Research Repository

Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi

Arnold, HE and Kerrison, P and Steinke, M (2013) 'Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi.' Global Change Biology, 19 (4). 1007 - 1016. ISSN 1354-1013

[img] Text
Arnold et al DMS PRODUCTION IN EHUX Global Change Biol 2013.pdf
Restricted to Repository staff only

Download (404kB)

Abstract

The production of the marine trace gas dimethyl sulfide (DMS) provides 90% of the marine biogenic sulfur in the atmosphere where it affects cloud formation and climate. The effects of increasing anthropogenic CO2 and the resulting warming and ocean acidification on trace gas production in the oceans are poorly understood. Here we report the first measurements of DMS-production and data on growth, DMSP and DMS concentrations in pH-stated cultures of the phytoplankton haptophyte Emiliania huxleyi. Four different environmental conditions were tested: ambient, elevated CO2 (+CO2), elevated temperature (+T) and elevated temperature and CO2 (+TCO2). In comparison to the ambient treatment, average DMS production was about 50% lower in the +CO2 treatment. Importantly, temperature had a strong effect on DMS production and the impacts outweighed the effects of a decrease in pH. As a result, the +T and +TCO2 treatments showed significantly higher DMS production of 36.2 ± 2.58 and 31.5 ± 4.66 μmol L-1 cell volume (CV) h-1 in comparison with the +CO2 treatment (14.9 ± 4.20 μmol L-1 CV h-1). As the cultures were aerated with an air/CO2 mixture, DMS was effectively removed from the incubation bottles so that concentration remained relatively low (3.6-6.1 mmol L-1 CV). Intracellular DMSP has been shown to increase in E. huxleyi as a result of elevated temperature and/or elevated CO2 and our results are in agreement with this finding: the ambient and +CO2 treatments showed 125 ± 20.4 and 162 ± 27.7 mmol L-1 CV, whereas +T and +TCO2 showed significantly increased intracellular DMSP concentrations of 195 ± 15.8 and 211 ± 28.2 mmol L-1 CV respectively. Growth was unaffected by the treatments, but cell diameter decreased significantly under elevated temperature. These results indicate that DMS production is sensitive to CO2 and temperature in E. huxleyi. Hence, global environmental change that manifests in ocean acidification and warming may not result in decreased DMS as suggested by earlier studies investigating the effect of elevated CO2 in isolation. © 2012 Blackwell Publishing Ltd.

Item Type: Article
Subjects: Q Science > QH Natural history > QH301 Biology
Divisions: Faculty of Science and Health > Biological Sciences, School of
Depositing User: Michael Steinke
Date Deposited: 15 Feb 2013 16:49
Last Modified: 30 Jan 2019 16:17
URI: http://repository.essex.ac.uk/id/eprint/5649

Actions (login required)

View Item View Item