
A Fuzzy Logic Reconfiguration Engine for 

Symmetric Chip Multiprocessors 

Muhammad Yasir Qadri, Klaus D. McDonald-Maier 

School of Computer Science and Electronic Engineering 

University of Essex, CO4 3SQ 

Colchester, United Kingdom 
yasirqadri@acm.org, kdm@essex.ac.uk  

 

 
Abstract— Recent developments in reconfigurable 

multiprocessor system on chip (MPSoC) have offered system 

designers a great amount of flexibility to exploit task 

concurrency with higher throughput and less energy 

consumption. This paper presents a novel fuzzy logic 

reconfiguration engine (FLRE) for coarse grain MPSoC 

reconfiguration that facilitates to identify an optimum balance 

between power and performance of the system. The FLRE is 

composed on two levels of abstraction layers. The system 

selects an optimal configuration of Level 1 / Level 2 cache size 

and Associativity, processor operating frequency and voltage, 

the number of cores based on miss rate, and  energy and 

throughput information of the system both at core and SoC 

level. An 8-core symmetric chip multiprocessor has been used 

to evaluate the proposed scheme. The results show an overall 

decrease of energy consumption with not more than 30% 

decrease in the throughput. 
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I.  INTRODUCTION 

Fuzzy logic is a popular soft computing technique that is 
suited for runtime hardware adaptive systems as it is 
straightforward and lightweight to implement [1]. Fuzzy 
based systems are particularly well suited for applications 
where absolute precision is less important in making a 
general improvement to the configuration. With the advent 
of modern reconfigurable multiprocessor architectures it has 
now become possible to apply such techniques to find a 
better compromise between energy and throughput of a 
system. 

This paper presents a novel fuzzy logic reconfiguration 
engine (FLRE) for coarse grain MPSoC reconfiguration to 
find an optimum balance between power and performance of 
the system. The FLRE is composed on two levels of 
abstraction layers. The FLRE at primary level or core level 
reconfigures core frequency/voltage, level 1 (L1) cache size 
and Associativity based on the miss rate, throughput and 
energy consumption of the core. At the secondary level or 
SoC level, Level 2 (L2) cache Associativity and size, along 
with number of active cores are selected on the basis of L2 
miss rate, throughput and energy consumption of the entire 
system. This reconfigurable cache architecture can be 

implemented in a runtime reconfigurable FPGA platform or 
alternatively by using hardware cache partitioning schemes 
such as the one proposed by Settle et al. [2]. 

This paper is organized into five sections. The following 
section covers the related research in the field of 
reconfigurable architectures and hardware adaption 
techniques. The section 3 describes the experimental setup 
and the FLRE. The subsequent two sections present the 
results, conclusion and future research directions. 

II. RELATED WORK 

The majority of research in reconfigurable architectures 
has been done on field programmable gate arrays (FPGAs) 
as the target platform. Some of these FPGAs also provide 
runtime reconfiguration option which is largely being used in 
adaptive hardware scenarios to provide optimized energy 
consumption and performance, and to support larger 
configurations than the available area on the device. 
However FPGAs suffer from higher reconfiguration 
latencies as discussed in [3-5]. This issue has largely been 
addressed by preempting task implementation schemes for 
all possible locations at design time and then during the 
runtime a placement algorithm selects proper bitstream to be 
downloaded. One such approach was presented by Resano et 
al. in [5] using a dynamically reconfigurable hardware 
(DRH) model which facilitates task migration and inter-task 
communication. These authors have also proposed a 
hardware reconfiguration manager adopting prefetch 
scheduling and task replacement scheme designed to hide 
reconfiguration latency by more than 93% even for highly 
dynamic applications. Another example of such an approach 
was proposed by Kalte et al. [6] in which they have 
implemented each task to a single location in FPGA and 
manipulated the configuration data stream to relocate the 
task in the FPGA. As a result of their work a tool called 
REPLICA2Pro was developed to facilitate the 
reconfiguration task for the Virtex-II/Pro FPGAs. Danne et 
al. [7] proposed two periodic real-time tasks scheduling 
algorithms for full FPGA reconfiguration. The first one is 
based on the earliest deadline first (EDF) concept, termed 
EDF-Next Fit (EDF-NF) and the second is based on the 
concept of servers that reserve area and execution time for 
other tasks called Merge Server Distribute Load (MSDL). 



The system utilization of EDF-NF algorithm was found to be 
better than MSDL, however MSDL was proven to be more 
feasible for larger real-time tasks sets. Other examples of 
scheduling techniques and their applications could be found 
in [8-11].  

MPSoCs have been investigated for runtime energy 
aware scheduling in several research articles. Thread 
scheduling is generally classified into 1) balanced and 2) 
unbalanced scheduling categories. Balanced scheduling has 
an equal amount of threads distributed among the cores. 
DeVuyst et al. [12] have analyzed performance of various 
scheduling schemes considering both energy and 
performance, and have shown that uneven thread scheduling 
often outperforms balanced scheduling as greater throughput 
can be achieved by combining certain threads together on 
one core rather than by distributing these among several 
cores. Reconfigurable multicore platforms also pose 
challenges in handling the communication between 
dynamically changing tasks and their synchronization. Li 
[13] has performed a detailed analysis of the performance of 
various task scheduling algorithms for minimizing schedule 
length combined with an energy consumption constraint and 
for minimizing energy consumption combined with a 
schedule length constraint on Dynamic Voltage and 
Frequency (DVF) supported multiprocessor systems. Yang et 
al. [14] have proposed a task scheduling method for 
concurrent tasks on a multicore platform that combines 
offline and online scheduling to exploit the energy-
performance trade-off at runtime. This work is an extension 
of a proposed framework based on grey box modeling for 
improved concurrency and lower energy consumption by 
Prayati et al. [15]. Ma et al. [16] discuss a design time and 
runtime scheduling scheme for concurrent task management 
for real-time applications on a heterogeneous multicore 
platform. At design time, a set of schedules and assignments 
for each task was defined using Pareto curves, and at runtime 
a lightweight scheduler was used to select optimal working 
points exploiting dynamic and nondeterministic behavior of 
the system. For an MPEG4 texture decoder application their 
approach has shown significant improvement in performance 
while maintaining lower energy consumption. Other 
reference to related work in this field can be found in [17-
19].  

Considering memory as the best candidate for 
optimization in an energy constrained multicore scenario, 
Ahn et al. [20] presented a simplified approach of grouping 
DRAM chips into multiple virtual memory devices that 
receive separate address and control signals on a shared 
command path. This approach reduces energy consumption 
by minimizing the number of bits activated per memory 
access and by replacing the memory register with a 
demultiplexor register for routing command signals to the 
appropriate memory module instead of mere transmission on 
the path. Another candidate for power optimization in an 
MPSoC is Networks-on-Chip (NoC). Kim et al. [21] have 
presented a novel low latency router architecture with two 
stage pipeline employing adaptive routing scheme for 
congestion aware flow control. The router architecture was 
termed as path sensitive, as it utilizes look-ahead routing for 

selecting the next route based on the four possible quadrants 
and routes the packet to the corresponding virtual channels 
assigned to that quadrant. Additionally, based on this 
portioned approach a decomposed crossbar switch was 
proposed that results in a reduction of size for its connections 
and lower packet conflicts. Their work also includes a 
complete solution safeguarding against both the traditional 
link faults and internal router upsets, without incurring any 
significant latency, area and power overhead. Park et al. [22] 
have provided a detailed analysis of various logic errors and 
have proposed data recovery mechanisms. Individual cases 
were analyzed such as link errors occurring during flit 
traversal between routers, deadlocks, intra router errors in 
router pipeline such as errors caused by virtual channel 
allocators, routing units, switch allocators, and crossbars. 

III. SYSTEM DESCRIPTION AND EXPERIMENTAL SETUP 

An 8-core symmetric chip multiprocessor (SCMP) 
platform was designed to be evaluated on the proposed 
reconfiguration scheme. The SCMP is based on the Intel x86 
architecture, with a customised shared memory architecture. 
The platform is comprised of L1 and L2 caches with 
configurable size and Associativity. The number of cores and 
processor frequency/voltage could be adjusted for energy 
and throughput regulation. The system configuration and 
parameters are described in Table 1. The energy 
consumption and voltage/frequency information was 
obtained from the Intel 486 GX embedded processor 
datasheet [23]. Each core of the system is connected to a 
CMOS switch, which allows to turn off the core, and prevent 
the leakage energy of the core from contributing to the 
overall energy consumption of the system. The default size 
and Associativity for L1 and L2 caches are 8KB, and 4-way 
set associative; and 128KB and 8-way set associative. The 
miss rate for L1 cache was assumed to be 10 cycles and that 
for L2 cache was set as 30 cycles. Each core in the SCMP is 
linked through a router that provides a seamless 
communication interface to the other members of this NoC. 
The router architecture was selected as a virtual channel 
arrangement with 5-stage pipeline similar to the one 
proposed by Peh et al. [24].  

TABLE I. SYSTEM PARAMETERS 

 
 
 
 
 
 
 
 

In order to search for an optimal configuration, a fuzzy 
logic reconfiguration engine based on Mamdani’s [25] 
inference technique was employed. A detailed description of 
each membership function for input variables such as L1 and 
L2 miss rate, normalized energy consumption, and 
throughput; and output parameters such as L1 and L2 Cache 

Parameter Value 

Processor Type Intel x86 

Number of Cores 8 

Operating Frequencies  [16, 20, 25, 33] MHz 

Operating Voltages  [2, 2.2, 2.4, 2.7]V 

Energy Consumption per cycle [13.1,15.4,18.7,22.9]nJ 



Associativity and size, operating frequency and number of 
cores is given in Table 2.  

To establish the relationship between the input variables 
and output parameters of the SoC, fuzzy logic rules were 
defined as shown in Appendix B. The rules were formed in 
way that a balanced throughput and energy consumption 
ratio could be achieved. For primary or core level 
configuration the FLRE keeps track of the average L1 miss 
rate, energy consumption and throughput for all the cores 
and strives to find an optimum cache size, Associativity and 
operating frequency. The cache size and Associativity does 
not only affect the miss rate but also have an impact on the 
throughput and energy consumption of the device. Similarly 
for the secondary or system level configuration the FLRE 
strives to find an optimal number of cores and L2 cache size 
and Associativity while taking into account the L2 miss rate 
and total throughput and energy consumption of the SoC. 

TABLE II.  INPUT AND OUTPUT MEMBERSHIP FUNCTIONS OF 

FLRE 

 

 

 

(a) L1 and L2 Miss rate 

 

 

 

(b) Normalized Energy Consumption 

 

 

(c) Normalized Throughput 

 

 

(d) L1 and L2 Cache Associativity 

 

 

 

(e) L1 Cache Size 

 

 

 

(f) Operating Frequency 

 

 

 

(g) L2 Cache size 

            

 

(h) Number of Cores 

 
The fuzzy logic reconfiguration scheme was tested on the 

proposed MPSoC using Simics full system simulator. Simics 
[26] facilitates instruction level simulations and is capable to 
run unmodified OS such as VxWorks, Solaris, Linux, Tru64, 
and Windows XP virtually on the target platforms. The 
simulator is targeted to provide fairly accurate timing profile, 
but at present does not support energy profiling of a target 
system. Simics also provides a fairly accurate cache profiling 
utility making it ideal for memory system research. Fedora 
v10 Linux operating system was used on the target platform, 
as it supports Advanced Configuration and Power Interface 
(ACPI) for hot-plugging (i.e. turning on/off) a CPU core on 
the go which is a vital feature for reconfigurable MPSoC 
scenarios such as the one presented here. Cache energy 
information was obtained from CACTI [27] which is an open 
source standard tool for highly accurate cache energy and 
timing analysis. However it is not a trace driven simulator, so 
energy consumption resulting in number of hits or misses is 
not accounted for a particular application. The information 
obtained from CACTI along with cache hit and miss rate 
profile provided by Simics was used to find the total cache 
energy consumption for the sample interval. The core 
interconnect energy consumption was estimated from Orion 
a power-performance simulator for interconnection networks 
[28-30]. Three OpenMP [31] based Class B, benchmark 
applications namely BT (Block Tridiagonal), CG (Conjugate 
Gradient), and LU (Lower-Upper symmetric Gauss-Seidel 
algorithm [32]) from the NAS parallel benchmark suite were 
executed on the target platform to evaluate the performance 
of the proposed scheme. The thread scheduling was done 
statically, and the thread profile was collected using Intel 
Concurrency Checker [33] which provided data such as core 
utilization, thread distribution, percentage of parallelism and 
timing of the applications. All applications were sampled for 
the first five seconds and then reconfiguration was done 
through decisions made by the fuzzy logic engine. Simics 
provides a facility of check-pointing through which the 



current state of the system can be saved and then machine 
parameters can be modified in the checkpoint file. When this 
file is reloaded into the simulator, the simulation resumes 
from the state at which it was previously saved, however 
with new parameters. This feature was exploited for each 
iteration to modify parameters such as cache size, and 
Associativity, and operating frequency of the target platform. 
The number of cores in the SoC was adjusted by using the 
Linux hotplug feature. The applications were re-executed for 
each iteration, since, as the application proceeds in 
execution, the sampled average cache miss rate keeps on 
changing, so a clear impact of cache reconfiguration could 
not be judged and the same is the case for dynamic thread 
scheduling. 

 

 
Figure 1. FLRE Results for Cache Sizing 

 
Figure 2. FLRE Results for Cache Associativity 

  
Figure 3. FLRE Results for Clock Frequency and Number of Cores 

IV. RESULTS 

The FLRE started optimizing the configuration 
parameters by first taking the data from the un-optimized 
core (Iteration 0). For each iteration, core and system level 
optimizations were passed to the target system and the 
benchmark applications were re-executed for a consistent 
miss rate profiling. The main objective of the system is to 
search for an optimum solution for performance and energy 

of the MPSoC. The inference engine completed the system 
configuration in five iterations and results were found to be 
invariant for all the subsequent iterations. The operation of 
the FLRE is shown in Figures 1, 2, and 3; where for input 
variables such as core utilization, throughput, and energy 
consumption; parameters such as L1 and L2 cache size 
(Figure 1) and Associativity (Figure 2), processor frequency 
and number of cores (Figure 3) are being optimized. For 
each of the iterations, the resultant core utilization, 
throughput, L1 and L2 miss rate along with the total energy 
consumption are shown in Figures 4, 5, and 6. The L1 cache 
size was finally configured as 4.5KB, for all applications 
while the Associativity was selected as 4-way and 8-way set 
Associative for BT and CG/LU benchmarks respectively, as 
compared to the original 8KB, 4-way set associative cache. 
The L2 cache size and Associativity was optimized as 60KB, 
4-way set associative cache; while the original configuration 
was 128KB, 8-way set associative cache. The number of 
cores has been reduced from 8 to 2 for BT, and for CG/LU to 
4, while the frequency of operation has been selected as 
25MHz where the default was 33MHz. The optimizations 
resulted in an overall 100% increase in core utilization for 
BT, and around 38% increase for CG, and 67% for LU 
applications. The energy consumption has been reduced by 
more than 6 times for BT, and by approximately two times 
for CG and LU applications. The system throughput has 
been decreased to 74% for the BT, 91% for the CG, and 82% 
for the LU benchmarks when compared with the one for 
default configuration. A significant increase in the miss rate 
in L1 and L2 could be observed but that is a result of finding 
an optimal balance in the system’s performance and energy 
consumption. An infinitely large cache with highest 
Associativity is an ideal solution for the least possible miss 
rate. However the cache energy and throughput greatly 
varies with its size and Associativity. Therefore the miss rate 
was compromised to an extent in order to permit greater 
energy savings for the overall system. 

 

  
Figure 4. Impact of optimizations on Total Energy and Core Utilization  

 
Figure 5. Impact of optimizations on Throughput 
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Figure 6. Impact of optimizations on L1 and L2 Miss Rates 

 

V. CONCLUSION AND FUTURE DIRECTIONS 

This paper has presented a novel fuzzy logic based 
MPSoC reconfiguration scheme. The fuzzy reconfiguration 
engine was used to find an optimal balance between energy 
consumption and performance of the system. To evaluate the 
proposed scheme an Intel x86 based multicore SoC with 8 
processor cores and a shared memory architecture, was 
simulated using Simics full system simulator. The SoC 
architecture included power gated cores for minimal energy 
consumption whilst not in use. A detailed analysis of core, 
cache, and interconnect power consumption was conducted 
and a significant amount of energy saving with increased 
core utilization has been observed. However due to these 
optimizations, the device throughput was reduced with an 
increase in cache miss rate.  

The system in general validated the use of the proposed 
Fuzzy Logic based technique for MPSoC reconfiguration; 
therefore this technique can be adapted for a variety of 
architectures to search a good compromise for throughput 
and energy under user defined constraints. The proposed 
MPSoC architecture can be tailored to be used in variety of 
applications such as NoC research, dynamic thread 
scheduling, operating system development and high 
performance computing. Future work will see dynamic 
thread scheduling applied to the system for it to be able to 
reconfigure while executing a task. 

REFERENCES 

[1] V. KADIRKAMANATHAN, "FUZZY LOGIC AND CONTROL: SOFTWARE 

AND HARDWARE APPLICATIONS. MOHAMMAD JAMSHIDI, NADER 

VADIEE AND TIMOTHY J. ROSS (EDS.)," ARTIFICIAL INTELLIGENCE 

REVIEW, VOL. 13, PP. 337-339 1999. 

[2] A. SETTLE, D. CONNORS, E. GIBERT, AND A. GONZALEZ, "A 

DYNAMICALLY RECONFIGURABLE CACHE FOR MULTITHREADED 

PROCESSORS," JOURNAL OF EMBEDDED COMPUTING, VOL. 2, PP. 221-

233, 2006. 

[3] K. COMPTON AND S. HAUCK, "RECONFIGURABLE COMPUTING: A 

SURVEY OF SYSTEMS AND SOFTWARE," ACM COMPUTING SURVEYS 

(CSUR), VOL. 34, PP. 171-210, 2002. 

[4] T. MARESCAUX, A. BARTIC, D. VERKEST, S. VERNALDE, AND R. 
LAUWEREINS, "INTERCONNECTION NETWORKS ENABLE FINE-GRAIN 

DYNAMIC MULTI-TASKING ON FPGAS," IN LECTURE NOTES IN 

COMPUTER SCIENCE. VOL. 2438 MONTPELLIER, FRANCE, 2002, PP. 795-
805. 

[5] J. RESANO, D. MOZOS, D. VERKEST, AND F. CATTHOOR, "A 

RECONFIGURABLE MANAGER FOR DYNAMICALLY RECONFIGURABLE 

HARDWARE," IEEE DESIGN & TEST OF COMPUTERS, VOL. 22, PP. 452-

460, 2005. 

[6] H. KALTE AND M. PORRMANN, "REPLICA2PRO: TASK RELOCATION 

BY BITSTREAM MANIPULATION IN VIRTEX-II/PRO FPGAS," IN 

PROCEEDINGS OF THE 3RD CONFERENCE ON COMPUTING FRONTIERS 

ISCHIA, ITALY: ACM, 2006, PP. 403-412. 

[7] K. DANNE AND M. PLATZNER, "A HEURISTIC APPROACH TO SCHEDULE 

PERIODIC REAL-TIME TASKS ON RECONFIGURABLE HARDWARE," IN 

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FIELD 

PROGRAMMABLE LOGIC AND APPLICATIONS (FPL) 2005 TEMPERE, 
FINLAND, 2005, PP. 568-573. 

[8] K. DANNE, R. MIIHLENBERND, AND M. PLATZNER, "EXECUTING 

HARDWARE TASKS ON DYNAMICALLY RECONFIGURABLE DEVICES 

UNDER REAL-TIME CONDITIONS," IN PROCESSDINGS OF THE 

INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND 

APPLICATIONS, 2006. FPL '06. MADRID, SPAIN, 2006, PP. 1-6. 
[9] K. DANNE AND M. PLATZNER, "AN EDF SCHEDULABILITY TEST FOR 

PERIODIC TASKS ON RECONFIGURABLE HARDWARE DEVICES," IN 

PROCEEDINGS OF THE 2006 ACM SIGPLAN/SIGBED CONFERENCE ON 

LANGUAGE, COMPILERS, AND TOOL SUPPORT FOR EMBEDDED SYSTEMS 

OTTAWA, ONTARIO, CANADA: ACM, 2006, PP. 93-102. 

[10] P. SAHA AND T. EL-GHAZAWI, "EXTENDING EMBEDDED COMPUTING 

SCHEDULING ALGORITHMS FOR RECONFIGURABLE COMPUTING 

SYSTEMS," IN PROCEEDINGS OF 3RD SOUTHERN CONFERENCE ON 

PROGRAMMABLE LOGIC, 2007. SPL '07. 2007 MAR DEL PLATA, 
ARGENTINA, 2007, PP. 87-92. 

[11] P. SAHA AND T. EL-GHAZAWI, "SOFTWARE/HARDWARE CO-

SCHEDULING FOR RECONFIGURABLE COMPUTING SYSTEMS," IN 

PROCEEDINGS OF 15TH ANNUAL IEEE SYMPOSIUM ON FIELD-

PROGRAMMABLE CUSTOM COMPUTING MACHINES, 2007. FCCM 2007. 
NAPA VALLEY, CALIFORNIA, 2007, PP. 299-300. 

[12] M. DEVUYST, R. KUMAR, AND D. M. TULLSEN, "EXPLOITING 

UNBALANCED THREAD SCHEDULING FOR ENERGY AND PERFORMANCE 

ON A CMP OF SMT PROCESSORS," IN PROCEEDINGS OF THE 20TH 

IEEE/ACM INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING 

SYMPOSIUM RHODES ISLAND, GREECE: IEEE/ACM, 2006. 
[13] K. LI, "PERFORMANCE ANALYSIS OF POWER-AWARE TASK 

SCHEDULING ALGORITHMS ON MULTIPROCESSOR COMPUTERS WITH 

DYNAMIC VOLTAGE AND SPEED," IEEE TRANS. PARALLEL DISTRIB. 
SYST., VOL. 19, PP. 1484-1497, 2008. 

[14] P. YANG, C. WONG, P. MARCHAL, F. CATTHOOR, D. DESMET, D. 

VERKEST, AND R. LAUWEREINS, "ENERGY-AWARE RUNTIME 

SCHEDULING FOR EMBEDDED-MULTIPROCESSOR SOCS," IEEE DESIGN 

& TEST OF COMPUTERS, VOL. 18, PP. 46-58, 2001. 

[15] A. PRAYATI, W. CHUN, P. MARCHAL, N. COSSEMENT, F. CATTHOOR, 
R. LAUWEREINS, D. VERKEST, H. DE MAN, AND A. BIRBAS, "TASK 

CONCURRENCY MANAGEMENT EXPERIMENT FOR POWER-EFFICIENT 

SPEED-UP OF EMBEDDED MPEG4 IM1 PLAYER," IN PROCEEDINGS OF 

INTERNATIONAL WORKSHOPS ON PARALLEL PROCESSING, 2000. 

TORONTO, CANADA, 2000, PP. 453-460. 

[16] Z. MA, C. WONG, P. YANG, J. VOUNCKX, F. CATTHOOR, I. M. CENTER, 
AND B. LEUVEN, "MAPPING THE MPEG-4 VISUAL TEXTURE DECODER: 

A SYSTEM-LEVEL DESIGN TECHNIQUE BASED ON HETEROGENEOUS 

PLATFORMS," IEEE SIGNAL PROCESSING MAGAZINE, VOL. 22, PP. 65-74, 
2005. 

[17] F. A. BOWER, D. J. SORIN, AND L. P. COX, "THE IMPACT OF 

DYNAMICALLY HETEROGENEOUS MULTICORE PROCESSORS ON 

THREAD SCHEDULING," IEEE MICRO, VOL. 28, PP. 17-25, 2008. 

[18] Y. JIANG, X. SHEN, J. CHEN, AND R. TRIPATHI, "ANALYSIS AND 

APPROXIMATION OF OPTIMAL CO-SCHEDULING ON CHIP 

MULTIPROCESSORS," IN PROCEEDINGS OF THE 17TH INTERNATIONAL 

CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION 

TECHNIQUES TORONTO, ONTARIO, CANADA: ACM, 2008, PP. 220-229. 
[19] T. LI, D. BAUMBERGER, D. A. KOUFATY, AND S. HAHN, "EFFICIENT 

OPERATING SYSTEM SCHEDULING FOR PERFORMANCE-ASYMMETRIC 

MULTI-CORE ARCHITECTURES," IN PROCEEDINGS OF THE 2007 

ACM/IEEE CONFERENCE ON SUPERCOMPUTING RENO, NEVADA: ACM, 

2007, PP. 1-11. 

[20] J. H. AHN, J. LEVERICH, R. SCHREIBER, AND N. P. JOUPPI, "MULTICORE 

DIMM: AN ENERGY EFFICIENT MEMORY MODULE WITH 

INDEPENDENTLY CONTROLLED DRAMS," COMPUTER ARCHITECTURE 

LETTERS, VOL. 8, PP. 5-8, 2009. 

0

10

20

30

40

50

60

0 1 2 3 4 5

L
1
/L

2
 M

is
s 

R
a
te

 [
%

]

Iterations

BT(L1) CG(L1) LU(L1) BT(L2) CG(L2) LU(L2)



[21] J. KIM, D. PARK, T. THEOCHARIDES, N. VIJAYKRISHNAN, AND C. R. 

DAS, "A LOW LATENCY ROUTER SUPPORTING ADAPTIVITY FOR ON-CHIP 

INTERCONNECTS," IN PROCEEDINGS OF THE 42ND ANNUAL DESIGN 

AUTOMATION CONFERENCE ANAHEIM, CALIFORNIA, USA: ACM, 2005, 

PP. 559-564. 
[22] D. PARK, C. NICOPOULOS, J. KIM, N. VIJAYKRISHNAN, AND C. R. DAS, 

"EXPLORING FAULT-TOLERANT NETWORK-ON-CHIP 

ARCHITECTURES," IN DEPENDABLE SYSTEMS AND NETWORKS, 
INTERNATIONAL CONFERENCE ON. VOL. 0 LOS ALAMITOS, CA, USA: 

IEEE COMPUTER SOCIETY, 2006, PP. 93-104. 

[23] INTEL, "EMBEDDED ULTRA-LOW POWER INTEL486™ GX 

PROCESSOR," IN DATASHEET: INTEL CORPORATION, 1997, P. 48. 

[24] L.-S. PEH, N. AGARWAL, N. JHA, AND T. KRISHNA, "GARNET: A 

DETAILED ON-CHIP NETWORK MODEL INSIDE A FULL-SYSTEM 

SIMULATOR," IN INTERNATIONAL SYMPOSIUM ON PERFORMANCE 

ANALYSIS OF SYSTEMS AND SOFTWARE (ISPASS), 2009. 

[25] E. H. MAMDANI AND S. ASSILIAN, "AN EXPERIMENT IN LINGUISTIC 

SYNTHESIS WITH A FUZZY LOGIC CONTROLLER," INTERNATIONAL 

JOURNAL OF MAN-MACHINE STUDIES, VOL. 7, PP. 1-13, 1975. 

[26] P. S. MAGNUSSON, M. CHRISTENSSON, J. ESKILSON, D. FORSGREN, G. 
HALLBERG, J. HOGBERG, F. LARSSON, A. MOESTEDT, AND B. 

WERNER, "SIMICS: A FULL SYSTEM SIMULATION PLATFORM," IEEE 

COMPUTER, VOL. 35, PP. 50-58, 2002. 
[27] S. J. E. WILTON AND N. P. JOUPPI, "AN ENHANCED ACCESS AND CYCLE 

TIME MODEL FOR ON-CHIP CACHES," HP LABS %L WRL RESEARCH 

REPORT 93/5, 1994. 
[28] X. CHEN, L.-S. PEH, AND S. MALIK, "LEAKAGE POWER MODELING 

AND OPTIMIZATION IN INTERCONNECTION NETWORKS," IN 

PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON LOW POWER AND 

ELECTRONICS DESIGN (ISLPED) SEOUL, KOREA, 2003. 

[29] H. WANG, L.-S. PEH, AND S. MALIK, "ORION: A POWER-
PERFORMANCE SIMULATOR FOR INTERCONNECTION NETWORKS," IN 

PROCEEDINGS OF MICRO 35 ISTANBUL, TURKEY, 2002. 

[30] H. WANG, L.-S. PEH, AND S. MALIK, "A POWER MODEL FOR ROUTERS: 
MODELING ALPHA 21364 AND INFINIBAND ROUTERS," IEEE MICRO, 

VOL. 23, PP. 26-35, 2003. 

[31] H. JIN, M. FRUMKIN, AND J. YAN, "THE OPENMP IMPLEMENTATION OF 

NAS PARALLEL BENCHMARKS AND ITS PERFORMANCE," NASA AMES 

RESEARCH CENTER, 1999. 

[32] R. V. D. WIJNGAART, "NAS PARALLEL BENCHMARKS VERSION 2.4," 

NASA ADVANCED SUPERCOMPUTING (NAS) DIVISION, NASA AMES 

RESEARCH CENTER, MOFFETT FIELD, CA 2002. 

[33] INTEL, "INTEL CONCURRENCY CHECKER V2.1," INTEL CORPORATION, 
2008. 

[34] J. S. R. JANG AND N. GULLEY, "FUZZY LOGIC TOOLBOX FOR USE WITH 

MATLAB," THE MATH WORKS INC, 1995. 
[35] L. A. ZADEH, FUZZY SETS, FUZZY LOGIC, AND FUZZY SYSTEMS: SELECTED 

PAPERS BY LOTFI A. ZADEH VOL. 6: WORLD SCIENTIFIC, 1996. 

APPENDIX A: FUZZY LOGIC INTRODUCTION 
Fuzzy logic uses a collection of membership functions defining input and 

output variables and specifies their corresponding relationship by IF-THEN 
based conditional statements called rules. 

 

a) Membership Functions 

In contrast to a crisp-set, in which an element can belong to a set or not (i.e. 

having membership value of 1 or 0), a fuzzy logic membership function is 
a curve that defines the mapping of input values  to a membership value 

between 0 and 1 [34]. This, in turn makes it convenient to represent 

lingusitic lables such as slow, fast, medium, heavy etc. Although there are 
many types of fuzzy membership functions such as pi, bell, trapezoidal etc, 

we only decribe in Table A1, rectangular or discrete, and triangular 

functions as they are used in this article. 

b) Logical Operations 

In fuzzy logic, logical operations such as AND, OR, NOT have 

corresponding equivalents such as min, max, and complement and are 

defined as following [35] 
 

 

 

 

TABLE A1.  TRIANGULAR AND RECTANGULAR MEMBERSHIP 

FUNCTIONS 

Membership Function Definition 

a b c

1

 

 

a b

1

 

 

 

c) If-Then Rules 

The fuzzy logic rules comprise of if-then statements operating on the fuzzy 
sets using fuzzy operators e.g.  

If temperature is high then put the fan at high speed 

If temperature is very low and humidity is high then put the heater at high 
temperature. 

Generally, a single rule cannot specify the relationship among the inputs 
and outputs so two or more rules are required. The output of each rule is a 

fuzzy set, which are aggregated to find a single output fuzzy set. The 
resulting fuzzy set is then defuzzified to get a crisp number output which 

could be applied to the physical world. 

d) Fuzzy Infernce Systems 

The process of formulating the mapping from input to output using fuzzy 

logic is the fuction of fuzzy inference systems. This article has used 
Mamdani’s fuzzy inference system [25] which was among the earliest  

implementations of fuzzy logic in a control system. For defuzzification 

centeroid of the curve method was used to find the crisp output.  

APPENDIX B. RULES FOR FUZZY LOGIC INFERENCE ENGINE 

TABLE B1.  CORE LEVEL RULES FOR FLRE 

L1 Miss 

Rate 

Energy 

Cons. 
Thput. 

L1 Cache 

Assoc. 

L1 

Size 

Clock 

Freq. 

L L L - - H 

L L M - - M 

L L H - - - 

L M L M M H 

L M M M M M 

L M H M M M 

L H L L L M 

L H M L L L 

L H H L L L 

M L L H M H 

M L M H M M 

M L H H M - 

M M L M M H 

M M M M M M 

M M H M M M 

M H L H L M 

M H M H L L 

M H H H L L 

H L L H H H 

H L M H H M 

H L H H H - 

H M L H M H 



H M M H M M 

H M H H M M 

H H L M M M 

H H M M M L 

H H H M M L 

Legend: L = Low, M = Medium, and H = High 

 

TABLE B2. SOC LEVEL RULES FOR FLRE 

L2 

Miss 

Rate 

Energy 

Cons. 
Thput. 

L2 

Cache 

Assoc. 

Cache 

Size 

No. of 

Cores 

L L L - - L 

L L M - - L 

L L H - - M 

L M L M M L 

L M M M M L 

L M H M M M 

L H L L L L 

L H M L L M 

L H H L L L 

M L L H M L 

M L M H M L 

M L H H M M 

M M L M M L 

M M M M M L 

M M H M M M 

M H L L H L 

M H M L H M 

M H H L H L 

H L L M H L 

H L M M H L 

H L H M H M 

H M L H H L 

H M M H H L 

H M H H H M 

H H L M M L 

H H M M M M 

H H H M M L 

Legend: L = Low, M = Medium, and H = High 
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