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Abstract

Exact simulation approaches for a class of diffusion bridges have recently

been proposed based on rejection sampling techniques. The existing rejection

sampling methods may not be practical due to small acceptance probabilities.

This paper proposes an adaptive approach which improves the existing methods

significantly under certain scenarios. The idea of the new method is based on a

layered process, which can be simulated from a layered Brownian motion with

re-weighted layer probabilities. We will show that the new exact simulation

method is more efficient than existing methods theoretically and via simulation.
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1. Introduction

This paper considers the diffusion bridge X = {Xt, t ∈ [0, T ]}, given by

dXt = α(Xt)dt+ dBt, X0 = x,XT = y, (1)

where Bt, the coordinate mapping Bt(ω) = ωt, is a Brownian motion under Wiener

measure W. Here ω is a typical element of C = C([0, T ],R), the set of continuous

mappings from [0, T ] to R. Let Qx,y0,T denote the probability measure induced by the

diffusion bridge X and Wx,y
0,T be the corresponding probability measure for B = {Bt, t ∈

[0, T ]}, B0 = x,BT = y.
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[1], [2], [3], [4] and [5] have proposed several novel methods for exact simulation of

diffusion bridges driven by a class of stochastic differential equations (SDEs), which

satisfies the following conditions:

Condition 1. (a): α(·) is continuously differentiable;

(b): (α2 + α′)(·)/2 is bounded below by a constant l which does not depend on ω.

(c): exp
{∫ T

0
α(ωs)dωs −

∫ T
0
α2(ωs)ds/2}

}
is a martingale with respect to W. �

Their methods involve rejection sampling where the proposals are Brownian bridges

which can be easily simulated. The proposed sample path is accepted according to

appropriate probability density ratio ([3]), which is derived using Girsanov’s transfor-

mation formula ([7, 8]) if applicable.

In practice, their methods may not be efficient due to low acceptance probability,

if (1) the time gap T is large; or (2) the values of (α2 + α′)(ωs)/2 − l are very large

throughout the interval [0, T ] (see Example 1 in Section 2). This paper focuses on

dealing with the challenge under case (2) by using an adaptive approach, where the

lower bound of (α2 + α′)(ωs) is chosen according to the layers of the proposed paths.

By doing this, we can always find larger lower bound values for (α2 + α′)(ωs) and it

increases the acceptance probability significantly. We leave tackling the challenge of

case (1) in future research work.

The idea of the new method is based on a layered process, which can be simulated

via two steps. First we simulate a layer based on re-weighted layer probabilities of a

Brownian bridge. Then we simulate a Brownian bridge conditional on the simulated

layer. By doing so, the proposal process is not a Brownian bridge any more. We will

show that the new method is an exact simulation method. We will also demonstrate

the new method is more efficient than existing methods under certain scenarios.

We begin from Section 2 by stating an example which shows when and why existing

methods are not efficient. In Section 3, we will present the probability measure for

the proposal process and show how to simulate the proposal process via an adaptive

rejection sampling approach. In Section 4, we discuss how to do rejection sampling

for the diffusion bridges based on the proposal process. We will provide simulations

studies to demonstrate the performance of the new method in Section 5 and provide a

discussion in Section 6.
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2. Rejection sampling and its challenges

Consider the diffusion model (1). Following [3] and using Girsanov’s transformation

formula we have

dQx,y0,T

dWx,y
0,T

(ω) ∝ exp

{
−
∫ T

0

1

2
(α2 + α′)(ωs)ds

}
. (2)

From (b) of Condition 1, we know that there exists a constant l such that l ≤
infu∈R{(α2 + α′)(u)/2}. Then the above formula can be written as

dQx,y0,T

dWx,y
0,T

(ω) ∝ exp

{
−
∫ T

0

[
1

2
(α2 + α′)(ωs)− l

]
ds

}
, (3)

which is no more than 1. So we can use the rejection sampling methods in [3] and [4]

to simulate X, with the proposal process sampled from the measure Wx,y
0,T .

The acceptance probability, given by

EW

[
exp

{
−
∫ T

0

[
1

2
(α2 + α′)(ωs)− l

]
ds

}]
, (4)

is usually very small, if the values of (α2+α′)(ωs)/2− l is large throughout the interval

[0, T ]. Even if we choose l as the maximum lower bound, l = infu∈R{(α2 + α′)(u)/2},
the above acceptance probability may still be very tiny, which is shown by the following

example.

Example 1.

Consider the logistic growth diffusion V = {Vs, s ∈ [0, T ]} with parameters R,Λ, σ,

dVs = RVs(1− Vs/Λ)ds+ σVsdBs.

More details about the logistic growth diffusions and their applications can be found

in [12]. To simulate {Vs}, we only need to simulate the transformed diffusion Xs =

− log(Vs)/σ, which, following [3], solves

dXs = α(Xs)ds+ dBs,

α(u) =
σ

2
− R

σ
+

R

σΛ
exp(−σu).

It can be shown that

α2(u) + α′(u)

2
=

σ2

8
− R

2
+
R2

2σ2

[
1− exp(−σu)

Λ

]2
. (5)
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[3] used the maximum lower bound l = σ2/8 − R/2 for (5). However, [α2(ωs) +

α′(ωs)]/2 may be much larger than l, if the third term of (5), [R2/2σ2]·[1− exp(−σωs)/Λ]
2
,

is much larger than 0. For example, if we choose R = 0.5, σ = 0.1,Λ = 1500,

ω0 = − log(700)/σ, ωT = − log(700)/σ and T = 2, the value of (5) will be much

larger than l. This will lead to a very small acceptance probability.

We can demonstrate this using simple calculations. Since we simulate a Brownian

bridge {Bt;B0 = B2 = − log(700)/σ = −65.51} as the proposal, using the results in

[9] or the simplified layered Brownian bridge results in [4] we can easily find that the

Brownian bridge {Bt, t ∈ [0, 2]} only has a small probability (less than 0.02) to hit the

boundaries −65.51± 2. This result implies the acceptance probability

EW

[
exp

{
−
∫ T

0

[
1

2
(α2 + α′)(ωs)− l

]
ds

}]

≤ EW

{
exp

(
−
∫ T

0

[R2/2σ2] · [1− exp(−σωs)/Λ]
2
ds

)
I[ωs ∈ [−67.51,−63.51]]

}
+ 0.02

≤ exp(−25 [1− exp(6.751)/Λ]
2
) + 0.02 ≈ 0.03.

In fact, according to our simulation study in Section 4, the acceptance probability is

just about 0.0007. �

An important issue implied by the above example is that although 1
2 (α2 + α′)(ωs)

can theoretically reach l, the probability for that can be very tiny and there is a very

large probability that 1
2 (α2 +α′)(ωs) is much bigger than l. Therefore many simulated

proposal process ω will be rejected.

The above example demonstrates that it is important to improve the current exact

simulation methods to achieve higher acceptance probabilities.

3. Simulation of the proposal process

In this section we introduce the measure for the proposal process and show how to

simulate the proposal process. Based on the proposal process, a rejection sampling

method will then be introduced in Section 4.

The proposal process is simulated via two steps. First we simulate a layer based on

re-weighted layer probabilities of a Brownian bridge. Then we simulate a Brownian

bridge conditional on the simulated layer. So we first introduce the layers by following
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the notations in [4].

Let {ai}i≥1 be an increasing sequence of positive numbers and a0 = 0. Let x̄ = x∧y,

ȳ = x ∨ y. Define the events as Di(x̄, ȳ; 0, T ) = Ui(x̄, ȳ; 0, T ) ∪ Li(x̄, ȳ; 0, T ), where

Ui(x, y; 0, T ) =

{
ω : sup

0≤s≤T
ωs ∈ [ȳ + ai−1, ȳ + ai]

}
∩
{
ω : inf

0≤s≤T
ωs > x̄− ai

}
,

Li(x, y; 0, T ) =

{
ω : inf

0≤s≤T
ωs ∈ [x̄− ai, x̄− ai−1]

}
∩
{
ω : sup

0≤s≤T
ωs < ȳ + ai

}
,

and ω0 = x, ωT = y.

We say that the Brownian bridge is in layer i, if ω ∈ Di.
With the above definition, we consider different lower bounds of (α2 +α′)(ωs)/2 for

different layers. Part (b) of Condition 1 implies that we can find li such that

li ≤ inf
s∈[0,T ],ω∈Di

{(α2 + α′)(ωs)/2}. (6)

Obviously such li ≥ l for all i.

Based on the layers and the lower bounds li, we consider the following measure for

the proposal process,

W̃x,y
0,T (ω) ∝Wx,y

0,T (ω)

∞∑
i=1

exp{−T li}I{ω ∈ Di}. (7)

We then have

dQx,y0,T

dW̃x,y
0,T

(ω) ∝
exp

{
−
∫ T
0

1
2 (α2 + α′)(ωs)ds

}
∑∞
i=1 exp{−T li}I{ω ∈ Di}

=

∞∑
i=1

exp

{
−
∫ T

0

[
1

2
(α2 + α′)(ωs)− li

]
ds

}
I{ω ∈ Di}, (8)

which is also a value no more than 1. Therefore if we can simulate from W̃x,y
0,T (ω),

which will be discussed later, then based on (8) we can also use rejection sampling.

The acceptance probability is now given by

∞∑
i=1

EW

[
exp

{
−
∫ T

0

[
1

2
(α2 + α′)(ωs)− li

]
ds

}
I{ω ∈ Di}

]
, (9)

which will be larger than the acceptance probability in (4), since li ≥ l for all i.
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To simulate from W̃x,y
0,T (ω) we write (7) as

W̃x,y
0,T (ω) =

Wx,y
0,T (ω)

∑∞
i=1 exp{−T li}I{ω ∈ Di}∑∞

i=1 exp{−T li}Wx,y
0,T {ω ∈ Di}

(10)

=

∞∑
i=1

{
exp{−T li}Wx,y

0,T {ω ∈ Di}∑∞
i=1 exp{−T li}Wx,y

0,T {ω ∈ Di}
Wx,y

0,T (ω)I{ω ∈ Di}
Wx,y

0,T {ω ∈ Di}

}

where Wx,y
0,T {ω ∈ Di} is the probability that the Brownian bridge belongs to the event

Di (in layer i). To simulate from (10), we can first simulate the layer, say I, according

to the probability

P̃(I = i) =
exp{−T li}Wx,y

0,T {ω ∈ Di}∑∞
i=1 exp{−T li}Wx,y

0,T {ω ∈ Di}
(11)

(this will be discussed in Section 3.1) and then conditional on the layer I we simulate

ω from Wx,y
0,T (ω)I{ω ∈ Di} (this will be discussed in Section 3.2).

3.1. Simulation for the layer I from (11)

3.1.1. Preliminaries. We can write (11) as

P̃(I = i) ∝ biγi, (12)

where

bi = exp(−T (li − l)) (13)

and γi = Wx,y
0,T {ω ∈ Di}. Let Fi =

∑i
j=1 γj = Wx,y

0,T {ω ∈ ∪ij=1Dj}. For each Fi, there

exists an alternating sequence {Si,j}∞j=1 such that

0 < Si,2 < Si,4 < Si,6 < · · · < Fi < · · · < Si,5 < Si,3 < Si,1, (14)

where Si,j depends on T , x and y and it can be easily calculated. The formula of

Si,j can be found in [4]. Note that Si,j → Fi, as j → ∞. Therefore an event with

probability γi or Fi can be simulated as follows, using the above alternating sequence.

We simulate a standard uniform random variable U first. If U ≤ Si,j for an even

number of j then U < Fi; if U ≥ Si,j for an odd number of j then U > Fi. Since

Si,j → Fi, we can always find either U ≤ Si,j for an even number of j for U ≥ Si,j for

an odd number of j, by searching from j = 1 to ∞.



Exact simulation for diffusion bridges 7

This is given by the following Algorithm 1, the subroutine SA({Si,j}, U), where the

inputs are the alternating sequence and a standard uniform variable U . It will output

an indicator Ii with P (Ii = 1) = Fi and P (Ii = 0) = 1 − Fi and output a value τi

such that U ≤ τi < Fi if Ii = 1 and U ≥ τi > Fi if Ii = 0.

Input: Alternating sequence {Si,j}, which satisfies (14) and a standard

uniform variable U

Output: Indicator Ii and a value τi

1 Set j = 1 ;

2 if U ≤ Si,j for an even number of j then

3 output Ii = 1 and τi = Si,j

4 else

5 if U > Si,j for an odd number of j then output Ii = 0 and τi = Si,j ;

6 else j = j + 1 and go to step 2.

7 end

Algorithm 1: SA({Si,j}, U); Simulate indicator Ii with P (Ii = 1) = Fi and

P (Ii = 0) = 1− Fi. If Ii = 1, U ≤ τi < Fi; if Ii = 0, U > τi ≥ Fi

See [4] for more details of alternating sequences and how to simulate from P(I =

i) ∝ γi.

Simulation of the layer I from (12), however, is not straightforward due to the factor

bi. Note that, if l = infs∈[0,T ]{(α2+α′)(ωs)/2} and li = infs∈[0,T ],ω∈Di
{(α2+α′)(ωs)/2}

then {li} is a decreasing sequence and li → l. Then from (13) we further have {bi}
to be an increasing sequence and bi → 1. In practice, it is often challenge to find the

maximum lower bound infs∈[0,T ],ω∈Di
{(α2 +α′)(ωs)/2} explicitly. We usually consider

a sequence {li} such that li < infs∈[0,T ],ω∈Di
{(α2 + α′)(ωs)/2} and its limiting value

l < infs∈[0,T ]{(α2 + α′)(ωs)/2}. Although li is not the maximum lower bound for

(α2 + α′)(ωs)/2, we can always choose {li} to be decreasing and converges to l. Then

{bi} is increasing and converges to 1. Therefore, in this section we will show how to

simulate the layer I from (12) with {bi} as an increasing sequence.
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0 ...  ...
A A ARR

A -- acceptance interval; R -- rejection interval.

<b1 b2 b3< < ......

b1γ1 (b2 − b1)F1 b2γ2 (b3 − b2)F2 b3γ3

b1F1 b2F1 b2F2 b3F2 b3F3

Figure 1: Naive rejection sampling when bi is increasing, where intervals with letter A means

the acceptance region for U and intervals with letter R means the rejection region for U .

3.1.2. Simulation from (12). First we can partition the interval [0, 1] by the ascend-

ing sequence

{0, b1F1, b2F1, b2F2, b3F2, · · · , bjFj−1, bjFj , · · · },

as shown in Figure 1.

To simplify the notations, we define δ1 = 0, {δi = biFi−1}i≥2, {∆i = biFi}i≥1 and

pi = ∆i−δi = biγi. Then simulating a layer I from P̃ in (12) is equivalent to simulating

a random value U∗ from the mixture of uniform distributions

f(u) =

∞∑
i=1

pi ·U{[δi,∆i]}/
∞∑
i=1

pi

∝
∞∑
i=1

I{u ∈ [δi,∆i]}, (15)

where U{[δi,∆i]} is the uniform distribution in the set [δi,∆i]. This is because P(U∗ ∈
[δi,∆i]) = P̃(I = i).

Note that
∑∞
i=1 pi usually cannot be calculated explicitly in practice. So direct

sampling from (15) is not feasible. To solve this problem, we first consider a naive

rejection sampling. First simulate a standard uniform variable U . If U is in the
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acceptance interval [δi = biFi−1,∆i = biFi], which has length biγi, then accept U

as U∗ and output I = i. On the contrary, if U is in the rejection interval (∆i−1 =

bi−1Fi−1, δi = biFi−1), we resample U . This is a rejection sampling algorithm with

acceptance probability
∑∞
i=1 biγi.

Note that the acceptance probability of the above naive rejection sampling algorithm

is
∑∞
i=1 biγi, which may be very small. We, however, can improve the above naive

algorithm by considering an adaptive sampling approach.

In the first step we sample a standard uniform random variable U from the interval

[0, 1]. If the proposal U is in an acceptance interval, then we accept it; if it is in a

rejection interval, say in [∆i, δi+1], then we reject it and change the proposal density

by removing the rejection interval [∆i, δi+1] from [0, 1]. Then in the second step we

sample U from the new proposal density U{[0, 1]\[∆i, δi+1]}. Repeat the second step

and remove the rejection interval whenever the proposal U lies in it, until a simulated

U lies in some acceptance interval. Denote the union of all rejection intervals removed

from [0, 1] as R. The following algorithm explains this procedure.

1 Set R as an empty set ;

2 Simulate U uniformly from the set [0, 1]\R;

3 Find the value i, such that δi ≤ U ≤ ∆i or ∆i ≤ U ≤ δi+1;

/* This is to find which subinterval (see the partition in Figure

1) that U belongs to. */

4 if δi ≤ U ≤ ∆i then

5 accept U∗ = U , output I = i as the layer from (12) and stop

6 else

7 set R = R∪ [∆i, δi+1];

8 end

9 Go to step 2;

Algorithm 2: A naive adaptive algorithm.

Lemma 1. Algorithm 2 simulates U∗ from the mixture of uniform distribution (15)

and the layer I from (12).

Proof. The theorem follows easily as it is a rejection sampling with the proposal den-
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sity, uniform distribution on set [0, 1]\R, and the target density, uniform distribution

on set [0, 1]\ ∪i [∆i, δi−1]. �

Note that the above algorithm is adaptive, since the proposal density of U , U{[0, 1]\R},
will change and become closer to the target density, if the proposal is rejected.

Step 3 of Algorithm 2, checking δi ≤ U ≤ ∆i, can be carried out easily. Although we

can not calculate the explicit value for δi and ∆i, we can have an alternating sequence

which converges to δi and ∆i, as

0 < biSi,2 < biSi,4 < · · · < ∆i = biFi < · · · < biSi,3 < biSi,1

0 < biSi−1,2 < biSi−1,4 < · · · < δi = biFi−1 < · · · < biSi−1,3 < biSi−1,1. (16)

Clearly, Algorithm 1 can be used to check δi ≤ U ≤ ∆i. We can run Algorithm 1 for

both alternating sequences in (16). SA({biSi,j}, U) and SA({biSi−1,j}, U) will output

(Ii,1, τi,1) and (Ii,2, τi,2). If Ii,1 = 1 and Ii,2 = 0 then δi < τi,2 ≤ U ≤ τi,1 < ∆i; if

Ii,1 = 0 and Ii+1,2 = 1 then ∆i < τi,1 ≤ U ≤ τi+1,2 < δi+1.

Step 2 of Algorithm 2, however, only works in theory. This is because the proposal

density U{[0, 1]\R} is not available, since the evaluation R = R∪ [∆i, δi+1] in step 7

can not be performed due to not having the explicit values for ∆i and δi+1. However,

using (16) we can always work out a subinterval of [∆i, δi+1] and we can remove this

subinterval from the proposal density instead of removing [∆i, δi+1]. Note that the

subinterval of [∆i, δi+1] can be determined via a dynamic approach. This is because

it can be obtained when checking the event δi ≤ U ≤ ∆i using Algorithm 1. When U

is in the rejection interval U ∈ [∆i, δi+1], we must have ∆i < τi,1 ≤ U ≤ τi+1,2 < δi+1

for some τi,1 and τi+1,2 outputed by Algorithm 1.

Therefore, we can have the following practical Algorithm 3, which is equivalent to

simulating a proposal U from the hat function

g(u) ∝ U{[0, 1]\R}, (17)

where R ⊂ ∪i[τi,1, τi+1,2] and then accept it U as sample from f(u) if U belongs to

the acceptance interval.
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1 Set R as an empty set ;

2 Simulate U uniformly from the set [0, 1]\R;

3 Find the value i, such that δi ≤ U ≤ ∆i or ∆i ≤ U ≤ δi+1;

/* (Ii,1, τi,1) = SA({biSi,j}, U) and (Ii+1,2, τi,2) = SA({biSi−1,j}, U); if

Ii,1 = 1 and Ii,2 = 0 then δi ≤ U ≤ ∆i; if Ii,1 = 0 and Ii+1,2 = 1

then ∆i ≤ U ≤ δi+1; */

4 if Ii,1 = 1 and Ii,2 = 0 (i.e. δi ≤ U ≤ ∆i) ;

5 then

6 accept U∗ = U , output i as the layer and stop

7 else

8 set R = R∪ [τi,1, τi+1,2];

9 end

10 Go to step 2;

Algorithm 3: The practical algorithm.

3.2. Simulation of ω conditional on I

Given the condition that the Brownian bridge is in layer I, we can construct the

layered Brownian bridge with the method in [4], which is given by the following

Algorithm 4.

Using the results in Section 3.1 and Section 3.2, we can actually simulate the

proposal processes from (7). Based on the simulated proposal processes, we introduce

the rejection sampling in the following section.

4. Rejection sampling for X

The rejection sampling for X is similar to that in [3] and [4], except that we should

calculate the lower bound lI for (α2 +α′)(ωs) for all ω ∈ DI . We now provide the new

exact simulation Algorithm 5.

In the algorithm, steps 1, 2 and 5 simulate the proposal process. Steps 3 and 4

simulate a marked Poisson process with constant rate rI and use thinning algorithm

([11]) to simulate a Poisson process with rate [α2(ωt) +α′(ωt)]/2− lI . The probability,

that the Poisson process with rate [α2(ωt) + α′(ωt)]/2 − lI has no event occurring in
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1 Simulate the skeletons of ω together with either its minimum (with

probability 0.5) or its maximum (with probability 0.5);

2 if ω /∈ DI then

3 reject ω and go to step 1

4 else

5 if ω /∈ UI ∩ LI then

6 accept ω

7 else

8 Simulate U from U[0, 1];

9 if U < 0.5 then accept ω;

10 else reject ω and go to step 1

11 end

12 end

Algorithm 4: Sampling a Brownian bridge conditional on ω ∈ DI using the method

in [4].

[0, T ], is equal to the acceptance ratio (8). No event occurring in [0, T ] is given by

L = 1 in step 7 of the algorithm, which means that the proposal is accepted. More

details about the Wiener-Poisson decomposition of Q can be found in [3] and [4].

5. Simulation studies

In the previous section, we have shown that Algorithm 5 draws a perfect realization

of {Xt, t ∈ [0, T ]} driven by (1). We can also use simulation to show that Algorithm 5

provide perfect simulations.

5.1. Simulation example 1

Consider the model in Example 1 with R = 0.2, σ = 0.1, Λ = 1000, X0 =

− log(700)/σ, XT = − log(800)/σ and T = 2. We simulate 10,000 realizations using

Algorithm 5 and the exact simulation algorithm in [4]. The two algorithms provide

almost exactly the same distribution estimates for Xt at any t ∈ [0, T ]. For example,

the empirical distribution estimates for X0.5, X1.0 and X1.5 are the same based on

simulated realizations using Algorithm 5 and the exact simulation algorithm in [4].
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1 Simulate I from P̃(I = i) using Algorithm 3;

2 Calculate lI = inf[α2(u) + α′(u)]/2, given that u ∈ [x̄− aI , ȳ + aI ];

3 Calculate rI such that rI ≥ supt∈[0,T ],ω∈DI
{[α2(ωt) + α′(ωt)]/2− lI};

4 Simulate Ψ = {ψ1, · · · , ψρ} uniformly distributed on U[0, T ] and marks

Υ = {ν1, · · · , νρ} uniformly distributed on U[0, 1], where ρ is from Poi(rIT );

5 Simulate a sample path ω, from Wx,y
0,T conditional on ω ∈ DI , using

Algorithm 4;

6 Compute the acceptance indicator I :=
∏ρ
j=1 I[φ(ωψj

) < νj ], with

φ(·) = r−1I [(α2 + α′)(·)/2− lI ];
7 if I = 1 then

8 accept the ω

9 else

10 return to step 1

11 end

Algorithm 5: Exact sampling for X.

This is shown in Figure 2, from which we can see that the empirical distribution

function estimates are the same (almost completely overlap) based on the two different

methods.

Now we show that the proposed algorithm is much more efficient than existing

algorithms in certain cases. Consider the model in Example 1 with different parameter

values: R = 0.5, σ = 0.1, Λ = 1500, X0 = − log(700)/σ, XT = − log(700)/σ and

T = 2. We consider different layer values, (1) ai = 0.1i; (2) ai = 0.3i; (3) ai = 0.6i;

(4) ai = 1.0i. The running time and acceptance probabilities are given in Table 1.

New method ai = 0.1i ai = 0.3i ai = 0.6i ai = 1.0i

running time 99s 17s 7.2s 7.4s

acceptance prob 0.1676 0.1542 0.1309 0.0957

Existing method ai = 0.1i ai = 0.3i ai = 0.6i ai = 1.0i

running time 1338s 1026s 843s 891s

acceptance prob 0.0008 0.0007 0.0007 0.0008

Table 1: Running time comparisons.
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Figure 2: The empirical distribution estimates are the same based on the new method and

the method in [4].

From the results we can see that the acceptance probability (9) for the new method

is overall much larger than the acceptance probability (4) for the existing method. The

acceptance probability (4) for existing methods should remain constant for different

choice of layer sequence {ai}, as the proposal measure Wx,y
0,T does not change. On the

contrary, the acceptance probability (9) for the new method increases when we choose

thinner layers (having smaller values for ai − ai−1). This is consistent to what we

expect.

We also notice that the running times of the algorithms increase, when we choose

thinner layers. For the method in [4] the running time just increases slightly (about

1338/891 ≈ 1.5 times) when the layer decreases from 1.0 to 0.1. This is mainly due

to searching the layers with probability P(I = i) = γi. For the new method, however,

the running time increases more (about 99/7.4 ≈ 13 times) when the layer decreases

from 1.0 to 0.1. This is mainly due to step 1 in Algorithm 5, which uses Algorithm 3

to simulate the layer I with probability P̃(I = i) ∝ biγi. The probability P̃ re-weights

P by multiplying the factor bi. This re-weighting will result in that a layer with larger

value of I is simulated. Step 3 of Algorithm 3 always start searching from i = 1 to ∞
and it needs more time if we use thinner layers. Therefore we do not suggest to using



Exact simulation for diffusion bridges 15

very thin layers for the new methods. For the example that we presented, choosing

a layer sequence ai = 0.6i will provide a very efficient algorithm. In fact, this is also

the reason that we only use adaptive approach for sampling the layers of the proposal

process (Algorithm 3) with fixed {ai} but we did not use adaptive approach to select

from different layer sequences {ai}.

5.2. Simulation example 2

To show that the proposed algorithm is correct, we also consider to simulate a

diffusion process with a known stationary distribution, which allows us to compare the

simulated samples with the target distribution. For this purpose, we think about a

Langevin diffusion example. The Langevin diffusions are important in practice, as it is

the basis for the construction of a variety of MCMC algorithms ([10]) and it could be

used to develop new simulation method from the target distribution, the equilibrium

distribution of the Langevin diffusion.

For a given target distribution π(x), the Langevin diffusion Xt is defined as

dXt = α(Xt)dt+ dωt, α(Xt) =
1

2

d log(π(x))

dx

∣∣∣∣
x=Xt

. (18)

Then Xt will have invariant distribution π(x) under certain conditions.

We use the following Bayesian posterior distribution of a mixture model as the

target distribution π(x). Such a simulation example would motivate us develop new

methodologies for simulation from Bayesian posterior of mixture models, for which

existing simulation methods (such as Markov chain Monte Carlo) suffers from slow

convergence ([6]). The results here will also show that the proposed method works for

complicated scenarios.

Suppose that we have observations ξ1, · · · , ξn which follow a mixture distribution of

two components, having density function h(ξi) = q1h1(ξi;x) + q2h2(ξi). For simplicity,

we here assume that the first component density h1 has unknown parameter x, and the

second component density h2 is known. We consider a Bayesian approach to estimate

the unknown parameter x. Given a prior π0(x) the posterior distribution is given by

π(x) ∝
n∏
i=1

[q1h1(ξi;x) + q2h2(ξi)]π0(x). (19)

For the α given in (18), it is extremely challenging to find infs(α
2 + α′)(ωs)/2
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explicitly. In practice, we have to use a much smaller lower bound which, however,

results in tiny acceptance probabilities and make the existing method not working

practically.

A lower bound of (α2 + α′)(x)/2 can be found as follows. Since α2 ≥ 0, we only

need to find the lower bound for

α′(x) =

[∑
i

q1h
′
1(ξi;x)

q1h1(ξi;x) + q2h2(ξi)

]′
+

[
π′0(x)

π0(x)

]′
=

∑
i

q1h
′′
1(ξi;x)

q1h1(ξi;x) + q2h2(ξi)
−
∑
i

q21h
′
1(ξi;x)2

[q1h1(ξi;x) + q2h2(ξi)]2
+
π′′0 (x)

π0(x)
− π′0(x)2

π0(x)2
.

The function α′(x) is usually bounded, for example, when h is a mixture of two normal

components, with q1 = 0.7, q2 = 0.3 and h1 = N (ξi;x, 1), h2 = N (ξi; 0, 1) and the prior

π0(x) is a standard normal. Then it is easy to show that

α′(x) ≥
∑
i

−0.7N (ξi;x, 1)

0.7N (ξi;x, 1) + 0.3N (ξi; 0, 1)
− 1 ≥ −n+ 1

Therefore we can let the lower bound for each layer as

li = inf
x

[∑
i

−0.7N (ξi;x, 1)

0.7N (ξi;x, 1) + 0.3N (ξi; 0, 1)
− 1

]
< inf

x
(α2 + α′)(x)/2.

To justify the correctness of the adaptive algorithm, we consider the above mixture

model example with a small sample size n = 20. We choose a small sample size

because for small n we can sample directly from the posterior (with n = 20, expanding

the product in the posterior will result in about 1,000,000 terms which can be easily

dealt by all modern computers). We simulate 10000 samples directly from π(x) in (19)

and use this as the reference sample. Then we simulate a diffusion process given by

(18), using the adaptive method, with X0 from π(x). Note that the diffusion bridge

simulation algorithm proposed here can be easily extend to simulate a diffusion process,

if we simulate the end point XT according to that in [2] and then simulate the diffusion

bridge in [0, T ]. The simulated diffusion process is actually in equilibrium and with

equilibrium distribution π(x). We choose T = 0.1 and collect X0.1 as a sample from

equilibrium. We repeat this for 10000 times to obtain 10000 realisations. Samples

obtained via the adaptive method have almost the same empirical distribution as the

reference sample. See Figure 3.
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Figure 3: The empirical distributions are the same based on the direct sampling and the

proposed method

For the above example with T = 0.1, it took about 5 hours to simulate 10,000

realisations via the adaptive approach, by choosing layer as ai = 0.05i. However, the

existing rejection sampling in [4] does not work practically, not returning a diffusion

bridge in the time interval [0, 0.1], within an hour.

6. Discussion

We have provided an adaptive approach to do exact simulation for a class of diffusion

bridges. The new methods draw proposals by simulating re-weighted layers and then

simulating Brownian bridges conditional on the layer. With such a proposal process, we

can use different lower bounds for proposal processes with different layers (Algorithm

5).

Although the paper only shows that the new method is much more efficient than

existing methods under two special scenarios, the arguments can be generalized to many

other cases. Simulation example 2 actually demonstrate that for many complicated

problems, we may not obtain the maximum lower bound, but a much smaller lower
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bound l < infs
1
2 (α2 + α′)(ωs). For such cases, it is important to use the new method

in this paper, otherwise the existing methods may not work practically simply due to

l is too small. Although the Bayesian mixture model considered in this paper is far

from being a practical model, the idea here of simulating Langevin diffusions with a

target density as equilibrium could be used to develop new simulation methods. We

leave this as a future research work.

Simulation example 1 demonstrate that even if the maximum lower bound can be

achieved, the acceptance probability

EW

[
exp

{
−
∫ T

0

[
1

2
(α2 + α′)(ωs)− l

]
ds

}]
can still be very small. This is usually true when there is just a very tiny probability

that 1
2 (α2 + α′)(ωs) reaches the maximum lower bound l, but there is a very large

probability that 1
2 (α2 + α′)(ωs) is much larger than l throughout the interval [0, T ].

Algorithm 3 is proposed based on an increasing sequence {bi}, since we can always

choose {bi} to be an increasing sequence. In practice, one may want to use numerical

methods to find the lower bound li, if the analytical lower bound available is too small.

The lower bound obtained via numerical methods, however, may depend on the initial

value and the multi-modality of (α2 + α′)(·) (Simulation example 2), which makes it

is impossible to always guarantee li to be decreasing. Therefore if numerical methods

are used, {bi} may not be an increasing sequence. Even if {bi} is non-increasing, we

can still use an adjusted version of Algorithm 3. We can choose a different partition

of [0, 1], {δ1,∆1, δ2,∆2, · · · } as follows. Suppose that bj∗ is the maximum value for all

{bj , j = 1, · · · , i − 1}. We let δ1 = 0, ∆1 = b1F1. For i ≥ 2 we let δi = biFi−1 and

∆i = biFi when bj∗ ≤ bi. We let δi = (bj∗ − bi)Fi + biFi−1 and ∆i = bj∗Fi. Figure 4

explains how to partition [0, 1] when bi is not an increasing sequence. The acceptance

and rejection intervals are explained in Figure 4. Note that the partition can be found,

step by step from i = 1 to ∞, when the algorithm is searching which interval the

standard uniform random variable U belongs to. Algorithm 3 therefore can be simply

adapted for such non-increasing sequence {bi}.
The new method, however, will still be inefficient if T is large. We leave this to future

research work and a possible way might be looking for a kind of adaptive approach as

well.
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0 ...  ...

A -- acceptance interval; R -- rejection interval.

......

A R A R A R A

b1 b2 b4> , b1 b3> , b1 <

b1γ1 b2γ2 b3γ3 b4γ4(b1 − b3)γ3(b1 − b2)γ2 (b4 − b1)F3

(b1 − b2)F2 + b2F1 (b1 − b3)F3 + b3F2b1F1 b1F2 b1F3 b4F3 b4F4

Figure 4: partition of [0, 1] for a general sequence of bi.
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