
Electronic Communications of the EASST
Volume 9 (2008)

Guest Editors: David H. Akehurst, Martin Gogolla, Steffen Zschaler
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the Workshop

Ocl4All: Modeling Systems with OCL

at MoDELS 2007

C# 3.0 makes OCL redundant!

D.H.Akehurst, W.G.Howells, M. Scheidgen, K.D.Mcdonald-Maier

8 Pages

 ECEASST

2 / 8 Volume 9 (2008)

C# 3.0 makes OCL redundant!

D.H.Akehurst
1
, W.G.Howells

1
, M. Scheidgen

2
, K.D.Mcdonald-Maier

3

1
University of Kent, Canterbury, UK

2
Institut für Informatik, Humboldt-Universität zu Berlin, Germany

3
University of Essex, Essex, UK

Abstract: Other than its ‘platform independence’ the major advantages of OCL over

traditional Object Oriented programming languages has been the declarative nature of the

language, its powerful navigation facility via the iteration operations, and the availability

of tuples as a first class concept. The recent offering from Microsoft of the “Orcas”

version of Visual Studio with C# 3.0 and the Linq library provides functionality almost

identical to that of OCL. This paper examines and evaluates the controversial thesis that,

as a result of C# 3.0, OCL is essentially redundant, having been superseded by the

incorporation of its advantageous features into a mainstream programming language.

Keywords: OCL, C#

1 Introduction

The thesis of this paper is intended to be a controversial statement that will generate discussion at the

OCL4All workshop. The statement is actually more general than that implied by the title; C# is not the

first or only language to include features that render it very similar to OCL. However, seeing as it is one

of the latest and possibly highest profile languages to do so, it is interesting to consider its impact on

OCL. For example, consider the potential statement by a C# programmer:

“Why should I use or learn OCL when I can write concise constraints
using C#?”

As most readers of this paper will be aware, OCL is the textual expression language part of the

OMG’s UML related standards. Without OCL, much of the precision and expressiveness of

Modelling using the UML set of languages would be lost.

At its core, OCL is basically a navigation language. In the context of an environment of

variables, OCL expressions can be written that navigate, from starting variables, across

properties and operations to other objects. All expressions can be seen simply as navigations in

this manner. Such expressions can be used for a number of purposes within a UML

specification, defining for example, invariants, pre/post conditions, or operation bodies.

The primary differences in expressive power or brevity, between OCL and other OO

programming languages, have come from the declarative nature of the language and facilities

for closure (or lambda expression) style iterations, tuples, and explicit collection initialisation.

Now that these facilities are starting to be seen in mainstream programming languages, this

paper asks the question “how is OCL effected?”, and intends to raise the issue of how the OCL

language community should respond in the context of the new languages that include many of

the OCL features.

The paper proceeds, in section 2, by first reminding us of the formal origins of the major

concepts associated with OCL. This is followed by a comparison, between OCL and C#, of the

new language features in Sections 3, 4 and 5. Conclusions and significant discussion points are

given in Section 6.

 C# 3.0 makes OCL redundant!

Proc. Ocl4All 2007 3 / 8

2 Background

Programming without Loops
Imperative programming uses loops as control structures which determine repeated execution of

commands. They are good at describing program flow but are not necessarily good at expressing queries

over data structures. Unfortunately, they are often the only construct in most imperative programming

languages that can be used to apply the same program code to the different elements of a collection.

Collections are represented as part of the program state (data). When a collection is iterated using a loop

construct, the current state of iteration is part of the program state.

Functional programming [1] uses functions as first class concepts. Functions are used to iterate

through collections by means of recursion. Collections are represented by terms over functions

like nil (empty list []) and cons (appending an element to a list (:)). Collection functions can

be applied to the elements of a collection by using higher-order functions. Higher-order

functions are, simply stated, functions that use other functions as arguments or return other

functions as results. One example is fold(f, z, list) which takes a function f and folds it in

between the elements of a list. Other examples of higher order functions are map or filter [1].

In usual procedural or object-oriented programming languages, a function or method has a

fixed context. In procedural languages, functions are defined globally where there is only one

environment and all functions use the same global variables. In object-oriented programming,

methods are defined within classes and executed within objects which may access the objects

member variables. A procedure or method may change its context, and therefore change the

program state.

 An expression in functional programming is referentially transparent, i.e. it can be replaced by

the value it represents. The only environment a function is provided with are the parameter

arguments given by an enclosing function.

The example OCL expression: self.ownedElements->forAll(m| m.name != "foo"))

 uses the expression: m.name != "foo"

as an argument to the forAll operation. During evaluation of this expression, the expression

n.name != "foo" is paired with the environment given by the enclosing function (the forAll

operation). This environment provides all elements of the collection self.ownedElements,

which is referenced through the parameter m. The concept of functions enclosed in other

functions paired with an environment provided by the outer function is known as closure.

Function definitions like the m.name != "foo" expression are often referred to as closures.

Closures are the basis for most functional programming languages, such as Lisp, Haskell or

query languages like OCL or SQL.

A similar (but mathematical crude, untyped, and unsafe) mechanism is used in many

interpreted or script languages. These languages, often provide an eval statement, which

allows the execution of a piece of code which is provided as a string containing the program

code. In a way, these languages treat pieces of program code (strings) as first class objects.

Probably the most prominent of those languages is TCL [2], where simply everything, objects,

primitive values, and of course code are just strings.

Even though most procedural and object-oriented programming languages do not treat

functions as first class objects, there are often ways to mimic the closure concept using the

existing constructs of those languages.

 ECEASST

4 / 8 Volume 9 (2008)

Some existing approaches

The first author has implemented the OCL collections library in Java (available on request).

This implementation uses anonymous classes to realise closures and provides the standard

OCL iterator operations.

FunctionalJ [3] is a general functional programming API for Java. It uses anonymous classes

to realise closures. Those anonymous classes implement simple function interfaces, which

only define one execute method. This method provides the closure for the function to be

defined. Functions defined as anonymous classes are connected to a concrete environment by

using the parameters of execute. Remember that, in the OCL example above, m was used to

access the collection elements. The variable m would be realised using an according

parameter. FunctionalJ uses generic parameters in its closure interfaces to allow type safe

parameters. Unfortunately, Java methods can only have a statically defined number of

arguments. FunctionalJ therefore defines several closure interfaces function1, function2, …,

with different numbers of generic parameters and execute methods with the same number of

parameters. It is possible to combine closures to realise advanced functional programming

concepts, such as folding.

The Jakarta Commons Collections [4] library follows a similar approach, but tailors it for

collections. There are several specialisations of function interfaces that realise specific

closures. For example predicate which defines a function with Boolean return type and is used

to define Boolean expressions over collections. The library works as an extension to the

original java.util library. Closures are not applied directly to collections: the library provides

several iterator functions, such as collect, select, or forAll as static methods of a collection

utility class. The Jakarta Commons has no generics support and is therefore not statically type

safe.

There are discussions about extending the Java language with closures. Groovy [5, 6], even

though it is a new language, can be seen as such a closure featuring variation of Java. Groovy

represents closures as anonymous blocks of code. Closures can be assigned to variables or

used as arguments. Groovy closures are typed and can be used like any other object or value.

There are other languages that successfully combine object-oriented programming with

functional programming; the Ruby language [7] is an example.

Tuples

Tuples were introduced into the OCL language in 2001 influenced by publications such as [8].

A tuple is basically an un-named (anonymous) type, than can be instantiated as needed within

an expression.

A tuple is a very well-known and used concept from mathematics. Generically, a tuple is a

simple syntactic sugar which represents a conjunction of two or more types to form a single

compound type. In this general case, two objects Aa : and Bb : , may be combined to form a

conjunctive type)(:),(BAba ∧ where),(ba is known as a two-tuple of the two objects a

and b. In the general case, the types of these objects may be arbitrary and may include further

tuples although the component items are treated as independent sub-items. To illustrate this,

note that the three-tuple)(:),,(CBAcba ∧∧ is of distinct type to either of the two-tuples

))((:)),,((CBAcba ∧∧ or))((:)),(,(CBAcba ∧∧ both of which are tuples which

contain further tuples as component items.

 C# 3.0 makes OCL redundant!

Proc. Ocl4All 2007 5 / 8

The concept of tuples has been present within most Declarative programming languages since

their inception although it is also typical for equivalent concepts, often termed along the lines

of Records, to be present within Imperative languages although often lacking the conciseness

of syntax associated with the tuples of Declarative languages and possibly requiring the

components of the tuple to be named.

3 Inferred Types

OCL let statements have always had the semantics of allowing the type of the declared

variable to be inferred from the expression assigned to it. Mainstream typed programming

languages have usually not allowed this. C# 3.0 does, using the ‘var’ keyword.

let
 x = address.person.name

Table 1 OCL inference of variable type

In this OCL expression, the type of the variable x is inferred from the type of the expression –

in this case, assuming the ‘name’ property is a string, the type of the variable x is inferred to be

a string.

var x = address.person.name

Table 2 C# inference of variable type

Likewise in this C# statement, the type of the variable x is inferred from the resulting type of

the navigation expression.

4 Collection Initialisation

Initialising collections is not a particularly exciting concept. It is simply a declarative way of

stating the existence of (or constructing) a collection object containing certain other objects.

As a declarative language, this is of course essential in OCL.

seq = Sequence { 1, 2, 3, 4 }

Table 3 OCL initialisation of a Sequence

In the past, imperative programming languages have provided array initialisers, but not

generally provided a means to initialise user defined collection classes. Instead, collection

elements have had to be explicitly added. The notion of a variable number of arguments passed

to a constructor (as exemplified by Java 5 in Table 4) has given a means to do this, but, oddly,

such constructors have not been provided by the standard collection classes (in Java).

class MyListImpl<E> implements List<E> {
 public MyListImpl(E ... elements) { … }
 …
}

List<Integer> seq = new MyListImpl(1, 2, 3, 4);

Table 4 Java 5 initialisation of a List

 ECEASST

6 / 8 Volume 9 (2008)

In C# 3.0, we can now initialise objects of any class that implements the IEnumerable

interface, and which provide an ‘Add’ method. This enables us to create collection objects in a

manner almost identical to OCL, as illustrated in Table 5.

var seq = new List<int> { 1, 2, 3, 4 }

Table 5 C# initialisation of a List

C# 3.0 also facilitates object initialisation, which could be a feature provided in OCL, though

this does raise the issue of ‘side-effect-free’, is creating a new tuple or a new collection object

any different to creating a new object of a user type?

5 Iterations

The main expressive power and conciseness of OCL comes from the iterator operations. There

are many of these built into the language: iterate, select, reject, collect, any, one, forAll, exists,

etc. A few are illustrated in Table 6.

let
 seq = Sequence { 1, 2, 3, 4, 5, 6, 7, 8, 9 },
 evenSeq = seq->select(i | i mod 2 = 0),
 allEven = seq->forAll(i | i mod 2 = 0),
 existsEven = seq->exists(i | i mod 2 = 0),
 sum = seq->sum()

Table 6 OCL iterations

C# 3.0 has introduced a language concept of a ‘lambda expression’ that now facilitates the use

of iterator operations in the same manner as OCL. The equivalent C# statements to the OCL of

Table 6 are shown in Table 7

var seq = new List<int> { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
var evenSeq = seq.Where(i => i % 2 == 0);
var allEven = seq.All(i => i % 2 == 0);
var existsEven = seq.Exists(i => i % 2 == 0);
var sum = seq.Sum();

Table 7 C# iterations

As we can see from Table 7, there is very little difference between the C# and OCL

expressions. There are subtle syntax differences, and the names of the operations are different

(i.e. Where replaces select, and confusingly (for OCL experts), Select replaces collect).

A very useful syntactic notion that OCL has, which C# 3.0 does not, is the automatic

implication of collect when navigating over a collection property using the ‘.’ operator. This

gives a significant conciseness to navigation expressions, not present in the C# 3.0 approach,

at least as yet!.

6 Tuples

let
 t1 = Tuple { name = ‘john’, age=37 }
 t2 = Tuple { a = a1, b = b1 }
 t3 = Tuple { a:A = a1, b:A = b1 }

 C# 3.0 makes OCL redundant!

Proc. Ocl4All 2007 7 / 8

Table 8 OCL definition of tuples

Tuples in OCL are constructed using the keyword Tuple, followed by a list of “name=value”

pairs. In addition we can explicitly provide the type of the named part of tuple.

 var t1 = new { name="john", age=37 };
 var t2 = new { a = a1, b = b1 };
 var t3 = new { a = a1, b = (A)b1 };

Table 9 C# definition of tuples

In C# 3.0, the equivalent of a tuple is provided using the notion of an anonymous class. The

new keyword is used to construct an object with no specified type; the initialiser for the object

is used to imply the property names and types, and give the properties a value.

In OCL we can explicitly define the type of a tuple, allowing tuples to be passed as operation

parameters for instance; or simply to facilitate validation of the tuple type of an expression.

Table 10 illustrates this.

let
 t1 : Tuple(name:String, age:Integer)
 = Tuple { name = ‘john’, age=37 }

Table 10 OCL use of tuple type

In C# however, we cannot explicitly define the type of the anonymous class properties, they

are always inferred. We cannot therefore use tuples as parameters to operations, other than by

employing a pass by example work-around, which may not be possible in the final version of

the language. We can explicitly give the type of the properties by including a cast to the

required type.

 var t1 = new { name=(string)"john", age=(int)37 };

Table 11 C# cannot explicitly define the type of the tuple

7 Conclusion

The stated thesis of this paper was that OCL is redundant now that new language features are

present in C#. That is to say, given that people can write nice concise navigation expression

using iterators and tuples in the C# programming language, why would anyone want to write

them in OCL?

An initial argument to counter that thesis is the idea that OCL is in some way ‘platform

independent’. Using a programming specific language, such as C#, ties the specification to a

Microsoft/.Net/C# implementation of the specification. If we write the specification using the

‘standard’ language of OCL, then we can use MDD techniques to provide alternative

implementations. The new C# features thus makes a mapping to that language much simpler.

Both C# 3.0 and Java 7 both propose the integration of closures or lambda expressions into the

core language. This suggests that the OCL community could also make that step. Having

included the notion in the syntax of the language, since its beginning, as built-in iterator

 ECEASST

8 / 8 Volume 9 (2008)

operations, perhaps we should promote the notion to a first class concept as has been done in

C# 3.0 and Java 7. This would then enable users to define their own operations that make use

of the concept.

To summarise, and to initiate some discussion points, the following three lists highlight:

reasons that OCL is not redundant, OCL concepts that programming languages such as C#

now have, and potential improvements for OCL.

OCL is still useful because:

1. It is platform/programming language independent

2. It enables concise navigation over collections

OCL concepts now in C# are:

1. Tuples

2. Iterator operations

3. Lambda Expressions

4. Collection initialisation

5. Inference of variable types

Questions regarding future of OCL:
1. Is OCL redundant? No, we need something platform independent!

2. Should we enable users to write their own closure operations? I.e. provide explicit notion of

lambda expressions? Yes, this would be very useful!

3. Should OCL allow Object Initialisation, or is this definitely seen as causing a side-effect?

Open to discussion.

References

[1] R. Bird and P. Wadler, Introduction to functional programming: Prentice Hall, 1988.

[2] J. K. Ousterhout, Tcl/Tk: Addison-Wesley, 1997.

[3] F. Daoud and Javelot Inc, "FunctionalJ" functionalj.sourceforge.net. 2006

[4] T. M. O'Brian, Jakarta Commons Cookbook: O'Reilly, 2004.

[5] K. Barclay and J. Savage, Groovy Programming; An Introduction for the Java

Programer: Morgan Kaufmann, 2006.

[6] C. Castalez, "Closures in Groovy; Good Fences Make Good Functions" today.java.net.

2005

[7] Y. Matsumoto, "Ruby Programming Language," Addison Wesley Publishing

Company, 2002.

[8] D. H. Akehurst and B. Bordbar, "On Querying UML data models with OCL,"

presented at <<UML>> 2001 - The Unified Modeling Language: Modelling

Languages, Concepts and Tools, 2001.

