Research Repository

Symmetry-related clustering of positive charges is a common mechanism for heparan sulfate binding in enteroviruses.

McLeish, NJ and Williams, CH and Kaloudas, D and Roivainen, MM and Stanway, G (2012) 'Symmetry-related clustering of positive charges is a common mechanism for heparan sulfate binding in enteroviruses.' Journal of virology, 86 (20). 11163 - 70. ISSN 1098-5514

Full text not available from this repository.

Abstract

Coxsackievirus A9 (CAV9), a member of the Picornaviridae family, uses an RGD motif in the VP1 capsid protein to bind to integrin ?v?6 during cell entry. Here we report that two CAV9 isolates can bind to the heparan sulfate/heparin class of proteoglycans (HSPG). Sequence analysis identified an arginine (R) at position 132 in VP1 in these two isolates, rather than a threonine (T) as seen in the nonbinding strains tested. We introduced a T132R substitution into the HSPG-nonbinding strain Griggs and recovered infectious virus capable of binding to immobilized heparin, unlike the parental Griggs strain. The known CAV9 structure was used to identify the location of VP1 position 132, 5 copies of which were found to cluster around the 5-fold axis of symmetry, presumably producing a region of positive charge which can interact with the negatively charged HSPG. Analysis of several enteroviruses of the same species as CAV9, Human enterovirus B (HEV-B), identified examples from 5 types in which blocking of infection by heparin was coincident with an arginine (or another basic amino acid, lysine) at a position corresponding to 132 in VP1 in CAV9. Together, these data show that membrane-associated HSPG can serve as a (co)receptor for some CAV9 and other HEV-B strains and identify symmetry-related clustering of positive charges as one mechanism by which HSPG binding can be achieved. This is a potentially powerful mechanism by which a single amino acid change could generate novel receptor binding capabilities, underscoring the plasticity of host-cell interactions in enteroviruses.

Item Type: Article
Subjects: Q Science > QH Natural history > QH301 Biology
Divisions: Faculty of Science and Health > Life Sciences, School of
Depositing User: Jim Jamieson
Date Deposited: 13 Mar 2013 21:44
Last Modified: 25 Sep 2019 10:16
URI: http://repository.essex.ac.uk/id/eprint/5842

Actions (login required)

View Item View Item