
A Fuzzy Logic Reconfiguration Engine for

Symmetric Chip Multiprocessors

Muhammad Yasir Qadri, Klaus D. McDonald-Maier

School of Computer Science and Electronic Engineering

University of Essex, CO4 3SQ

Colchester, United Kingdom
yasirqadri@acm.org, kdm@essex.ac.uk

Abstract— Recent developments in reconfigurable

multiprocessor system on chip (MPSoC) have offered system

designers a great amount of flexibility to exploit task

concurrency with higher throughput and less energy

consumption. This paper presents a novel fuzzy logic

reconfiguration engine (FLRE) for coarse grain MPSoC

reconfiguration that facilitates to identify an optimum balance

between power and performance of the system. The FLRE is

composed on two levels of abstraction layers. The system

selects an optimal configuration of Level 1 / Level 2 cache size

and Associativity, processor operating frequency and voltage,

the number of cores based on miss rate, and energy and

throughput information of the system both at core and SoC

level. An 8-core symmetric chip multiprocessor has been used

to evaluate the proposed scheme. The results show an overall

decrease of energy consumption with not more than 30%

decrease in the throughput.

Keywords- Fuzzy Logic; Reconfigurable Hardware;

Symmetric Chip multiprocessors; Energy; Performance

I. INTRODUCTION

Fuzzy logic is a popular soft computing technique that is
suited for runtime hardware adaptive systems as it is
straightforward and lightweight to implement [1]. Fuzzy
based systems are particularly well suited for applications
where absolute precision is less important in making a
general improvement to the configuration. With the advent
of modern reconfigurable multiprocessor architectures it has
now become possible to apply such techniques to find a
better compromise between energy and throughput of a
system.

This paper presents a novel fuzzy logic reconfiguration
engine (FLRE) for coarse grain MPSoC reconfiguration to
find an optimum balance between power and performance of
the system. The FLRE is composed on two levels of
abstraction layers. The FLRE at primary level or core level
reconfigures core frequency/voltage, level 1 (L1) cache size
and Associativity based on the miss rate, throughput and
energy consumption of the core. At the secondary level or
SoC level, Level 2 (L2) cache Associativity and size, along
with number of active cores are selected on the basis of L2
miss rate, throughput and energy consumption of the entire
system. This reconfigurable cache architecture can be

implemented in a runtime reconfigurable FPGA platform or
alternatively by using hardware cache partitioning schemes
such as the one proposed by Settle et al. [2].

This paper is organized into five sections. The following
section covers the related research in the field of
reconfigurable architectures and hardware adaption
techniques. The section 3 describes the experimental setup
and the FLRE. The subsequent two sections present the
results, conclusion and future research directions.

II. RELATED WORK

The majority of research in reconfigurable architectures
has been done on field programmable gate arrays (FPGAs)
as the target platform. Some of these FPGAs also provide
runtime reconfiguration option which is largely being used in
adaptive hardware scenarios to provide optimized energy
consumption and performance, and to support larger
configurations than the available area on the device.
However FPGAs suffer from higher reconfiguration
latencies as discussed in [3-5]. This issue has largely been
addressed by preempting task implementation schemes for
all possible locations at design time and then during the
runtime a placement algorithm selects proper bitstream to be
downloaded. One such approach was presented by Resano et
al. in [5] using a dynamically reconfigurable hardware
(DRH) model which facilitates task migration and inter-task
communication. These authors have also proposed a
hardware reconfiguration manager adopting prefetch
scheduling and task replacement scheme designed to hide
reconfiguration latency by more than 93% even for highly
dynamic applications. Another example of such an approach
was proposed by Kalte et al. [6] in which they have
implemented each task to a single location in FPGA and
manipulated the configuration data stream to relocate the
task in the FPGA. As a result of their work a tool called
REPLICA2Pro was developed to facilitate the
reconfiguration task for the Virtex-II/Pro FPGAs. Danne et
al. [7] proposed two periodic real-time tasks scheduling
algorithms for full FPGA reconfiguration. The first one is
based on the earliest deadline first (EDF) concept, termed
EDF-Next Fit (EDF-NF) and the second is based on the
concept of servers that reserve area and execution time for
other tasks called Merge Server Distribute Load (MSDL).

The system utilization of EDF-NF algorithm was found to be
better than MSDL, however MSDL was proven to be more
feasible for larger real-time tasks sets. Other examples of
scheduling techniques and their applications could be found
in [8-11].

MPSoCs have been investigated for runtime energy
aware scheduling in several research articles. Thread
scheduling is generally classified into 1) balanced and 2)
unbalanced scheduling categories. Balanced scheduling has
an equal amount of threads distributed among the cores.
DeVuyst et al. [12] have analyzed performance of various
scheduling schemes considering both energy and
performance, and have shown that uneven thread scheduling
often outperforms balanced scheduling as greater throughput
can be achieved by combining certain threads together on
one core rather than by distributing these among several
cores. Reconfigurable multicore platforms also pose
challenges in handling the communication between
dynamically changing tasks and their synchronization. Li
[13] has performed a detailed analysis of the performance of
various task scheduling algorithms for minimizing schedule
length combined with an energy consumption constraint and
for minimizing energy consumption combined with a
schedule length constraint on Dynamic Voltage and
Frequency (DVF) supported multiprocessor systems. Yang et
al. [14] have proposed a task scheduling method for
concurrent tasks on a multicore platform that combines
offline and online scheduling to exploit the energy-
performance trade-off at runtime. This work is an extension
of a proposed framework based on grey box modeling for
improved concurrency and lower energy consumption by
Prayati et al. [15]. Ma et al. [16] discuss a design time and
runtime scheduling scheme for concurrent task management
for real-time applications on a heterogeneous multicore
platform. At design time, a set of schedules and assignments
for each task was defined using Pareto curves, and at runtime
a lightweight scheduler was used to select optimal working
points exploiting dynamic and nondeterministic behavior of
the system. For an MPEG4 texture decoder application their
approach has shown significant improvement in performance
while maintaining lower energy consumption. Other
reference to related work in this field can be found in [17-
19].

Considering memory as the best candidate for
optimization in an energy constrained multicore scenario,
Ahn et al. [20] presented a simplified approach of grouping
DRAM chips into multiple virtual memory devices that
receive separate address and control signals on a shared
command path. This approach reduces energy consumption
by minimizing the number of bits activated per memory
access and by replacing the memory register with a
demultiplexor register for routing command signals to the
appropriate memory module instead of mere transmission on
the path. Another candidate for power optimization in an
MPSoC is Networks-on-Chip (NoC). Kim et al. [21] have
presented a novel low latency router architecture with two
stage pipeline employing adaptive routing scheme for
congestion aware flow control. The router architecture was
termed as path sensitive, as it utilizes look-ahead routing for

selecting the next route based on the four possible quadrants
and routes the packet to the corresponding virtual channels
assigned to that quadrant. Additionally, based on this
portioned approach a decomposed crossbar switch was
proposed that results in a reduction of size for its connections
and lower packet conflicts. Their work also includes a
complete solution safeguarding against both the traditional
link faults and internal router upsets, without incurring any
significant latency, area and power overhead. Park et al. [22]
have provided a detailed analysis of various logic errors and
have proposed data recovery mechanisms. Individual cases
were analyzed such as link errors occurring during flit
traversal between routers, deadlocks, intra router errors in
router pipeline such as errors caused by virtual channel
allocators, routing units, switch allocators, and crossbars.

III. SYSTEM DESCRIPTION AND EXPERIMENTAL SETUP

An 8-core symmetric chip multiprocessor (SCMP)
platform was designed to be evaluated on the proposed
reconfiguration scheme. The SCMP is based on the Intel x86
architecture, with a customised shared memory architecture.
The platform is comprised of L1 and L2 caches with
configurable size and Associativity. The number of cores and
processor frequency/voltage could be adjusted for energy
and throughput regulation. The system configuration and
parameters are described in Table 1. The energy
consumption and voltage/frequency information was
obtained from the Intel 486 GX embedded processor
datasheet [23]. Each core of the system is connected to a
CMOS switch, which allows to turn off the core, and prevent
the leakage energy of the core from contributing to the
overall energy consumption of the system. The default size
and Associativity for L1 and L2 caches are 8KB, and 4-way
set associative; and 128KB and 8-way set associative. The
miss rate for L1 cache was assumed to be 10 cycles and that
for L2 cache was set as 30 cycles. Each core in the SCMP is
linked through a router that provides a seamless
communication interface to the other members of this NoC.
The router architecture was selected as a virtual channel
arrangement with 5-stage pipeline similar to the one
proposed by Peh et al. [24].

TABLE I. SYSTEM PARAMETERS

In order to search for an optimal configuration, a fuzzy
logic reconfiguration engine based on Mamdani’s [25]
inference technique was employed. A detailed description of
each membership function for input variables such as L1 and
L2 miss rate, normalized energy consumption, and
throughput; and output parameters such as L1 and L2 Cache

Parameter Value

Processor Type Intel x86

Number of Cores 8

Operating Frequencies [16, 20, 25, 33] MHz

Operating Voltages [2, 2.2, 2.4, 2.7]V

Energy Consumption per cycle [13.1,15.4,18.7,22.9]nJ

Associativity and size, operating frequency and number of
cores is given in Table 2.

To establish the relationship between the input variables
and output parameters of the SoC, fuzzy logic rules were
defined as shown in Appendix B. The rules were formed in
way that a balanced throughput and energy consumption
ratio could be achieved. For primary or core level
configuration the FLRE keeps track of the average L1 miss
rate, energy consumption and throughput for all the cores
and strives to find an optimum cache size, Associativity and
operating frequency. The cache size and Associativity does
not only affect the miss rate but also have an impact on the
throughput and energy consumption of the device. Similarly
for the secondary or system level configuration the FLRE
strives to find an optimal number of cores and L2 cache size
and Associativity while taking into account the L2 miss rate
and total throughput and energy consumption of the SoC.

TABLE II. INPUT AND OUTPUT MEMBERSHIP FUNCTIONS OF

FLRE

(a) L1 and L2 Miss rate

(b) Normalized Energy Consumption

(c) Normalized Throughput

(d) L1 and L2 Cache Associativity

(e) L1 Cache Size

(f) Operating Frequency

(g) L2 Cache size

(h) Number of Cores

The fuzzy logic reconfiguration scheme was tested on the

proposed MPSoC using Simics full system simulator. Simics
[26] facilitates instruction level simulations and is capable to
run unmodified OS such as VxWorks, Solaris, Linux, Tru64,
and Windows XP virtually on the target platforms. The
simulator is targeted to provide fairly accurate timing profile,
but at present does not support energy profiling of a target
system. Simics also provides a fairly accurate cache profiling
utility making it ideal for memory system research. Fedora
v10 Linux operating system was used on the target platform,
as it supports Advanced Configuration and Power Interface
(ACPI) for hot-plugging (i.e. turning on/off) a CPU core on
the go which is a vital feature for reconfigurable MPSoC
scenarios such as the one presented here. Cache energy
information was obtained from CACTI [27] which is an open
source standard tool for highly accurate cache energy and
timing analysis. However it is not a trace driven simulator, so
energy consumption resulting in number of hits or misses is
not accounted for a particular application. The information
obtained from CACTI along with cache hit and miss rate
profile provided by Simics was used to find the total cache
energy consumption for the sample interval. The core
interconnect energy consumption was estimated from Orion
a power-performance simulator for interconnection networks
[28-30]. Three OpenMP [31] based Class B, benchmark
applications namely BT (Block Tridiagonal), CG (Conjugate
Gradient), and LU (Lower-Upper symmetric Gauss-Seidel
algorithm [32]) from the NAS parallel benchmark suite were
executed on the target platform to evaluate the performance
of the proposed scheme. The thread scheduling was done
statically, and the thread profile was collected using Intel
Concurrency Checker [33] which provided data such as core
utilization, thread distribution, percentage of parallelism and
timing of the applications. All applications were sampled for
the first five seconds and then reconfiguration was done
through decisions made by the fuzzy logic engine. Simics
provides a facility of check-pointing through which the

current state of the system can be saved and then machine
parameters can be modified in the checkpoint file. When this
file is reloaded into the simulator, the simulation resumes
from the state at which it was previously saved, however
with new parameters. This feature was exploited for each
iteration to modify parameters such as cache size, and
Associativity, and operating frequency of the target platform.
The number of cores in the SoC was adjusted by using the
Linux hotplug feature. The applications were re-executed for
each iteration, since, as the application proceeds in
execution, the sampled average cache miss rate keeps on
changing, so a clear impact of cache reconfiguration could
not be judged and the same is the case for dynamic thread
scheduling.

Figure 1. FLRE Results for Cache Sizing

Figure 2. FLRE Results for Cache Associativity

Figure 3. FLRE Results for Clock Frequency and Number of Cores

IV. RESULTS

The FLRE started optimizing the configuration
parameters by first taking the data from the un-optimized
core (Iteration 0). For each iteration, core and system level
optimizations were passed to the target system and the
benchmark applications were re-executed for a consistent
miss rate profiling. The main objective of the system is to
search for an optimum solution for performance and energy

of the MPSoC. The inference engine completed the system
configuration in five iterations and results were found to be
invariant for all the subsequent iterations. The operation of
the FLRE is shown in Figures 1, 2, and 3; where for input
variables such as core utilization, throughput, and energy
consumption; parameters such as L1 and L2 cache size
(Figure 1) and Associativity (Figure 2), processor frequency
and number of cores (Figure 3) are being optimized. For
each of the iterations, the resultant core utilization,
throughput, L1 and L2 miss rate along with the total energy
consumption are shown in Figures 4, 5, and 6. The L1 cache
size was finally configured as 4.5KB, for all applications
while the Associativity was selected as 4-way and 8-way set
Associative for BT and CG/LU benchmarks respectively, as
compared to the original 8KB, 4-way set associative cache.
The L2 cache size and Associativity was optimized as 60KB,
4-way set associative cache; while the original configuration
was 128KB, 8-way set associative cache. The number of
cores has been reduced from 8 to 2 for BT, and for CG/LU to
4, while the frequency of operation has been selected as
25MHz where the default was 33MHz. The optimizations
resulted in an overall 100% increase in core utilization for
BT, and around 38% increase for CG, and 67% for LU
applications. The energy consumption has been reduced by
more than 6 times for BT, and by approximately two times
for CG and LU applications. The system throughput has
been decreased to 74% for the BT, 91% for the CG, and 82%
for the LU benchmarks when compared with the one for
default configuration. A significant increase in the miss rate
in L1 and L2 could be observed but that is a result of finding
an optimal balance in the system’s performance and energy
consumption. An infinitely large cache with highest
Associativity is an ideal solution for the least possible miss
rate. However the cache energy and throughput greatly
varies with its size and Associativity. Therefore the miss rate
was compromised to an extent in order to permit greater
energy savings for the overall system.

Figure 4. Impact of optimizations on Total Energy and Core Utilization

Figure 5. Impact of optimizations on Throughput

0

0.2

0.4

0.6

0.8

1

1.2

BT CG/LU BT CG/LU BT CG/LU BT CG/LU BT CG/LU BT CG/LU

N
o
r
m

a
li

ze
d

 C
a

c
h

e
 S

iz
e

0 1 2 3 4 5

L1 Cache Size L2 Cache Size

0

1

2

3

4

5

6

7

8

9

BT CG/LU BT CG/LU BT CG/LU BT CG/LU BT CG/LU BT CG/LU

C
a

c
a

h
e
 A

ss
o
c
ia

ti
v

it
y

0 1 2 3 4 5

L1 Cache Assoc. L2 Cache Assoc.

0

5

10

15

20

25

30

35

0 1 2 3 4 5

C
lo

ck
 F

re
q

u
en

cy
 [

M
H

z]

Iterations

BT CG/LU

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5

N
u

m
b

er
 o

f
C

P
U

 C
o
re

s

Iterations

BT CG/LU

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5

T
o
ta

l
E

n
er

g
y
 [

J
]

Iterations

BT CG LU

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5

C
o
re

 U
ti

li
za

ti
o
n

 [
%

]

Iterations

BT CG LU

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

N
o
rm

a
li

ze
d

 T
h

ro
u

g
h

p
u

t

Iterations

BT CG LU

Iterations

Iterations

Figure 6. Impact of optimizations on L1 and L2 Miss Rates

V. CONCLUSION AND FUTURE DIRECTIONS

This paper has presented a novel fuzzy logic based
MPSoC reconfiguration scheme. The fuzzy reconfiguration
engine was used to find an optimal balance between energy
consumption and performance of the system. To evaluate the
proposed scheme an Intel x86 based multicore SoC with 8
processor cores and a shared memory architecture, was
simulated using Simics full system simulator. The SoC
architecture included power gated cores for minimal energy
consumption whilst not in use. A detailed analysis of core,
cache, and interconnect power consumption was conducted
and a significant amount of energy saving with increased
core utilization has been observed. However due to these
optimizations, the device throughput was reduced with an
increase in cache miss rate.

The system in general validated the use of the proposed
Fuzzy Logic based technique for MPSoC reconfiguration;
therefore this technique can be adapted for a variety of
architectures to search a good compromise for throughput
and energy under user defined constraints. The proposed
MPSoC architecture can be tailored to be used in variety of
applications such as NoC research, dynamic thread
scheduling, operating system development and high
performance computing. Future work will see dynamic
thread scheduling applied to the system for it to be able to
reconfigure while executing a task.

REFERENCES

[1] V. KADIRKAMANATHAN, "FUZZY LOGIC AND CONTROL: SOFTWARE

AND HARDWARE APPLICATIONS. MOHAMMAD JAMSHIDI, NADER

VADIEE AND TIMOTHY J. ROSS (EDS.)," ARTIFICIAL INTELLIGENCE

REVIEW, VOL. 13, PP. 337-339 1999.

[2] A. SETTLE, D. CONNORS, E. GIBERT, AND A. GONZALEZ, "A

DYNAMICALLY RECONFIGURABLE CACHE FOR MULTITHREADED

PROCESSORS," JOURNAL OF EMBEDDED COMPUTING, VOL. 2, PP. 221-

233, 2006.

[3] K. COMPTON AND S. HAUCK, "RECONFIGURABLE COMPUTING: A

SURVEY OF SYSTEMS AND SOFTWARE," ACM COMPUTING SURVEYS

(CSUR), VOL. 34, PP. 171-210, 2002.

[4] T. MARESCAUX, A. BARTIC, D. VERKEST, S. VERNALDE, AND R.
LAUWEREINS, "INTERCONNECTION NETWORKS ENABLE FINE-GRAIN

DYNAMIC MULTI-TASKING ON FPGAS," IN LECTURE NOTES IN

COMPUTER SCIENCE. VOL. 2438 MONTPELLIER, FRANCE, 2002, PP. 795-
805.

[5] J. RESANO, D. MOZOS, D. VERKEST, AND F. CATTHOOR, "A

RECONFIGURABLE MANAGER FOR DYNAMICALLY RECONFIGURABLE

HARDWARE," IEEE DESIGN & TEST OF COMPUTERS, VOL. 22, PP. 452-

460, 2005.

[6] H. KALTE AND M. PORRMANN, "REPLICA2PRO: TASK RELOCATION

BY BITSTREAM MANIPULATION IN VIRTEX-II/PRO FPGAS," IN

PROCEEDINGS OF THE 3RD CONFERENCE ON COMPUTING FRONTIERS

ISCHIA, ITALY: ACM, 2006, PP. 403-412.

[7] K. DANNE AND M. PLATZNER, "A HEURISTIC APPROACH TO SCHEDULE

PERIODIC REAL-TIME TASKS ON RECONFIGURABLE HARDWARE," IN

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FIELD

PROGRAMMABLE LOGIC AND APPLICATIONS (FPL) 2005 TEMPERE,
FINLAND, 2005, PP. 568-573.

[8] K. DANNE, R. MIIHLENBERND, AND M. PLATZNER, "EXECUTING

HARDWARE TASKS ON DYNAMICALLY RECONFIGURABLE DEVICES

UNDER REAL-TIME CONDITIONS," IN PROCESSDINGS OF THE

INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND

APPLICATIONS, 2006. FPL '06. MADRID, SPAIN, 2006, PP. 1-6.
[9] K. DANNE AND M. PLATZNER, "AN EDF SCHEDULABILITY TEST FOR

PERIODIC TASKS ON RECONFIGURABLE HARDWARE DEVICES," IN

PROCEEDINGS OF THE 2006 ACM SIGPLAN/SIGBED CONFERENCE ON

LANGUAGE, COMPILERS, AND TOOL SUPPORT FOR EMBEDDED SYSTEMS

OTTAWA, ONTARIO, CANADA: ACM, 2006, PP. 93-102.

[10] P. SAHA AND T. EL-GHAZAWI, "EXTENDING EMBEDDED COMPUTING

SCHEDULING ALGORITHMS FOR RECONFIGURABLE COMPUTING

SYSTEMS," IN PROCEEDINGS OF 3RD SOUTHERN CONFERENCE ON

PROGRAMMABLE LOGIC, 2007. SPL '07. 2007 MAR DEL PLATA,
ARGENTINA, 2007, PP. 87-92.

[11] P. SAHA AND T. EL-GHAZAWI, "SOFTWARE/HARDWARE CO-

SCHEDULING FOR RECONFIGURABLE COMPUTING SYSTEMS," IN

PROCEEDINGS OF 15TH ANNUAL IEEE SYMPOSIUM ON FIELD-

PROGRAMMABLE CUSTOM COMPUTING MACHINES, 2007. FCCM 2007.
NAPA VALLEY, CALIFORNIA, 2007, PP. 299-300.

[12] M. DEVUYST, R. KUMAR, AND D. M. TULLSEN, "EXPLOITING

UNBALANCED THREAD SCHEDULING FOR ENERGY AND PERFORMANCE

ON A CMP OF SMT PROCESSORS," IN PROCEEDINGS OF THE 20TH

IEEE/ACM INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING

SYMPOSIUM RHODES ISLAND, GREECE: IEEE/ACM, 2006.
[13] K. LI, "PERFORMANCE ANALYSIS OF POWER-AWARE TASK

SCHEDULING ALGORITHMS ON MULTIPROCESSOR COMPUTERS WITH

DYNAMIC VOLTAGE AND SPEED," IEEE TRANS. PARALLEL DISTRIB.
SYST., VOL. 19, PP. 1484-1497, 2008.

[14] P. YANG, C. WONG, P. MARCHAL, F. CATTHOOR, D. DESMET, D.

VERKEST, AND R. LAUWEREINS, "ENERGY-AWARE RUNTIME

SCHEDULING FOR EMBEDDED-MULTIPROCESSOR SOCS," IEEE DESIGN

& TEST OF COMPUTERS, VOL. 18, PP. 46-58, 2001.

[15] A. PRAYATI, W. CHUN, P. MARCHAL, N. COSSEMENT, F. CATTHOOR,
R. LAUWEREINS, D. VERKEST, H. DE MAN, AND A. BIRBAS, "TASK

CONCURRENCY MANAGEMENT EXPERIMENT FOR POWER-EFFICIENT

SPEED-UP OF EMBEDDED MPEG4 IM1 PLAYER," IN PROCEEDINGS OF

INTERNATIONAL WORKSHOPS ON PARALLEL PROCESSING, 2000.

TORONTO, CANADA, 2000, PP. 453-460.

[16] Z. MA, C. WONG, P. YANG, J. VOUNCKX, F. CATTHOOR, I. M. CENTER,
AND B. LEUVEN, "MAPPING THE MPEG-4 VISUAL TEXTURE DECODER:

A SYSTEM-LEVEL DESIGN TECHNIQUE BASED ON HETEROGENEOUS

PLATFORMS," IEEE SIGNAL PROCESSING MAGAZINE, VOL. 22, PP. 65-74,
2005.

[17] F. A. BOWER, D. J. SORIN, AND L. P. COX, "THE IMPACT OF

DYNAMICALLY HETEROGENEOUS MULTICORE PROCESSORS ON

THREAD SCHEDULING," IEEE MICRO, VOL. 28, PP. 17-25, 2008.

[18] Y. JIANG, X. SHEN, J. CHEN, AND R. TRIPATHI, "ANALYSIS AND

APPROXIMATION OF OPTIMAL CO-SCHEDULING ON CHIP

MULTIPROCESSORS," IN PROCEEDINGS OF THE 17TH INTERNATIONAL

CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION

TECHNIQUES TORONTO, ONTARIO, CANADA: ACM, 2008, PP. 220-229.
[19] T. LI, D. BAUMBERGER, D. A. KOUFATY, AND S. HAHN, "EFFICIENT

OPERATING SYSTEM SCHEDULING FOR PERFORMANCE-ASYMMETRIC

MULTI-CORE ARCHITECTURES," IN PROCEEDINGS OF THE 2007

ACM/IEEE CONFERENCE ON SUPERCOMPUTING RENO, NEVADA: ACM,

2007, PP. 1-11.

[20] J. H. AHN, J. LEVERICH, R. SCHREIBER, AND N. P. JOUPPI, "MULTICORE

DIMM: AN ENERGY EFFICIENT MEMORY MODULE WITH

INDEPENDENTLY CONTROLLED DRAMS," COMPUTER ARCHITECTURE

LETTERS, VOL. 8, PP. 5-8, 2009.

0

10

20

30

40

50

60

0 1 2 3 4 5

L
1
/L

2
 M

is
s

R
a
te

 [
%

]

Iterations

BT(L1) CG(L1) LU(L1) BT(L2) CG(L2) LU(L2)

[21] J. KIM, D. PARK, T. THEOCHARIDES, N. VIJAYKRISHNAN, AND C. R.

DAS, "A LOW LATENCY ROUTER SUPPORTING ADAPTIVITY FOR ON-CHIP

INTERCONNECTS," IN PROCEEDINGS OF THE 42ND ANNUAL DESIGN

AUTOMATION CONFERENCE ANAHEIM, CALIFORNIA, USA: ACM, 2005,

PP. 559-564.
[22] D. PARK, C. NICOPOULOS, J. KIM, N. VIJAYKRISHNAN, AND C. R. DAS,

"EXPLORING FAULT-TOLERANT NETWORK-ON-CHIP

ARCHITECTURES," IN DEPENDABLE SYSTEMS AND NETWORKS,
INTERNATIONAL CONFERENCE ON. VOL. 0 LOS ALAMITOS, CA, USA:

IEEE COMPUTER SOCIETY, 2006, PP. 93-104.

[23] INTEL, "EMBEDDED ULTRA-LOW POWER INTEL486™ GX

PROCESSOR," IN DATASHEET: INTEL CORPORATION, 1997, P. 48.

[24] L.-S. PEH, N. AGARWAL, N. JHA, AND T. KRISHNA, "GARNET: A

DETAILED ON-CHIP NETWORK MODEL INSIDE A FULL-SYSTEM

SIMULATOR," IN INTERNATIONAL SYMPOSIUM ON PERFORMANCE

ANALYSIS OF SYSTEMS AND SOFTWARE (ISPASS), 2009.

[25] E. H. MAMDANI AND S. ASSILIAN, "AN EXPERIMENT IN LINGUISTIC

SYNTHESIS WITH A FUZZY LOGIC CONTROLLER," INTERNATIONAL

JOURNAL OF MAN-MACHINE STUDIES, VOL. 7, PP. 1-13, 1975.

[26] P. S. MAGNUSSON, M. CHRISTENSSON, J. ESKILSON, D. FORSGREN, G.
HALLBERG, J. HOGBERG, F. LARSSON, A. MOESTEDT, AND B.

WERNER, "SIMICS: A FULL SYSTEM SIMULATION PLATFORM," IEEE

COMPUTER, VOL. 35, PP. 50-58, 2002.
[27] S. J. E. WILTON AND N. P. JOUPPI, "AN ENHANCED ACCESS AND CYCLE

TIME MODEL FOR ON-CHIP CACHES," HP LABS %L WRL RESEARCH

REPORT 93/5, 1994.
[28] X. CHEN, L.-S. PEH, AND S. MALIK, "LEAKAGE POWER MODELING

AND OPTIMIZATION IN INTERCONNECTION NETWORKS," IN

PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON LOW POWER AND

ELECTRONICS DESIGN (ISLPED) SEOUL, KOREA, 2003.

[29] H. WANG, L.-S. PEH, AND S. MALIK, "ORION: A POWER-
PERFORMANCE SIMULATOR FOR INTERCONNECTION NETWORKS," IN

PROCEEDINGS OF MICRO 35 ISTANBUL, TURKEY, 2002.

[30] H. WANG, L.-S. PEH, AND S. MALIK, "A POWER MODEL FOR ROUTERS:
MODELING ALPHA 21364 AND INFINIBAND ROUTERS," IEEE MICRO,

VOL. 23, PP. 26-35, 2003.

[31] H. JIN, M. FRUMKIN, AND J. YAN, "THE OPENMP IMPLEMENTATION OF

NAS PARALLEL BENCHMARKS AND ITS PERFORMANCE," NASA AMES

RESEARCH CENTER, 1999.

[32] R. V. D. WIJNGAART, "NAS PARALLEL BENCHMARKS VERSION 2.4,"

NASA ADVANCED SUPERCOMPUTING (NAS) DIVISION, NASA AMES

RESEARCH CENTER, MOFFETT FIELD, CA 2002.

[33] INTEL, "INTEL CONCURRENCY CHECKER V2.1," INTEL CORPORATION,
2008.

[34] J. S. R. JANG AND N. GULLEY, "FUZZY LOGIC TOOLBOX FOR USE WITH

MATLAB," THE MATH WORKS INC, 1995.
[35] L. A. ZADEH, FUZZY SETS, FUZZY LOGIC, AND FUZZY SYSTEMS: SELECTED

PAPERS BY LOTFI A. ZADEH VOL. 6: WORLD SCIENTIFIC, 1996.

APPENDIX A: FUZZY LOGIC INTRODUCTION
Fuzzy logic uses a collection of membership functions defining input and

output variables and specifies their corresponding relationship by IF-THEN
based conditional statements called rules.

a) Membership Functions

In contrast to a crisp-set, in which an element can belong to a set or not (i.e.

having membership value of 1 or 0), a fuzzy logic membership function is
a curve that defines the mapping of input values to a membership value

between 0 and 1 [34]. This, in turn makes it convenient to represent

lingusitic lables such as slow, fast, medium, heavy etc. Although there are
many types of fuzzy membership functions such as pi, bell, trapezoidal etc,

we only decribe in Table A1, rectangular or discrete, and triangular

functions as they are used in this article.

b) Logical Operations

In fuzzy logic, logical operations such as AND, OR, NOT have

corresponding equivalents such as min, max, and complement and are

defined as following [35]

TABLE A1. TRIANGULAR AND RECTANGULAR MEMBERSHIP

FUNCTIONS

Membership Function Definition

a b c

1

a b

1

c) If-Then Rules

The fuzzy logic rules comprise of if-then statements operating on the fuzzy
sets using fuzzy operators e.g.

If temperature is high then put the fan at high speed

If temperature is very low and humidity is high then put the heater at high
temperature.

Generally, a single rule cannot specify the relationship among the inputs
and outputs so two or more rules are required. The output of each rule is a

fuzzy set, which are aggregated to find a single output fuzzy set. The
resulting fuzzy set is then defuzzified to get a crisp number output which

could be applied to the physical world.

d) Fuzzy Infernce Systems

The process of formulating the mapping from input to output using fuzzy

logic is the fuction of fuzzy inference systems. This article has used
Mamdani’s fuzzy inference system [25] which was among the earliest

implementations of fuzzy logic in a control system. For defuzzification

centeroid of the curve method was used to find the crisp output.

APPENDIX B. RULES FOR FUZZY LOGIC INFERENCE ENGINE

TABLE B1. CORE LEVEL RULES FOR FLRE

L1 Miss

Rate

Energy

Cons.
Thput.

L1 Cache

Assoc.

L1

Size

Clock

Freq.

L L L - - H

L L M - - M

L L H - - -

L M L M M H

L M M M M M

L M H M M M

L H L L L M

L H M L L L

L H H L L L

M L L H M H

M L M H M M

M L H H M -

M M L M M H

M M M M M M

M M H M M M

M H L H L M

M H M H L L

M H H H L L

H L L H H H

H L M H H M

H L H H H -

H M L H M H

H M M H M M

H M H H M M

H H L M M M

H H M M M L

H H H M M L

Legend: L = Low, M = Medium, and H = High

TABLE B2. SOC LEVEL RULES FOR FLRE

L2

Miss

Rate

Energy

Cons.
Thput.

L2

Cache

Assoc.

Cache

Size

No. of

Cores

L L L - - L

L L M - - L

L L H - - M

L M L M M L

L M M M M L

L M H M M M

L H L L L L

L H M L L M

L H H L L L

M L L H M L

M L M H M L

M L H H M M

M M L M M L

M M M M M L

M M H M M M

M H L L H L

M H M L H M

M H H L H L

H L L M H L

H L M M H L

H L H M H M

H M L H H L

H M M H H L

H M H H H M

H H L M M L

H H M M M M

H H H M M L

Legend: L = Low, M = Medium, and H = High

View publication statsView publication stats

https://www.researchgate.net/publication/221328366

