
f 0
�
for all f 0 2 F (no self control).
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6 Appendix: proofs

Proof of proposition 1. Let < T;m > and < T 0;m0 > be universal type spaces on S. Then

there are type morphisms � : T ! T 0 and �0 : T 0 ! T . Thus �0(�) : T ! T is a type morphism.

However, the identity mapping from T to T is also a type morphism and so by the uniqueness of

type morphisms to universal type spaces, it follows that �0(�) is the identity on T which proves that

� is a type isomorphism. �

Proof of lemma 1. Clearly �P(Y ) � �G ; since �P(Y ) is generated by the sets of the form

f�r`` (f) jf 2 F (Y ) ; r` 2 R; ` 2 Lg

and n
�f` (r`) jf 2 F (Y ) ; r` 2 R; ` 2 L

o
:

We establish that �P(Y ) � �G . Let F 0 � F (Y ) be the collection of acts f such that �r`` (f) ; �
f
` (r`) 2

�G for all r` 2 R and ` 2 L. We show that F 0 � F (Y ) which establishes the result, since �G then

contains all the generators of �P(Y ).

We prove that F 0 � F (Y ) by employing the functional monotone class theorem (Dellacherie

and Meyer (1978) theorem 22.3, p. 15-1).4 Given assumptions (i)-(iii) on G; and the fact that F (Y )

is the set of �Y -measurable acts while �Y is generated by AG , it remains to show that F 0 is closed

under bounded monotone convergence. Indeed, let ffng1n=1 be a bounded monotone sequence of

functions in F 0 converging to f 2 F (Y ).5 Then for all r` 2 R; ` 2 L, by the continuity(2) and

monotonicity (3) of L-utility,

�r`` (f) = \
1
k=1 [1m=1 \n�m�

r`� 1
k

` (fn)

and

�f` (r`) = \n�1�
fn
` (r`) .

Since the assumption that fn 2 F 0 for every n � 1 means, in particular, that �
r`� 1

k

` (fn) ; �
fn
` (r`) 2

�G for every k � 1; it thus follows that also �r`` (f) ; �
f
` (r`) 2 �G . As this holds for all r` 2 R; ` 2 L,

we conclude that f 2 F 0; as required.�
4The corresponding notation there has H = F 0 and C = G:
5ffng1n=1 is a sequence for which (i) there exists M < 1 such that 0 � fn (y) � M for all y 2 Y and

n = 1; 2; : : : and (ii) fn (y) is increasing in n for all y 2 Y .
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Proof of proposition 2. Let � : T ! T 0 be a type morphism. We have to show that

h0i(�i(ti)) = hi(ti) for all ti 2 Ti and i 2 I0. For i = 0, this follows immediately since �0; hk0 ; h0; h0k0 ; h00
are all the identity map on S. For i 2 I, h0i (ti) = h00k (�i(ti)) since H0

i is a singleton.

Suppose, inductively, that we have already proved that hki (ti) = h
0k
i (�i(ti)) for every ti 2 Ti and

every i 2 I0. In the following sequence of equalities, the second equality stems from the fact that

type morphisms preserve preferences (6) and the induction hypothesis is used in the third equality.

For any f 2 F(Hk
�i)

ĥ0k�i(m
0
i(�i(ti))) (f) = m0

i(�i(ti))
�
f � h0k�i

�
= mi (ti)

�
f � h0k�i � ��i

�
= mi(ti)

�
f � hk�i

�
= ĥk�i(mi(ti)) (f)

It then follows that
h0k+1i (�i(ti)) =

�
h0ki (�i(ti)); ĥ

0k
�i (m

0
i(�i(ti)))

�
=

�
hki (ti); ĥ

k
�i (mi(ti))

�
= hk+1i (ti)

as needed. �

Proof of proposition 3. To show that < T �;m� > is a type space on S, we have to show

that m�
i is a measurable mapping for each i 2 I. For t�i , let ti be the i-type used to de�ne m�

i (t
�
i ) 2

P(T ��i) � P(H�i), i.e. m�
i (t

�
i ) = ĥ�i(mi(ti)).

Consider the preference relation on F(Hk
�i) induced by m

�(t�i ), i.e. �̂
k
�i(m

�
i (t

�
i )) where �̂

k
�i :

P(H�i) ! P(Hk
�i) is the preference mapping de�ned in (4) corresponding to the projection �

k
i :

Hi ! Hk
i . Then,

�̂k�i (m
�
i (t

�
i )) = �̂k�i

�
ĥ�i (mi(ti))

�
= ĥk�i (mi(ti)) since hki (ti) = �

k
i (hi(ti))

= (k + 1)th coordinate of hi(ti)

= (k + 1)th coordinate of the hierarchy t�i

� (t�i )
k+1

(13)

Let Gk � F (H�i) be the set of acts that are measurable with respect to Hk
�i; i.e. Gk is the set

of acts fk such that for every Borel measurable E � R there exists some measurable Ek � Hk
�i for

which f�1k (E) =
�
�k�i

��1
(Ek) : Let

G = [1k=0Gk

Then AG =
�
f�1 (E) : f 2 G; E � R Borel measurable

	
is the collection of all cylinders with �nite-

dimensional bases, which generates the �-algebra on H�i: Moreover, (i) the constant act 1 is in G0

14



and hence in G; furthermore, if f; f 0 2 G then f 2 Gk and f 0 2 Gk0 for some k; k0; and if, without loss

of generality k � k0 then f 0 2 Gk. It thus follows that (ii) �f + �0f 0 2 Gk � G for every �; �0 2 R;

and (iii) min ff; f 0g 2 Gk � G:

Lemma 1 then implies that �P(H�i) = �G ; i.e. that �P(H�i) is generated by the sets of the form

f�r`` (f) jf 2 G; r` 2 R; ` 2 Lg = [
1
k=0 f�r`` (fk) jfk 2 Gk; r` 2 R; ` 2 Lg

and n
�f` (r`) jf 2 G; r` 2 R; ` 2 L

o
= [1k=0

n
�fk` (r`) jfk 2 Gk; r` 2 R; ` 2 L

o
:

But if fk 2 Gk; r` 2 R; ` 2 L; then denoting by fk 2 F
�
Hk
�i
�
the act on Hk

�i for which fk = f
k ��k�i;

from (13) we get that

(m�
i )
�1 (�r`` (fk)) = ft�i j(m�

i (t
�
i ))` (fk) � r` g =

n
t�i

����(t�i )k+1�
`

�
fk
�
� r`

o
(14)

(m�
i )
�1
�
�fk` (r`)

�
= ft�i jr` � (m�

i (t
�
i ))` (fk)g =

n
t�i

���r` � �(t�i )k+1�
`

�
fk
�o

(15)

which are hence measurable subsets inHi. This proves thatm�
i is a measurable mapping, as required.

�

Proof of proposition 4. The functions hi; i 2 I, are measurable and h0 is the identity. Since

the range of hi is T �i , it is also measurable as a function to T
�
i . Also, from (13), it follows that for

acts fk in F(H�i) that are measurable with respect to the �-algebra on Hk
�i; (m

�
i (t

�
i ))` (fk) does

not depend on the speci�c type ti chosen to de�ne m�
i (t

�
i ); since there exists f

k 2 F
�
Hk
�i
�
such that

fk = f
k � �k�i and so

(m�
i (t

�
i ))` (fk) =

�
(t�i )

k+1
�
`

�
fk
�
=
�
ĥ�i (mi(ti))

�
`
(fk) = (mi(ti))` (fk � h�i) (16)

for any ti such that hi(ti) = t�i and every ` 2 L:

Now, every measurable act f 2 F (H�i) is a pointwise limit of a sequence of functions fk 2

F (H�i) which are, respectively, measurable with respect to the �-algebra on Hk
�i: The continuity

of (m�
i (t

�
i ))` and (mi(ti))` in (2) then implies that

(m�
i (t

�
i ))` (f) = lim

k!1
(m�

i (t
�
i ))` (fk) = lim

k!1
(mi(ti))` (fk � h�i) = (mi(ti))` (f � h�i) (17)

for every ` 2 L and i 2 I, which proves that h is a type morphism. �

Proof of lemma 2. It su¢ ces to show that for each k and i 2 I, the function hki on T � is

the projection on Hk
i . We show this by induction on k. It is clearly true for k = 0. Suppose

that hk = �k. By de�nition, (hi(t�))
k+1

= ĥk�i (m
�
i (t

�
i )). Using the induction hypothesis we get

ĥk�i (m
�
i (t

�
i )) = �̂

k
�i (m

�
i (t

�
i )) ; implying that (hi(t

�))
k+1

= �̂k�i (m
�
i (t

�
i )) = (t

�
i )
k+1

:�
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Proof of theorem 1 [Main Theorem]. For any type space < T;m >, the description map

h : T ! T � is a type morphism by proposition 4. We need to show that it is unique. Suppose

� : T ! T � is a type morphism. Then for each i 2 I and ti 2 Ti, hi(ti) = hi(�i(ti)) by proposition

2. However, from lemma 2, we get hi(�i(ti)) = �i(ti). Hence, �i = hi and the result follows.�
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